A Preliminary Assessment of the Impacts of Multiple Temporal-scale Variations in Particulate Matter on its Source Apportionment

4	
5	Xing Peng ¹ , Jian Gao ² , Guoliang Shi ^{1*} , Xurong Shi ¹ , Yanqi Huangfu ¹ , Jiayuan Liu ¹ , YueChong
6	Zhang ² , Yinchang Feng ^{1**} , Wei Wang ³ , Ruoyu Ma ³ , Cesunica E. Ivey ⁴ , Yi Deng ⁵
7	
8	State Environmental Distantion Key Laboratory of Linkon Ambient Air Darticulate
9	State Environmental Protection Key Laboratory of Orban Ambient Air Particulate
10	Matter Pollution Prevention and Control & Center for Urban Transport Emission
11	Research, College of Environmental Science and Engineering, Nankai University,
12	Tianjin 300350, China,
13	² Chinese Research Academy of Environmental Sciences, Beijing 100012, China,
14	³ College of Software, Nankai University, Tianjin 300350, China,
15	⁴ Department of Physics, University of Nevada Reno, Reno, Nevada, USA 89557,
16	⁵ Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332
17	
18	Correspondence to:
19	G.L. Shi, and Y.C. Feng,
20	nksgl@nankai.edu.cn;
21	fengyc@nankai.edu.cn
22	

- 23 Evaluating the SOC
- Secondary organic carbon (SOC) concentrations were estimated using the OC/ECratio, as follows:

26
$$OC_{pri} = EC \times (OC/EC)_{pri}$$
 (S1)

$$SOC = OC_t - EC \times (OC/EC)_{min}$$
(S2)

where OC_{pri} is primary OC, OC_{t} is total OC, and $(OC/EC)_{pri}$ is the OC/EC ratio of primary aerosol. Because $(OC/EC)_{pri}$ is difficult to estimate, it was replaced by the minimum ratio of OC/EC $((OC/EC)_{min})$, according to the suggestion proposed by Castro et al. (1999).

33 Figures

Figure S2. Variance and level of SOC concentrations influenced by intra-day (time period less than
12 h), diurnal (12-24 h), synoptic (2-21 days), and baseline (greater than 21 days) temporal-scale

40 (TS) components, for the period of 22 July 2014 to 13 Aug 2014 at Beijing, China.

41

Figure S3. The performance of ME-2 from five datasets. (a): the slops between model and measured
 concentrations of chemical species and PM_{2.5}. (RI: intra-day removed dataset, RD: diurnal removed
 dataset, RS: synoptic removed dataset, RBL: baseline removed dataset) (b)The correlation
 coefficients between modeled and measured concentrations of chemical species and PM_{2.5}.

Figure S4. Time series of the temperature, RH and wind speed. The vertical gray lines demarcatethe heavy pollution period.

53

Figure S5. The total ions $(NO_3^-+SO_4^2^-+NH_4^+)$ and LWC concentrations depend on RH during the

55 pollution and non-pollution periods.

58

Figure S7. TPS, TSS impacts and PM_{2.5} concentration from baseline dataset. (TPS: the total contributions of vehicle emission and coal combustion. TSS: the total contributions of secondary

61 formation and nitrate source).

62 **Tables**

Table S1. Average absolute error (AAE) between original and RI, RD, RS, and RBL for PM_{2.5},

64	seven species and S	OC.			
		RI ^a	RD^b	RS ^c	RBL^d
	PM _{2.5}	18	40	63	149
	OC	8	15	23	100
	EC	10	20	20	106
	NO ₃ -	12	57	77	149
	\mathbf{SO}_4^+	7	30	79	127
	$\mathrm{NH_{4}^{+}}$	9	41	108	148
	Ca	20	38	24	124
	Fe	12	30	31	116
	SOC	11	21	31	102

^aRI: intra-day removed dataset. ^bRD: diurnal removed dataset. ^cRS: synoptic removed dataset.

66 ^dRBL: baseline removed dataset.

	RI	RD	RS	RBL
PM _{2.5}	0.96**	0.85**	0.88**	0.49**
NO ₃ -	0.98**	0.86**	0.88**	0.51**
SO_4^+	0.99**	0.95**	0.88**	0.73**
$\mathrm{NH_4^+}$	0.99**	0.95**	0.85**	0.69**
OC	0.97**	0.92**	0.77**	0.31**
EC	0.94**	0.84**	0.90**	0.19**
Ca	0.88**	0.88**	0.97**	0.26**
Fe	0.92**	0.87**	0.86**	0.34**
SOC	0.96**	0.92**	0.72**	0.30**

Table S2. Correlation coefficients between original and RI, RD, RS, and RBL for PM_{2.5}, seven
species and SOC.

69 ** Significant correlation at 0.01 level.

Table S3. The Q values of each solution obtained by ME-2.

	Q	Q _{the}
Original	12593	9940
RI	10732	9353
RD	9873	9712
RS	10847	8002

Components	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	Factor 6	Factor 7
Cl-	0.09	0.12	0.41	0.67	0.30	0.02	-0.04
NO ₃ -	0.13	0.23	0.80	0.33	0.17	0.04	-0.08
SO ₄ ²⁻	0.22	0.03	0.86	-0.01	-0.03	0.04	0.14
Na ⁺	-0.01	0.00	0.07	-0.01	0.01	0.02	0.93
\mathbf{NH}_{4}^{+}	0.18	0.12	0.92	0.22	0.12	0.05	0.05
Mg^{2+}	0.22	0.30	0.14	0.52	0.02	-0.06	0.33
K	0.87	0.38	0.06	0.00	-0.09	-0.05	0.00
Ca	0.18	0.83	-0.05	0.17	-0.11	0.00	0.11
Cr	-0.03	0.08	0.02	0.04	0.92	-0.04	0.03
Mn	0.57	0.58	0.19	0.05	0.16	-0.09	-0.10
Fe	0.52	0.58	0.31	0.14	0.40	-0.05	-0.09
Ni	-0.15	-0.01	0.16	0.13	0.91	0.04	-0.01
Cu	0.17	0.12	0.15	0.76	0.12	0.03	0.01
Zn	0.67	0.16	0.16	0.39	-0.18	-0.02	0.18
As	0.79	0.12	0.02	0.37	-0.11	0.00	0.00
Se	0.85	0.11	0.38	-0.05	-0.06	-0.07	-0.02
Ag	-0.06	-0.03	0.03	0.00	0.02	0.97	-0.01
Cd	-0.02	-0.01	0.07	0.04	-0.02	0.97	0.02
Ba	0.19	0.87	0.22	0.21	0.15	0.00	0.03
Hg	0.37	0.54	0.28	0.33	0.08	-0.11	-0.03
Pb	0.86	0.15	0.18	0.31	0.06	0.02	0.01
OC	0.44	0.35	-0.03	0.56	-0.09	0.04	-0.14
EC	0.15	0.58	0.05	0.59	-0.03	0.10	-0.09
Variance contribution (%)	19.60	14.25	12.70	11.91	9.18	8.45	4.82

Table S4. The results obtained from PCA from RBL dataset.

75 **Table S5.** Correlation coefficients (426 samples) between original and intra-day removed dataset,

	RI	RD	RS	
Crustal	0 68**	-	-	
dust ^a	0.00			
Vehicle	n <i>4</i> 5**	0 51**	0.25**	
emission	0.43	0.51	0.25	
Coal	0.82**	0.77**	0.74**	
combustion	0.02			
Secondary	0 96**	0.01**	0 53**	
formation	0.90	0.91	0.55	
Nitrate	_	0.63**	0 32**	
source ^b		0.05	0.32	

76 diurnal removed dataset, synoptic removed dataset for source contributions.

^aOnly ME-2 from original and RI datasets identified the crustal dust. ^bME-2 from original dataset

78 did not identify the correlation coefficients between RI and RD, and RS for the nitrate sources.

79 **Significant correlation at 0.01 level.

References

82	Castro, L. M., Pio, C. A., Harrison, R. M., and Smith, D. J. T.: Carbonaceous aerosol in
83	urban and rural European atmospheres: estimation of secondary organic carbon
84	concentrations. Atmos. Environ., 33, 2771-2781, doi: 10.1016/S1352-
85	2310(98)00331-8, 1999.