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Response to Anonymous Referee #2 

In this study, Kolmogorov-Zurbenko (KZ) filter was used to decompose the time series 

of PM2.5 and chemical species into intra-day, diurnal, synoptic, and baseline temporal 

scale components (TS components), which might be helpful for a better understanding 

of source apportionment. However, I did not see good evaluation criteria to judge 

whether this relatively new approach is superior to the ME-2 or PMF without KZ. For 

the KZ method, different solution can be used, but it is still very questionable which 

solution is the best one. Therefore, I strongly suggest the authors extend the discussion 

to address my concern before a publication in ACP. In general, I think the author should 

use PMF instead of PCA for the source apportionment. In NCP, haze episode is much 

more frequent in winter than in summer, so the authors should use or include the winter 

data set for a typical application for this new approach. I agreed with the other reviewer 

that the overall source apportionment result is not good enough to separate different 

sources. Therefore, seasonal variations should be included. I would like to see diurnal 

variations for traffic sources and other sources as well.  

Response: a) This work aims to the influence of different temporal-scale components 

on source contributions using Kolmogorov-Zurbenko (KZ) filter method and receptor 

model rather than establishes the new approach and compares it with PMF/ME2. We 

found that primary source impact levels mainly determined by baseline TS component 

(source emissions), and secondary source impact levels were mainly influenced by 

synoptic and baseline TS component (synoptic scale weather fluctuations and source 

emissions).  



b) We reanalyzed a new dataset (about 5 months) that collected in Tianjin, China to 

strongly support our findings. 

We collected dataset during winter in Tianjin, China and analyzed the dataset following 

the same process of Beijing dataset. Results from Tianjin datasets shown that diurnal 

and synoptic TS components had higher relative contributions to the total variance of 

OC, EC, PM2.5, and most ions and elements than the intra-day and baseline TS 

components. Six source categories were identified using ME-2 from both original and 

RD datasets in Tianjin, including crustal dust, vehicle emissions, coal combustion, 

secondary formation, biomass burning & sea salt, and industrial source. While 

industrial source has not been identified from both RD and RS dataset that mixed with 

crustal dust. The TPS impacts calculated from the original, RI, RD, and RS datasets 

were similar (ranged from 33.8 to 38.2 μg m-3), the TSS impacts derived from the 

original and RI datasets exhibited similar source impacts (about 33 μg m-3), which was 

higher than the solution from the RD (27.3 μg m-3) and RS dataset (23.0 μg m-3). Both 

Beijing and Tianjin results suggested TPS impact levels were mainly influenced by 

baseline TS component, and TSS impact levels were mainly influenced by synoptic and 

baseline TS components. Seasonal variations of source impacts were investigated in 

Tianjin. A more significant decrease in secondary source impact during winter 

suggested that the synoptic TS component had a more significant impact on the 

secondary source during winter than during the fall in this work. 

Detailed discussion as follow: 

Long-Term observations were conducted in Tianjin, China, from October 03, 2017 

to March 16, 2018. PM2.5, inorganic ions, OC/EC, and heavy metals were measured by 



β-ray monitor, an ambient ion monitor (AIM, URG 9000D, URG Corporation, USA) 

(Shi et al., 2017), OC/EC analyzer (OCEC-100, Focused Photonics Inc, China) and a 

continuous atmospheric heavy metals monitoring system (AMMS-100, Focused 

Photonics Inc, China) (Ye et al., 2012), respectively. Twenty chemical species at 1 h 

time resolution were selected for analysis, including NH4
+, Na+, Mg2+, K+, Cl-, NO3

-, 

SO4
2-, As, Ca, Tl, Br, Cs, Pb, Se, Cr, Zn, Fe, Mn, OC, and EC. Other species were 

excluded since they contained more than 40% values below the detection limit. 

Each TS component contribution to the total variance of PM2.5 and the chemical species 

concentrations in Tianjin was listed in Table S7. For PM2.5, OC, EC, and inorganic ions 

(except Mg2+ and Na+), the diurnal and synoptic TS components had higher relative 

contributions to the total variance of these species than the intra-day and baseline TS 

components. Baseline TS component had largest relative contributions to the total 

variance of Ca, followed by the intra-day, intra-day, and diurnal TS components. For 

other elements (except Tl and Br), diurnal and synoptic/intra-day TS components had 

the larger amplitudes and were the larger contributors to the total variance of the 

concentrations. Dataset observed in Tianjin was processed following the 2.4 section to 

create RI, RD, RS, RBL datasets. For PM2.5 and all chemical species, the largest average 

concentrations decline occurred when removed baseline TS component from original 

dataset (Table S8), suggesting baseline TS components dominating the average 

concentrations of PM2.5 and chemical species. 

The original, RI, RD, and RS datasets were respectively introduced into ME-2 to 

identify the sources of PM2.5 (Figures 5 and 6). The regression analysis for the modeled 

and measured species mass concentrations shown that the slopes and r values of PM2.5 



were ranged from 0.65 to 0.87 and 0.80 to 0.94, respectively (Figure S13). Performance 

of solutions from RI and BL datasets are better than the solution from the original 

dataset, due to slops and r values were closer to 1 than the corresponding results from 

the original dataset. Comparable performance was obtained from RD, RS, and Original 

datasets. Six source categories were identified using ME-2 from both original and RD 

datasets, including crustal dust, vehicle emissions, coal combustion, secondary 

formation, biomass burning & sea salt, and industrial source. Biomass burning & sea 

salt was characterized by K+ and Cl- (Tian et al., 2018; Zhu et al., 2018). The industrial 

source has high loadings of Zn (Monsalve et al., 2018; Ojekunle et al., 2018). While 

five sources were obtained from both RD and RS dataset except industrial source that 

mixed with crustal dust. Crustal dust & industrial source was identified by Ca, Fe, and 

Zn. We tried to separate the crustal dust and indusial source by adding factor number. 

However, the adding factor did not has a noticeable characteristic of factor profile and 

cannot be explained by crustal dust or indusial source. For Tianjin dataset, crustal dust 

was identified and mixed with the industrial source for the RD and RS datasets, 

suggesting removing diurnal or synoptic TS component affects source identification. 

Nitrate and sulfate did not separate from each other after removing the synoptic TS 

component, because they have similar variation trend. The correlation was 0.70 for the 

RS dataset, which is close to the results of other datasets (0.80, 0.81, and 0.84 in the 

original, RI, and RD datasets, respectively).  

The correlation coefficient of the time series of source impacts between the 

original and the RI, RD, and RS datasets was listed in Table S9. Synoptic TS component 



mainly influences secondary formation impact variation due to a relative low 

correlation of temporal trend between original and RS datasets. Other four sources, 

including crustal dust, vehicle emissions, coal combustion, and biomass burning & sea 

salt, are mainly affected by diurnal and synoptic scale influences. The average impacts 

of individual source categories on PM2.5 from the datasets with removed TS 

components (Table 4). Vehicle emissions, crustal dust, coal combustion, biomass 

burning & sea salt, and indusial source were combined for the TPS. For the entire 

sampling period, the impacts of TPS obtained from the original, RI, RD, and RS 

datasets were similar to each other, ranging from 33.8 to 38.2 μg m-3. The TSS 

(secondary formation) solutions from the original and RI datasets exhibited similar 

source impacts, accounting for about 33 μg m-3, which was higher than the solution 

from the RD (27.3 μg m-3) and RS dataset (23.0 μg m-3). The RBL dataset, including 

about 45% negative values, was analyzed by PCA (Table S10). Four factors, including 

crustal dust (44.9%), secondary formation (8.7%), industrial source & coal combustion 

(6.4%), and vehicle (5.4%), were extracted and accounted for 65.4% of the total 

variance. In additional, ME-2 was applied to the baseline dataset and identified crustal 

dust, vehicle emissions, coal combustion, and secondary formation (Figure S14 and 

Table S11). The average TPS and TSS impacts on PM2.5 mass concentrations were 29.6 

μg m-3 (58%) and 21.3 μg m-3 (42%) respectively. 

Seasonal variations of source impacts were investigated in Tianjin, as shown in Table 

4. Winter period in this work included 15 days in March 2018 because 15 days is too 

short to present spring. The TPS impacts derived from the original, RI, RD, and RS 



datasets were relatively stable, ranging from 31.9 to 35.8μg m-3 during fall and 33.6 to 

37.1 μg m-3 during winter (Table 4). The TSS impacts decreased from 27.6 (original 

dataset) to 20.5μg m-3 (RS dataset) during the fall and from 39.0 (original dataset) to 

26.6μg m-3 (RS dataset) during winter. A more significant decrease in secondary source 

impact during winter suggested that the synoptic TS component had a more significant 

impact on the secondary source during winter than during the fall in this work. 

 
Figure 5 The influence of different TS components on source determination (Tianjin site). The 

industrial source was not identified from the RD and RS datasets. RBL dataset was investigated by 

PCA analysis instead of ME-2 due to the dataset has some negative values.  

 



 

Figure 6 Source contributions to PM2.5 for each source (vertical columns) and each dataset 

(horizontal rows) (Tianjin site). The blanks mean that the source has not been identified. 

 

Figure S13. The performance of ME-2 from five datasets (Tianjin site). (Left): the slops between model 

and measured concentrations of chemical species and PM2.5. (RI: intra-day removed dataset, RD: diurnal 

removed dataset, RS: synoptic removed dataset, BL: baseline dataset) (Right)The correlation coefficients 

between modeled and measured concentrations of chemical species and PM2.5. 



 

Figure S14. The factor profiles obtained from ME-2 from baseline dataset (Tianjin site). 

 

  



Table 4. Average source contributions to PM2.5 (μg m-3) estimated by ME-2 from Tianjin for the 

original, RI, RD, and RS datasets during the entire sampling period.  

 

 
Crustal 

dust 

Vehicle 

emissi

on 

Coal 

combusti

on 

Biomass 

burning & 

sea salt 

Industrial 

source 
TPSa 

Secondary 

formation 

(TSSb) 

During the 

entire sampling 

period 

Original 
4.3c 

(6%) 

10.2 

(14%) 

8.5 

(12%) 

5.0  

(7%) 

10.2 

(14%) 

38.2 

(54%) 

32.5  

(46%) 

RI 
3.8 

(6%) 

9.2 

(13%) 

8.9 

(13%) 

5.9 

 (9%) 

8.6 

(12%) 

36.5 

(53%) 

32.6  

(47%) 

RD 
9 

(14%) 

10.9 

(17%) 

12.8 

(20%) 

3.5  

(6%) 
 

36.2 

(57%) 

27.3  

(43%) 

RS 
9.2 

(16%) 

8.0 

(14%) 

11.5 

(20%) 

5.1  

(9%) 
 

33.8 

(59%) 

23.0  

(41%) 

 Original 
3.7 

(6%) 

8.7 

(14%) 

10.4 

(16%) 

3.0 

(5%) 

10.0 

(16%) 

35.8 

(56%) 

27.6 

(44%) 

 RI 
2.8 

(5%) 

7.4 

(12%) 

11.2 

(18%) 

3.2 

(5%) 

8.9 

(14%) 

33.5 

(55%) 

27.9 

(45%) 

Falld RD 
7.9 

(14%) 

6.4 

(11%) 

15.2 

(27%) 

2.9 

(5%) 
 

32.4 

(58%) 

23.7 

(42%) 

 RS 
8.0 

(15%) 

5.6 

(11%) 

14.6 

(28%) 

3.7 

(7%) 
 

31.9 

(61%) 

20.5 

(39%) 

Winter 

Original 
4.1  

(5%) 

10.7 

(14%) 

7.6  

(10%) 

5.2  

(7%) 

9.5  

(12%) 

37.1 

(49%) 

39.0 

(51%) 

RI 
3.9  

(5%) 

10.2 

(14%) 

7.6  

(10%) 

6.3  

(8%) 

8.1  

(11%) 

36.0 

(48%) 

39.4 

(52%) 

RD 
8.9 

(13%) 

13.0 

(19%) 

11.6 

(17%) 

3.7  

(5%) 
 

37.1 

(53%) 

32.7 

(47%) 

RS 
9.7 

(16%) 

9.4 

(16%) 

9.2  

(15%) 

5.3  

(9%) 
 

33.6 

(56%) 

26.6 

(44%) 

aTPS is the total contributions of crustal dust, vehicle emissions, coal combustion, biomass burning 

& sea salt, and industrial source. bTSS is the total contributions of secondary formation and nitrate 

source. cThe data in the parentheses and outside the parentheses are the absolute values of average 

source contribution (μg m-3) and percentages of average source contribution (%), respectively. d Fall 

included October and November, and winter included December, January, February, and March (15 

days). 

 

  



Table S7. Relative contributions (%) of the different TS components to the total variance of 

chemical species concentrations (Tianjin site).  

 Intra-day (%) Diurnal (%) Synoptic (%) Baseline (%) 

PM2.5 6 25 60 9 

Cl- 12 44 38 6 

NO3
- 4 23 68 6 

SO4
2- 4 25 59 12 

NH4
+ 3 18 62 17 

Mg2+ 9 24 40 27 

K+ 14 32 44 10 

Na+ 6 9 17 69 

OC 14 34 48 4 

EC 10 33 49 8 

As 34 43 21 2 

Ca 24 20 24 33 

Tl 32 7 2 59 

Br 26 53 19 2 

Cs 16 13 18 53 

Pb 23 39 33 6 

Se 28 34 30 8 

Cr 48 29 14 9 

Zn 26 44 23 6 

Fe 27 31 29 13 

Mn 29 33 29 9 

 

  



Table S8. Average concentrations of PM2.5 and chemical species for five datasets (Tianjin site).  

 Original RI RD RS RBL 

PM2.5(μg m-3) 69.7 68.1 62.8 57.4 21.1 

Cl- (μg m-3) 3.8 3.6 3.1 3.1 1.7 

NO3
- (μg m-3) 14.3 13.9 12.1 9.5 7.5 

SO4
2-(μg m-3) 7.4 7.3 6.7 5.8 2.6 

NH4
+ (μg m-3) 13.9 13.7 12.9 11.6 3.6 

Mg2+(μg m-3) 0.05 0.05 0.04 0.04 0.01 

K+ (μg m-3) 0.9 0.9 0.8 0.8 0.3 

Na+ (μg m-3) 0.9 0.9 0.9 0.9 0.05 

OC (μg m-3) 7.3 7.1 6.7 6.6 1.4 

EC (μg m-3) 3.9 3.7 3.4 3.2 1.5 

As (ng m-3) 5.7 4.5 4.4 4.5 3.8 

Ca (ng m-3) 312.8 289.0 283.4 281.8 84.5 

Tl (ng m-3) 2.8 2.1 2.6 2.7 0.9 

Br (ng m-3) 33.0 28.5 26.0 27.0 17.9 

Cs (ng m-3) 9.4 8.3 8.6 8.0 3.4 

Pb (ng m-3) 63.4 57.1 53.4 52.7 27.4 

Se (ng m-3) 6.1 5.0 4.8 4.8 3.8 

Cr (ng m-3) 6.1 4.7 4.7 5.2 3.8 

Zn (ng m-3) 270.7 235.4 211.5 222.9 145.1 

Fe (ng m-3) 600.8 545.5 528.6 538.4 191.0 

Mn (ng m-3) 42.9 36.3 33.6 33.2 26.1 

 

Table S9. Correlation coefficients (3378 samples) between original and intra-day removed dataset, 

diurnal removed dataset, and synoptic removed dataset for source contributions (Tianjin site). 

 RI RD RS 

Crustal dusta 0.89** 0.69** 0.52** 

Vehicle emission 0.96** 0.82** 0.76** 

Coal combustion 0.88** 0.68** 0.59** 

Secondary formation 0.99** 0.93** 0.75** 

Biomass burning & sea salt 0.97** 0.74** 0.81** 

Industrial sourceb 0.90**   

aCrustal dust from RD and RS datasets mixed with industrial source. bOnly ME-2 from original 

and RI datasets identified the Industrial source. **Significant correlation at 0.01 level. 

  



Table S10. The results obtained from PCA from RBL dataset (Tianjin site). 

Components Factor 1 Factor 2 Factor 3 Factor 4 

Cl- 0.33 0.20 0.78 0.23 

NO3
- 0.26 0.82 0.10 0.27 

SO4
2- 0.17 0.82 0.22 0.31 

NH4
+ 0.26 0.73 0.34 0.28 

Mg2+ 0.08 0.16 -0.10 0.83 

K+ 0.21 0.26 0.32 0.77 

Na+ 0.28 0.23 0.21 0.17 

OC 0.13 0.24 0.40 0.65 

EC 0.24 0.20 0.61 0.51 

As 0.10 0.62 0.41 0.07 

Ca 0.75 0.06 0.21 0.04 

Tl 0.02 -0.17 0.04 0.04 

Br 0.18 0.37 0.70 0.01 

Cs 0.09 0.34 0.07 -0.10 

Pb 0.39 0.43 0.60 0.21 

Se 0.47 0.57 0.30 0.11 

Cr 0.73 0.20 0.07 0.23 

Zn 0.47 0.18 0.71 0.07 

Fe 0.85 0.21 0.34 0.08 

Mn 0.80 0.29 0.28 0.12 

Variance contribution (%) 44.9 8.7 6.4 5.4 

 

Table S11. Average source contributions to PM2.5 (μg m-3) estimated by ME-2 from the BL datasets 

(Tianjin site).  

 Crustal dust 
Vehicle 

emission 

Coal 

combustion 
TPSa 

Secondary 

formation(TSSb) 

During the entire 

sampling period 

7.3c  

(14%) 

12.0 

(23%) 

10.4  

(20%) 

29.6 

(58%) 

21.3  

(42%) 

Fall 
3.4  

(7%) 

12.8  

(28%) 

16.5  

(36%) 

32.7  

(71%) 

13.3  

(29%) 

Winterd 
8  

(15%) 

9.4  

(17%) 

10.5  

(19%) 

28  

(51%) 

26.4  

(49%) 

aTPS is the total contributions of crustal dust, vehicle emissions, and coal combustion. bTSS is the 

contributions of secondary formation. cThe data in the parentheses and outside the parentheses are 

the absolute values of average source contribution (μg m-3) and percentages of average source 

contribution (%), respectively. dThe winter included 15 days in March 2018. 

 

c) ME2 is a powerful tool to estimate the sources of PM and required model input 



is non-negative. PCA was only used to analyze RBL dataset as negative values (about 

40%) of the RBL dataset and the limitation of ME2.  

PMF/ME2 does not need source profiles as model input but require receptor data. 

It is possible that one factor includes multiple sources and combine other chemical 

components in the factor profile except for the source markers (Canepari et al., 2009; 

Lee et al., 2009). Given that coal combustion, vehicle emissions, and crustal dust are 

collinearity sources that have similar profiles (Shi et al., 2009; Shi et al., 2011; Zhang 

et al., 2013), and that the absence of marker species (Si, Al, etc.) in the source profiles 

increased their collinear and uncertainties (Peng et al., 2016), these lead to difficulties 

in completely separating the three sources. We identified vehicle emissions and coal 

combustion according to the criterion that OC and EC fraction in vehicle emissions are 

higher than the values in coal combustion. We also analyzed the correlations of time 

series between source contributions and gaseous pollutants (SO2, NO, NO2) and diurnal 

patterns of source contribution (Figure S8). Correlation analysis showed vehicle 

emission has a significant correlation, with NO (ranging from 0.1 to 0.3, p<0.01) and 

NO2 (ranging from 0.2 to 0.3, p<0.01). Correlation between coal combustion and SO2 

ranged from 0.4 (p<0.01) to 0.6 (p<0.01), for the four datasets. For the results of the 

original dataset, vehicle emissions exhibited a relatively high contribution to PM2.5 

during the nighttime, suggesting that diesel vehicles appeared and emitted pollutants 

during the nighttime (Gao et al., 2016). Coal combustion showed a stable diurnal trend, 

and crustal dust has high contributions from 0:00 to 12:00. The diurnal pattern of 

secondary formation primarily dominated by nitrate that peaked in the early morning 



and at nighttime (Xu et al., 2014). Source diurnal trends estimated from RI dataset 

similar with results from original dataset, implying the small influences of intra-day TS 

component on the source diurnal trends. For the results from RS dataset, secondary 

formation (sulfate source) presented a broad peak during the daytime and might link to 

photochemical processes of sulfate. For results from RD and BL datasets, it is an 

expected result that all of four sources did not show obvious diurnal trends after 

removing the diurnal TS component. 

 

Figure S8. Diurnal trend of Source impacts for each source (vertical columns) and each dataset 

(horizontal rows) (Beijing site). The blanks mean that the source has not been identified. 
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