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Abstract. Thermodynamic soundings for premonsoon and monsoon seasons from the Indian subcontinent are analyzed to1

document differences between convective environments. Pre-monsoon environment features more variability for both near-2

surface moisture and free-tropospheric temperature and moisture profiles. As a result, level of neutral buoyancy (LNB) and3

pseudo-adiabatic Convective Available Potential Energy (CAPE) vary more for the pre-monsoon environment. Pre-monsoon4

soundings also feature higher Lifting Condensation Levels (LCLs). LCL heights are shown to depend on the availability of5

surface moisture, with low LCLs corresponding to high surface humidity arguably because of the availability of soil moisture. A6

simple theoretical argument is developed and showed to mimic the observed relationship between LCL and surface moisture.7

We argue that the key element is the partitioning of surface energy flux into its sensible and latent components, that is, the8

surface Bowen ratio, and the way Bowen ratio affects surface buoyancy flux. We support our argument with observations of9

changes in the Bowen ratio and LCL height around the monsoon onset, and with idealized simulations of cloud fields driven10

by surface heat fluxes with different Bowen ratios.11

1 Introduction12

Convective environment over the Indian subcontinent changes significantly from hot and dry pre-monsoon conditions to cooler13

and wetter monsoon. The change comes from the dramatic evolution of the large-scale circulation (e.g.,Yin, 1949; Lau and14

Yang, 1996 and references therein) that brings significant oceanic moisture during the monsoon. The conveyer belt of mois-15

ture is the monsoon low-level jet (Joseph and Sijikumar, 2004) that moistens land areas, changes cloud characteristics, and16

brings monsoon rains that are key to the Indian economy. The change from pre-monsoon to monsoon conditions is rapid with17

convective precipitation driven by the surface heating in the pre-monsoon period giving way to an increase in cloud cover and18

surface rainfall during the monsoon season (e.g.,Ananthakrishnan and Soman, 1988). Significant rainfall occurs over the west19

coast and the northeastern region, and it further extends westward in association with the northwestward movement of weather20

systems formed over the Bay of Bengal (Gadgil et al., 1984).21

The monsoon low-level jet weakens during the monsoon break periods, influencing moisture content over land and strongly22

reducing the rainfall (Sandeep et al., 2014; Balaji et al., 2017). Intraseasonal oscillations of monsoon rainfall are well docu-23

mented (e.g., Goswami and Mohan, 2001; Gadgil, 2003) with active and break periods featuring considerable spatiotemporal24
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variations (Rajeevan et al., 2010). Initial studies of the monsoon boundary layers focused on the contrast between active and25

break monsoon periods (e.g.,Parasnis et al., 1985) with a contrasting moisture availability in the lower troposphere. The ac-26

tive/break monsoon conditions are characterized by lower/higher boundary layer heights (e.g., Kusuma et al., 1991). Higher27

cloud bases also occur during weak monsoon conditions when lower atmosphere is drier compared to the active monsoon.28

Parasnis and Goyal (1990) reports enhanced convective instability in the boundary layer on weak monsoon days when com-29

pared to the active monsoon. Convective Available Potential Energy (CAPE), a proxy for the strength of convection, feature30

higher values over coastal regions because of the presence of higher moisture in the boundary layer (Alappattu and Kun-31

hikrishnan, 2009). That study argues that the temporal variability of CAPE and convective inhibition (CIN) is predominantly32

controlled by the boundary-layer moisture. Resmi et al. (2016) shows that sustaining convective storms in the diurnal cycle33

is possible because of moisture advection and increase of CAPE over rain shadow region of the Indian subcontinent. Diurnal34

variations of CAPE are directly linked to water vapor content near surface, with higher CAPE environments favoring higher35

precipitation (Balaji et al., 2017). Precipitable water (PW) and lifting condensation level (LCL) derived from various obser-36

vations are also closely related (Murugavel et al., 2016). Balaji et al. (2017) shows that high PW conditions correspond to37

shallower boundary layer (with boundary layer height close to LCL) and higher LCL combined with deeper boundary layer38

height typically occur during drier conditions. Balaji et al. (2017) also illustrates diurnal variations of PW and CAPE during39

wet and dry regimes within the monsoon.40

The monsoon onset marks a striking change in the surface and boundary layer conditions because of the change of the par-41

titioning of the surface energy flux into its sensible and latent components. However, there are no comprehensive comparisons42

of pre-monsoon and monsoon thermodynamic environments and their contrasting characteristics with respect to parcel buoy-43

ancy and boundary layer characteristics. The soil moisture variations typically follow rainfall patterns or variations. Transition44

from pre-monsoon to monsoon conditions is associated with increase in soil moisture (Sathyanadh et al., 2016) and thus with45

the change of the partitioning of the surface energy flux into its sensible and latent fluxes. The ratio of the sensible to latent46

surface heat fluxes is commonly referred to as the Bowen ratio. Bowen ratio affects surface buoyancy flux that drives boundary47

layer dynamics (e.g., Stevens, 2007 and references therein) and affects the rate at which convective boundary layer deepens.48

It also sets the mean boundary layer humidity (e.g., Ek and Mahrt, 1994), impacts the efficiency of moist convection heat49

cycle (i.e., the ratio between mechanical work and energy input at the surface; Shutts and Gray, 1999) and the distribution of50

shallow convection cloud base mass flux (Sakradzija and Hohenegger, 2017). One thus might expect different boundary layer51

characteristics in surface-forced pre-monsoon and monsoon conditions due to different Bowen ratios for the two environments.52

However, Bowen ratio does not seem to affect the updraft intensity in deep convection (Hansen and Back, 2015). Instead,53

the free-tropospheric conditions, impacted by larger-scale atmospheric dynamics, may affect the strength of convection as54

measured by parameters such as CAPE, LCL height, or maximum pseudo-adiabatic parcel buoyancy.55

Present study contrasts pre-monsoon and monsoon environments by analyzing a large set of soundings released from Pune,56

India, in the semi-arid Western Ghat mountains rain-shadow region. Traditional measures of convective environment are dis-57

cussed with the emphasis of surface forcing. Since no surface flux information is available for the region where long period58

soundings were obtained, we use data collected at another location in the rain shadow area to document changes in the Bowen59
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ratio and LCL height between pre-monsoon and monsoon conditions. Subsequently, we discuss two sets of idealized numerical60

simulations that consider the impact of the surface Bowen ratio on convective development. We argue that model results are61

broadly consistent with our interpretation of the sounding analysis. A brief summary concludes the paper.62

2 Observations63

2.1 Data and Instrumentation64

Data from radiosonde measurements conducted at Pune (18◦31′ N, 73◦51′ E, elevation 530 m amsl) and measurements from65

Mahabubnagar (16◦45′ N, 78◦00′ E, elevation 498 m amsl), about 500 km south-east of Pune) are used in this study. Both66

locations are in the leeside of Western Ghat mountains in the semi-arid rain-shadow region. Total of 84 soundings from years67

2010-2014 from Pune, divided into 42 pre-monsoon (March, April, May) and 42 monsoon (June, July, August, September)68

soundings were analyzed. The Pune soundings are launched irregularly (typically once a week) and they are not part of the69

daily global sounding network (i.e., they are not available, for instance, from the Wyoming air sounding database; http://70

weather.uwyo.edu/upperair/sounding.html). The original data are archived at Indian Institute for Tropical Meteorology (IITM)71

and they feature high spatial resolution as explained below. Vaisala radiosonde RS92-SGP is used, measuring atmospheric72

temperature, pressure and humidity. Wind speed and direction (not considered in this study) are obtained by tracking the73

position of radiosonde using GPS. Launch time is 13:00 IST when the solar insolation is near its peak. The operation takes74

almost two hours with the radiosonde reaching typically up to 30 km altitude with an ascent rate around 5 ms−1. Data is75

available at approximately 3 m vertical resolution.76

Second set of observations are surface flux and tropospheric profiles from the Integrated Ground Observational Campaign77

(IGOC) at Mahabubnagar, south-east of Pune. Observations were conducted during the transition from pre-monsoon to mon-78

soon and during the monsoon season of 2011. The latent and sensible surface heat fluxes were measured using eddy covariance79

sensors located on a meteorological tower at 6 m above surface. In addition to the surface heat flux measurements, a microwave80

radiometer profiler (MWRP) was also placed about 1.2 km from the tower location. MWRP provides vertical profiles of tem-81

perature and humidity during the diurnal cycle (Balaji et al., 2017). This information is used to calculate lifting condensation82

level applying the same method as for the Pune soundings (see the next section).83

2.2 Analysis of Pune soundings84

For Pune soundings, thermodynamic parameters such as the potential temperature (θ), equivalent potential temperature (θe),85

water vapour mixing ratio (qv), relative humidity (RH), cloud water mixing ratio (qc), parcel buoyancy (B) and cumulative86

Convective Available Potential Energy (cCAPE) were derived using thermodynamic equations and standard procedures as87

described below. Standard parameters describing convective environment, such as lifting condensation level (LCL), level of88

free convection (LFC), and level of neutral buoyancy (LNB) were calculated as well.89
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Pressure (p), temperature (T ), water vapour mixing ratio (qv) and relative humidity (RH) of the environment were given as90

the standard sounding data. Geometrical heights of data levels were obtained by integrating the hydrostatic pressure equation91

from the surface upwards. Subsequently, the input data were interpolated to a regular vertical grid with a uniform spacing of92

50 m. A simple adiabatic parcel model was then applied to calculate various parameters describing convective environment.93

Initial conditions for parcel came from lowest levels available in the sounding, typically corresponding to the near-surface94

conditions. The potential temperature, water vapour mixing ratio, cloud water mixing ratio and the pseudo-adiabatic buoy-95

ancy (B) inside the parcel (i.e., neglecting cloud water which is assumed to convert to precipitation and fall out) were de-96

rived considering only condensation of water vapor. Condensation was calculated assuming that the parcel maintained water97

saturation and corresponding latent heating was added to parcel potential temperature. The first level where condensation oc-98

curred was marked as LCL. The level above LCL where parcel buoyancy became positive was marked as LFC, and the level99

where parcel buoyancy changed from positive to negative (typically in the upper troposphere) was marked as LNB. Pseudo-100

adiabatic parcel buoyancy was calculated as B = g(∆θv/θve) where θvand θve are virtual potential temperatures of rising101

parcel and of the environment, respectively, and g is gravitational acceleration. The virtual potential temperature is defined as102

θv = θ(1 +εqv), where ε=Rv/Rd−1 ≈ 0.61 and Rv and Rd are gas constants for the water vapour and dry air, respectively.103

The cumulative CAPE (cCAPE ) was calculated by vertical integration of the parcel positive buoyancy; it is formally defined104

as cCAPE(z) =
∫ z
0
max(0,B)dz. Cumulative CAPE shows how CAPE builds up within a rising pseudo-adiabatic parcel.105

Note that CAPE is given as cCAPE(z = LNB). In addition, the equivalent potential temperature θe was calculated using106

approximate formula:107

θe = θ exp (
L

CpT
qv) (1)108

where L is latent heat of condensation.109

3 Results of sounding analysis110

3.1 Temperature and moisture profiles111

Figure 1 shows vertical profiles of the potential temperature (θ), water vapor mixing ratio (qv) and corresponding relative112

humidity (RH) separated into pre-monsoon and monsoon periods. Panels with the potential temperature profiles also show113

corresponding LCL levels, represented by horizontal lines. The atmosphere exhibits contrasting features during the two seasons.114

Pre-monsoon soundings are characterised by a deeper boundary layer (BL) than monsoon soundings. BL can be identified by115

regions of constant potential temperature in the lower atmosphere up to 3 km from the surface. LCL heights show higher116

cloud base heights for pre-monsoon clouds and lower cloud base heights for monsoon clouds. Lower and middle troposphere117

is significantly more humid for the monsoon when compared to the pre-monsoon. Pre-monsoon BL is typically topped by a118

strong inversion that is accompanied by a decrease of RH within a few hundred meters. Higher RH for monsoon BL with values119

closer to saturation is evident. Monsoon soundings show a well-defined tropopause identified from potential temperature sharp120

gradient at the height of around 16 km. Details of these are discussed in 3.1.1 – 3.1.3.121
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Fig. 1. Profiles of potential temperature (θ), water vapour mixing ratio (qv) and relative humidity (RH) for (upper panels) premonsoon and

(lower panels) monsoon soundings. Different colours represent different soundings with a total of 42 soundings for both cases. Horizontal

lines in left panels are LCL heights with the same colour as the corresponding profile.

3.1.1 Temperature and moisture profiles and their variability122

For pre-monsoon conditions, the surface temperature is on average several degrees warmer and water vapor mixing ratio is on123

average about half of that for monsoon period. The latter is arguably related to the contrasting levels of soil moisture in pre-124

monsoon and monsoon conditions. The temperature and moisture profiles exhibit less day-to-day variability for the monsoon125
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period. The spread of temperature in middle troposphere in the monsoon environment is about half of that for pre-monsoon.126

In upper troposphere and lower stratosphere, the differences are smaller. For the pre-monsoon period, moisture profiles below127

6 km vary significantly and atmosphere is significantly drier above 6 km when compared to monsoon soundings. Arguably,128

higher moisture contents in the middle and upper troposphere during monsoon come from convection reaching higher levels129

as documented later in the paper. However, differences due to large-scale horizontal advection may play some role as well.130

Individual moisture profiles feature significant fluctuations, even more apparent if no smoothing is applied to the original131

high resolution data. This is evident at lower levels (i.e., within the boundary layer) as well as aloft. Fluctuations within132

boundary layer show that it is not well-mixed for the water vapor in most soundings, especially for monsoon conditions.133

However, relative humidity does increase approximately linearly within the boundary layer in most profiles similar to the case134

of well-mixed mixed boundary layer (i.e., featuring constant with height potential temperature and water vapor mixing ratio).135

3.1.2 LCL/boundary layer height136

In surface-driven convective situations and mid-day conditions with either shallow or deep convective clouds above boundary137

layer, LCL height should be relatively close to boundary layer height as noted by Balaji et al., 2017 using temperature and138

moisture profile observations with microwave radiometer profiler. This is because the adiabatic (neutral) temperature profile139

(i.e., constant θ) within the well-mixed boundary layer has to change to stably-stratified profile (i.e., θ increasing with height)140

in the free troposphere aloft. Since LCL marks the transition from dry to moist temperature lapse rate within a rising adiabatic141

parcel, the change from neutral boundary layer and moist-convecting stratified atmosphere aloft should also correspond to142

LCL. This is consistent with idealized simulations of the diurnal cycle of shallow and deep convection over land (see Brown143

et al., 2002 and Grabowski et al., 2006, respectively). These simulations show that deepening of boundary layer is accompanied144

by an increase of LCL height. However, presence of deep convection and significant precipitation can lead to the separation145

of the well-mixed boundary layer height and LCL height as illustrated later in the paper in idealized simulations (cf., Section146

5). As Fig. 1 documents, LCLs around 13:00 LST are significantly higher for pre-monsoon period. This may come from either147

different surface fluxes during the course of the day between pre-monsoon and monsoon periods or from partitioning of the148

surface energy flux into sensible and latent components. One can argue, however, that the energy passed from earth surface to149

the atmosphere (the sum of sensible and latent heat fluxes) should be similar in pre-monsoon and monsoon conditions because150

the solar insolation is similar in both cases. Presence of extensive clouds in monsoon conditions can make a difference for151

surface energy budget, but we neglect this aspect for the qualitative discussion here. Thus, we assume that development of152

convective boundary layer during pre-monsoon and monsoon periods is to the leading order affected by partitioning of total153

surface energy flux into its sensible and latent components, and not by the differences in total flux.154

The partitioning of surface flux into sensible and latent components depends on the soil moisture that differs drastically155

between pre-monsoon and monsoon conditions. The surface buoyancy flux that drives boundary layer dynamics is affected156

by the surface Bowen ratio. Since the thermodynamic variable relevant for buoyancy flux is the virtual potential temperature157

θv = θ(1+εqv), the total surface buoyancy flux (BF) can be approximated as BF =<wθv >=<wθ >+θoε < wqv >, where158

θo is the surface potential temperature.Total surface energy flux (EF) can be similarly written (using the moist static energy or159
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Fig. 2. The ratio of surface buoyancy flux to total energy flux (sensible plus latent) as a function of Bowen ratio.

the equivalent potential temperature) as EF =<wθ >+ L
cp
<wqv >. Consequently, BF/EF ratio between the buoyancy and160

energy surface fluxes can then be represented as:161

BF/EF = (α+B)/(1 +B) (2)162

where α= θo ε
cp
L ≈ 0.1 is a numerical coefficient, and B =

cp<wθ>
L<wqv>

is the Bowen ratio. For small Bowen ratios (i.e., surface163

latent heat flux dominates as typically over the oceans) the BF/EF ratio approaches 0.1, that is, only 10 % of the total surface164

energy flux contributes to the buoyancy flux. For large Bowen ratios (i.e., surface sensible heat flux dominates as over arid and165

semi-arid areas) the BF/EF ratio approaches 1, that is, all of the total surface energy flux contributes to the buoyancy flux. For166

Bowen ratio of 1 (i.e., equal surface sensible and latent fluxes), only about half of the energy flux contributes to the buoyancy167

flux. The equation (2) is shown in Fig. 2. The impact of the surface Bowen ratio on the shallow convective cloud base mass168

flux has recently been highlighted by Sakradzija and Hohenegger (2017).169

The above considerations explain the well-known fact that daytime convective boundary layer develops deep over arid and170

semi-arid areas that feature high Bowen ratio due to limited availability of water at the surface. For instance, over the Sahara171

desert, the boundary layer height can reach several kilometres (e.g., Ao et al., 2012). In contrast, surface-driven convective172

boundary layer over tropical and sub-tropical oceans is relatively shallow, often a mere several hundred meters. We argue173

that the differences between pre-monsoon and monsoon periods can, to a large degree, be explained by the availability of soil174

moisture and partitioning of surface energy flux between sensible and latent components. These differences will be further175

illustrated by model simulations discussed in section 5.176
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3.1.3 Troposphere-stratosphere transition177

As Fig. 1 illustrates, the tropopause is much better defined and varies less during monsoon. In contrast, transition from tropo-178

sphere to the stratosphere is gradual in pre-monsoon environment. This may come from the fact that convection not always have179

a chance to get to the tropopause in pre-monsoon environment (as documented later in the paper) and other processes (e.g.,180

large-scale advection or radiative transfer) play an important or even dominant role. A well-defined tropopause is a feature181

of the monsoon environment. This is associated with the mid tropospheric anticyclone of the Asian monsoon system. Dethof182

et al. (1999) shows that the upper level monsoon anticyclone located close to tropopause is moistened by the monsoon convec-183

tion. The strong potential vorticity gradients around tropopause prevent transport across upper-troposphere lower-stratosphere184

(UTLS) region and result in strong temperature gradients there. Pune latitude is in the region separating upper level westerlies185

to the north and easterlies to the south that are associated with mid tropospheric anticyclone.186

In the case of pre-monsoon conditions, the moisture availability in BL is considerably reduced and this has a significant187

influence on cloud base height. Air parcels need to rise to greater heights in pre-monsoon conditions to reach LCL compared188

to monsoon conditions. Significant variations are observed in LCL heights during these two seasons. Pre-monsoon clouds have189

their bases at higher levels, 2 to 6 km from the surface, whereas monsoon soundings indicate cloud bases at lower levels with190

most of them being lower than 2 km. This result is highly correlated with surface level moisture as documented below.191

BL as well as mid-tropospheric moisture for the two seasons exhibit contrasting characteristics. The mean tropospheric192

moisture is higher for monsoon soundings. During monsoon, the surface values of qv are higher compared to pre-monsoon,193

and most of them fall within the range of 14-18 gkg−1. Pre-monsoon surface qv has a lower but wider range from 3 to 14194

gkg−1. Monsoon soundings also indicate higher levels of mid-tropospheric moisture. The main reason is south westerly winds195

that transport moisture from Arabian Sea to Indian subcontinent. Because of Western Ghat mountains, the transport features196

strong low-level convergence over Indian west coast. However, for the inland locations over rain shadow region, the jet core197

level is seen at 1.5-2 km, just above the boundary layer. Arguably, boundary layer convection developing during the day pushes198

jet layer to an elevated height.199

3.2 Cloud base height and surface level moisture200

For a well-mixed boundary layer, water vapor mixing ratio near surface is the main determining factor for cloud base height.201

Figure 3 shows the scatterplot of the cloud base height and the surface moisture. Monsoon soundings with higher surface202

mixing ratios correspond to lower cloud bases, and pre-monsoon soundings with lower mixing ratios have significantly higher203

cloud bases. The relationship between mixing ratio at the surface and cloud base height is approximately linear but with a204

significant scatter. However, the relationship between cloud base height and near surface RH is nonlinear, with little scatter.205

The following simple theoretical analysis explains the tight relationship between surface relative humidity and the cloud206

base height as shown in Fig. 3. The key assumptions are that the boundary layer is well-mixed and the cloud base is not far207

from boundary layer top. The two assumptions ensure that air parcels originating from near the surface and reaching LCL208

insignificantly change their thermodynamic properties during their rise. Overall, these should be valid assumptions in surface-209
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Fig. 3. Variation of LCL height zLCL with (a) surface qv and (b) surface RH . Red/blue circles/triangles represent pre-monsoon/monsoon

cases. Parcel model derived parameters (RH and LCL height) are shown as filled symbols. LCL heights derived using Eq. (3) are shown as

empty symbols.

driven convective situations. However, presence of significant precipitation can change this picture as documented later in210

the paper. When the two assumptions are valid, then the height of the cloud base (i.e., LCL) is the level where adiabatic211

air parcel rising from surface reaches saturation. If TLCL depicts the LCL temperature and Ts and RHs depict temperature212

and relative humidity at the surface, then qvs(TLCL)/qvs(Ts) =RHs. Since qvs ≈ es/p where es and p are the saturation213

water vapor pressure and environmental air pressure, it follows that es(TLCL)/es(Ts) = pLCL/psRHs, where pLCL and ps214

represent pressure at the LCL and surface, respectively. Applying an approximate Clausius-Clapeyron formula in the form:215

es(T ) = e0 exp[
L
Rv

( 1
T0

− 1
T )], where e0 is the saturated water vapor pressure at the temperature T0, leads to: 1

Ts
− 1

TLCL
=216

Rv

L ln( pLCL

ps RHs
). Using the dry-adiabatic relationship between TLCL and Ts in the form TLCL = Ts− g zLCL

Cp
gives:217

ln(
pLCL
psRHs

) = − L g zLCL
cp Rv TLCL Ts

(3)218

To show that the relationship is approximately valid for the data used in this study, we derived zLCL from observed ps, RHs219

and Ts, and the parcel model derived pLCL and TLCL. As the figure shows, Equation(3) provides zLCL estimates that are220

lower than the zLCL calculated from the parcel model, and the difference between zLCL estimated from the parcel model and221

derived from Equation(3) is typically around 600 meters regardless of the surface humidity.222

There are at least two explanations for the underestimation of zLCL by Equation(3), both associated with the well-mixed223

assumption for the boundary layer. The first one has to do with the presence of superadiabatic layer near the surface (i.e., the224

potential temperature decreasing with height), clearly evident in many soundings shown in Fig. 1. With the surface temperature225

higher than the mean boundary layer potential temperature, zLCL needs to be higher to keep zLCL/(TLCLTS) approximately226

constant on the right-hand-side of (3) as pLCL/ps can change little. Since 600 m corresponds to about 6 K along the dry adia-227
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batic lapse rate, such an explanation would imply that the air temperature change across the superadiabatic layer is universally228

about 6 K in the sounding data used here. This does not seem inconsistent with at least some soundings shown in Fig. 1. The229

boundary layer may also become not well-mixed (i.e., develop moisture and temperature stratification) because of precipitation230

or low-level horizontal advection, presence of neither is possible to deduce from the available data. In convective situations,231

significant surface precipitation is always accompanied by convective-scale downdrafts and boundary-layer cold pools. Since232

the air in a cold pool typically comes from middle troposphere, the low-level water vapor mixing ratio inside the cold pool is233

typically lower than on the outside (e.g., Tompkins, 2001). In such a situation, the boundary layer cannot be assumed well-234

mixed and entrainment of boundary-layer air into a plume rising from surface would lead to plume dilution and thus to the235

increase of LCL height. Moreover the parcel model constitutes a significant simplification of real atmosphere in which the236

sonde is flown taking a Lagrangian path and cutting across different air columns.237

The above analysis is consistent with results discussed in Murugavel et al. (2016). They showed that the column precipitable238

water (PW), the vertical integral of water vapor density in the atmosphere, is a good predictor of LCL temperature and height239

over the Indian subcontinent. Since the column PW is dominated by moisture in the lowest levels (and in the boundary layer240

in particular), the mixing ratio near the surface should then be well correlated with LCL height as documented in Fig. 3.241

The above results can also be used in reverse. The fact that, despite some offset, there is an almost a perfect relationship242

between RH and zLCL implies that mid-day boundary layer for all soundings considered in this study is of convective type,243

that is, with close to the adiabatic potential temperature profile from above the superadiabatic surface layer up to the convective244

boundary layer height and LCL.245

3.3 Profiles of pseudo-adiabatic buoyancy and cCAPE246

CAPE represents the energy available for moist convection and larger values of CAPE indicate larger potential for strong con-247

vection. Figure 4 shows profiles of pseudo-adiabatic buoyancy (i.e., the difference in the virtual potential temperature between248

pseudo-adiabatic parcel and the environment) and cCAPE from all soundings separated into pre-monsoon and monsoon con-249

ditions. In addition, pre-monsoon soundings are divided into three groups (marked by red, blue, and green lines in left panels)250

depending on CAPE values, with red/blue/green colors corresponding to low/medium/high CAPE values. This partitioning251

will be used in the subsequent analysis. Monsoon and pre-monsoon environments exhibit distinct patterns. First, there is a252

significant day-to-day variability for both environments as marked by the spread in profiles, but the variability seems larger253

for pre-monsoon conditions. The variability is affected mostly by the surface water vapor mixing ratio as quantified later in254

the paper. Large CAPE pre-monsoon soundings (green colour) are characterized by pseudo-adiabatic parcel maximum buoy-255

ancies that are not different from their monsoon counterparts, but LNBs and CAPE values (evident from end points of cCAPE256

profiles) are typically lower for the pre-monsoon environment.257

Most of the monsoon pseudo-adiabatic buoyancy and cCAPE profiles follow a consistent pattern, as shown in right panels of258

Fig. 4. These soundings maintain positive pseudo-adiabatic buoyancies up to the upper troposphere with CAPE values typically259

between 1000 and 2000 Jkg−1, except for a few cases. This is different for pre-monsoon soundings that feature wide range260

of maximum in-cloud buoyancies, with three distinct branches. The first branch represented by green lines follows a pattern261
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Fig. 4. Profiles of the pseudo-adiabatic buoyancy (upper panels) and cCAPE (lower panels) for pre-monsoon (left column) and monsoon

(right column) soundings. cCAPE profiles terminate at LNB. Pre-monsoon soundings are divided into three groups marked by red, light blue

and green lines depending on the CAPE value.

similar to monsoon cases, but with lower CAPE values and lower LNBs. The second branch, marked by blue lines, represents262

intermediate soundings with CAPE typically between 500 and 1000 Jkg−1, and LNBs typically in middle troposphere. Red263

lines represent the cases with low CAPE and LNB located in lower or middle troposphere.264

These results show that monsoon season feature convective environments that are all similar and can be grouped into a265

single family. In contrast, pre-monsoon season witnesses a wide range of atmospheric conditions and convection with diverse266
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Fig. 5. Variation of (a) CAPE and (b) LNB as a function of surface water vapor mixing ratio. Pre-monsoon cases are grouped similarly as in

Fig. 4

properties, from situations with low-CAPE and LNBs in the lower and middle troposphere to situations with CAPE comparable267

to monsoon environments and LNBs in the upper troposphere. One distinct feature of high-CAPE pre-monsoon category is268

that the positive buoyancy increases steeply above the level of free convection (LFC) compared to the monsoon cases where269

buoyancy increased gradually above the boundary layer. This is possibly due to the stark difference in moisture above LFC270

between pre-monsoon and monsoon environments and its impact on the psuedo-adiabatic buoyancy.271

3.4 CAPE, LNB and maximum buoyancy as a function of surface conditions272

Figure 5 relates CAPE and LNB to the surface water vapor mixing ratio qv . Using surface relative humidity instead of qv273

gives similar results (not shown). Despite significant scatter, the clear pattern is evident: low qv pre-monsoon environment is274

associated with the lowest LNB and CAPE, with qv as low as a quarter of the high-CAPE monsoon cases. Gradual increase of275

qv in pre-monsoon cases leads to gradual increase of CAPE and LNB. High CAPE and LNB monsoon cases are associated with276

high surface qv . The increase of CAPE with surface humidity is consistent with results reported in Alappattu and Kunhikrishnan277

(2009), who analysed pre-monsoon observations over oceanic region surrounding the Indian subcontinent (cf., Fig. 8. therein).278

Our study also supports findings of Bhat (2001), who reported that CAPE over Bay of Bengal during monsoon season varies279

linearly with mixed layer specific humidity (cf., Fig. 3 therein). In our analysis, the linear relationship between surface qv and280

CAPE is well defined for monsoon season, arguably because of the small free-troposphere temperature variations (cf., Fig. 1)281

and small variations of LNB (Fig. 5b). Pre-monsoon convective environments exhibit larger scatter, arguably because of larger282

variability of temperature profiles (Fig. 1) and LNBs (Fig. 5b). However, there appears to be a threshold value of surface qv283
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Fig. 6. Variation of the maximum quasi-adiabatic buoyancy as a function of (a) surface water mixing ratio and (b) surface equivalent

potential temperature. Triangular/circular symbols are for monsoon/pre-monsoon soundings, with the color depicting the cloud base height.

Pre-monsoon cases are grouped as in Fig. 4 and 5.

above which CAPE responds linearly to changes in qv. This may suggest a separation between shallow and deeper convection284

(e.g., congestus).285

Figure 6 shows the maximum pseudo-adiabatic parcel buoyancy as a function of surface water vapor mixing ratio, qv (panel286

a) and the surface equivalent potential temperature, θe (panel b). Circles (triangles) mark pre-monsoon (monsoon) conditions287

and the symbol colour depicts cloud base height according to the color scale shown to the right of the panels. Overall, neither288
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surface qv nor surface θe is a good predictor of the parcel maximum buoyancy. The maximum buoyancy does seem to increase289

with the surface qv , but the relationship is rather weak and there is a large scatter. The scatter reduced while soundings with290

similar cloud base heights are considered.291

The most apparent pattern, already discussed in section 3.2, is that the surface qv strongly affects the cloud base height. The292

main contrast between pre-monsoon and monsoon conditions comes from contrasting relationship in low-level temperature293

and humidity, that is, higher temperature and lower humidity for pre-monsoon cases, lower temperature and higher humidity294

for monsoon cases. Because of compensating effects of the temperature and humidity on θe, its surface values is thus not a295

good predictor of the maximum pseudo-adiabatic parcel buoyancy either.296

In summary, the availability of surface moisture seems to be a significant determinant of deep convection development297

over Indian subcontinent (assuming that conditions near Pune can be taken as a representative for the rain shadow region),298

with pre-monsoon and monsoon conditions providing contrasting examples of the impact. Day-to-day variability of surface299

moisture is larger during pre-monsoon season and it adds to the variability associated with free-tropospheric conditions, such300

as temperature and moisture stratification.301

4 Observations of surface forcing during the pre-monsoon to monsoon transition302

Since surface flux observations are not available simultaneously with Pune sounding data, we use observations collected during303

IGOC campaign to contrast the role of surface forcing between pre-monsoon and monsoon conditions. As explained in section304

2.1, IGOC tower measurements of surface sensible and latent heat fluxes are combined with the estimates of LCL using305

MWRP-derived lower-tropospheric temperature and moisture profiles. Figure 7 shows evolutions of surface fluxes, Bowen306

ratio, and LCL height between June 24 and end of July using 3-hourly data during the diurnal cycle. Pre-monsoon to monsoon307

transition (monsoon onset hereafter) around July 1st is clearly evident in the figure. Before the monsoon onset, sensible heat308

flux is typically much larger than latent flux, and Bowen ratio is larger than 1. After monsoon onset, latent and sensible fluxes309

reverse, with latent heat flux becoming much larger than the sensible flux and Bowen ratio becomes smaller than one. The310

LCL height seems to decrease as Bowen ratio decreases after the monsoon onset and diurnal variations of LCL height become311

less significant after the monsoon onset. There seems to be a weak decreasing trend in the evolutions of Bowen ratio and LCL312

height after the monsoon onset, arguably consistent with the gradual increase of soil moisture during monsoon.313

Although IGOC flux data shown here are for a single monsoon onset case, in contrast to 5 years of sounding data, the314

transition from the high-Bowen ratio pre-monsoon environment to the low-Bowen ratio monsoon environment is fairly typical315

over Indian subcontinent. The impact of surface Bowen ratio on the evolution of monsoon deep convection is further illustrated316

by numerical simulations discussed in the next section.317
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Fig. 7. Evolutions of (upper panel) Bowen ratio (BR) and LCL height (Zlcl) and (lower panel) sensible (black lines) and latent (red lines)

surface heat fluxes around the monsoon onset from the IGOC data.

5 Simulations of deep convection driven by surface forcing318

Two sets of idealized simulations of moist convection with emphasis on the surface forcing are discussed in this section in319

support of analysis presented previously. The first pair of simulations considers monsoon convection applying two specific320

mid-day soundings from IGOC field project, one corresponding to relatively moist surface conditions and second one for dry321

condition. The soundings are from the period toward the end of monsoon, 18th September (wet case) and 2nd October (dry322

case). As already explained, the soundings come from radiosonde released about 1.2 km away from surface flux tower site.323

The simulations are idealized because they apply mid-day sounding as initial condition and use mid-day observed surface324

conditions to calculate surface fluxes, driving the several-hour-long simulations. In reality, surface conditions change because325

of the diurnal variations of surface insolation.326
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Because of such a limitation, we employ a second set of simulations that considers a daytime convective development from327

an early morning sounding driven by evolving surface fluxes. The simulations are based on observations in the South American328

Amazon region (Grabowski et al., 2006). As an illustration, we introduce a simple modification of the surface Bowen ratio and329

analyze its impact. Although idealized (i.e., prescribed horizontally-uniform surface fluxes), the simulations provide additional330

illustration of the role of surface forcing for deep convection development.331

5.1 Two IGOC cases of monsoon convection over India332

Two contrasting soundings, referred to as wet and dry, were collected as the southwest monsoon was receding from Indian333

subcontinent and the lower atmosphere was getting progressively dry. The wet case is September 18th and the dry case is334

October 2nd. Soundings on both days were conducted around noon local time. The surface potential temperature and water335

vapor mixing ratio for the wet case were 305.2 K and 16.6 gkg−1. Corresponding values for the dry case were 306.1 K and336

13.5 gkg−1. The contrasting surface temperature and moisture has been the determining factor for selecting these two cases.337

Fig. 8. Vertical profile of potential temperature and water vapour mixing ratio used as initial conditions in the simulations for wet and dry

cases from the IGOC field project.

Figure 8 compares the two soundings. Wet sounding features about 1 km deep mixed layer (although with a noticeable338

vertical moisture gradient) and relatively uniform free-tropospheric stability aloft. In contrast, dry sounding features no mixed339

layer near the surface, and a fairly complex structure in the lowest 5 km with distinct layers of approximately constant stability:340

weakly stratified layer between the surface and about 3 km, typically-stratified layer between 3 and approximately 4.5 km, and341

an inversion between 4.5 and 5 km. The wet case has higher wind speed (greater than 4 ms−1; not shown) compared to the342

dry case (smaller than 3 ms−1). The mid-tropospheric inversion provides a barrier for deep convection as illustrated by model343
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results. LCL height for the wet case is around 1.1 km, significantly lower than that for the dry case (around 1.6 km) due to344

moisture availability near the surface.345

The model used for the two case simulations is the NCAR Weather Research and Forecasting (WRF) model (Skamarock346

et al., 2005) ran in the LES mode. The horizontal domain of 20 by 20 km2 applies the 100 m grid length. The 10-km deep347

vertical domain is covered with a uniform grid with a 50-m vertical spacing. The model is run in an idealized manner for 8 hours348

applying surface fluxes derived from initial prescribed constant surface temperature and moisture values. Both simulations are349

initialized with radiosonde observations shown in Fig. 8. Surface conditions are prescribed from micrometeorological tower350

based observations of temperature, water vapor. Time step used in the simulation is 1 second. Since the simulations start with351

horizontally-uniform conditions and require spin-up time to develop small-scale circulations and clouds, we present model352

results starting from hour 3. Figure 9 shows evolution of surface sensible and latent heat fluxes and Bowen ratio between hours353

3 and 8. The sensible heat fluxes change little during the simulations, but latent fluxes decrease significantly, especially in the354

dry case. The initial total surface heat flux is about 20 Wm−2 larger in the wet case and the difference increases as simulations355

progress. This implies that the surface total heat flux is larger in wet case and the difference between two simulations increases356

with time. The Bowen ratio is approximately 2 at the onset of two simulations. It remains close to 2 for the wet simulation, but357

increases to values around 12 at hour 8 for the dry case.358

For the wet case, initial sounding features already a well-identifiable mixed layer (at least for the potential temperature),359

and the surface energy and the Bowen ratio change little throughout the simulation. Thus, the boundary-layer height increases360

steadily throughout the simulation, as shown in Fig. 10. The increase of boundary layer height in the wet case is accompanied361

by the increase of cloud base height. The depth of the cloud field, however, increases at a higher rate, from about 2.5 km at362

hour 3 to about 5 km at hour 8. For the dry case, mixed layer is absent in the initial sounding, and thus it rapidly develops363

during the initial couple hours of the simulation. Boundary layer depth is about 1 km at hour 1 (not shown) and about 2.2 km364

at hour 3. The rate then decreases significantly and boundary layer deepens subsequently at a rate comparable to the wet case,365

about 100 m per hour. The cloud base height rises at a similar rate, and cloud field depth remains quite steady at around 2 km366

between hours 3 and 8. The presence of a deep inversion between 4.5 and 5 km (see Fig. 9) provides an efficient lid for the367

convective development.368

The changes in cloud field between hour 5 and 8 are illustrated in Fig. 11 that shows corresponding cloud fraction profiles369

for the two simulations. The figure illustrates increase of cloud base heights with time that are similar for dry and moist cases,370

a significant deepening of the cloud field in moist case, and the impact of inversion between 4.5 and 5 km for the dry case that371

results in almost 100 % cloud cover within the inversion.372

In summary, high-resolution simulations of contrasting realistic cases observed over Indian subcontinent illustrate the impact373

of surface forcing and highlight the role of specific free-tropospheric conditions for convective development and cloud fraction.374

The latter are no doubt responsible to some spread of the observed convective environments apparent in Pune sounding data375

analyzed in section 3.376
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Fig. 9. Evolution of (a) sensible heat flux, (b) latent heat flux, and (c) Bowen ratio in simulations of dry and wet cases from the IGOC field

project. Red/black lines are for dry/wet case.

5.2 Idealized simulations of daytime convective development over land: the LBA case377

Since the first set of simulations applied highly idealized forcing, we use another pair of simulations that aim at simulating378

daytime convective development over land, starting from the cloud-free morning sounding and finishing with the mid-day deep379

convection. We apply the case developed in Grabowski et al. (2006) where observations from Amazon region motivated the380

design of a simple modeling case. The case features formation and deepening of the cloud-free convective boundary layer in381

the early morning hours, development of shallow convection in the late morning, and transition to deep convection around the382

local noon. The 6-hour simulation covers period from 7.30 am local time (approximately at the sunrise) to the mid-day hours383

(1.30 pm local time). It starts from horizontally-homogeneous morning sounding and is forced by increasing surface latent and384
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Fig. 10. Evolution of (a) PBL height and (b) cloud base and cloud top heights from dry and wet simulations of the IGOC field project.

Red/black lines are for dry/wet case.

Fig. 11. Cloud fraction profiles at (a) hour 5 and (b) hour 8 from dry and wet simulations of the IGOC field project. Red/black lines are for

dry/wet case.

sensible heat fluxes mimicking effects of the increasing daytime surface insolation. This case has been used in several past385

studies, such as Khairoutdinov and Randall (2006), Grabowski (2015) and Grabowski and Morrison (2016, 2017). We apply386

the microphysical setup based on Grabowski (1999), that is, the one referred to as IAB in Grabowski (2015).387

Two simulations are performed. The first simulation, referred to as LBA, follows original setup and features significantly388

larger surface latent flux compared to the sensible flux, with the Bowen ratio between 0.4 and 0.5 as the surface fluxes evolve389
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Fig. 12. Cloud fraction profiles at hour 1, 2, 3, 4, 5, and 6 from (upper panels) R-LBA and (lower panels) LBA simulations.

(this is similar to wet cases during the Indian monsoon season). Surface fluxes are switched in the second simulation, that is,390

the sensible flux takes values of the latent flux and the latent flux assumes values of the sensible flux. This simulation is referred391

to as reversed LBA, or R-LBA, and it features the surface Bowen ratio between 2.0 and 2.5. According to Fig. 2, such a change392

approximately doubles the buoyancy to energy flux ratio, from about 0.4 to about 0.7. One thus should expect significantly393

deeper boundary layer to develop during the course of the R-LBA simulation.394

The model used in the two simulations is the same as in Grabowski (2015) and Grabowski and Morrison (2016, 2017),395

referred to as babyEULAG, a simplified version of the EULAG model (see http://www2.mmm.ucar.edu/eulag/). Since the396

interest is in the boundary layer development, we apply a higher horizontal resolution with horizontal grid length of 200 m and397

the same stretched vertical grid as in Grabowski (2015) and Grabowski and Morrison (2016, 2017). The horizontal domain398

is 24 x 24 km2. Overall, one can argue that differences between LBA and R-LBA towards the end of the simulation should399

be relevant to the differences in the mid-day soundings between dry pre-monsoon and humid monsoon situations discussed400

earlier.401
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Fig. 13. Evolution of the cloud base height (plus signs) and the boundary layer height (circles) in R-LBA (upper panel) and LBA (lower

panel) simulations. Dashed line are included to highlight differences between the simulations.

Figure 12 and Fig. 13 summarize results of the two simulations pertinent to the impact of the surface flux Bowen ratio on402

convective development. Figure 12 shows profiles of the cloud fraction in 1 hour intervals from 6-hour long LBA and R-LBA.403

Overall, the profiles evolve in a quite similar way, with only shallow clouds at hour 2 and 3, and deep convection present at hour404

5 and 6. The profiles at hour 4 correspond to the shallow-to-deep transition period. The differences in the cloud base height405

in the simulations are apparent, with R-LBA (higher Bowen ratio) featuring higher mean cloud base. Figure 13 shows the406

evolution of the mean cloud base height together with the evolution of the estimated height of the boundary layer. As the figure407

shows, boundary layer depth is up to twice as deep in the R-LBA case than in the LBA case, especially between hours 2 and408

3 and during the hour 5 of these simulations. The cloud base height and the height of the boundary layer top track each other409

well up to the onset of a significant precipitation after hour 3. The difference between the two heights is especially evident in410

the LBA case as boundary layer height changes little during the two final hours. Specific differences between LBA and R-LBA411

in the last two hours of the simulations may not be statistically significant due to the small domain size.412

Overall, differences simulated in LBA and R-LBA cases highlight the impact of surface flux Bowen ratio and provide additional413

support for its role in the difference between pre-monsoon and monsoon soundings.414
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6 Summary415

Thermodynamic soundings released around local noon for several pre-monsoon and monsoon seasons over Indian subcontinent416

were analysed. Various parameters, such as pseudo-adiabatic parcel buoyancy, Lifting Condensation Level (LCL), Level of417

Free Convection (LFC), Level of Neutral Buoyancy (LNB), Convective Available Potential Energy (CAPE), cumulative CAPE418

(cCAPE) were derived applying pseudo-adiabatic parcel model. Overall, pre-monsoon soundings show more variability of419

surface and free-tropospheric conditions as documented in Fig. 1. For the surface, the key is availability of surface moisture420

in both pre-monsoon and monsoon environments, whereas variability of free tropospheric temperature and humidity for pre-421

monsoon is arguably because of the impact of factors other than deep convection itself, for instance, the large-scale dynamics.422

The pre-monsoon soundings feature higher cloud bases than monsoon soundings. We argue that this is a consequence of423

partitioning of surface energy flux into its sensible and latent components as expressed by the Bowen ratio. For large Bowen424

ratios (sensible surface flux is much larger than latent flux), the ratio between the buoyancy to energy flux is close to one, that425

is, all surface flux contributes to buoyancy flux that drives boundary layer dynamics. For small Bowen ratios (i.e., sensible426

surface flux much smaller than latent flux), only about 10 % of the energy flux is used for surface buoyancy flux (see Fig. 2).427

We argue that the partitioning of surface energy flux into its sensible and latent components determines variations in the LCL428

height as illustrated by observed rapid changes in Bowen ratio and LCL height near monsoon onset and illustrated in idealized429

numerical simulations. Observations of LCL height and Bowen ratio during the pre-monsoon to monsoon transition illustrate430

rapid and concurrent changes, with the Bowen ratio and LCL height decreasing significantly as the monsoon sets in. The impact431

of surface forcing on the evolution of boundary layer and moist convection is also illustrated through numerical simulations432

that complement sounding analysis.433

The sounding data show that LCL height is linearly related to surface level moisture content with some scatter around the434

perfect linear relationship (Fig. 3a). The scatter is eliminated when surface level relative humidity (RH) is used as a measure435

of surface layer moisture content (Fig. 3b). A theoretical basis for such a relationship is developed, see Eq. 3. The theoretical436

relationship between LCL height and surface level RH mimics the relationship obtained with the parcel model. However, a437

significant offset is present between the theoretical LCL height and LCL predicted by the parcel model. The offset is argued438

to most likely come from the presence of surface superadiabatic layer not considered in the theoretical argument. The general439

consistency between theoretical and parcel-model derived relationships between LCL height and surface moisture (Fig. 3)440

supports the conjecture that surface forcing determines LCL height. This should be expected in high-insolation pre-monsoon441

and monsoon conditions when surface forcing due to diurnal cycle drives formation of well-mixed convective boundary layer442

in the morning and development of deep convection at later hours.443

Overall, LNB and CAPE vary more for the pre-monsoon soundings. Large CAPE pre-monsoon soundings are characterized444

by maximum pseudo-adiabatic parcel buoyancies that are similar to monsoon soundings. With a few monsoon exceptions,445

low LNB and thus low CAPE soundings are present only for pre-monsoon environment. For both pre-monsoon and monsoon446

soundings LNB and CAPE are linearly related to the surface qv with a larger scatter for the pre-monsoon environment. In447

general, neither surface qv nor surface θe are good predictors of the parcel maximum pseudo-adiabatic buoyancy, although448
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there is a general increase of the maximum buoyancy and CAPE with the increase of either the surface qv or θe. The increase449

is along different paths for pre-monsoon and monsoon soundings, see Fig. 4 and 5. The scatter is small for monsoon cases, no450

doubt because of smaller variability of free-tropospheric structure as documented in Fig. 1.451

In this study, we consider changes of the Bowen ratio as the controlling factor rather than the effect of monsoon precipitation.452

Because monsoon precipitation changes the surface moisture availability, the Bowen ratio is both the effect (say, on longer453

time scales) and the cause (say, on a daily time scale) of the differences in convection and precipitation. This brings the issue454

of the soil – precipitation (S-P) feedback. Land surface parameters such as soil moisture, vegetation cover etc., collectively455

determine the surface energy balance that influences turbulent motions and boundary layer depth (Jones and Brunsell, 2009).456

Arguably, of all the surface properties, soil moisture has the largest impact on the Bowen ratio. Soil moisture has the memory457

of atmospheric processes (Orlowsky and Seneviratne, 2010), it responds to precipitation variability, and affects precipitation458

through evaporation (Douville et al., 2001). The S-P feedback has been studied in the past for the Indian monsoon region.459

For instance, Asharaf et al. (2012) found that the pre-monsoon soil moisture significantly influences monsoonal precipitation.460

However, for a single day, the Bowen ratio acts as the controlling factor, especially for the semi-arid region presented in the461

present study. This has been demonstrated in several studies. Rabin et al. (1990) studied the observed variability of clouds462

over a landscape using a one-dimensional parcel model, attributing changes in cloudiness to changes in the Bowen ratio. Our463

study points to previous findings by Rabin (1977) which notice that on moist days clouds develop earlier over places with low464

Bowen ratio, and on dry days convection occurs sooner over regions with higher Bowen ratio. Lewellen et al. (1996) considered465

the impact of the Bowen ratio on boundary layer clouds using Large Eddy Simulations (LES). They suggest that lower cloud466

ceilings occur for low values of the Bowen ratio. Schär et al. (1999) conducted simulations using a regional climate model467

focusing on the S-P feedback and noticed that wet soils with small Bowen ratio produces shallow boundary layer. All these468

studies are consistent with the picture emerging from our analysis.469

It may be important to mention that soil moisture has different scales of variability from a few minutes to several months and470

holding the memory into subsequent seasons. The surface fluxes are also controlled by the net insolation. Although the latent471

height flux remains high during the monsoon period, the sensible heat flux increases during the break periods and this leads to472

slight variations in the Bowen ratio as indicated in Fig. 7. However, during the monsoon season, the Bowen ratio stays close to473

2, mostly due to consistently high latent heat flux. It comes from both the surface and vegetation through evapotranspiration.474

Consistent cloudiness during the season reduces incident radiation, which gives lower sensible heat flux. A detailed study of475

surface fluxes and relation with clouds and radiation can be found in Urankar et al. (2012), indicating that clouds also have a476

significant feedback on the surface energy budget.477

This study is not adequate to explain active and break period characteristics of monsoon convective environments. Relevant478

studies concerning monsoon active and break periods (e.g., Pai et al., 2016; Rajeevan et al., 2010) introduce classification479

based on the weather properties over the monsoon core region that covers most of the central India. Our study considers high480

resolution radiosonde measurements where the data is collected over a single location over the Indian subcontinent. The local481

data are insufficient to explain active break conditions because of the significant spatio-temporal variability of the monsoon.482
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Finally, results presented in this paper should help understanding effects of aerosols, dramatically different between highly-483

polluted pre-monsoon environment and relatively clean environment during the monsoon, on moist convection over Indian484

subcontinent. Understanding dynamical effects, for instance, partitioning of the surface heat flux into its sensible and latent485

components and how the partitioning affects cloud base height and cloud buoyancy, is required for a confident selection of486

deep convection cases suitable for cloud seeding, the target of the ongoing Indian precipitation enhancement program (Prabha487

et al., 2011; Kulkarni et al., 2012; Prabha, 2014).488
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