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Abstract. TS1 TS2Few measurements of aerosol chemical
composition have been made during the winter–spring tran-
sition (following polar sunrise) to constrain Arctic aerosol–
cloud–climate feedbacks. Herein, we report the first mea-
surements of individual particle chemical composition near5

Utqiaġvik (Barrow), Alaska, in winter (seven sample days in
January and February 2014). Individual particles were ana-
lyzed by computer-controlled scanning electron microscopy
with energy dispersive X-ray spectroscopy (CCSEM-EDX,
24 847 particles), Raman microspectroscopy (300 particles),10

and scanning transmission X-ray microscopy with near-
edge X-ray absorption fine structure spectroscopy (STXM-
NEXAFS, 290 particles). Sea spray aerosol (SSA) was ob-
served in all samples, with fresh and aged SSA comprising
99 %, by number CE1 , of 2.5–7.5 µm diameter particles, 65–15

95 % from 0.5–2.5 µm, and 50–60 % from 0.1–0.5 µm, indi-
cating SSA is the dominant contributor to accumulation and
coarse-mode aerosol during the winter. The aged SSA par-
ticles were characterized by reduced chlorine content with
94 %, by number, internally mixed with secondary sulfate20

(39 %, by number, internally mixed with both nitrate and sul-
fate), indicative of multiphase aging reactions during trans-
port. There was a large number fraction (40 % of 1.0–4.0 µm
diameter particles) of aged SSA during periods when parti-
cles were transported from near Prudhoe Bay, consistent with25

pollutant emissions from the oil fields participating in atmo-
spheric processing of aerosol particles. Organic carbon and
sulfate particles were observed in all samples and comprised
40–50 %, by number, of 0.1–0.4 µm diameter particles, in-
dicative of Arctic haze influence. Soot was internally mixed 30

with organic and sulfate components. All sulfate was mixed
with organic carbon or SSA particles. Therefore, aerosol
sources in the Alaskan Arctic and resulting aerosol chemical
mixing states need to be considered when predicting aerosol
climate effects, particularly cloud formation, in the winter 35

Arctic.

1 Introduction

The Arctic region is experiencing warming at a greater rate
than elsewhere on Earth (Pachauri et al., 2014) and under-
going substantial transformations, including rapid loss of 40

sea ice (Overland and Wang, 2013). This is leading to in-
creased aerosol emissions, resulting in changes to atmo-
spheric aerosol budgets and associated climate feedbacks
(Struthers et al., 2011). Characterizing the chemical com-
position and morphology of individual Arctic aerosol par- 45

ticles is important for understanding the influence of local
and transported aerosols on climate (Leck et al., 2002; Leck
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2 R. M. Kirpes et al.: TS3

and Svensson, 2015), which remains one of the largest uncer-
tainties in radiative forcing (Boucher et al., 2013). Aerosol
mixing state, the distribution of chemical species across an
aerosol population and within each individual particle, deter-
mines particle reactivity, hygroscopicity and CE2cloud acti-5

vation efficiency, and optical properties (Prather et al., 2008;
Ault and Axson, 2017). However, the few studies that have
used single-particle analysis techniques to characterize the
chemical mixing state of the Arctic aerosol population have
been limited to Svalbard (Weinbruch et al., 2012; Hara et10

al., 2003, 2002c; Geng et al., 2010; Chi et al., 2015), the
Canadian archipelago (Köllner et al., 2017), and the central
Arctic (Sierau et al., 2014). Evaluating aerosol impacts on
climate across the Arctic region is of particular importance
given rapid changes in aerosol sources. Therefore, there is an15

urgent need to study the chemical composition of individual
Arctic aerosol particles.

Aerosol influences on cloud formation and cloud–climate
feedbacks in the Arctic are highly uncertain during winter,
when there is little direct solar radiation and longwave ra-20

diative forcing dominates (Holland and Bitz, 2003; Letterly
et al., 2016; Pithan and Mauritsen, 2014; Garrett and Zhao,
2006). Few studies have characterized Arctic aerosols, par-
ticularly those that may act as cloud condensation nuclei
(CCN) and ice-nucleating particles (INP), during this pe-25

riod. Most studies in the winter–spring have focused on the
components of Arctic haze, long-range transported pollution
from the midlatitudes present in the Arctic after polar sun-
rise, including non-sea-salt sulfate, soot, organics, and metals
(e.g., Sturges and Barrie, 1988; Norman et al., 1999; Sirois30

and Barrie, 1999; Quinn et al., 2002; Polissar et al., 1999;
Hara et al., 2002b; Fisher et al., 2011). Notably, particulate
sulfate concentrations in the Alaskan Arctic during haze sea-
son are 0.1–0.4 µg m−3 on average, and much higher than
average nitrate concentrations of 0.01–0.03 µgm−3 (Quinn35

et al., 2007). Sea spray aerosol (SSA) has also been identi-
fied as a significant contributor to the winter–spring aerosol
budget by mass (10–30 %) in the Canadian Arctic (Sirois
and Barrie, 1999; Norman et al., 1999; Quinn et al., 2002)
and by number (55–85 %) in the Norwegian Arctic (Wein-40

bruch et al., 2012). SSA are efficient CCN (Collins et al.,
2013; Quinn et al., 2014) and can act as INP (DeMott et
al., 2016), resulting in complex sea ice–aerosol–cloud inter-
actions in the Arctic (Browse et al., 2014). Gaseous sulfu-
ric acid or sulfur dioxide associated with Arctic haze has45

been shown to react with SSA, resulting in sulfate forma-
tion and internally mixed SSA–sulfate particles (Hara et al.,
2002a, 2003). While less commonly observed in the Arc-
tic, reactions between gaseous HNO3 or N2O5 and SSA can
also form mixed SSA–nitrate particles (Hara et al., 1999).50

These multiphase reactions result in chlorine (HCl, ClNO2,
Cl2) liberation from SSA, contributing to atmospheric halo-
gen chemistry (Sturges and Barrie, 1988; Barrie and Barrie,
1990; Hara et al., 2002c, a). Given changing marine emis-
sions coupled with transported pollution, it is important to55

understand aerosol chemical composition and heterogeneous
processing to determine impacts on climate in the winter
Arctic.

To improve our understanding of Arctic aerosol chemical
mixing state under the changing radiation and sea ice con- 60

ditions during the winter–spring transition (following polar
sunrise), atmospheric particles were collected near Utqiaġvik
(Barrow), Alaska, during January and February 2014. Scan-
ning electron microscopy with energy dispersive X-ray spec-
troscopy (SEM-EDX), Raman microspectroscopy, and scan- 65

ning transmission X-ray microscopy with near-edge X-ray
absorption fine structure spectroscopy (STXM-NEXAFS)
were utilized to characterize individual particle chemical
composition and mixing state. To our knowledge, these are
the first measurements of individual particle chemical com- 70

position in the Alaskan Arctic during winter. The relative
contributions of regional Arctic haze and SSA on the aerosol
budget during this winter–spring transition were examined,
and the mixing states of individual aerosol particles were
evaluated to examine atmospheric aging by multiphase re- 75

actions forming sulfate and nitrate.

2 Methods

Atmospheric particle sampling was conducted from 23 to 28
January and 24 to 28 February 2014 near Utqiaġvik (Bar-
row), Alaska at a tundra field site (71.28◦ N, 156.64◦W) lo- 80

cated ∼ 5 km inland from the Arctic Ocean. Ozone concen-
trations and meteorological data, including wind speed, wind
direction, and solar radiation, were obtained from the NOAA
Barrow Observatory (71.32◦ N, 156.61◦W), located 5 km to
the northeast of the sampling site and separated only by flat 85

tundra. Atmospheric particles were collected using a rotating
micro-orifice uniform deposition impactor (MOUDI, MSP
Corp., model 110) sampling at 30 LPM through a 10 µm cut-
point cyclone (URG-2000-30EA) located ∼ 2 m above the
snow surface. The CE350 % particle collection efficiency size 90

cuts for the six MOUDI stages used were 3.2, 1.8, 1.0, 0.56,
0.32, and 0.18 µm aerodynamic diameter (Da). Particles were
impacted on transmission electron microscopy grids (Carbon
Type-B film copper grids, Ted Pella, Inc.) and silicon sub-
strates (Ted Pella, Inc.) for SEM analysis, and quartz sub- 95

strates (Ted Pella, Inc.) for Raman microspectroscopy anal-
ysis. Particle samples were stored frozen prior to analysis
to keep near the ambient temperature at collection. Sam-
ples selected for analysis were collected for ∼ 24 h on 24–
25 January (10:15–10:00 AKST) and 27–28 January (11:00– 100

10:30 AKST), ∼ 18 h on 26 January (11:00–17:15 AKST),
∼ 12 h during 26 February daytime (09:00–19:30 AKST),
26 February nighttime (19:45–08:30 AKST), 27 February
daytime (09:00–19:30 AKST), and 27 February nighttime
(20:00–07:30 AKST). These time periods were character- 105

ized by wind directions of 75–225◦ such that the town of
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R. M. Kirpes et al.: 3

Utqiaġvik was not upwind during sampling. Polar sunrise oc-
curred at Utqiaġvik on 22 January 2014.

Computer-controlled SEM (CCSEM) analysis of individ-
ual atmospheric particles was completed using a FEI Quanta
environmental SEM with a field emission gun operating at5

20 keV with a high-angle annular dark field (HAADF) de-
tector (Laskin et al., 2006, 2012). An EDX spectrometer
(EDAX, Inc.) collected X-ray spectra from elements with
atomic numbers higher than Be (Z = 4). A total of 24 847
individual particles, typically ∼ 1000 per sample, were an-10

alyzed by CCSEM-EDX. A size distribution showing the
number of particles analyzed by CCSEM-EDX is shown in
Fig. S1 in the Supplement. Morphological data, including
projected area diameter (Dpa) and perimeter, were collected
for each particle, in addition to the relative abundance of the15

following elements quantified from the EDX spectra: C, N,
O, Na, Mg, Al, Si, P, S, Cl, K, Ca, and Fe. Individual par-
ticle data were analyzed using K-means clustering of the
EDX spectra (Ault et al., 2012; Shen et al., 2016; Axson
et al., 2016). K-means cluster analysis resulted in 50 clus-20

ters, which were then grouped into five particle classes (fresh
SSA, partially aged SSA, organic + sulfate aerosol, fly ash
aerosol, and mineral dust aerosol), based on comparisons of
cluster EDX spectra with particle classes identified in pre-
vious studies. Prior ambient aerosol CCSEM-EDX studies25

have established EDX spectral signatures for fresh and aged
SSA (Ault et al., 2013a; Hara et al., 2002c, 2003), organic
+ sulfate aerosol (Moffet et al., 2010b; Laskin et al., 2006;
Allen et al., 2015), fly ash (Ault et al., 2012), and mineral
dust (Coz et al., 2009; Sobanska et al., 2003; Axson et al.,30

2016; Creamean et al., 2016).
Individual particles from two MOUDI stages (1.0–1.8 and

0.56–1.0 µm aerodynamic diameter size ranges) for each of
the seven samples were also analyzed by Raman microspec-
troscopy using a Horiba Scientific Labram HR Evolution35

spectrometer coupled with a confocal optical microscope
(100× Olympus objective, 0.9 numerical aperture) equipped
with a Nd : YAG laser source (50 mW, 532 nm) and CCD
detector. A 600 groove mm−1 diffraction grating was used,
yielding spectral resolution of 1.8 cm−1. The laser power was40

adjusted between 25 and 100 % by varying a neutral density
filter to prevent damage to the sample. Raman spectra were
obtained over the 500–4000 cm−1 range for ∼ 300 particles.
Spectra were compared with prior Raman studies of nascent
and reacted sea spray aerosol (Ault et al., 2013c, 2014).45

Beamline 5.3.2 on the Advanced Light Source at
Lawrence Berkeley National Laboratory (Berkeley, CA)
was used for STXM-NEXAFS analysis over the carbon
K edge (280–320 eV), as previously described by Moffet
et al. (2010a). Briefly, X-rays from the synchrotron were50

energy-selected using a monochromator, focused on the sam-
ple, and raster scanned across a selected area. The sam-
ple was rescanned at closely spaced X-ray energies to com-
plete a spectral image stack. After the X-ray spectra were
converted to optical density using the Beer–Lambert law,55

STXM-NEXAFS maps were generated to show the distri-
bution of organic carbon, soot, and inorganic components in
individual aerosol particles, based on the X-ray absorptions
at 288.5, 285.4, and 283 eV, respectively. From the 26 Febru-
ary nighttime sample (0.10–0.18 µm Da),290 particles were 60

analyzed for detection of organic carbon. Dpa was measured
by CCSEM-EDX, Raman, and STXM-NEXAFS; therefore,
it is the parameter reported for all data herein. Dpa is often
larger than geometric diameter due to particle deformation
upon impaction (Sobanska et al., 2014; Hinds, 2012; O’Brien 65

et al., 2014), indicating that particle size reported here is an
upper bound and could represent smaller diameter in the at-
mosphere.

3 Results and discussion

3.1 Chemical composition and size distribution of 70

observed particle types

Five individual particle classes, including fresh sea spray
aerosol, partially aged SSA, organic + sulfate particles, fly
ash, and mineral dust particles, were identified from the
CCSEM-EDX data (Fig. 1). SSA (both fresh and partially 75

aged) and organic (with and without sulfate) particles were
the most commonly observed types, indicating that mixing
of sulfate with SSA and organic aerosol may be significant
in the winter Arctic. Fresh and partially aged SSA comprised
99 %, by number, of the observed supermicron particles (1.0– 80

7.5 µm Dpa) (Fig. 2). Across the submicron size range (0.1–
1.0 µm Dpa), the majority of particles were also SSA (50–
75 %, by number) (Fig. 2). The prevalence of SSA particles,
even in the winter, may be a result of changing conditions in
the Arctic, with previous work showing local SSA influence 85

in Utqiaġvik, Alaska, CE4 from nearby sea ice leads, even
during winter (May et al., 2016). Organic particles (with and
without sulfate) were also a significant fraction (25–50 %, by
number) of submicron particles. Only a limited fraction of
particles (∼ 1 % by number across the entire size range) were 90

classified as fly ash or mineral dust, characterized by silicon
and oxygen, with trace amounts of aluminum, sodium, and
iron (Coz et al., 2009; Sobanska et al., 2003).

Particles classified as fresh SSA, based on grouping
by chemical composition by K-means analysis, contained 95

sodium, magnesium, sulfur, and chlorine in similar mole
ratios (Table 1) to those found in seawater (Cl /Na= 1.2,
Mg /Na= 0.11, S /Na= 0.06) (Quinn et al., 2015; Pilson,
2013), indicating these particles had not undergone chemi-
cal aging processes during atmospheric transport. Some SSA 100

particles were observed with a sodium chloride core and
magnesium chloride outer coating (Fig. 1), which is likely
due to the particle undergoing efflorescence after collection
(Ault et al., 2013b); this morphology has been previously
observed for Arctic SSA particles (Chi et al., 2015). The 105

partially aged SSA particles contained sulfur and/or nitro-
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4 R. M. Kirpes et al.:

Figure 1. Representative SEM images and EDX spectra of individual particles corresponding to the main particle types observed by CCSEM-
EDX, and the average EDX spectrum for each particle type. Average spectra show the relative peak areas of all elements analyzed by
CCSEM-EDX. (a) Fresh SSA particle comprised of sodium chloride core (red) and magnesium chloride shell (black). The spectrum for the
core is offset for clarity. (b) Partially aged SSA particle containing sodium and more sulfur than chlorine. (c) Organic + sulfate particle.
(d) Organic + sulfate particle on silicon substrate. (e) Aluminum- and silicon-containing dust particle. ∗Carbon and oxygen peaks include
some signal from TEM grid substrate background for particles (a), (b), (c), and (e). Aluminum and silicon peaks are due to sample holder
and silicon substrate background, respectively, for particle (d).

Table 1. Size-resolved number fractions of individual fresh SSA, partially aged SSA, and organic + sulfate particles containing Cl, S, and
N, in addition to average atomic (mole) ratios of Cl /Na, S /Na, and N /Na for individual fresh and partially aged SSA.

Particle class and size
range

Number fraction
containing Cl

Number fraction
containing S

Number fraction
containing N

Average
Cl /Na

Average
S /Na

Average
N /Na

Fresh SSA
(0.1–1.0 µm)

1.0 0.15 0.15 0.98 0.05 0.04

Fresh SSA
(1.0–10 µm)

1.0 0.18 0.10 1.26 0.05 0.04

Partially aged SSA
(0.1–1.0 µm)

0.07 0.73 0.22 0.04 1.07 0.25

Partially aged SSA
(1.0–10 µm)

0.38 0.81 0.52 0.24 1.53 0.95

Organic + sulfate
(0.1–1.0 µm)

– 0.46 0.13 – – –

Organic + sulfate
(1.0–10 µm)

– 0.87 0.60 – – –

Atmos. Chem. Phys., 18, 1–13, 2018 www.atmos-chem-phys.net/18/1/2018/
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Figure 2. Size-resolved CCSEM-EDX number fraction distribu-
tions of observed particle types for all samples. Particles were sorted
into 16 bins (logarithmic) from 0.1 to 10.0 µm projected area diam-
eter (8 bins per decade). Organic + sulfate class includes a small
fraction of internally mixed soot.

gen and were characterized by Cl / (Na+ 0.5 Mg) ratios of
less than 1 (Laskin et al., 2012). This indicates that multi-
phase reactions had occurred, releasing chlorine-containing
trace gases, primarily hydrochloric acid (Laskin et al., 2002,
2003; Gard et al., 1998) and resulting in the formation of5

sulfate and nitrate in the particles. SSA chemical mixing
state information is further discussed in Sect. 3.2. SSA ag-
ing was observed for few 1.0–7.5 µm particles (7 %, by num-
ber, aged SSA and 90 % fresh SSA), with a greater frac-
tion of submicron 0.1–1.0 µm SSA particles having under-10

gone aging (18 %, by number, aged SSA and 42 % fresh
SSA) (Fig. 2). Compared to supermicron particles, submi-
cron particles have longer atmospheric lifetimes, a smaller
Cl reservoir, and greater surface area to volume ratios, which
are conducive to increased atmospheric processing (Hara et15

al., 2002a; Leck et al., 2002; Williams et al., 2002; Ault
et al., 2014). While concentrations of sulfur- and nitrogen-
containing gases are lower in the Arctic winter compared to
the peak of spring haze season, allowing for SSA particles
to remain chemically fresh further from the emission point,20

aged SSA particles have also been observed during winter
at Svalbard (Hara et al., 1999, 2002a). Overall, fresh and
aged SSA were significant contributors to the winter Arctic
aerosol budget (Figs. 2 and S2). This observation is consis-
tent with studies of annual Arctic aerosol trends that have25

shown a large influence of SSA in the winter by mass: con-
stituting up to 40 % of supermicron mass at Barrow (Quinn

et al., 2002) and 60–90 % of 0.5–10 µm particles, by number,
for winter samples at Svalbard (Weinbruch et al., 2012).

Organic particles, classified by K-means analysis, were 30

characterized by spherical morphology and carbon and oxy-
gen in the single-particle EDX spectra. Since there is back-
ground C and O EDX signal from the TEM CE5 grid sub-
strate film, the contribution of C and O to this particle class
was confirmed by CCSEM-EDX analysis of 110 particles 35

that had been collected simultaneously on silicon substrates
that do not have these interferences. Figure 1 shows the rep-
resentative EDX spectra of organic particles analyzed on
TEM grids and silicon substrates for comparison. Sulfur was
present in 47 %, by number, of organic particles, at levels 40

of at least 2 % atomic content in the EDX spectrum; there-
fore, these organic particles will be discussed together as an
organic + sulfate particle class (Laskin et al., 2006; Mof-
fet et al., 2010b). Example organic + sulfate particles are
shown in Fig. 1c and d. Organic + sulfate particles were pri- 45

marily observed in the submicron size range (Fig. 2). Over-
all, 40–50 % of the particles 0.1–0.5 µm in diameter and 15–
25 % of the 0.5–1.0 µm particles, by number, were classified
as organic + sulfate (Fig. 2). The detailed chemical mixing
states of these organic+ sulfate particles will be discussed in 50

Sect. 3.3. The presence of a large number fraction of submi-
cron organic + sulfate particles is consistent with previous
winter–spring Arctic studies, which have observed organic
particles contributing up to 30 % CE6 of submicron aerosol
by mass and greater than 80 %, by number, at Barrow (Shaw 55

et al., 2010; Hiranuma et al., 2013) and greater than 80 %, by
number, of 0.1–0.5 µm (aerodynamic diameter) particles at
Svalbard (Weinbruch et al., 2012). Internal mixing of organic
and sulfate aerosol has previously been observed in the Arc-
tic winter–spring at Svalbard, with most 0.2–2.0 µm (aero- 60

dynamic diameter) organic particles containing sulfate (Hara
et al., 2002b). Internally mixed organic + sulfate aerosol is
now being observed across the Arctic during the winter, high-
lighting the importance of considering sulfate mixing states
during this period. 65

3.2 Internal mixing of SSA with sulfate and nitrate

Raman microspectroscopic analysis of individual aged SSA
particles confirmed that the sulfur and nitrogen detected by
EDX in SSA were in the forms of sulfate and nitrate, re-
spectively, based on the presence of sharp peaks correspond- 70

ing to characteristic symmetric stretches at ∼ 1000 cm−1 for
νs(SO2−

4 ) and ∼ 1050 cm−1 for νs(NO−3 ) (Fig. 3) (Ault et
al., 2014; Deng et al., 2014; Eom et al., 2016). In addi-
tion, these particles were characterized by broad peaks in
the 3000–3500 cm−1 range (Fig. 3), corresponding to O– 75

H stretching, likely due to particle-phase water (Ault et al.,
2014), confirmed by the frequency of the νs(NO−3 )(aq) mode
at ∼ 1050 cm−1. Raman C–H stretching peaks in the 2800–
3000 cm−1 range indicated that organic compounds were
present in both fresh and aged SSA (Ault et al., 2013c; Baus- 80
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6 R. M. Kirpes et al.:

Figure 3. Optical images and Raman spectra of three representa-
tive SSA particles containing nitrate and/or sulfate and hydroxyl
groups. A total of ∼ 300 individual particles were analyzed by Ra-
man microspectroscopy. * The 790–796 cm−1 peak is due to quartz
substrate background. Scale bar for all images is 5 µm.

tian et al., 2012; Eom et al., 2016); the organic functional
groups present will be discussed further in a future publica-
tion.

Based on the CCSEM-EDX analysis, SSA aging by sulfur
species (e.g., sulfuric acid) was more prevalent than aging5

by nitrogen species (e.g., nitric acid) in the submicron size
range, consistent with previous measurements of SSA dur-
ing Arctic haze periods in the Norwegian Arctic (Hara et al.,
2002c). A total of 73 % of partially aged SSA, by number, in
the 0.1–1.0 µm size range contained secondary sulfate. This10

was determined by a S /Na ratio at least 25 % greater than
the seawater molar ratio 0.06 (Pilson, 2013), with these parti-
cles having an average S /Na ratio of 1.07 (Table 1). In com-
parison, only 22 % of 0.1–1.0 µm particles contained nitrate
(Table 1). The diffusion-limited uptake of SO2 in submicron15

particles is favored over the thermodynamically controlled
uptake of HNO3, resulting in a preference for sulfate in sub-
micron aged SSA (Liu et al., 2007; Zhuang et al., 1999; Ker-

minen et al., 1998). However, sulfate was also more prevalent
than nitrate in supermicron SSA (where kinetically favorable 20

uptake of HNO3 would be expected to dominate; Table 1),
suggesting that higher concentrations of H2SO4, compared
to HNO3, influenced particle aging CE7 . The prevalence of
SSA aging by sulfur species near Utqiaġvik is consistent
with the appearance of springtime Arctic haze, as 30 % of 25

submicron particle mass corresponds to sulfate during haze
season (January to May) (Quinn et al., 2007, 2002). Sulfate
mass concentrations peak in winter–spring near Utqiaġvik,
while methanesulfonic acid mass is greatest in the summer
and has not been observed during winter months (Quinn et 30

al., 2007). Therefore, the prevalence of mixed SSA–sulfate
suggests that reactions with sulfuric acid from Arctic haze
are an important source of SSA sulfate (Hara et al., 2002a;
Barrie and Barrie, 1990). SSA aging through sulfate addi-
tion was likely also due to influence from Prudhoe Bay SO2 35

emissions (Peters et al., 2011; Gunsch et al., 2017), discussed
further in Sect. 3.4.2.

3.3 Organic particle mixing states

Organic particles and internally mixed organic + sulfate
particles composed a significant number fraction of submi- 40

cron particles, which is consistent with the presence of or-
ganic aerosol, sulfuric acid, and ammonium sulfate in Arc-
tic haze (Hara et al., 2002b; Hirdman et al., 2010). STXM-
NEXAFS indicated the presence of organic carbon in these
particles, based on X-ray absorption at 288.5 eV, character- 45

istic of carboxylic acids (Moffet et al., 2010a). Addition-
ally, STXM-NEXAFS analysis confirmed that organic and
inorganic (likely sulfate, based on sulfur detected during
CCSEM-EDX analyses) components were internally mixed
within individual particles (Fig. 4), with particles showing 50

an internal mix of both inorganic-dominant (> 50 %) and
organic-dominant regions. The pre- and post-edge ratio of
inorganic to organic components also indicated that most an-
alyzed particles contained both inorganic and organic species
(Fig. 4b). Raman analysis confirmed sulfur was present in the 55

form of sulfate. Nitrogen (nitrate, according to Raman analy-
sis) was also present in 15 % of 0.1–1.0 µm organic+ sulfate
particles, by number.

Chemical mixing state analysis determined that a small
fraction of particles classified as organic + sulfate (7 % of 60

this particle class, by number) by CCSEM-EDX were pri-
marily carbon-containing particles with less than 5 % oxy-
gen and sulfur. For the 26 February nighttime sample an-
alyzed by STXM-NEXAFS, elevated levels of sp2 carbon,
indicative of soot, were observed in some particles (Fig. 4) 65

(Moffet et al., 2010a). These small soot particles observed
by STXM-NEXAFS were likely members of the “primarily
carbon” group identified by CCSEM-EDX and were inter-
nally mixed with organic carbon and inorganic species (likely
sulfate, based on sulfur detected during CCSEM-EDX anal- 70

yses). Therefore, these particles were included in the organic
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R. M. Kirpes et al.: 7

Figure 4. CE8 Representative STXM-NEXAFS map from 26 Febru-
ary nighttime showing (a) the distributions of inorganic dominant
(blue, > 50 % by mass), organic carbon dominant (green, > 50 %
by mass), and soot (red, sp2 > 35 %) and (b) the ratio of inorganic
(pre-) and organic (post-edge) components between populations of
individual particles sampled during a period with a high fraction of
organic + sulfate particles.

+ sulfate class. Externally mixed soot particles, comprised
solely of elemental carbon with no organic or sulfate com-
ponent, were not observed in any sample, indicating that all
soot was internally mixed with organic + sulfate particles.
Soot present in Arctic haze (Quinn et al., 2007; Law and5

Stohl, 2007) has previously been observed to be internally
mixed with sulfate for winter–spring Arctic aerosol, with
soot-sulfate particles contributing ∼ 10–20 % of observed
particles sampled (< 2.0 µm), by number, at Svalbard (Hara
et al., 2003).10

3.4 Influence of marine- and Prudhoe Bay-influenced
air masses on particle composition

There was no clear dependence or trend with wind speed or
month (January vs. February) for SSA S /Na or Cl /Na ra-
tios, with average wind speeds ranging from 5–12 m s−1 for15

the selected sampling periods, but some variability in parti-
cle composition between samples could be attributed to the

influence of different air masses. Though all samples expe-
rienced some degree of Arctic Ocean air mass influence due
to the sampling location and prevailing wind direction from 20

the north over the Beaufort Sea to the sampling site, using
NOAA HYSPLIT 48 h backward air mass trajectory anal-
ysis, two main air mass source regions (Arctic Ocean and
Prudhoe Bay influence) were determined for the seven an-
alyzed sample periods. Most notably, the 26 February day- 25

time sample was influenced by air from the north and east
over the Arctic Ocean within the boundary layer for the 6–
7 h prior to arrival at the sampling site, whereas the 27 Jan-
uary sample had prolonged surface influence (18 h) along
the air mass trajectory from the east to the southeast, dur- 30

ing which the air mass passed over Prudhoe Bay, the third
largest oilfield in North America (U.S. Energy Information
Administration, 2015) (Fig. 5). Prudhoe Bay influence was
determined by HYSPLIT trajectories that passed within 1◦

(∼ 50 km) of the Prudhoe Bay emissions box, described in 35

Kolesar et al. (2017) as the area significantly influenced by
combustion emissions from the oilfields. The air mass trajec-
tories for the remaining samples (24 January, 26 January day,
26 February night, 27 February day, 27 February night) fell
in between the two regions (Arctic Ocean and Prudhoe Bay 40

influence).
Comparison of particle type contributions as a function

of size for the representative Arctic Ocean-influenced (26
February day) and Prudhoe Bay-influenced (27 January)
samples are shown in Fig. 5 (with results of additional sam- 45

ples shown in Fig. S2). The Arctic Ocean-influenced sample
was characterized by a large fraction (95 %) of fresh SSA in
the 1.0–7.5 µm size range. In comparison, the Prudhoe Bay-
influenced sample was characterized by 55 % fresh SSA and
40–45 % partially aged SSA, by number, in the supermicron 50

range. This is indicative of multiphase reactions between
SSA and gaseous emissions from combustion at the oilfields
(e.g., SO2, NOx) (Jaffe et al., 1991; Peters et al., 2011; Gun-
sch et al., 2017), contributing to a greater number fraction of
aged SSA during Prudhoe Bay-influenced periods. The Prud- 55

hoe Bay-influenced sample also had a greater number frac-
tion of organic + sulfate particles in the 0.1–0.5 µm range
(60–70 %) compared to the Arctic Ocean-influenced sam-
ple (40–50 %). Given that organic + sulfate particles were a
significant fraction of submicron particles in all samples, in- 60

cluding ocean-influenced periods, these samples were likely
influenced by long-range transported pollution from the mid-
latitudes, consistent with regional background haze (Quinn et
al., 2007). However, it is likely that gas-particle partitioning
of oxidation products from Prudhoe Bay oilfield combustion 65

emissions, including volatile organic compounds and SO2
(Peters et al., 2011; Jaffe et al., 1991; Gunsch et al., 2017),
also results in the formation of organic+ sulfate particles, in-
cluding particles internally mixed with soot (Sect. 3.3), con-
tributing to the increased number fraction of organic + sul- 70

fate particles observed during Prudhoe Bay-influenced peri-
ods.
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8 R. M. Kirpes et al.:

Figure 5. Size-resolved number fractions of observed particle types (CCSEM-EDX), for example sample periods influenced by (a) the Arctic
Ocean (26 February day, 4490 particles) and (b) Prudhoe Bay (27 January, 1475 particles). Air mass influence is shown for (c) 26 February
daytime and (d) 27 January as determined by NOAA HYSPLIT 48 h backward air mass trajectories. Both ensemble (dotted line) and single
representative trajectories are shown. Color scale indicates air mass altitude, and markers are placed at 6 h intervals. Red line shows extent
of Prudhoe Bay emissions influence box (Kolesar et al., 2017). Yellow diamond indicates sampling site near Utqiaġvik.

4 Conclusions

For atmospheric particles collected in January and February
2014 near Utqiaġvik, Alaska, SSA was observed to be the
most prevalent particle type, composing 50–75 and 99 %,
by number, of particles in the 0.1–1.0 and 1.0–7.5 µm pro-5

jected area diameter ranges, respectively. Internal mixing of
sulfate and nitrate with SSA particles was observed in all
samples, regardless of air mass influence, suggesting preva-
lent regional pollution, such as Arctic haze influence, for sec-
ondary inorganic aerosol formation. Prudhoe Bay-influenced10

air masses were characterized by higher number fractions of
partially aged SSA, however, suggesting that oilfield emis-
sions also contribute significantly to multiphase reactions
with SSA. Most global and regional climate models assume
that Arctic haze components (sulfate, organic aerosol, black15

carbon) and natural aerosols are externally mixed and do not
predict climate impacts of internally mixed species (Eckhardt
et al., 2015; Alterskjaer et al., 2010; Korhonen et al., 2008).
However, no externally mixed sulfate or sulfuric acid parti-
cles were observed during January or February sampling in 20

Utqiaġvik, Alaska; all sulfate was internally mixed with or-
ganic aerosol particles or with SSA. Internal mixing of SSA
and sulfate reduces CCN efficiencies compared to externally
mixed sulfate aerosol or SSA, as sodium sulfate is less hygro-
scopic than sodium chloride or sulfuric acid (Gong and Bar- 25

rie, 2003; Petters and Kreidenweis, 2007). The prevalence
of SSA internally mixed with sulfate should be considered
in the interpretation of elevated sulfate concentrations in the
winter–spring Arctic atmosphere (Sturges and Barrie, 1988;
Sirois and Barrie, 1999; Hara et al., 2002a). 30
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While SSA comprised 50–60 % of 0.1–0.5 µm particles,
by number, organic + sulfate particles made up 40–50 %, by
number, in this particle diameter range and were present in
similar number fractions in all samples, suggesting the im-
portance of Arctic haze as a source of submicron particles in5

January and February in Utqiaġvik, Alaska. Internal mixing
of sulfate and nitrate with organic aerosol is consistent with
previous single-particle measurements at Svalbard, where or-
ganic aerosol mixed with sulfate and nitrate was observed to
be the dominant particle type in the submicron size range in10

the winter and spring (Weinbruch et al., 2012). Weinbruch et
al. (2012) also observed soot particles internally mixed with
organics, sulfate, and nitrate, consistent with the small frac-
tion of internally mixed organic + sulfate and soot particles
(∼ 2–3 % of total observed particles, by number) observed in15

this study. The internal mixing of sulfate with organic aerosol
is important to consider in climate predictions, as the CCN
activity of internally mixed organic + sulfate aerosol is re-
duced relative to externally mixed sulfate, due to the lower
hygroscopicity of the organic fraction (Wang et al., 2015;20

Petters and Petters, 2016). Continuing oil and gas develop-
ment in the Arctic region will influence both SSA and or-
ganic aerosol composition (Peters et al., 2011), as well as
mixing state, due to secondary inorganic aerosol formation.
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