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Abstract 17 

Reanalyses are widely used because they add value to routine observations by 18 

generating physically or dynamically consistent and spatiotemporally complete 19 

atmospheric fields. Existing studies include extensive discussions of the temporal 20 

suitability of reanalyses in studies of global change. This study adds to this existing 21 

work by investigating the suitability of reanalyses in studies of regional climate 22 

change, in which land-atmosphere interactions play a comparatively important role. In 23 

this study, surface air temperatures (Ta) from 12 current reanalysis products are 24 

investigated; in particular, the spatial patterns of trends in Ta are examined using 25 

homogenized measurements of Ta made at ~2200 meteorological stations in China 26 

from 1979 to 2010. The results show that ~80% of the mean differences in Ta between 27 

the reanalyses and the in situ observations can be attributed to the differences in 28 

elevation between the stations and the model grids. Thus, the Ta climatologies display 29 

good skill, and these findings rebut previous reports of biases in Ta. However, the 30 

biases in the Ta trends in the reanalyses diverge spatially (standard 31 

deviation=0.15-0.30°C/decade using 1°×1° grid cells). The simulated biases in the 32 

trends in Ta correlate well with those of precipitation frequency, surface incident solar 33 

radiation (Rs), and atmospheric downward longwave radiation (Ld) among the 34 

reanalyses (r=-0.83, 0.80 and 0.77; p<0.1) when the spatial patterns of these variables 35 

are considered. The biases in the trends in Ta over southern China (on the order of 36 

-0.07°C/decade) are caused by biases in the trends in Rs, Ld and precipitation 37 

frequency on the order of 0.10°C/decade, -0.08°C/decade, and -0.06°C/decade, 38 
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respectively. The biases in the trends in Ta over northern China (on the order of 39 

-0.12°C/decade) result jointly from those in Ld and precipitation frequency. Therefore, 40 

improving the simulation of precipitation frequency and Rs helps to maximize the 41 

signal component corresponding to regional climate. In addition, the analysis of Ta 42 

observations helps representing regional warming in ERA-Interim and JRA-55. 43 

Incorporating vegetation dynamics in reanalyses and the use of accurate aerosol 44 

information, as in the Modern-Era Retrospective Analysis for Research and 45 

Applications, version 2 (MERRA-2), would lead to improvements in the modelling of 46 

regional warming. The use of the ensemble technique adopted in the 47 

twentieth-century atmospheric model ensemble ERA-20CM significantly narrows the 48 

uncertainties associated with regional warming in reanalyses (standard 49 

deviation=0.15°C/decade). 50 
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1. Introduction 51 

Observations and models are two fundamental approaches used in the 52 

understanding of climate change. Observations provide a direct link to the climate 53 

system via instruments, whereas models provide an indirect link and include 54 

information derived from measurements, prior knowledge and theory. 55 

A large number of meteorological observations have been accumulated. These 56 

measurements, which are derived from a variety of sources, such as surface stations, 57 

ships, buoys, radiosondes, airplanes and satellites, record quantities that include 58 

near-surface and upper-air temperatures, humidity, wind and pressure. They constitute 59 

a major source of atmospheric information through the depth of the troposphere but 60 

suffer from incomplete spatiotemporal coverage and observation errors, including 61 

systematic, random and representation errors. Recent satellite-based observations 62 

have much better coverage; however, they suffer from other notable limitations, 63 

including temporal inhomogeneities (e.g., satellite drift) and retrieval errors 64 

(Bengtsson et al., 2007). These spatiotemporally varying gaps restrict the effective 65 

application of observations alone in climate research. 66 

To fill in the gaps in observations, models are needed. Such models can be very 67 

simple; examples of simple models include linear interpolation or geo-statistical 68 

approaches that are based on the spatial and temporal autocorrelation of the 69 

observations. However, these models lack the necessary dynamical or physical 70 

mechanisms. Given the steady progress of numerical weather prediction (NWP) 71 

models in characterizing the global atmospheric circulation in the early 1980s (Bauer 72 
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et al., 2015), the first generation of reanalyses was produced by combining 73 

observations and dynamic models to provide the first global atmospheric datasets for 74 

use in scientific research (Bengtsson et al., 1982a, b). 75 

After realizing the great value of this kind of reanalysis in atmospheric research, a 76 

step forward was taken with the suggestion made by Bengtsson and Shukla (1988) 77 

and Trenberth and Olson (1988) that most meteorological observations should be 78 

optimally assimilated under a fixed dynamical system over a period of time long 79 

enough to be useful for climate studies. In this way, available observations are 80 

ingested by advanced data assimilation techniques to provide a continuous initial state 81 

for an NWP model to produce the next short-term forecast. This procedure thus 82 

generates physically consistent and spatiotemporally complete three-dimensional 83 

atmospheric fields that are updated in light of observations. 84 

Taking this suggestion as a guide, and given the improvements that have been 85 

made since the mid-1990s in the integrity of the observations, the models and the 86 

assimilation methods used, successive generations of atmospheric reanalyses 87 

established by several institutes have improved in quality. These reanalyses include 88 

the first two generations of global reanalyses produced by the National Centers for 89 

Environmental Prediction, NCEP-R1 (Kalnay et al., 1996) and NCEP-R2 (Kanamitsu 90 

et al., 2002) and the reanalyses produced by the European Centre for Medium-Range 91 

Weather Forecasts (ECMWF), ERA-15 (Gibson et al., 1997), ERA-40 (Uppala et al., 92 

2005), and ERA-Interim (Dee et al., 2011b); the Japanese Meteorological Agency, 93 

JRA-25 (Onogi et al., 2007) and JRA-55 (Kobayashi et al., 2015); and the National 94 
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Aeronautics and Space Administration, the Modern-Era Retrospective Analysis for 95 

Research and Applications (MERRA) (Rienecker et al., 2011) and its updated version, 96 

MERRA-2 (Reichle et al., 2017). 97 

These reanalyses produce global gridded datasets that cover multiple time scales 98 

and include a large variety of atmospheric, oceanic and land surface parameters, many 99 

of which are not easily or routinely observed but are dynamically constrained by large 100 

numbers of observations from multiple sources assimilated using fixed NWP models. 101 

During the data assimilation, prior information on uncertainties in the observations 102 

and models are used to perform quality checks, to derive bias adjustments and to 103 

assign proportional weights. Therefore, such reanalyses add value to the instrumental 104 

record through their inclusion of bias adjustments, their broadened spatiotemporal 105 

coverage and their increased dynamical integrity or consistency. 106 

Previous studies have revealed that such reanalyses have contributed significantly 107 

to a more detailed and comprehensive understanding of the dynamics of the Earth‟s 108 

atmosphere (Dee et al., 2011b;Kalnay et al., 1996;Nguyen et al., 2013;Kidston et al., 109 

2010;Simmonds and Keay, 2000;Simmons et al., 2010;Mitas and Clement, 2006). 110 

Extensive assessment studies have reported that most reanalyses display a certain 111 

level of performance in terms of their absolute values (Betts et al., 1996;Zhou and 112 

Wang, 2016b;Betts et al., 1998), interannual variability (Lin et al., 2014;Lindsay et al., 113 

2014;Zhou and Wang, 2017a, 2016a;Wang and Zeng, 2012), distributions (Gervais et 114 

al., 2014;Heng et al., 2014;Mao et al., 2010) and relationships among variables 115 

(Niznik and Lintner, 2013;Cash et al., 2015;Zhou et al., 2017;Zhou and Wang, 116 
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2016b;Betts, 2004) over regions worldwide. However, these aspects of reanalyses still 117 

contain certain errors that restrict the general use of reanalyses, especially in climate 118 

applications. 119 

The errors displayed by reanalysis products arise from three sources: observation 120 

error, model error and assimilation error (Thorne and Vose, 2010;Parker, 2016;Lahoz 121 

and Schneider, 2014;Dee et al., 2014;Zhou et al., 2017). Specifically, observation 122 

error incorporates systematic and random errors in instruments and their replacements, 123 

errors in data reprocessing and representation error, which arises due to the 124 

spatiotemporal incompleteness of observations (Dee and Uppala, 2009;Desroziers et 125 

al., 2005). Model error refers mainly to the inadequate representation of physical 126 

processes in NWP models (Peña and Toth, 2014;Bengtsson et al., 2007), such as the 127 

lack of time-varying surface conditions, such as vegetation growth (Zhou and Wang, 128 

2016b;Trigo et al., 2015), and incomplete cloud-precipitation-radiation 129 

parameterizations (Fujiwara et al., 2017;Dolinar et al., 2016). Assimilation error 130 

describes errors that arise in the mapping of the model space to the observation space 131 

and errors in the topologies of cost functions (Dee, 2005;Dee and Da Silva, 132 

1998;Lahoz and Schneider, 2014;Parker, 2016). 133 

These reanalyses mentioned above consist of the true climate signal and the 134 

nonlinear interactions among the observation error, the model error, and the 135 

assimilation error that arise during the assimilation process. These time-varying errors 136 

can introduce spurious trends without being eliminated by data assimilation systems. 137 

Many spurious variations in climate signals were also identified in the 138 
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early-generation reanalyses (Bengtsson et al., 2004;Andersson et al., 2005;Chen et al., 139 

2008;Zhou and Wang, 2016a, 2017a;Zhou et al., 2017;Schoeberl et al., 2012;Xu and 140 

Powell, 2011;Hines et al., 2000;Cornes and Jones, 2013). Therefore, reanalyses 141 

produced using the existing reanalysis strategy may not accurately capture climate 142 

trends (Trenberth et al., 2008), even though they may contain relatively accurate 143 

estimates of synoptic or interannual variations in the Earth‟s atmosphere. 144 

An emerging requirement for climate applications of reanalysis data is the 145 

accurate representation of decadal variability, further increasing the confidence in the 146 

estimation of climate trends. This kind of climate reanalysis is required to be free, to a 147 

great extent, from other spurious non-climatic signals introduced by changing 148 

observations, model imperfections and assimilation error; that is, they must maintain 149 

temporal consistency. Therefore, the extent to which climate trends can be assessed 150 

using reanalyses attracts much attention and sparks heated debates (Thorne and Vose, 151 

2010;Dee et al., 2011a;Dee et al., 2014;Bengtsson et al., 2007). 152 

Given the great progress that has been made in climate forecasting models (which 153 

provide more accurate representations of climate change and variability) and coupled 154 

data assimilation, many efforts have been made by several institutes to build 155 

consistent climate reanalyses using the strategy of assimilating a relatively small 156 

number of high-quality long-term observational datasets. The climate reanalyses of 157 

this new generation extend back to the late nineteenth century and include the Climate 158 

Forecast System Reanalysis (CFSR), which is produced by the National Centers for 159 

Environmental Prediction (Saha et al., 2010); NOAA 20CRv2c, which is produced by 160 
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the University of Colorado‟s Cooperative Institute for Research in Environmental 161 

Sciences (CIRES) in cooperation with the National Oceanic and Atmospheric Agency 162 

(NOAA) (Compo et al., 2011); and ERA-20C (Poli et al., 2016), ERA-20CM 163 

(Hersbach et al., 2015) and CERA-20C (Laloyaux et al., 2016), which are produced 164 

by the ECMWF. Compo et al. (2013) suggested that the NOAA 20CRv2c reanalysis 165 

can reproduce the trend in global mean surface air temperatures. In addition, the 166 

uncertainties estimated from multiple ensembles are provided to increase the 167 

confidence of the climate trends (Thorne and Vose, 2010;Dee et al., 2014). 168 

From NWP-like reanalyses to climate reanalyses, existing studies focus mainly 169 

on comparing the differences in temporal variability between the reanalyses and 170 

observations using some statistical metrics, e.g., the mean values, standard deviations, 171 

interannual correlations, probability density functions and trends of surface air 172 

temperature over regions worldwide. These evaluations provide insight into the 173 

temporal evolution of the Earth‟s atmosphere. However, they lack the performance 174 

evaluations used in reanalyses in representing the spatial patterns of these statistics 175 

associated with the role of the coupled land-atmosphere and dynamical processes of 176 

the climate system. Moreover, the assessment of these spatial patterns provides a 177 

direct means of examining the most prominent advantage of reanalyses over 178 

geo-statistical interpolation; thus, the spatial patterns require comprehensive 179 

investigation. 180 

This study employs high-density station-based datasets of quantities including 181 

surface air temperatures (Ta), the surface incident solar radiation (Rs), the surface 182 
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downward longwave radiation (Ld), and precipitation measured at ~2200 183 

meteorological stations within China from 1979 to 2010. It provides a quantitative 184 

examination of the simulated patterns of variations in Ta in both the NWP-like and 185 

climate reanalyses and considers the climatology, the interannual variability, the 186 

mutual relationships among relevant quantities, the long-term trends and their 187 

controlling factors. The results indicate the strengths and weaknesses of the current 188 

reanalyses when applied in regional climate change studies and provide possible ways 189 

to improve these reanalyses in the near future. 190 

 191 

2. Data and Methods 192 

2.1 Observational Datasets 193 

The latest comprehensive daily dataset (which contains averages at 0, 6, 12, and 194 

18 UTC) of quantities that include Ta, precipitation, sunshine duration, relative 195 

humidity, water vapor pressure, surface pressure and the cloud fraction from 196 

approximately 2400 meteorological stations in China from 1961 to 2014, of which 197 

only approximately 194 participate in global exchanges, is obtained from the China 198 

Meteorological Administration (CMA; http://data.cma.cn/data). Approximately 2200 199 

stations with complete and homogeneous data are selected for use in this study (Wang 200 

and Feng, 2013;Wang, 2008;Wang et al., 2007). The high density of meteorological 201 

stations in China promotes the representation of regional patterns in surface warming 202 

by reanalyses and the assessment of the skill of simulations. 203 

Rs values based on the revised Ångström-Prescott equation (Wang et al., 204 

http://data.cma.cn/data
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2015;Yang et al., 2006;Wang, 2014) are used in this study. The derived Rs values 205 

consider the effects of Rayleigh scattering, water vapor absorption and ozone 206 

absorption (Wang et al., 2015;Yang et al., 2006) and can accurately reflect the effects 207 

of aerosols and clouds on Rs over China (Wang et al., 2012;Tang et al., 2011). Several 208 

intensive studies have reported that the derived Rs values can accurately depict the 209 

interannual, decadal and long-term variations in Rs (Wang et al., 2015;Wang, 210 

2014;Wang et al., 2012). 211 

Ld is typically estimated by first determining the clear-sky radiation and 212 

atmospheric emissivity (Brunt, 1932;Choi et al., 2008;Bilbao and De Miguel, 2007), 213 

and then correcting for the cloud fraction (Wang and Liang, 2009;Wang and 214 

Dickinson, 2013). The derived Ld values can directly reflect the greenhouse effect of 215 

atmospheric water vapor and clouds. Additionally, precipitation frequency is defined 216 

as days in a year with daily precipitation at least 0.1 mm in this study, which has been 217 

shown to provide a good indication of the effects of precipitation on the interannual 218 

variability and trends in Ta (Zhou et al., 2017). Taken together, the derived Rs and Ld 219 

values are able to physically quantify the effects of solar radiation and the greenhouse 220 

effect on surface warming. Precipitation frequency can regulate the partitioning of 221 

available energy into latent and sensible heat fluxes and thus modulates the variations 222 

in Ta (Zhou et al., 2017;Zhou and Wang, 2017a). 223 

2.2 Reanalysis Products 224 

All of the major global atmospheric reanalysis products are included in this study 225 

(Table 1). The reanalyses are summarized below in terms of three aspects, i.e., the 226 
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observations assimilated and the forecast model and assimilation method used. The 227 

NWP-like reanalyses assimilate many conventional and satellite datasets from 228 

multiple sources (Table 1) to characterize the basic upper-air atmospheric fields; the 229 

spatiotemporal errors of these datasets vary with time. In particular, the ERA-Interim 230 

and JRA-55 reanalyses incorporate many observations of Ta, and the MERRA2 231 

reanalysis includes aerosol optical depth estimates from satellite retrievals and model 232 

simulations based on emission inventories, whereas most of the other reanalyses use 233 

climatological aerosols (Table 1). To derive consistent long-term climate signals, the 234 

new strategy adopted by climate reanalyses involves the assimilation of a small 235 

number of relatively effective observed variables, e.g., surface pressure (Table 1). 236 

Except for its lack of the assimilation of surface pressure, ERA-20CM employs the 237 

same forecast model and external forcings as ERA-20C (Table 1); thus, the inclusion 238 

of ERA-20CM in this study provides a useful benchmark series against which to 239 

ascertain the skill that is added by assimilating various observations and to cognize 240 

the advantage of ensemble simulations. The reanalyses adopt different sea surface 241 

temperatures (SSTs) and sea ice concentrations for different time periods, which may 242 

lead to temporal discontinuities in the climate signals derived from the reanalyses 243 

(Table 1). To address this issue, the boundary conditions in CFSR are derived from its 244 

coupled ocean-sea ice models instead of observations (Table 1). CFSR, NOAA 245 

20CRv2c and NOAA 20CRv2 use monthly greenhouse gases (GHGs) with annual 246 

means near those used in CMIP5. On the other hand, in ERA-Interim, the GHGs 247 

increase more slowly than in CMIP5 after 2000. Finally, NCEP-R1 and NCEP-R2 248 
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adopt constant global mean concentrations of the GHGs (Table 1). 249 

The forecast model is a fundamental component of a reanalysis that provides the 250 

background fields to the assimilation system. Different reanalyses produced by a 251 

single institute generally use similar physical parameterizations; however, updated 252 

versions of these parameterizations and higher spatial resolutions are used in the 253 

newer generations of these realizations (Table 1). Note that the CFSR is classified into 254 

climate reanalysis in this study, mainly because it adopts a climate forecast system 255 

(Table 1). The assimilation methods adopted by the current reanalyses incorporate 256 

variational methods (3D-Var and 4D-Var) and the ensemble Kalman filter (EnKF) 257 

approach (Table 1). 258 

The 2-m Ta in NCEP-1, NCEP-2, MERRA, MERRA-2, ERA-20C, ERA-20CM, 259 

CERA-20C, NOAA 20CRv2c, NOAA 20CRv2 and CFSR are model-derived fields 260 

that are functions of the surface skin temperature, the temperature at the lowest model 261 

level, the vertical stability and the surface roughness, which are constrained primarily 262 

by observations of upper-air variables and the surface pressure (Kanamitsu et al., 263 

2002;Rienecker et al., 2011;Reichle et al., 2017;Poli et al., 2016;Hersbach et al., 264 

2015;Laloyaux et al., 2016;Compo et al., 2011;Saha et al., 2010). However, the Ta in 265 

ERA-Interim and JRA-55 are post-processing products by a relatively simple analysis 266 

scheme between the lowest model level and the surface and are analysed using 267 

ground-based observations of Ta, with the help of Monin-Obukhov similarity profiles 268 

consistent with the model‟s parameterization of the surface layer (Dee et al., 269 

2011b;Kobayashi et al., 2015). Additionally, radiation calculations are diagnostically 270 
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determined from the prognostic cloud condensate microphysics parameterization, and 271 

the cloud macrophysics parameterization assumes a maximum-random cloud 272 

overlapping scheme (Saha et al., 2010;Dolinar et al., 2016). 273 

2.3 Method Used to Homogenize the Observed Time Series 274 

Problems related to the observational infrastructure (e.g., instrument ageing and 275 

changes in observing practices) and station relocations can also lead to false temporal 276 

heterogeneity in time series. Therefore, it is necessary to diminish the impact of data 277 

inhomogeneities on the trends in the observed variables during the study period of 278 

1979-2010. 279 

We use the RHtestsV4 software package (Wang and Feng, 2013) to detect and 280 

homogenize the breakpoints in the monthly time series. The package includes two 281 

algorithms. Specifically, the PMFred algorithm is based on the penalized maximal 282 

F-test (PMF) without a reference series (Wang, 2008), and the PMTred algorithm is 283 

based on the penalized maximal t-test (PMT) with a reference series (Wang et al., 284 

2007). 285 

In this study, we first use the PMFred algorithm to identify potential reference 286 

series at the 95% significance level. We then reconstruct homogenous series for each 287 

inhomogeneous series using the following steps: 1) horizontal and vertical distances 288 

from the inhomogeneous station of less than 110 km and 500 m, respectively, are 289 

specified; 2) correlation coefficients between the first-order difference in the 290 

homogeneous series with that in the inhomogeneous one exceeding 0.9 are required; 291 

and 3) the first ten homogeneous series are averaged using inverse distance weighting 292 
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to produce a reference series for the inhomogeneous station. Finally, we apply the 293 

PMTred algorithm to test all of the inhomogeneous series using the nearby reference 294 

series. Several intensive studies have been conducted that indicate the PMTred 295 

algorithm displays good performance in detecting change points in inhomogeneous 296 

series (Venema et al., 2012;Wang et al., 2007). 297 

If a breakpoint is found to be statistically significant, the quantile-matching (QM) 298 

adjustment in RHtestsV4 is recommended for making adjustments to the time series 299 

(Wang et al., 2010;Wang and Feng, 2013); in such cases, the longest available 300 

segment from 1979 to 2010 is used as the base segment. The QM adjustment aims to 301 

match the empirical distributions from all of the detrended segments with that of the 302 

specific base segment (Wang et al., 2010). In addition, we replicate the procedures 303 

above for the sparsely distributed stations over western China and the Tibetan Plateau. 304 

The PMTred algorithm and the QM adjustment have recently been used successfully 305 

to homogenize climatic time series (Aarnes et al., 2015;Tsidu, 2012;Dai et al., 306 

2011;Siswanto et al., 2015;Wang and Wang, 2016;Zhou et al., 2017). 307 

As such, the significant breakpoints are detected and adjusted at a confidence 308 

level of 95% at 1092 of the 2193 (49.8%) stations for the Ta time series; 1079 of the 309 

2193 (49.2%) stations for the Rs time series; 64 of the 2193 (2.9%) stations for 310 

precipitation frequency time series; 971 of the 2193 (44.2%) stations for the Ld time 311 

series; 944 of the 2193 (43.0%) stations for the water vapor pressure time series; and 312 

956 of the 2193 (43.6%) stations for the cloud fraction time series. 313 

2.4 Trend Calculations, Partial Linear Regression, and Total Least Squares 314 
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The bias, root mean squared error (RMSE) and standard deviation are used to 315 

assess the absolute value of Ta. The trends in Ta and the relevant variables are 316 

calculated using the ordinary least squares method (OLS) and the two-tailed Student‟s 317 

t-test. To determine whether the reanalyses contain biases in these trends, the 318 

two-tailed Student‟s t-test is also applied to the differences in the time series between 319 

the reanalyses and the homogeneous observations. 320 

The partial least squares approach is used to investigate the net relationship 321 

between the detrended Ta values and the relevant variables (Rs, Ld and precipitation 322 

frequency) after statistically excluding the confounding effects among the relevant 323 

variables (Zhou et al., 2017). To evaluate the potential collinearity of independent 324 

variables in the regression model, the variance inflation factor (VIF) is calculated. The 325 

VIFs for Rs, precipitation frequency and Ld are less than 4. Specifically, the VIF for 326 

China of 2.19 is much less than the threshold of 10, above which the collinearity of 327 

regression models is bound to adversely affect the regression results (Ryan, 2008). 328 

The Pearson correlation coefficient (r) is used to reveal the spatial relationship 329 

between Ta and the relevant variables. To further investigate the relationship between 330 

the spatial distributions of the biases in the trends in Ta and the relevant parameters 331 

among the twelve reanalysis products, the weighted total least squares (WTLS) is 332 

adopted, in which the spatial standard deviations and correlations of pairs of variables 333 

on 1°×1° grid cells are included (Reed, 1989;York et al., 2004;Golub and Van Loan, 334 

1980;Hyk and Stojek, 2013;Tellinghuisen, 2010): 335 

2( ) 1
ii xx                                  (1) 336 
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where xi and yi are the median trends in x and y (e.g., Ta and Rs) for the i
th

 reanalysis 343 

product; 
ix , 

ix and ri are the spatial standard deviations and correlations of the 344 

trends in x and y for the i
th

 reanalysis product; βi is the least squares-adjusted value; Wi 345 

is the weight of the residual error; and b is the slope estimated by iterative methods 346 

with a relative tolerance of 10
-16

. 347 

The Monte Carlo method with 10000 experiments is applied to estimate the 90% 348 

confidence intervals of the slope b. In the Monte Carlo method, the grid index for the 349 

1°×1° grid cells over China, which ranges from 1 to 691, is generated as a random 350 

number. On this basis, we can sample the spatial pattern in the biases in the trends in 351 

Ta, Rs, Ld and precipitation frequency. We then calculate the median trends and their 352 

spatial standard deviations and correlations for each experiment used in the WTLS. 353 

 354 

3. Results 355 



18 
 

3.1 Dependency of Surface Air Temperature Differences on Elevation Differences 356 

Fig. 1 illustrates the differences in Ta from the NWP-like reanalyses and climate 357 

reanalyses relative to the homogenized station-based observations over China during 358 

the period of 1979-2010. When the Ta values measured at the stations are compared 359 

directly with those in the corresponding model grid cells, the results indicate that the 360 

reanalysis products underestimate Ta over most of the regions in China (by -0.28°C to 361 

-2.56°C). These discrepancies are especially pronounced over the Tibetan Plateau and 362 

Middle China, where the underestimation ranges from-2.75°C to -7.00°C and from 363 

-1.19°C to -2.91°C, respectively (Fig. 1 and Table 2). A homogenizing adjustment of 364 

0.03°C from the raw Ta observations is insufficient to cancel the underestimation of Ta 365 

by the reanalyses (Fig. 1 and Table 2). Similar biases in Ta within various regions 366 

worldwide have been widely reported by previous studies (Mao et al., 2010;Pitman 367 

and Perkins, 2009;Reuten et al., 2011;Wang and Zeng, 2012;Zhou et al., 2017;Zhou 368 

and Wang, 2016b). 369 

However, we found that the spatial patterns in the differences in Ta are well 370 

correlated with the elevation differences between models and stations, as reflected by 371 

correlation coefficients (r) of 0.85 to 0.94 (Figs. 2 and S1). These results are in 372 

accordance with the reports from NCEP-R1, NCEP-R2 and ERA-40 (You et al., 373 

2010;Ma et al., 2008;Zhao et al., 2008). The elevation differences (∆Height; Figs. 2 374 

and S1) between the stations and the model grids consists of the filtering error in the 375 

elevations used in the spectral models (∆f) and differences in the site-to-grid 376 

elevations (∆s) due to the complexity of the orographic topography. We further 377 
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quantify the relative contributions of these factors to the Ta differences. The elevation 378 

differences can explain approximately 80% of the Ta differences; approximately 74% 379 

is produced by the site-to-grid elevation differences, and approximately 6% is 380 

produced by the filtering error in the elevations used in the spectral models (Fig. 2). 381 

The regression coefficient of the differences in Ta is approximately 6°C/1 km, 382 

which is similar to the lapse rate at the surface (Fig. 2). Lapse rate values that exceed 383 

6°C/1 km can be seen over the Tibetan Plateau (shown as red dots in Fig. 2). This 384 

result is very consistent with the reported lapse rates over China (Li et al., 2015;Fang 385 

and Yoda, 1988). In addition, the rate of decrease in the model filtering error is 386 

approximately 4°C/1 km among the twelve reanalyses (Fig. 2). These results have 387 

important implications for the skill of the simulated Ta climatologies of the twelve 388 

reanalyses over China. 389 

3.2 Comparison of Regional-scale Surface Air Temperature Series 390 

Fig. 3 shows Taylor diagrams of annual Ta anomalies from the observations and 391 

reanalyses over China and its seven subregions. We find that the correlations between 392 

the annual Ta anomalies in the twelve reanalysis products and the observations are 393 

reasonably strong, as reflected by a median r of 0.95 (Fig. 3), despite the relatively 394 

weak correlations over the Tibetan Plateau associated with NCEP-R2 (r=0.24) and 395 

CFSR (r=0.53). The simulated time series of Ta anomalies over eastern China are 396 

depicted most accurately by the reanalyses (Fig. 3c-g). 397 

Overall, the NWP-like reanalyses (denoted by numbers 3-7) display better skill 398 

than the climate reanalyses (denoted by numbers 8-14) in this regard (Fig. 3). 399 
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ERA-Interim and JRA-55 display the best performance in the simulated time series of 400 

Ta anomalies over China (r=1.00, RMSE=0.05°C) and the seven regions (r=0.98, 401 

RMSE=0.1°C) (Fig. 3), perhaps due to their analysis of surface air temperature 402 

observations (Table 1). 403 

Comparing the Ta values from MERRA2 and MERRA shows that MERRA2 404 

displays improved performance over northern China, as reflected by an increase in the 405 

correlation coefficient of 0.1 and a reduction in the RMSE of 0.1°C (Fig. 3). This 406 

result may occur because MERRA2 includes time-varying aerosol loadings (Balsamo 407 

et al., 2015;Reichle et al., 2011). However, the incorporation of this information does 408 

not improve the results over Southeast China (Fig. 3h). 409 

CERA-20C displays better performance than ERA-20C and ERA-20CM, perhaps 410 

related to the inclusion of coupled climate forecast models and data assimilation, as 411 

well as the assimilation of surface pressure data in CERA-20C (Fig. 3 and Table 1). 412 

NOAA 20CRv2c and NOAA 20CRv2 display moderate performance in this regard 413 

(r=0.8, RMSE=0.3°C) (Fig. 3), and the former reanalysis displays no improvement in 414 

performance, despite its use of new boundary conditions (Compo et al., 2011). 415 

3.3 Key Factors Regulating Regional Temperature Change 416 

This section discusses key factors that control regional temperature change from 417 

the perspective of energy balance and its partitioning. The Rs heats the surface, and 418 

the portion of this radiation that becomes the sensible heat flux heats the air near the 419 

surface (Zhou and Wang, 2016b;Wang and Dickinson, 2013;Zhou and Wang, 2016c). 420 

Part of the energy absorbed by the surface is released back to space as outgoing 421 
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longwave radiation; some of this radiation is reflected by clouds and is influenced by 422 

atmospheric water vapor, further warming the near-surface air (Wang and Dickinson, 423 

2013). This process is known as the greenhouse effect on Ta and is quantified by Ld. 424 

Existing studies have suggested that precipitation frequency better represents the 425 

interannual variability in soil moisture in China than the precipitation amount (Wu et 426 

al., 2012;Piao et al., 2009;Zhou et al., 2017;Zhou and Wang, 2017a); in turn, soil 427 

moisture affects vegetation growth and drives changes in surface characteristics (e.g., 428 

surface albedo and roughness). These changes alter the partitioning of available 429 

energy and thus regulate changes in Ta. 430 

Fig. 4 illustrates the partial relationships between the annual anomalies in Ta and 431 

Rs, the precipitation frequency and Ld. The results show that Ta is consistently 432 

positively correlated with Rs (except over the Tibetan Plateau) and Ld; however, it is 433 

consistently negatively correlated with precipitation frequency in the observations and 434 

the twelve reanalysis products (Fig. 4). Based on the observations, the interannual 435 

variations in Ta are determined in part by precipitation frequency and Ld in Northeast 436 

China and the northern part of Northwest China (Fig. 4). All of the reanalyses roughly 437 

capture these factors over these regions, although they display differences in the 438 

relative magnitudes (Fig. 4). Specifically, ERA-20CM, NOAA 20CRv2c, NOAA 439 

20CRv2 and CFSR exhibit comparable relationships of Ta with precipitation 440 

frequency and Ld; however, MERRA, MERRA2, NCEP-R2, ERA-20C, and 441 

CERA-20C overestimate the relationship between Ta and precipitation frequency, and 442 

ERA-Interim, JRA-55, and NCEP-R1 overestimate the relationship of Ta with Ld over 443 
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these regions (Fig. 4). 444 

Over the North China Plain and Middle China, the interannual variations in Ta are 445 

partly determined by Rs, precipitation frequency and Ld (Fig. 4). The reanalyses 446 

roughly capture the effects of these three factors on Ta, although they display diverse 447 

combinations (Fig. 4). Among these combinations, JRA-55, MERRA2, ERA-20CM 448 

and ERA-Interim are comparable to the observations over these regions (Fig. 4). Over 449 

Southeast China, the interannual variations in Ta are primarily regulated by Ld, 450 

precipitation frequency and Rs (Fig. 4). The reanalyses exhibit slightly overestimated 451 

relationships of Ta with Rs and underestimated relationships with precipitation 452 

frequency (Fig. 4). 453 

Over the Tibetan Plateau, the interannual variations in Ta are regulated by Rs and 454 

precipitation frequency (Fig. 4). Most of the reanalyses roughly capture the 455 

combinations of these factors but exhibit certain differences in the relative effects of 456 

Rs and precipitation frequency on Ta (Fig. 4). MERRA, MERRA2, NOAA 20CRv2c 457 

and NOAA 20CRv2 overestimate the relationships of Ta with Rs over the Tibetan 458 

Plateau (Fig. 4). 459 

Overall, the spatial patterns of the simulated partial correlation of Ta with Rs in 460 

the reanalysis products are significantly correlated with those seen in the observations; 461 

r=0.13-0.35 (p<0.05) for the NWP-like reanalyses, and larger values of r=0.24-0.41 462 

(p<0.05) are obtained for the climate reanalyses. Moreover, the spatial patterns in the 463 

sensitivity of Ta to Rs exhibit significant correlations (r=0.12-0.17, p<0.05) for most 464 

of the climate reanalyses (Table 1). Precipitation frequency displays the largest spatial 465 
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correlations (r=0.16-0.43, p<0.05) of the sensitivity of Ta with these three relevant 466 

parameters in the reanalyses (Table 3). Significant spatial correlations reflecting the 467 

relationship (including the partial correlation and sensitivity) of Ta with Ld are also 468 

found (Table 1). 469 

3.4 Regional Warming Trend Biases and Their Causes 470 

1) The Whole of China 471 

From 1979 to 2010 over China, Ta exhibits strong warming trends of 472 

0.37°C/decade (p<0.05) in the observations and 0.22-0.48°C/decade (p<0.05) in the 473 

twelve reanalyses (Figs. 5 and S2-S3, Table 2). ERA-Interim and JRA-55 display 474 

spatial correlations with the observations (r=0.47 and 0.54, p<0.05) that are due at 475 

least partly to the inclusion of some Ta observations, whereas NCEP-R2 and 476 

ERA-20C display the worst performance (Figs. S3, Tables 1 and 3). Furthermore, 477 

approximately 87% of the observed trends in Ta over China can be explained by the 478 

greenhouse effect (i.e., 65% can be explained by the trend in Ld), precipitation 479 

frequency (29%) and Rs (-7%, due to the trend in radiative forcing of -1.1 480 

W∙m
-2

/decade) (Figs. S3-4). The influence of the greenhouse effect on the observed 481 

trends in Ta consists mainly of the trends in the atmospheric water vapor (42%) and 482 

the cloud fraction (3%) (Fig. S5). Among the reanalyses, over 90% of the trend in Ta 483 

can be explained by the greenhouse effect, precipitation frequency and Rs (Figs. S4-6). 484 

Specifically, ERA-Interim, JRA-55, MERRA and MERRA2 display the best ability to 485 

capture the contributions of the greenhouse effect (48% to 76%), precipitation 486 

frequency (22% to 34%) and Rs (-4% to 13%) to the trend in Ta over China (Figs. S4 487 
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and S6). The remaining NWP-like reanalyses (i.e., NCEP-R1 and NCEP-R2) 488 

substantially overestimate the contribution of Rs to the trend in Ta, whereas the 489 

climate reanalyses overestimate the contribution from Ld (Figs. S4 and S6). 490 

We further quantify the contributions to the biases in the trend in Ta made by 491 

those in Rs, Ld and precipitation frequency among the twelve reanalyses over China 492 

(Figs. 6-7). Over China, the overestimated Rs trends (by 0.00-3.93 W∙m
-2

/decade; Figs. 493 

S8 and S13) increase the trends in Ta (by 0.02-0.16°C/decade; Fig. 7) in the twelve 494 

reanalyses; the underestimated Ld trends (by -0.25 to -1.61 W∙m
-2

/decade for the 495 

NWP-like reanalyses; Figs. S10 and S15) decrease the trends in Ta (by -0.05 to 496 

-0.25°C/decade for the NWP-like reanalyses; Fig. 7); and the biases in the trends in 497 

precipitation frequency (by approximately -1.5 days/decade for the NWP-like 498 

reanalyses and approximately 2.6 days/decade for the climate reanalyses; Figs. S9 and 499 

S14) decrease the trends in Ta (by 0.01 to 0.05°C/decade for the NWP-like reanalyses 500 

and -0.01 to -0.06°C/decade for the climate reanalyses; Fig. 7). Together, these effects 501 

produce an underestimate in the trends in Ta on the order of 0.10°C/decade in the 502 

reanalyses (Fig. 7 and Table 2). 503 

2) Seven Subregions 504 

Averaged trends over large areas may mask regional differences that reflect 505 

diverse regional warming biases and their causes (Figs. 5-7). The mean-adjusted 506 

spatial patterns of the biases in the trends in Ta appear to be consistent among the 507 

twelve reanalyses (Fig. S7) and mimic the spatial patterns in the overestimated Rs 508 

trends over the North China Plain, South China and Northeast China (Fig. S8), given 509 
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the spatial correlations between these variables in most of the reanalyses (r=0.11-0.42, 510 

p<0.05) (Figs. 6 and S7-8, Table 3). However, the reanalyses still underestimate the 511 

trends in Ta over most of the regions. The key reason for this underestimation is the 512 

increase in precipitation frequency over Northwest China, the Loess Plateau, and 513 

Middle China seen in the NWP-like reanalyses and that seen over broader regions in 514 

the climate reanalyses (Figs. 5-6 and S9). This relationship is reflected by their 515 

negative spatial correlation, which has a maximum value of -0.62 (p<0.05) for 516 

MERRA (Table 3). Moreover, the decrease in Ld, which occurs due to the decreases in 517 

the atmospheric water vapor and cloud fraction that occur in the NWP-like reanalyses 518 

(Figs. S10-12), substantially cancels the warming effect of the overestimation of Rs on 519 

Ta over eastern China (Figs. 5 and S7). The opposite changes occur over Southeastern 520 

China in the climate reanalyses (Figs. 5 and S10). The effect of the changes in Ld is 521 

reflected by its spatial correlations of up to 0.50 (p<0.05) (Table 3). 522 

The corresponding contributions to the biases in the Ta trend from are calculated 523 

from those in Rs, Ld and precipitation frequency over seven subregions of China (Figs. 524 

6-7). Over northern China, biases in the trend in Ta result primarily from those in 525 

precipitation frequency and Ld (Figs. 6-7). Over Northeast China, the observations 526 

exhibit an amplified warming of 0.41°C/decade (p<0.05; Fig. 4 and Table 2). This 527 

warming is significantly underestimated by NCEP-R1, JRA-55, NOAA 20CRv2 and 528 

NOAA 20CRv2c (by on the order of -0.15°C/decade) and is overestimated by 529 

MERRA and CFSR (by on the order of 0.2°C/decade) (Figs. 6-7). These biases in the 530 

trends in Ta in the reanalysis are jointly explained by the warming 531 
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(0.04-0.48°C/decade) induced by the underestimated trends in precipitation frequency 532 

and the cooling (-0.04 to -0.42°C/decade) induced by the underestimated trends in Ld 533 

(Fig. 7). 534 

Over Northwest China, the biases in the trend in precipitation frequency and Ld 535 

mainly explain the overestimated warming in NCEP-R2 (by 0.22°C/decade) (Fig. 7). 536 

The substantially underestimated trend in Ld induced by the decrease in the 537 

atmospheric water vapour and cloud fraction (Figs. S9-S12 and S16-17) lead to an 538 

underestimate of the warming in MERRA (by -0.22°C/decade) (Fig. 7). 539 

Most of the reanalyses display weakened warming over the Tibetan Plateau and 540 

the Loess Plateau (Fig. 5 and S3, Table 2). In particular, NCEP-R1 and NCEP-R2 fail 541 

to reproduce the warming over the Tibetan Plateau, and MERRA fails to reproduce 542 

the warming over the Loess Plateau (Fig. 5 and S3, Table 2). The significant cooling 543 

biases in the trends in Ta (by -0.02 to -0.31°C/decade) over the Tibetan Plateau and 544 

the Loess Plateau result from the underestimated trends in Ld and the overestimated 545 

trends in precipitation frequency seen in most of the reanalyses (Figs. 5-7 and S9-12). 546 

These cooling biases are further induced by the underestimated trends in Rs (Figs. 5-7 547 

and S8). 548 

Over southern China, the biases in the trend in Ta are regulated by the biases in 549 

the trends in Rs, Ld and precipitation frequency (Figs. 6-7). Over Southeast China, the 550 

significantly overestimated trends in Ta (by 0.04, 0.02 and 0.17°C/decade, 551 

respectively) are induced by the overestimated trends in Rs (by 4.25, 3.34 and 6.27 552 

W∙m
-2

/decade, respectively) seen in ERA-Interim, JRA-55 and CFSR (Figs. 6-7 and 553 
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S8). The underestimated trends in Ta are induced by the overestimated trends in 554 

precipitation frequency and Ld in NCEP-R1, MERRA, ERA-20CM, CERA-20C, 555 

NOAA 20CRv2 and NOAA 20CRv2c (Figs. 6-7 and S9). 556 

Over Middle China, the significantly overestimated trends in Ta (by 0.04, 0.06, 557 

0.11, 0.03, 0.11 and 0.14°C/decade, respectively) are induced by the overestimated 558 

trends in Rs (by 2.09, 1.50, 2.59, 1.20 and 4.81 W∙m
-2

/decade, respectively) seen in 559 

ERA-Interim, JRA-55, ERA-20C, ERA-20CM, CERA-20C and CFSR (Figs. 6-7 and 560 

S8). The overestimated trends in precipitation frequency may lead to cooling in the 561 

trends in Ta in the reanalyses, especially for MERRA (which reflects an induced bias 562 

in the trend of -0.15°C/decade) over Middle China (Figs. 6-7 and S9). 563 

Due to the underestimated trends in the atmospheric water vapor and the cloud 564 

fraction (Figs. S11-12), the underestimation of Ld produces a cooling effect on the 565 

trend in Ta (by -0.05 to -0.32°C/decade) in the reanalyses over the North China Plain 566 

(Figs. 6-7 and S10). However, due to the lack of inclusion of plausible trends in 567 

aerosol loading, the substantial increases in Rs over the North China Plain (Fig. S8) 568 

have strong warming effects on the trends in Ta (by 0.01 to 0.21°C/decade) in the 569 

reanalyses (Figs. 6-7 and S8). The biases in the trends in precipitation frequency (of 570 

approximately -2.5 days/decade for the NWP-like reanalyses and approximately 1.5 571 

days/decade for some of the climate reanalyses) contribute some part of the biases in 572 

the trends in Ta (approximately 0.05°C/decade for the NWP-like reanalyses and 573 

-0.03°C/decade for the climate reanalyses). 574 

Overall, the biases in the trends in Ta in the reanalyses can be substantially 575 
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explained by those in Ld, precipitation frequency and Rs, but this effect varies 576 

regionally (Figs. 6-7). Over northern China, the biases in the trend in Ta (which are on 577 

the order of -0.12°C/decade) result primarily from a combination of those in Ld 578 

(which are on the order of -0.10°C/decade) and precipitation frequency (which are on 579 

the order of 0.05°C/decade), with relatively small contributions from Rs (which are on 580 

the order of -0.03°C/decade). Over southern China, the biases in the trend in Ta 581 

(which are on the order of -0.07°C/decade) are caused by those in Rs (which are on 582 

the order of 0.10°C/decade), Ld (which are on the order of -0.08°C/decade) and 583 

precipitation frequency (which are on the order of -0.06°C/decade) (Fig. S18).  584 

3.5 Spatial Linkages of Biases in the Warming Trends in the Twelve Reanalyses 585 

We next integrate the relationships of the spatial patterns in the biases in the 586 

trends in Ta with those in Rs, Ld and precipitation frequency over China in the twelve 587 

reanalyses (Fig. 8). The results show that the biases in the trends in Ta show 588 

significant correlations with Rs (r=0.80, slope=0.06, p=0.09) and precipitation 589 

frequency (r=-0.83, slope=-0.04, p=0.02) and Ld (r=0.77, slope=0.10, p=0.10) in the 590 

twelve reanalyses if information on these patterns is included. When the spatial 591 

patterns of the biases in the trends in these variables are not considered, the biases in 592 

the trends in Ta show relatively small correlations with Rs (r=0.32, slope=0.02, p>0.1), 593 

precipitation frequency (r=-0.51, slope=-0.02, p=0.09) and Ld (r=0.14, slope=0.02, 594 

p>0.1) in the reanalyses (Fig. 8). Similar results are obtained for the atmospheric 595 

water vapor (r=0.71, p=0.1) and the cloud fraction (r=-0.74, p=0.09) if their spatial 596 

patterns are considered (Figs. S19), and this relationship involving the cloud fraction 597 
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is very similar to that associated with Rs (Figs. 8 and S19). Within the subregions of 598 

China, the biases in the trends in Ta show significant correlations with Rs (r=068 to 599 

0.90, p<0.1), precipitation frequency (r=-0.55 to -0.94, p<0.1) and Ld (r=0.53 to 0.93, 600 

p<0.1) when the spatial patterns in the reanalyses are included (Fig. S20). These 601 

results provide a novel perspective that can be used to investigate the spatial 602 

relationships between biases in the trends in Ta and relevant quantities in reanalyses. 603 

 604 

4. Discussion 605 

In this section, we first examine the possible impacts of data homogenization on 606 

the trends in Ta. The trends in Ta derived from the original dataset are almost as high 607 

as those from the homogenized dataset, especially over the North China Plain and 608 

Northwest China (Fig. 5 and Table 2). Homogenization primarily adjusts breakpoints 609 

in time series (Wang, 2008), which occur mainly due to station relocation and changes 610 

in instruments (Cao et al., 2016;Li et al., 2017;Wang, 2014), and it helps to 611 

objectively depict trends in Ta, thus permitting the assessment of the modelled trends 612 

in Ta and its spatial patterns that are present in the reanalyses. 613 

We found that the elevation differences between the models and the stations 614 

influence the biases in the trends in Ta but cannot explain the spatial patterns in the 615 

biases in the trends in Ta (average r=0.11) (Fig. S21). Comparison of the models that 616 

use the same grid (NOAA 20CRv2c vs. NOAA 20CRv2, MERRA vs. MERRA2, 617 

NCEP-R1 vs. NCEP-R2 and ERA-20C vs. ERA-20CM) shows that the one is 618 

correlated with elevation differences, but the other is not, which implies that this 619 
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statistical correlation does not have physical significance. Nevertheless, the spatial 620 

patterns in the normalized trends in Ta (excluding the impacts of the absolute value of 621 

temperature on the trends) are very near to those of the trends (Fig. S22), implying 622 

that the differences in the absolute value of temperature have an important effect, 623 

given that the site-to-grid inconsistency can be neglected. 624 

In the reanalyses, vegetation is only included as climatological information, but 625 

the vegetation displays a growth trend during the study period of 1979-2010 within 626 

China (Fig. S23). This discrepancy positively enlarges the biases in the trends in Ta 627 

due to the vegetation cooling effect (Zeng et al., 2017;Trigo et al., 2015). This effect 628 

is reflected by the negative spatial correlation (r=-0.26, p=0.00) between the inverted 629 

trend in the NDVI and the biases in the trend in Ta (Fig. S23). The growth of 630 

vegetation reduces Ta by regulating surface roughness, surface conductivity, soil 631 

moisture and albedo to partition greater amounts of available energy into latent heat 632 

fluxes, which leads to the formation of more precipitation (Shen et al., 633 

2015;Spracklen et al., 2013). Thus, the inclusion of vegetation growth will improve 634 

the simulation of trends and especially the spatial pattern of Ta in the reanalyses 635 

through the incorporation of more complete physical parameterizations (Li et al., 636 

2005;Dee and Todling, 2000;Trigo et al., 2015). 637 

Due to their inclusion of surface air temperature observations, ERA-Interim and 638 

JRA-55 display high skill in reproducing the observed patterns; they have near-zero 639 

means (0.01 and 0.01°C/decade) and the smallest standard deviations (0.16 and 640 

0.15°C/decade) of the trend biases among the twelve reanalysis products. However, 641 
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pattern differences of 37.8% (standard deviation of trend bias/China-averaged trend) 642 

are still evident (Figs. 5 and 8). Although it does not incorporate surface air 643 

temperature observations, ERA-20CM presents a pattern (with a mean of 644 

-0.04°C/decade and a standard deviation of 0.15°C/decade; Figs. 5 and 8) that is 645 

comparable to those of ERA-Interim and JRA-55 and better than that of ERA-20C 646 

(mean of -0.08°C/decade and standard deviation of 0.20°C/decade; Figs. 5 and 8), 647 

which uses the same forecast model as ERA-20CM. These results imply that 648 

ensemble forecasting could be used to meet important goals. The ensemble simulation 649 

technique used in ERA-20CM also displays advantages in that it yields an improved 650 

simulated pattern of biases in the trends in Rs (SD=1.84 W·m
-2

/decade, 171%), 651 

precipitation frequency (SD=2.78days/decade, 122%) and Ld (SD=1.25 W·m
-2

/decade, 652 

82%) (Fig. 8). 653 

We consider the degree to which the ensemble assimilation technique can 654 

improve the spatial patterns of the biases in the trends in Ta in the reanalyses. We find 655 

that this technique can detect the biases in the trends in Ta over more another 656 

approximately 12% (8%) of the grid cells in CERA-20C, which incorporates 10 657 

ensemble members (NOAA 20CR2vc and NOAA 20CR2v employ 56 ensemble 658 

members) (Figs. 5 l-n). However, the biases in the trends in Ta over these grid cells 659 

are not significant at a significance level of 0.05, according to Student‟s t-test, 660 

implying that the ensemble assimilation technique cannot explain the spatial pattern 661 

of the biases in the trends in Ta identified in this study (in Figs. 5 l-n). 662 

To provide a preliminary discussion of the improvements in climate forecast 663 
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models in reflecting patterns in climate trends, we compare the spatial patterns of the 664 

biases in the trends in Rs, precipitation frequency and Ld because observations of these 665 

variables are not included in the reanalyses. We find that the climate forecast models, 666 

i.e., ERA-20C, ERA-20CM, CERA-20C, NOAA 20CRv2c and NOAA 20CRv2, 667 

display better performance in reproducing the pattern of biases in the trends in Rs 668 

(mean of 1.36 vs. 2.18 W·m
-2

/decade; SD of 2.04 vs. 2.71 W·m
-2

/decade), 669 

precipitation frequency (mean of 1.32 vs. -1.44%/decade; SD of 3.57 vs. 670 

6.14%/decade) and Ld (mean of 0.12 vs. -0.85 W·m
-2

/decade; SD of 1.33 vs. 1.50 671 

W·m
-2

/decade) than the NWP-like models, i.e., ERA-Interim, NCEP-R1, MERRA, 672 

JRA-55, NCEP-R2 and MERRA2 (Fig. 8). In addition, because the SST boundary 673 

condition evolves freely in CFSR, the patterns of biases in the trends in Rs, 674 

precipitation frequency and Ld in CFSR differ substantially from those in the other 675 

reanalyses. 676 

We also consider whether the spatial pattern of biases in the trend in Ta is altered 677 

by the atmospheric circulation patterns simulated by the ERA-20CM ensemble. In 678 

ERA-20CM, the atmospheric circulation patterns are influenced by SSTs and sea ice 679 

and then partly mediate the influence of global forcings on the trends in Ta. In 680 

ERA-20CM, the probability distribution function of the biases in the trends in Ta from 681 

outside the ensemble ranges incorporates that from Student‟s t-test at a significance 682 

level of 0.05 (Fig. 5k). This result has important implications in that 1) the climate 683 

variability in the ensembles under the different model realizations of SSTs and sea ice 684 

cover does not change the pattern of the biases in the trends in Ta (Fig. 5k); moreover, 685 
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2) Student‟s t-test exhibits a suitable ability to detect the significance of the biases in 686 

the trends in Ta (Fig. 5k) when considering the effects of interannual variability on the 687 

trend. 688 

Overall, producing global or regional reanalyses that adequately reflect regional 689 

climate is challenging using the current strategy, and further improvements are 690 

required. The results and discussion above indicate some potential but challenging 691 

approaches that can be used to maximize the signal component corresponding to the 692 

regional climate in final reanalyses and robustly narrow the uncertainties in trends. 693 

1) MERRA2‟s pioneering incorporation of time-varying aerosol loadings 694 

provides a way of improving the representation of regional temperature changes over 695 

regions such as the North China Plain where the impacts of aerosols on surface 696 

temperatures are significant. Thus, we encourage research groups to include accurate 697 

aerosol information and improve the skill of simulation of the energy budget and 698 

partitioning, especially of regional surface incident solar radiation, in other 699 

reanalyses. 700 

2) To improve regional climate modelling, forecast output should be produced 701 

using a physical ensemble like that employed in ERA-20CM to quantify the 702 

uncertainties associated with the relevant parameterizations in the reanalyses, due to 703 

the impossibility of optimizing all of the biases. Meanwhile, careful ensemble design 704 

would likely yield useful information for use in improving models, assimilation 705 

methods and the bias correction of observations by exploring the interdependency 706 

among sources of errors. Such designs would undoubtedly have additional benefits for 707 
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further development, leading to the next generation of reanalyses. 708 

3) To improve coupled land-atmospheric interactions, the true dynamics of land 709 

cover and use should be incorporated. Moreover, the physical parameterizations 710 

should be improved, including the responses of surface roughness, surface 711 

conductivity and albedo to regional climate. These changes would represent an 712 

improvement over the use of constant types and fractions of vegetation, as is done in 713 

ERA-Interim (Zhou and Wang, 2016b). 714 

4) Given the implications of the spurious performance of the freely evolving 715 

boundary conditions in CFSR, homogeneous and accurate records of SST and sea ice 716 

should be produced. 717 

Next-generation reanalyses, including both global and regional reanalyses, will 718 

assimilate and analyse in situ observations, satellite radiance, and other remote 719 

observations. In addition to short-term accuracy and long-term trends, they will also 720 

focus on spatial patterns by incorporating or improving accurate representations of 721 

land surface conditions and processes within the coupled weather and climate Earth 722 

systems. Thus, these reanalyses will advance the simulation of land-atmosphere 723 

interactions to yield high skill in studies of regional warming and the detection and 724 

attribution of regional climate change using various datasets, which frequently include 725 

global and regional reanalyses (Zhou et al., 2018;Zhou and Wang, 2016d;Herring et 726 

al., 2018;Trenberth et al., 2015;Stott, 2016;Dai et al., 2017;Zhou and Wang, 2017b). 727 

Additionally, the uncertainties associated with regional warming could be ascertained 728 

using physics ensembles with various equiprobable realizations of boundary 729 
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conditions. 730 

 731 

5. Conclusions 732 

 The reanalyses display differences in Ta when compared to the observations with 733 

a range of -10~10°C over China. Approximately 74% and 6% of these differences can 734 

be explained by site-to-grid elevation differences and the filtering error in the 735 

elevations used in the spectral models. These results imply fairly good skill in the 736 

simulation of the climatology of Ta in the twelve reanalyses over China. Moreover, 737 

the twelve reanalyses roughly capture the interannual variability in Ta (median 738 

r=0.95). In the reanalyses, Ta displays a consistently positive correlation with Rs and 739 

Ld and is negatively correlated with precipitation frequency, as seen in observations, 740 

despite the evident spatial patterns in their magnitudes over China. 741 

 Ta exhibits a strong warming trend of 0.37°C/decade (p<0.05) in the observations 742 

and 0.22-0.48°C/decade (p<0.05) in the twelve reanalyses over China. In the 743 

observations, approximately 87% of the observed trend in Ta over China can be 744 

explained by the greenhouse effect (i.e., 65% can be explained by the trend in Ld), 745 

precipitation frequency (29%) and Rs (-7%, due to the trend in radiative forcing of 746 

-1.1 W∙m
-2

/decade). 747 

However, the biases in the trends in Ta seen in the reanalyses relative to the 748 

observations display an evident spatial pattern (mean=-0.16~0.11°C/decade, 749 

SD=0.15-0.30°C/decade). The spatial patterns of the biases in the trends in the values 750 

of Ta in the reanalyses are significantly correlated with those in Rs (maximum r=0.42, 751 
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p<0.05), precipitation frequency (maximum r=-0.62, p<0.05) and Ld (maximum 752 

r=0.50, p<0.05). Over northern China, the biases in the trends in Ta (which are on the 753 

order of -0.12°C/decade) result primarily from a combination of those in Ld (which 754 

are on the order of -0.10°C/decade) and precipitation frequency (which are on the 755 

order of 0.05°C/decade), with relatively small contributions from Rs (which are on the 756 

order of -0.03°C/decade). Over southern China, the biases in the trends in Ta (which 757 

are on the order of -0.07°C/decade) are regulated by the biases in the trends in Rs 758 

(which are on the order of 0.10°C/decade), Ld (which are on the order of 759 

-0.08°C/decade) and precipitation frequency (which are on the order of 760 

-0.06°C/decade). 761 

If information on spatial patterns is included, the simulated biases in the trends in 762 

Ta correlate well with those of precipitation frequency, Rs and Ld in the reanalyses 763 

(r=-0.83, 0.80 and 0.77, p<0.1); similar results are obtained for the atmospheric water 764 

vapor and the cloud fraction (r=0.71 and -0.74, p<0.1). These results provide a novel 765 

perspective that can be used to investigate the spatial relationships between the biases 766 

in the trends in Ta and the relevant parameters among the twelve reanalyses. Therefore, 767 

improving simulations of precipitation frequency and Rs helps to maximize the signal 768 

component corresponding to the regional climate. In addition, the analysis of Ta 769 

observations helps to improve the performance of regional warming in ERA-Interim 770 

and JRA-55. Incorporating vegetation dynamics in reanalyses and the use of accurate 771 

aerosol information, as in MERRA-2, would advance the modelling of regional 772 

warming. The ensemble technique adopted in ERA-20CM, a twentieth-century 773 
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atmospheric model ensemble that does not assimilate observations, significantly 774 

narrows the uncertainties of regional warming in the reanalyses (standard 775 

deviation=0.15°C/decade). 776 
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Table 1. Summary information on the twelve reanalysis products, including institution, model resolution, assimilation 1175 

system, surface observations included associated with surface air temperatures, sea ice and sea surface temperatures 1176 

(SSTs) and greenhouse gas (GHG) boundary conditions. The number in the parentheses in the Model Name column is the 1177 

year of the version of the forecast model used. More details on each product can be found in the associated reference. 1178 

Reanalysis Institution Model Name 
Model 

Resolution 
Period 

Assimilation 

System 

ERA-Interim ECMWF IFS version Cy31r2 (2007) 
T255 ~80 km, 

60 levels 

1979 

onwards 
4D-VAR 

JRA-55 JMA 
JMA operational numerical weather prediction 

system (2009) 

T319 ~55 km, 

60 levels 
1958-2013 4D-VAR 

NCEP-R1 NCEP/NCAR 
NCEP operational numerical weather prediction 

system (1995) 

T62 ~210 km, 

28 levels 

1948 

onwards 
3D-VAR 

NCEP-R2 NCEP/DOE Modified NCEP-R1 model (1998) 
T62 ~210 km, 

28 levels 

1979 

onwards 
3D-VAR 

MERRA NASA/GMAO 
GEOS-5.0.2 atmospheric general circulation 

model (2008) 

0.5°× 0.667° 

~55 km, 72 

levels 

1979 

onwards 

3D-VAR with 

incremental 

updating (GEOS 

IAU) 

MERRA-2 NASA/GMAO 

Updated version of GEOS-5.12.4 used in 

MERRA; its land model is similar to that of 

MERRA (2015) 

0.5°× 0.625° 

~55 km, 72 

levels 

1980 

onwards 

3D-VAR with 

incremental 

updating (GEOS 

IAU) 

ERA-20C ECMWF 
IFS version Cy38r1 (2012), coupled 

atmosphere-land-ocean-waves system 

T159 ~125 km, 

91 levels 
1900-2010 4D-VAR 

ERA-20CM ECMWF Similar to that used in ERA-20C (2012) 
T159 ~125 km, 

91 levels 
1900-2010 - 

CERA-20C ECMWF 
IFS version Cy41r2 (2016), coupled 

atmosphere-ocean-land-waves-sea ice system 

T159 ~125 km, 

91 levels 
1901-2010 

CERA ensemble 

assimilation 

technique 

NOAA 

20CRv2c 

NOAA/ESRL 

PSD 

NCEP GFS (2008), an updated version of the 

NCEP Climate Forecast System (CFS) coupled 

atmosphere-land model 

T62 ~210 km, 

28 levels 
1851-2014 

Ensemble Kalman 

filter 

NOAA 

20CRv2 

NOAA/ESRL 

PSD 
Same model as NOAA 20CRv2c (2008) 

T62 ~210 km, 

28 levels 
1871-2012 

Ensemble Kalman 

filter 

CFSR NCEP 
NCEP CFS (2011) coupled 

atmosphere-ocean-land-sea ice model 

T382 ~38 km, 

64 levels 
1979-2010 3D-VAR 
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Table 1. Continued from right column. 1179 

Related Assimilated and Analysed Observations Sea Ice and SSTs GHG Forcing Reference 

1) Includes in situ observations of near-surface air 

temperature/pressure/relative humidity 

2) Assimilates upper-air temperatures/wind/specific humidity 

3) Assimilates rain-affected SSM/I radiances 

A changing suite of SST and 

sea ice data from 

observations and NCEP 

Interpolation by 1.6 

ppmv/year from the 

global mean CO2 in 

1990 of 353 ppmv 

(Dee et al., 

2011b) 

1) Analyses available near-surface observations 

2) Assimilates all available traditional and satellite observations 

In situ observation-based 

estimates of the COBE SST 

data and sea ice 

Same as CMIP5 
(Kobayashi 

et al., 2015) 

1) Initiated with weather observations from ships, planes, station 

data, satellite observations and many more sources 

2) No inclusion of near-surface air temperatures 

3) Uses observed precipitation to nudge soil moisture 

4) No information on aerosols 

Reynolds SSTs for 1982 on 

and the UKMO GISST data 

for earlier periods; sea ice 

from SMMR/SSMI 

Constant global mean 

CO2 of 330 ppmv; no 

other trace gases 

(Kalnay et 

al., 1996) 

1) No inclusion of near-surface air temperatures 

2) No information on aerosols 
AMIP-II prescribed 

Constant global mean 

CO2, 350 ppmv; no 

other trace gases 

(Kanamitsu 

et al., 2002) 

1) Neither MERRA nor MERRA-2 analyse near-surface air 

temperature, relative humidity, or other variables 

2) Radiosondes do provide some low-level observations 

 

Reynolds SSTs prescribed Same as CMIP5 
(Rienecker 

et al., 2011) 

1) Includes newer observations (not included in MERRA) after 

the 2010s 

2) Includes aerosols from MODIS and AERONET measurements 

over land after the 2000s and from the GOCART model before 

the 2000s 

3) Assimilates observation-corrected precipitation to correct the 

model-generated precipitation before reaching the land surface 

 

AMIP-II and Reynolds 

SSTs 
Same as CMIP5 

(Reichle et 

al., 2017) 

1) Assimilates surface pressures from ISPDv3.2.6 and 

ICOADSv2.5.1 and surface marine winds from ICOADSv2.5.1 

2) Uses monthly climatology of aerosols from CMIP5 

SSTs and sea ice from 

HadISST2.1.0.0 
Same as CMIP5 

(Poli et al., 

2016) 

Assimilates no data and includes radiative forcings from CMIP5 

SSTs and sea ice 

realizations from 

HadISST2.1.0.0 used in 10 

members 

Same as CMIP5 
(Hersbach et 

al., 2015) 

1) Assimilates surface pressures from ISPDv3.2.6 and 

ICOADSv2.5.1 and surface marine winds from ICOADSv2.5.1 

2) Assimilates no data in the land, wave and sea ice components 

but uses the coupled model at each time step 

SSTs from HadISST2.1.0.0 Same as CMIP5 
(Laloyaux et 

al., 2016) 

Assimilates only surface pressure and sea level pressure 
SSTs from HadISST1.1 and 

sea ice from COBE SST 

Monthly 15° gridded 

estimates of CO2 from 

WMO observations 

(Compo et 

al., 2011) 

Same as NOAA 20CRv2c 
SSTs and sea ice from 

HadISST1.1 

Monthly 15° gridded 

estimates of CO2 from 

WMO observations 

(Compo et 

al., 2011) 

1) Assimilates all available conventional and satellite 

observations but not near-surface air temperatures 

2) Atmospheric model contains observed changes in aerosols 

3) Uses observation-corrected precipitation to force the land 

surface analysis 

Generated by coupled 

ocean-sea ice models; 

evolves freely during the 6-h 

coupled model integration 

Monthly 15° gridded 

estimates of CO2 from 

WMO observations 

(Saha et al., 

2010) 
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Table 2. Differences (unit: °C) relative to the homogenized observations and trends (unit: °C/decade) in surface air 1181 

temperatures (Ta) from 1979 to 2010 over China and its seven subregions. The bold and italic bold fonts indicate results 1182 

that are significant according to two-tailed Student‟s t-tests with significance levels of 0.05 and 0.1, respectively. 1183 

1184 

 Region 
China 

Tibetan 

Plateau 

Northwest 

China 
Loess Plateau Middle China 

Northeast 

China 

North China 

Plain 

Southeast 

China 

Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend 

ERA-Interim -0.87  0.38  -3.49  0.33  -1.82  0.37  -0.32  0.50  -1.19  0.28  -0.03  0.42  -0.02  0.45  -0.03  0.37  

NCEP-R1 -2.56  0.23  -6.80  0.11  -4.45  0.39  -1.77  0.21  -2.91  0.23  -1.28  0.27  -1.21  0.23  -1.33  0.22  

MERRA -0.48  0.25  -3.48  0.33  0.95  0.14  1.14  0.09  -1.35  0.12  -0.22  0.52  0.67  0.26  -0.27  0.24  

JRA-55 -1.10  0.38  -3.49  0.42  -1.70  0.39  -0.58  0.52  -1.61  0.30  -0.25  0.37  -0.26  0.41  -0.50  0.34  

NCEP-R2 -2.10  0.25  -5.76  -0.07  -4.29  0.58  -1.33  0.10  -2.80  0.20  -0.51  0.36  -0.38  0.23  -1.14  0.36  

MERRA2 -0.91  0.28  -3.41  0.35  0.34  0.32  0.12  0.19  -1.35  0.23  -0.73  0.41  -0.24  0.18  -0.64  0.25  

ERA-20C -1.42  0.29  -6.56  0.33  -1.95  0.31  0.03  0.21  -2.01  0.35  -0.19  0.32  1.05  0.19  -0.47  0.28  

ERA-20CM -1.48  0.32  -5.93  0.28  -1.39  0.38  -0.36  0.33  -2.13  0.27  -0.23  0.41  -0.31  0.34  -0.51  0.29  

CERA-20C -2.06  0.34  -7.00  0.41  -2.15  0.38  -0.78  0.36  -2.59  0.34  -0.76  0.43  -0.40  0.19  -1.20  0.29  

NOAA 20CRv2c -0.28  0.22  -2.75  0.39  -0.01  0.28  1.62  0.16  -1.68  0.18  -0.16  0.11  1.06  0.15  0.18  0.22  

NOAA 20CRv2 -0.32  0.24  -2.78  0.33  -0.01  0.29  1.48  0.20  -1.77  0.19  -0.07  0.25  0.97  0.21  0.12  0.19  

CFSR -1.74  0.48  -5.09  0.46  -1.03  0.44  -0.25  0.40  -2.91  0.37  -0.49  0.67  -0.37  0.47  -1.58  0.51  

Obs-raw 0.03  0.40  0.03  0.46  0.09  0.44  0.01  0.52  0.05  0.30  0.00  0.40  0.05  0.42  0.03  0.36  

Obs-homogenized   0.37    0.44    0.36    0.50    0.24    0.41    0.38    0.33  
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Table 3. Spatial pattern correlation (unit: 1) of three groups: partial relationships, trends and simulated biases in the trends in 1185 

surface air temperature (Ta) against surface incident solar radiation (Rs), precipitation frequency (PF) and surface downward 1186 

longwave radiation (Ld). The bold and italic bold fonts indicate results that are significant according to two-tailed Student‟s 1187 

t-tests with significance levels of 0.05 and 0.1, respectively. 1188 

Pattern Correlation 

Partial Relationship Trend Trend Bias 

(Ta, Rs) (Ta, PF) (Ta, Ld) (Ta, Ta) (Ta, Rs) (Ta, PF) (Ta, Ld) (Ta, Rs) (Ta, PF) (Ta, Ld) 

Corr. Slope Corr. Slope Corr. Slope               

ERA-Interim 0.29  0.01  0.03  0.31  0.21  0.25  0.47  -0.11  -0.04  0.33  0.26  -0.12  0.10  

NCEP-R1 0.30  0.06  0.18  0.30  0.36  0.00  0.02  -0.36  -0.02  0.62  -0.03  -0.04  0.43  

MERRA 0.29  0.06  0.13  0.39  0.05  0.20  0.21  0.66  -0.81  -0.53  0.42  -0.62  -0.05  

JRA-55 0.35  0.21  0.22  0.16  0.29  0.27  0.54  -0.33  0.31  0.57  0.00  0.14  0.29  

NCEP-R2 0.22  0.03  0.20  0.36  0.27  0.04  -0.08  0.18  -0.29  0.28  0.15  -0.14  0.35  

MERRA2 0.13  0.05  0.26  0.43  0.09  0.30  0.22  0.30  -0.11  0.11  -0.02  -0.12  0.28  

ERA-20C 0.28  -0.07  -0.07  0.43  0.19  0.02  -0.07  0.18  -0.33  0.03  0.11  -0.25  0.31  

ERA-20CM 0.24  -0.04  -0.03  0.32  0.26  0.18  0.28  -0.32  0.31  0.83  -0.02  0.12  0.34  

CERA-20C 0.41  0.17  0.10  0.37  0.08  0.07  0.29  0.50  -0.58  -0.07  -0.01  -0.22  0.23  

NOAA 20CRv2c 0.39  0.15  -0.22  0.25  0.14  0.15  0.08  -0.07  -0.11  0.55  -0.25  -0.05  0.50  

NOAA 20CRv2 0.38  0.15  -0.21  0.18  0.14  0.23  0.19  -0.02  -0.20  0.56  -0.18  0.11  0.47  

CFSR 0.33  0.12  0.10  0.19  0.37  0.21  0.19  0.11  -0.26  0.07  0.31  -0.08  0.15  

Obs-raw 
       

-0.07  0.27  0.50  
   

Obs-homogenized               -0.09  0.35  0.32        
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Figure Captions: 1189 

Figure 1. The multiyear-averaged differences in surface air temperatures (Ta, unit: °C) 1190 

during the period of 1979-2010 from the twelve reanalysis products relative to the 1191 

homogenized observations over China. The reanalysis products are (a) ERA-Interim, 1192 

(b) NCEP-R1, (c) MERRA, (d) JRA-55, (e) NCEP-R2, (f) MERRA2, (g) ERA-20C, 1193 

(h) ERA-20CM, (i) CERA-20C, (j) NOAA 20CRv2c, (k) NOAA 20CRv2 and (l) 1194 

CFSR. The mainland of China is divided into seven regions (shown in Fig. 1c), 1195 

specifically ① the Tibetan Plateau, ② Northwest China, ③ the Loess Plateau, ④ 1196 

Middle China, ⑤ Northeast China, ⑥ the North China Plain and ⑦ South China. 1197 

Figure 2. The impact of inconsistencies between station and model elevations on the 1198 

simulated multiyear-averaged differences in surface air temperatures (Ta, unit: °C) 1199 

during the study period of 1979-2010 over China. The elevation difference (∆Height) 1200 

between the stations and the models consists of the filtering error in the elevations 1201 

used in the spectral models (∆f) and the difference in site-to-grid elevations (∆s) due 1202 

to the complexity of orographic topography. ∆f is derived from the model elevations 1203 

minus the „true‟ elevations in the corresponding model grid cells from GTOPO30. The 1204 

GTOPO30 orography is widely used in reanalyses, e.g., by ECMWF. The colour bar 1205 

denotes the station elevations (unit: m). The relationship of the Ta differences is 1206 

regressed on ∆Height (shown at the bottom of each subfigure) or ∆f and ∆s (shown at 1207 

the top of each subfigure); the corresponding explained variances are shown. 1208 

Figure 3. Taylor diagrams for annual time series of the observed and reanalysed 1209 

surface air temperature anomalies (Ta, unit: °C) from 1979 to 2010 in (a) China and 1210 
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(b-h) the seven subregions. The correlation coefficient, standard deviation and root 1211 

mean squared error (RMSE) are calculated against the observed homogenized Ta 1212 

anomalies. 1213 

Figure 4. Composite map of partial correlation coefficients of the detrended surface 1214 

air temperature (Ta, unit: °C) against surface incident solar radiation (Rs), precipitation 1215 

frequency (PF) and surface downward longwave radiation (Ld) during the period of 1216 

1979-2010 from observations and the twelve reanalysis products. The marker „+‟ 1217 

denotes the negative partial correlations of Ta with Rs over the Tibetan Plateau in 1218 

NCEP-R2, ERA-20C and ERA-20CM. 1219 

Figure 5. (a, b) The observed trends in surface air temperature (Ta, unit: °C/decade) 1220 

and the simulated biases in the trends in Ta (unit: °C/decade) during the period of 1221 

1979-2010 from (c) raw observations and (d-o) the twelve reanalysis products over 1222 

China with respect to the homogenized observations. The squares denote the original 1223 

homogeneous time series, and the dots denote the adjusted homogeneous time series. 1224 

The probability distribution functions of all of the biases in the trends are shown as 1225 

coloured histograms, and the black stairs are integrated from the trend biases with a 1226 

significance level of 0.05 (based on two-tailed Student‟s t-tests). The cyan and green 1227 

stars in (k-n) represent estimates of the biases in the trends outside the ensemble 1228 

ranges whose locations are denoted by the black dots shown in (k-n). 1229 

Figure 6. Composite map of the contributions (unit: °C/decade) of the biases in the 1230 

trends in three relevant parameters, surface incident solar radiation (Rs, in red), 1231 

surface downward longwave radiation (Ld, in green) and precipitation frequency (in 1232 
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blue) to the biases in the trends in surface air temperature (Ta) during the study period 1233 

of 1979-2010, as estimated using the twelve reanalysis products over China. 1234 

Figure 7. Contribution s(unit: °C/decade) of the biases in the trends in surface air 1235 

temperatures (Ta) from three relevant parameters, surface incident solar radiation (Rs, 1236 

in brown), surface downward longwave radiation (Ld, in light blue) and precipitation 1237 

frequency (PF, in deep blue) during the study period of 1979-2010 from the twelve 1238 

reanalysis products over China and its seven subregions. 1239 

Figure 8. Spatial associations of the simulated biases in the trend in surface air 1240 

temperature (Ta) versus three relevant parameters among the twelve reanalysis 1241 

products (solid lines indicate the NWP-like reanalyses, and dashed lines indicate the 1242 

climate reanalyses). The probability density functions (unit: %) of these biases in the 1243 

trends are estimated from approximately 700 1°×1° grid cells that cover China. The 1244 

median values (coloured dots with error bars of spatial standard deviations) of the 1245 

biases in the trends in Ta (unit: °C/decade) in the twelve reanalyses are regressed onto 1246 

those of (a) the surface incident solar radiation (Rs, unit: W·m
-2

/decade), (b) 1247 

precipitation frequency (unit: days/decade) and (c) the surface downward longwave 1248 

radiation (Ld, unit: W·m
-2

/decade) using the ordinary least squares method (OLS, 1249 

denoted by the dashed grey lines) and the weighted total least squares method (WTLS, 1250 

denoted by the solid black lines). The 5-95% confidence intervals of the regressed 1251 

slopes obtained using WTLS are shown as shading. The regressed correlations and 1252 

slopes are shown as grey and black text, respectively. 1253 



57 
 

1254 

Figure 1. The multiyear-averaged differences in surface air temperatures (Ta, unit: °C) 1255 

during the period of 1979-2010 from the twelve reanalysis products relative to the 1256 

homogenized observations over China. The reanalysis products are (a) ERA-Interim, 1257 

(b) NCEP-R1, (c) MERRA, (d) JRA-55, (e) NCEP-R2, (f) MERRA2, (g) ERA-20C, 1258 

(h) ERA-20CM, (i) CERA-20C, (j) NOAA 20CRv2c, (k) NOAA 20CRv2 and (l) 1259 

CFSR. The mainland of China is divided into seven regions (shown in Fig. 1c), 1260 

specifically ① the Tibetan Plateau, ② Northwest China, ③ the Loess Plateau, ④ 1261 

Middle China, ⑤ Northeast China, ⑥ the North China Plain and ⑦ South China. 1262 
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 1263 

Figure 2. The impact of inconsistencies between station and model elevations on the 1264 

simulated multiyear-averaged differences in surface air temperatures (Ta, unit: °C) 1265 

during the study period of 1979-2010 over China. The elevation difference (∆Height) 1266 

between the stations and the models consists of the filtering error in the elevations 1267 

used in the spectral models (∆f) and the difference in site-to-grid elevations (∆s) due 1268 

to the complexity of orographic topography. ∆f is derived from the model elevations 1269 

minus the „true‟ elevations in the corresponding model grid cells from GTOPO30. The 1270 

GTOPO30 orography is widely used in reanalyses, e.g., by ECMWF. The colour bar 1271 

denotes the station elevations (unit: m). The relationship of the Ta differences is 1272 

regressed on ∆Height (shown at the bottom of each subfigure) or ∆f and ∆s (shown at 1273 
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the top of each subfigure); the corresponding explained variances are shown. 1274 
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 1275 

Figure 3. Taylor diagrams for annual time series of the observed and reanalysed 1276 

surface air temperature anomalies (Ta, unit: °C) from 1979 to 2010 in (a) China and 1277 

(b-h) the seven subregions. The correlation coefficient, standard deviation and root 1278 

mean squared error (RMSE) are calculated against the observed homogenized Ta 1279 

anomalies.1280 



61 
 

 1281 

Figure 4. Composite map of partial correlation coefficients of the detrended surface 1282 

air temperature (Ta, unit: °C) against surface incident solar radiation (Rs), precipitation 1283 

frequency (PF) and surface downward longwave radiation (Ld) during the period of 1284 

1979-2010 from observations and the twelve reanalysis products. The marker „+‟ 1285 

denotes the negative partial correlations of Ta with Rs over the Tibetan Plateau in 1286 

NCEP-R2, ERA-20C and ERA-20CM. 1287 
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 1288 

Figure 5. (a, b) The observed trends in surface air temperature (Ta, unit: °C/decade) 1289 

and the simulated biases in the trends in Ta (unit: °C/decade) during the period of 1290 

1979-2010 from (c) raw observations and (d-o) the twelve reanalysis products over 1291 

China with respect to the homogenized observations. The squares denote the original 1292 

homogeneous time series, and the dots denote the adjusted homogeneous time series. 1293 

The probability distribution functions of all of the biases in the trends are shown as 1294 

coloured histograms, and the black stairs are integrated from the trend biases with a 1295 

significance level of 0.05 (based on two-tailed Student‟s t-tests). The cyan and green 1296 

stars in (k-n) represent estimates of the biases in the trends outside the ensemble 1297 
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ranges whose locations are denoted by the black dots shown in (k-n). 1298 
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 1299 

Figure 6. Composite map of the contributions (unit: °C/decade) of the biases in the 1300 

trends in three relevant parameters, surface incident solar radiation (Rs, in red), 1301 

surface downward longwave radiation (Ld, in green) and precipitation frequency (in 1302 

blue) to the biases in the trends in surface air temperature (Ta) during the study period 1303 

of 1979-2010, as estimated using the twelve reanalysis products over China. 1304 
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 1305 

Figure 7. Contribution s(unit: °C/decade) of the biases in the trends in surface air 1306 

temperatures (Ta) from three relevant parameters, surface incident solar radiation (Rs, 1307 

in brown), surface downward longwave radiation (Ld, in light blue) and precipitation 1308 

frequency (PF, in deep blue) during the study period of 1979-2010 from the twelve 1309 

reanalysis products over China and its seven subregions. 1310 
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 1311 

Figure 8. Spatial associations of the simulated biases in the trend in surface air 1312 

temperature (Ta) versus three relevant parameters among the twelve reanalysis 1313 

products (solid lines indicate the NWP-like reanalyses, and dashed lines indicate the 1314 

climate reanalyses). The probability density functions (unit: %) of these biases in the 1315 

trends are estimated from approximately 700 1°×1° grid cells that cover China. The 1316 

median values (coloured dots with error bars of spatial standard deviations) of the 1317 

biases in the trends in Ta (unit: °C/decade) in the twelve reanalyses are regressed onto 1318 

those of (a) the surface incident solar radiation (Rs, unit: W·m
-2

/decade), (b) 1319 

precipitation frequency (unit: days/decade) and (c) the surface downward longwave 1320 

radiation (Ld, unit: W·m
-2

/decade) using the ordinary least squares method (OLS, 1321 

denoted by the dashed grey lines) and the weighted total least squares method (WTLS, 1322 

denoted by the solid black lines). The 5-95% confidence intervals of the regressed 1323 

slopes obtained using WTLS are shown as shading. The regressed correlations and 1324 

slopes are shown as grey and black text, respectively. 1325 


