1 Supporting information for:

2

3	Oxidation State by SO ₂ during Photooxidation of 2-Methoxyphenol
4	Changgeng Liu ^{1,2,a} , Tianzeng Chen ^{1,4,a} , Yongchun Liu ^{1,4,5,*} , Jun Liu ^{1,4} , Hong He ^{1,3,4,*} ,
5	Peng Zhang ^{1,4}
6	¹ State Key Joint Laboratory of Environment Simulation and Pollution Control,
7	Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences,
8	Beijing 100085, China
9	² School of Biological and Chemical Engineering, Panzhihua University, Panzhihua
10	617000, China
11	³ Center for Excellence in Regional Atmospheric Environment, Institute of Urban
12	Environment, Chinese Academy of Sciences, Xiamen 361021, China
13	⁴ University of Chinese Academy of Sciences, Beijing 100049, China
14	⁵ Beijing Advanced Innovation Center for Soft Matter Science and Engineering,
15	Beijing University of Chemical Technology, Beijing 100029, China
16	^a These authors contributed equally to this work and should be considered as co-first
17	authors
18	Correspondence to: Yongchun Liu (liuyc@buct.edu.cn) and Hong He
19	(honghe@rcees.ac.cn)

Enhancement of Secondary Organic Aerosol Formation and its

20 Chemicals

Guaiacol (Sigma-Aldrich, >99%), sodium chloride (Sinopharm Chemical Reagent Co., Ltd., >99.8%), and ammonium sulfate (Sinopharm Chemical Reagent Co., Ltd., >99%) were used in the experiments as received. NO (963 ppm) and SO₂ (3000 ppm) were purchased from Beijing Huayuan Gas Chemical Industry Co., Ltd.

26 Figure S1. Schematic of the RCEES-CAS smog chamber facility.

28 Figure S2. SOA mass concentration (M₀) vs. the consumed guaiacol concentration

30

31 Figure S3. Foramtion of SOA, sulfate, and nitrate as a function of SO₂ concentration

32 for guaiacol photooxidation. The k values are the slopes of the fitted lines for each

33 species.

Figure S4. Time-dependent curves of Factor 1 (a) and Factor 2 (b) at three different

36 SO₂ concentrations.

38 Figure S5. Differences among the normalized mass spectra of SOA formed at

 $39 \quad \ \ different SO_2 \ concentrations \ (a: 33 \ ppb \ SO_2 - no \ SO_2; \ b: 56 \ ppb \ SO_2 - 33 \ ppb \ SO_2).$

Figure S6. Fitted peaks of average W-mode mass spectrum of methyl sulfate obtained

43

44 Figure S7. Difference between the normalized mass spectra of SOA formed with

45 different seeds (NaCl seeded $SOA - (NH_4)_2SO_4$ seeded SOA).

46

Figure S8. Mass spectra of SOA with NaCl (a) and (NH₄)₂SO₄ (b) as seed particles
obtained by HR-ToF-AMS at different SO₂ concentration (red bars: without SO₂; olive
markers: 30 ppb SO₂ for a and 33 ppb SO₂ for b; blue markers: 54 ppb SO₂).

Figure S9. Differences among the normalized mass spectra of SOA formed at
different SO₂ concentrations with (NH₄)₂SO₄ seed particles (a: 33 ppb SO₂ – no SO₂;
b: 54 ppb SO₂ – 33 ppb SO₂).

Figure S10. Differences among the normalized mass spectra of SOA formed at
different SO₂ concentrations with NaCl seed particles (a: 30 ppb SO₂ – no SO₂; b: 54
ppb SO₂ – 30 ppb SO₂).