
Editor 

General Comment: Dear Authors, The paper is accepted once you have addressed all 

the following minor revisions required by the reviewers. I report them below. Please, 

provide a revised manuscript and, if needed a point-to-point answer to them. 

Response: Thanks for your effort to handle our submission.  

We have carefully checked all the comments and made the corresponding revisions 

into the revised paper. In particular, Following the Reviewer #2’s constructive 

comment, we divided the Section 3.4 into two parts for readability. These revisions 

made the revised paper clearer. Below please find our point to point response to your 

comments. 



Reviewer #1 

General Comment: The authors have taken a very substantive redraft following the 

review process and adequately accounted for the vast majority of reviewer comments. 

The revised text is very much clearer and organized more logically which greatly aids 

readability. It is, to my opinion, unfortunate that the authors largely left the figures as 

they stood originally as I still find these figures very hard to decipher. That, ultimately 

is the authors' choice. I have a number of mainly minor comments detailed below. 

Response: Thanks for your effort to evaluate our manuscript and high 

recommendation for the revised paper. As the other reviewer agree on the color use of 

the figures, we would like to keep their current form. Below please find our point to 

point response to your comments. 

 

Specific Comments: 

1) 

Comment: First, I wonder to what extent the results highlight inadequacy in 

reanalyses accounting for aerosol effects either via their omission, climatology, or 

even when applied (MERRA-2) if the direct and indirect effects are inadequately 

accounted for. It seems to me that a greater emphasis may be warranted in the 

discussion section in regard to whether the errors that appear to systematically affect 

several products may plausibly physically arise from inadequacies in the specification 

of and/or modelling of the impacts of aerosols. If the quantified errors are shown to be 

consistent with missing aerosol effects then that would be enormously helpful to point 

out more strongly to the reanalysis producers so they can perhaps undertake further 

experimentation and development work to rectify? 

Response: Thanks for your comment.  

Because of various assimilated observations, different forecast models and different 

assimilated methods in different reanalysis products, it’s very difficult to quantify the 

presenting errors in regional warming from aerosol information errors in reanalyses. 

The result more advanced than previous studies is that “Comparing the Ta values from 

MERRA2 and MERRA shows that MERRA2 displays improved performance over 

northern China, as reflected by an increase in the correlation coefficient of 0.1 and a 

reduction in the RMSE of 0.1°C (Fig. 3).” 

So, following the revision of Reviewer #2, we revised the sentence in Lines 694-697 

in Section Discussion: 

MERRA2’s pioneering incorporation of time-varying aerosol loadings provides a way 

of improving the representation of regional temperature changes over regions such as 

the North China Plain where the impacts of aerosols on surface temperatures are 

significant. 



 

2) 

Comment: Lines 236-238 this wording isn't quite right. I think you intend something 

like "thus the inclusion of ERA-20CM in this study provides a useful benchmark 

series against which to ascertain the skill that is added via assimilation of various 

observations" or something like that? 

Response: Thanks for your providing such information. Corrected as suggested: thus, 

the inclusion of ERA-20CM in this study provides a useful benchmark series against 

which to ascertain the skill that is added by assimilating various observations and to 

cognize the advantage of ensemble simulations. 

 

3) 

Comment: Line 273 impact of data inhomogeneities on (inhomogeneities and not 

homogenization here). 

Response: Corrected as suggested. 

 

4) 

Comment: Line 426 Fig. 4 (Fig. to Figs.) 

Response: Corrected as suggested.



Reviewer #2 

General Comment: I have read through the revised version of this paper. I thank the 

authors for taking note and responding to comments made in my original review. I 

recommend this version for publication, but do have the following specific comments 

on this version of the paper. 

Response: Thanks for your high recommendation of our submission. Below please 

find our point to point response to your comments. 

 

Specific Comments: 

1) 

Comment: The Abstract and Conclusions identify welcome developmental steps 

involving incorporation of aerosol information and use of ensemble techniques. As 

pointed out in the body of the paper, the representations of Ta in ERA-Interim and 

JRA-55 are much better than those in other reanalyses, almost certainly in significant 

part due to their analysis of synoptic observations of the variable. This could be 

mentioned in the Abstract and Conclusions as another way the near-surface products 

of other reanalyses might be improved. 

Response: Thanks for your providing such information, which is added in Abstract 

and Conclusions: In addition, the analysis of Ta observations helps representing 

regional warming in ERA-Interim and JRA-55. 

 

2) 

Comment: Table 1 has been tidied up following a comment in my original review, 

but the entry for ERA-20CM remains incorrect. The entry under ”Assimilation 

System” for ERA-20CM has been changed from 4D-Var to 3D-Var, but this is still not 

right. There should be no entry under “Assimilation System” for ERA-20CM as it did 

not directly assimilate any atmospheric observations. Observations influence 

ERA-20CM only indirectly, through the forcing provided by CMIP5, and the 

prescribed SST, sea-ice and other model fields. ERA-20CM had no assimilation 

system of its own. 

Response: We agree with the reviewer and deleted the “3D-Var” in the row of 

ERA-20CM. 

 

3) 

Comment: Regarding point (6) of my original review, I can accept the terminology 

“NWP-like reanalysis” and “climate reanalysis”, even though I still do not particularly 



like it. In Dee et al. (2014) – of which I am a co-author – we use the phrases 

“NWP-like reanalysis” and “extended climate reanalysis” which is subtly different, in 

that we (or at least I) regard the NWP-like reanalysis as one type of climate reanalysis 

and the extended climate reanalysis as another (longer) type. However, this slightly 

different nomenclature will not work in the present authors’ case as CFSR, which they 

classify as a climate analysis, is not “extended” in the sense used by Dee et al. 

Response: Thanks for your comment. We provided an explanation in Lines 254-256: 

Note that the CFSR is classified into climate reanalysis in this study, mainly because 

it adopts a climate forecast system (Table 1). 

 

4) 

Comment: Line 229. It would probably be better to write “incorporate many 

observations” rather than “incorporate some observations”, even though the 

reanalyses have access to under 10% of the Chinese observations available to the 

authors. Globally, the number of observations used by ERA-Interim is some thirty 

thousand per day for the 1980s, and that number has risen considerably in recent 

years.  

Response: Corrected as suggested. 

 

5) 

Comment: Lines 310 and 311. The sentence that spans these lines needs rephrasing 

as the correlation coefficient does not assess the absolute value.  

Response: Corrected as “The bias, root mean squared error (RMSE) and standard 

deviation are used to assess the absolute value of Ta.” 

 

6) 

Comment: Line 359. “A homogeneous adjustment” should, I believe, be changed to 

“a homogenizing adjustment”. 

Response: Corrected as suggested. 

 

7) 

Comment: Line 398. Delete “in ERA-Interim and JRA-55”.  

Response: Corrected as suggested. 

 

8) 



Comment: Line 431. It would be better to replace “jointly determined” by 

“determined in part”, “determined to a significant extent” or some such phrasing. This 

is needed because surface air temperature is sensitive to a number of factors – such as 

circulation patterns and snow cover – that are not considered in the authors’ analysis, 

or only partially considered – a circulation anomaly may change Ta through 

differences in precipitation frequency that are taken into account, but may also change 

temperature due to advection. Similar qualifications are needed in several similar 

statements made in this and the following section. 

Response: Following the reviewer’s suggestion, we replaced replace “jointly 

determined” by “determined in part”. 

 

9) 

Comment: Line 512. The trend in precipitation frequency is given in units of 

days/decade, implying that the precipitation frequency has a unit of days. How is 

precipitation frequency defined? Is it the number of days per month with appreciable 

rainfall? Maybe this is stated somewhere in the paper, but I do not recall seeing it. 

Response: This information was revised in Lines 216-219: Additionally, 

precipitation frequency is defined as days in a year with daily precipitation at 

least 0.1 mm in this study, which has been shown to provide a good indication of the 

effects of precipitation on the interannual variability and trends in Ta (Zhou et al., 

2017). 

 

10) 

Comment: Page 527 and 528. Elsewhere the biases in temperature trends are related 

to biases in precipitation frequency, Ld etc.. But in this sentence it is the other way 

round. Is this a mistake? 

Response: Yes, we have corrected it. 

 

11) 

Comment: Section 3.4 is a long one, and a more succinct synthesis of the results 

would probably help many readers. 

Response: Thanks for your suggestions. We divided the original Section 3.4 into two 

parts, i.e., 1) The whole of China and 2) Seven Subregions. Accordingly, we 

adjusted the structure of this section for good readability.  

 

12) 



Comment: Line 578. Incorporating observations of Ta as done by ERA-Interim and 

JRA-55 is expected generally to reduce biases in the trends of analyses of Ta, not to 

introduce biases, as the reanalyses tend generally to reproduce the trends present in 

the observations, even in the presence of biases in the assimilating models. An 

exception can occur for regions where observations are not available for a substantial 

part of the time, particularly early or late in the period covered by the reanalysis. In 

this case, trends will be in error if the assimilating model has significant biases that 

are corrected at times when there are observations, but uncorrected when observations 

are absent. 

Response: Thanks for your comment. We delete this sentence. 

 

13) 

Comment: Lines 617 and 618. Elevation differences can occur over time if stations 

are relocated, but this should be largely taken care of by the homogenization. 

Response: Thanks for your comment. We delete this sentence. 

 

14) 

Comment: Lines 647 and 648. ERA-20CM should be referred to as ensemble 

simulation not ensemble forecasting. 

Response: Corrected as suggested. 

 

15) 

Comment: Lines 663-670. It is stated that the comparison is for the reanalyses that do 

not incorporate observations, but ERA-Interim and JRA-55 are listed in the 

comparison. This needs amending. 

Response: Thanks for your comment. We revised it in Lines 663-666: 

To provide a preliminary discussion of the improvements in climate forecast models 

in reflecting patterns in climate trends, we compare the spatial patterns of the 

biases in the trends in Rs, precipitation frequency and Ld because observations of 

these variables are not included in the reanalyses. 

 

16) 

Comment: Lines 691 and 691. This reads rather as if MERRA2 included time-vary 

aerosol loading in order to make a pioneering attempt to improve regional warming 

over the North China Plain. One suspects that the motivation for including 

time-varying aerosols in MERRA2 was much more general than this. The text could 



be amended slightly to read something like “MERRA2’s pioneering incorporation of 

time-varying aerosol loadings provides a way of improving the representation of 

regional temperature changes over regions such as the North China Plain where the 

impacts of aerosols on surface temperatures are significant.” 

Response: Thanks for your revision, which is added in Lines 694-697: 

MERRA2’s pioneering incorporation of time-varying aerosol loadings provides a way 

of improving the representation of regional temperature changes over regions such as 

the North China Plain where the impacts of aerosols on surface temperatures are 

significant. 
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Abstract 17 

Reanalyses are widely used because they add value to routine observations by 18 

generating physically or dynamically consistent and spatiotemporally complete 19 

atmospheric fields. Existing studies include extensive discussions of the temporal 20 

suitability of reanalyses in studies of global change. This study adds to this existing 21 

work by investigating the suitability of reanalyses in studies of regional climate 22 

change, in which land-atmosphere interactions play a comparatively important role. In 23 

this study, surface air temperatures (Ta) from 12 current reanalysis products are 24 

investigated; in particular, the spatial patterns of trends in Ta are examined using 25 

homogenized measurements of Ta made at ~2200 meteorological stations in China 26 

from 1979 to 2010. The results show that ~80% of the mean differences in Ta between 27 

the reanalyses and the in situ observations can be attributed to the differences in 28 

elevation between the stations and the model grids. Thus, the Ta climatologies display 29 

good skill, and these findings rebut previous reports of biases in Ta. However, the 30 

biases in the Ta trends in the reanalyses diverge spatially (standard 31 

deviation=0.15-0.30°C/decade using 1°×1° grid cells). The simulated biases in the 32 

trends in Ta correlate well with those of precipitation frequency, surface incident solar 33 

radiation (Rs), and atmospheric downward longwave radiation (Ld) among the 34 

reanalyses (r=-0.83, 0.80 and 0.77; p<0.1) when the spatial patterns of these variables 35 

are considered. The biases in the trends in Ta over southern China (on the order of 36 

-0.07°C/decade) are caused by biases in the trends in Rs, Ld and precipitation 37 

frequency on the order of 0.10°C/decade, -0.08°C/decade, and -0.06°C/decade, 38 
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respectively. The biases in the trends in Ta over northern China (on the order of 39 

-0.12°C/decade) result jointly from those in Ld and precipitation frequency. Therefore, 40 

improving the simulation of precipitation frequency and Rs helps to maximize the 41 

signal component corresponding to regional climate. In addition, the analysis of Ta 42 

observations helps representing regional warming in ERA-Interim and JRA-55. 43 

iIncorporating vegetation dynamics in reanalyses and the use of accurate aerosol 44 

information, as in the Modern-Era Retrospective Analysis for Research and 45 

Applications, version 2 (MERRA-2), would lead to improvements in the modelling of 46 

regional warming. The use of the ensemble technique adopted in the 47 

twentieth-century atmospheric model ensemble ERA-20CM significantly narrows the 48 

uncertainties associated with regional warming in reanalyses (standard 49 

deviation=0.15°C/decade). 50 
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1. Introduction 51 

Observations and models are two fundamental approaches used in the 52 

understanding of climate change. Observations provide a direct link to the climate 53 

system via instruments, whereas models provide an indirect link and include 54 

information derived from measurements, prior knowledge and theory. 55 

A large number of meteorological observations have been accumulated. These 56 

measurements, which are derived from a variety of sources, such as surface stations, 57 

ships, buoys, radiosondes, airplanes and satellites, record quantities that include 58 

near-surface and upper-air temperatures, humidity, wind and pressure. They constitute 59 

a major source of atmospheric information through the depth of the troposphere but 60 

suffer from incomplete spatiotemporal coverage and observation errors, including 61 

systematic, random and representation errors. Recent satellite-based observations 62 

have much better coverage; however, they suffer from other notable limitations, 63 

including temporal inhomogeneities (e.g., satellite drift) and retrieval errors 64 

(Bengtsson et al., 2007). These spatiotemporally varying gaps restrict the effective 65 

application of observations alone in climate research. 66 

To fill in the gaps in observations, models are needed. Such models can be very 67 

simple; examples of simple models include linear interpolation or geo-statistical 68 

approaches that are based on the spatial and temporal autocorrelation of the 69 

observations. However, these models lack the necessary dynamical or physical 70 

mechanisms. Given the steady progress of numerical weather prediction (NWP) 71 

models in characterizing the global atmospheric circulation in the early 1980s (Bauer 72 
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et al., 2015), the first generation of reanalyses was produced by combining 73 

observations and dynamic models to provide the first global atmospheric datasets for 74 

use in scientific research (Bengtsson et al., 1982a, b). 75 

After realizing the great value of this kind of reanalysis in atmospheric research, a 76 

step forward was taken with the suggestion made by Bengtsson and Shukla (1988) 77 

and Trenberth and Olson (1988) that most meteorological observations should be 78 

optimally assimilated under a fixed dynamical system over a period of time long 79 

enough to be useful for climate studies. In this way, available observations are 80 

ingested by advanced data assimilation techniques to provide a continuous initial state 81 

for an NWP model to produce the next short-term forecast. This procedure thus 82 

generates physically consistent and spatiotemporally complete three-dimensional 83 

atmospheric fields that are updated in light of observations. 84 

Taking this suggestion as a guide, and given the improvements that have been 85 

made since the mid-1990s in the integrity of the observations, the models and the 86 

assimilation methods used, successive generations of atmospheric reanalyses 87 

established by several institutes have improved in quality. These reanalyses include 88 

the first two generations of global reanalyses produced by the National Centers for 89 

Environmental Prediction, NCEP-R1 (Kalnay et al., 1996) and NCEP-R2 (Kanamitsu 90 

et al., 2002) and the reanalyses produced by the European Centre for Medium-Range 91 

Weather Forecasts (ECMWF), ERA-15 (Gibson et al., 1997), ERA-40 (Uppala et al., 92 

2005), and ERA-Interim (Dee et al., 2011b); the Japanese Meteorological Agency, 93 

JRA-25 (Onogi et al., 2007) and JRA-55 (Kobayashi et al., 2015); and the National 94 
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Aeronautics and Space Administration, the Modern-Era Retrospective Analysis for 95 

Research and Applications (MERRA) (Rienecker et al., 2011) and its updated version, 96 

MERRA-2 (Reichle et al., 2017). 97 

These reanalyses produce global gridded datasets that cover multiple time scales 98 

and include a large variety of atmospheric, oceanic and land surface parameters, many 99 

of which are not easily or routinely observed but are dynamically constrained by large 100 

numbers of observations from multiple sources assimilated using fixed NWP models. 101 

During the data assimilation, prior information on uncertainties in the observations 102 

and models are used to perform quality checks, to derive bias adjustments and to 103 

assign proportional weights. Therefore, such reanalyses add value to the instrumental 104 

record through their inclusion of bias adjustments, their broadened spatiotemporal 105 

coverage and their increased dynamical integrity or consistency. 106 

Previous studies have revealed that such reanalyses have contributed significantly 107 

to a more detailed and comprehensive understanding of the dynamics of the Earth’s 108 

atmosphere (Dee et al., 2011b;Kalnay et al., 1996;Nguyen et al., 2013;Kidston et al., 109 

2010;Simmonds and Keay, 2000;Simmons et al., 2010;Mitas and Clement, 2006). 110 

Extensive assessment studies have reported that most reanalyses display a certain 111 

level of performance in terms of their absolute values (Betts et al., 1996;Zhou and 112 

Wang, 2016b;Betts et al., 1998), interannual variability (Lin et al., 2014;Lindsay et al., 113 

2014;Zhou and Wang, 2017a, 2016a;Wang and Zeng, 2012), distributions (Gervais et 114 

al., 2014;Heng et al., 2014;Mao et al., 2010) and relationships among variables 115 

(Niznik and Lintner, 2013;Cash et al., 2015;Zhou et al., 2017;Zhou and Wang, 116 
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2016b;Betts, 2004) over regions worldwide. However, these aspects of reanalyses still 117 

contain certain errors that restrict the general use of reanalyses, especially in climate 118 

applications. 119 

The errors displayed by reanalysis products arise from three sources: observation 120 

error, model error and assimilation error (Thorne and Vose, 2010;Parker, 2016;Lahoz 121 

and Schneider, 2014;Dee et al., 2014;Zhou et al., 2017). Specifically, observation 122 

error incorporates systematic and random errors in instruments and their replacements, 123 

errors in data reprocessing and representation error, which arises due to the 124 

spatiotemporal incompleteness of observations (Dee and Uppala, 2009;Desroziers et 125 

al., 2005). Model error refers mainly to the inadequate representation of physical 126 

processes in NWP models (Peña and Toth, 2014;Bengtsson et al., 2007), such as the 127 

lack of time-varying surface conditions, such as vegetation growth (Zhou and Wang, 128 

2016b;Trigo et al., 2015), and incomplete cloud-precipitation-radiation 129 

parameterizations (Fujiwara et al., 2017;Dolinar et al., 2016). Assimilation error 130 

describes errors that arise in the mapping of the model space to the observation space 131 

and errors in the topologies of cost functions (Dee, 2005;Dee and Da Silva, 132 

1998;Lahoz and Schneider, 2014;Parker, 2016). 133 

These reanalyses mentioned above consist of the true climate signal and the 134 

nonlinear interactions among the observation error, the model error, and the 135 

assimilation error that arise during the assimilation process. These time-varying errors 136 

can introduce spurious trends without being eliminated by data assimilation systems. 137 

Many spurious variations in climate signals were also identified in the 138 
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early-generation reanalyses (Bengtsson et al., 2004;Andersson et al., 2005;Chen et al., 139 

2008;Zhou and Wang, 2016a, 2017a;Zhou et al., 2017;Schoeberl et al., 2012;Xu and 140 

Powell, 2011;Hines et al., 2000;Cornes and Jones, 2013). Therefore, reanalyses 141 

produced using the existing reanalysis strategy may not accurately capture climate 142 

trends (Trenberth et al., 2008), even though they may contain relatively accurate 143 

estimates of synoptic or interannual variations in the Earth’s atmosphere. 144 

An emerging requirement for climate applications of reanalysis data is the 145 

accurate representation of decadal variability, further increasing the confidence in the 146 

estimation of climate trends. This kind of climate reanalysis is required to be free, to a 147 

great extent, from other spurious non-climatic signals introduced by changing 148 

observations, model imperfections and assimilation error; that is, they must maintain 149 

temporal consistency. Therefore, the extent to which climate trends can be assessed 150 

using reanalyses attracts much attention and sparks heated debates (Thorne and Vose, 151 

2010;Dee et al., 2011a;Dee et al., 2014;Bengtsson et al., 2007). 152 

Given the great progress that has been made in climate forecasting models (which 153 

provide more accurate representations of climate change and variability) and coupled 154 

data assimilation, many efforts have been made by several institutes to build 155 

consistent climate reanalyses using the strategy of assimilating a relatively small 156 

number of high-quality long-term observational datasets. The climate reanalyses of 157 

this new generation extend back to the late nineteenth century and include the Climate 158 

Forecast System Reanalysis (CFSR), which is produced by the National Centers for 159 

Environmental Prediction (Saha et al., 2010); NOAA 20CRv2c, which is produced by 160 
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the University of Colorado’s Cooperative Institute for Research in Environmental 161 

Sciences (CIRES) in cooperation with the National Oceanic and Atmospheric Agency 162 

(NOAA) (Compo et al., 2011); and ERA-20C (Poli et al., 2016), ERA-20CM 163 

(Hersbach et al., 2015) and CERA-20C (Laloyaux et al., 2016), which are produced 164 

by the ECMWF. Compo et al. (2013) suggested that the NOAA 20CRv2c reanalysis 165 

can reproduce the trend in global mean surface air temperatures. In addition, the 166 

uncertainties estimated from multiple ensembles are provided to increase the 167 

confidence of the climate trends (Thorne and Vose, 2010;Dee et al., 2014). 168 

From NWP-like reanalyses to climate reanalyses, existing studies focus mainly 169 

on comparing the differences in temporal variability between the reanalyses and 170 

observations using some statistical metrics, e.g., the mean values, standard deviations, 171 

interannual correlations, probability density functions and trends of surface air 172 

temperature over regions worldwide. These evaluations provide insight into the 173 

temporal evolution of the Earth’s atmosphere. However, they lack the performance 174 

evaluations used in reanalyses in representing the spatial patterns of these statistics 175 

associated with the role of the coupled land-atmosphere and dynamical processes of 176 

the climate system. Moreover, the assessment of these spatial patterns provides a 177 

direct means of examining the most prominent advantage of reanalyses over 178 

geo-statistical interpolation; thus, the spatial patterns require comprehensive 179 

investigation. 180 

This study employs high-density station-based datasets of quantities including 181 

surface air temperatures (Ta), the surface incident solar radiation (Rs), the surface 182 
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downward longwave radiation (Ld), and precipitation measured at ~2200 183 

meteorological stations within China from 1979 to 2010. It provides a quantitative 184 

examination of the simulated patterns of variations in Ta in both the NWP-like and 185 

climate reanalyses and considers the climatology, the interannual variability, the 186 

mutual relationships among relevant quantities, the long-term trends and their 187 

controlling factors. The results indicate the strengths and weaknesses of the current 188 

reanalyses when applied in regional climate change studies and provide possible ways 189 

to improve these reanalyses in the near future. 190 

 191 

2. Data and Methods 192 

2.1 Observational Datasets 193 

The latest comprehensive daily dataset (which contains averages at 0, 6, 12, and 194 

18 UTC) of quantities that include Ta, precipitation, sunshine duration, relative 195 

humidity, water vapor pressure, surface pressure and the cloud fraction from 196 

approximately 2400 meteorological stations in China from 1961 to 2014, of which 197 

only approximately 194 participate in global exchanges, is obtained from the China 198 

Meteorological Administration (CMA; http://data.cma.cn/data). Approximately 2200 199 

stations with complete and homogeneous data are selected for use in this study (Wang 200 

and Feng, 2013;Wang, 2008;Wang et al., 2007). The high density of meteorological 201 

stations in China promotes the representation of regional patterns in surface warming 202 

by reanalyses and the assessment of the skill of simulations. 203 

Rs values based on the revised Ångström-Prescott equation (Wang et al., 204 
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2015;Yang et al., 2006;Wang, 2014) are used in this study. The derived Rs values 205 

consider the effects of Rayleigh scattering, water vapor absorption and ozone 206 

absorption (Wang et al., 2015;Yang et al., 2006) and can accurately reflect the effects 207 

of aerosols and clouds on Rs over China (Wang et al., 2012;Tang et al., 2011). Several 208 

intensive studies have reported that the derived Rs values can accurately depict the 209 

interannual, decadal and long-term variations in Rs (Wang et al., 2015;Wang, 210 

2014;Wang et al., 2012). 211 

Ld is typically estimated by first determining the clear-sky radiation and 212 

atmospheric emissivity (Brunt, 1932;Choi et al., 2008;Bilbao and De Miguel, 2007), 213 

and then correcting for the cloud fraction (Wang and Liang, 2009;Wang and 214 

Dickinson, 2013). The derived Ld values can directly reflect the greenhouse effect of 215 

atmospheric water vapor and clouds. Additionally, a precipitation eventprecipitation 216 

frequency is defined as days in a year with daily precipitation of at least 0.1 mm in 217 

this study, which has been shown to provide a good indication of the effects of 218 

precipitation on the interannual variability and trends in Ta (Zhou et al., 2017). Taken 219 

together, the derived Rs and Ld values are able to physically quantify the effects of 220 

solar radiation and the greenhouse effect on surface warming. Precipitation frequency 221 

can regulate the partitioning of available energy into latent and sensible heat fluxes 222 

and thus modulates the variations in Ta (Zhou et al., 2017;Zhou and Wang, 2017a). 223 

2.2 Reanalysis Products 224 

All of the major global atmospheric reanalysis products are included in this study 225 

(Table 1). The reanalyses are summarized below in terms of three aspects, i.e., the 226 
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observations assimilated and the forecast model and assimilation method used. The 227 

NWP-like reanalyses assimilate many conventional and satellite datasets from 228 

multiple sources (Table 1) to characterize the basic upper-air atmospheric fields; the 229 

spatiotemporal errors of these datasets vary with time. In particular, the ERA-Interim 230 

and JRA-55 reanalyses incorporate some many observations of Ta, and the MERRA2 231 

reanalysis includes aerosol optical depth estimates from satellite retrievals and model 232 

simulations based on emission inventories, whereas most of the other reanalyses use 233 

climatological aerosols (Table 1). To derive consistent long-term climate signals, the 234 

new strategy adopted by climate reanalyses involves the assimilation of a small 235 

number of relatively effective observed variables, e.g., surface pressure (Table 1). 236 

Except for its lack of the assimilation of surface pressure, ERA-20CM employs the 237 

same forecast model and external forcings as ERA-20C (Table 1); thus, the inclusion 238 

of ERA-20CM in this study will provide insight into the suitability of current 239 

atmospheric reanalyses in studies of regional warmingthus, the inclusion of 240 

ERA-20CM in this study provides a useful benchmark series against which to 241 

ascertain the skill that is added by assimilating various observations and to cognize 242 

the advantage of ensemble simulations. The reanalyses adopt different sea surface 243 

temperatures (SSTs) and sea ice concentrations for different time periods, which may 244 

lead to temporal discontinuities in the climate signals derived from the reanalyses 245 

(Table 1). To address this issue, the boundary conditions in CFSR are derived from its 246 

coupled ocean-sea ice models instead of observations (Table 1). CFSR, NOAA 247 

20CRv2c and NOAA 20CRv2 use monthly greenhouse gases (GHGs) with annual 248 
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means near those used in CMIP5. On the other hand, in ERA-Interim, the GHGs 249 

increase more slowly than in CMIP5 after 2000. Finally, NCEP-R1 and NCEP-R2 250 

adopt constant global mean concentrations of the GHGs (Table 1). 251 

The forecast model is a fundamental component of a reanalysis that provides the 252 

background fields to the assimilation system. Different reanalyses produced by a 253 

single institute generally use similar physical parameterizations; however, updated 254 

versions of these parameterizations and higher spatial resolutions are used in the 255 

newer generations of these realizations (Table 1). Note that the CFSR is classified into 256 

climate reanalysis in this study, mainly because it adopts a climate forecast system 257 

(Table 1). The assimilation methods adopted by the current reanalyses incorporate 258 

variational methods (3D-Var and 4D-Var) and the ensemble Kalman filter (EnKF) 259 

approach (Table 1). 260 

The 2-m Ta in NCEP-1, NCEP-2, MERRA, MERRA-2, ERA-20C, ERA-20CM, 261 

CERA-20C, NOAA 20CRv2c, NOAA 20CRv2 and CFSR are model-derived fields 262 

that are functions of the surface skin temperature, the temperature at the lowest model 263 

level, the vertical stability and the surface roughness, which are constrained primarily 264 

by observations of upper-air variables and the surface pressure (Kanamitsu et al., 265 

2002;Rienecker et al., 2011;Reichle et al., 2017;Poli et al., 2016;Hersbach et al., 266 

2015;Laloyaux et al., 2016;Compo et al., 2011;Saha et al., 2010). However, the Ta in 267 

ERA-Interim and JRA-55 are post-processing products by a relatively simple analysis 268 

scheme between the lowest model level and the surface and are analysed using 269 

ground-based observations of Ta, with the help of Monin-Obukhov similarity profiles 270 



14 
 

consistent with the model’s parameterization of the surface layer (Dee et al., 271 

2011b;Kobayashi et al., 2015). Additionally, radiation calculations are diagnostically 272 

determined from the prognostic cloud condensate microphysics parameterization, and 273 

the cloud macrophysics parameterization assumes a maximum-random cloud 274 

overlapping scheme (Saha et al., 2010;Dolinar et al., 2016). 275 

2.3 Method Used to Homogenize the Observed Time Series 276 

Problems related to the observational infrastructure (e.g., instrument ageing and 277 

changes in observing practices) and station relocations can also lead to false temporal 278 

heterogeneity in time series. Therefore, it is necessary to diminish the impact of data 279 

inhomogeneitieshomogenization on the trends in the observed variables during the 280 

study period of 1979-2010. 281 

We use the RHtestsV4 software package (Wang and Feng, 2013) to detect and 282 

homogenize the breakpoints in the monthly time series. The package includes two 283 

algorithms. Specifically, the PMFred algorithm is based on the penalized maximal 284 

F-test (PMF) without a reference series (Wang, 2008), and the PMTred algorithm is 285 

based on the penalized maximal t-test (PMT) with a reference series (Wang et al., 286 

2007). 287 

In this study, we first use the PMFred algorithm to identify potential reference 288 

series at the 95% significance level. We then reconstruct homogenous series for each 289 

inhomogeneous series using the following steps: 1) horizontal and vertical distances 290 

from the inhomogeneous station of less than 110 km and 500 m, respectively, are 291 

specified; 2) correlation coefficients between the first-order difference in the 292 
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homogeneous series with that in the inhomogeneous one exceeding 0.9 are required; 293 

and 3) the first ten homogeneous series are averaged using inverse distance weighting 294 

to produce a reference series for the inhomogeneous station. Finally, we apply the 295 

PMTred algorithm to test all of the inhomogeneous series using the nearby reference 296 

series. Several intensive studies have been conducted that indicate the PMTred 297 

algorithm displays good performance in detecting change points in inhomogeneous 298 

series (Venema et al., 2012;Wang et al., 2007). 299 

If a breakpoint is found to be statistically significant, the quantile-matching (QM) 300 

adjustment in RHtestsV4 is recommended for making adjustments to the time series 301 

(Wang et al., 2010;Wang and Feng, 2013); in such cases, the longest available 302 

segment from 1979 to 2010 is used as the base segment. The QM adjustment aims to 303 

match the empirical distributions from all of the detrended segments with that of the 304 

specific base segment (Wang et al., 2010). In addition, we replicate the procedures 305 

above for the sparsely distributed stations over western China and the Tibetan Plateau. 306 

The PMTred algorithm and the QM adjustment have recently been used successfully 307 

to homogenize climatic time series (Aarnes et al., 2015;Tsidu, 2012;Dai et al., 308 

2011;Siswanto et al., 2015;Wang and Wang, 2016;Zhou et al., 2017). 309 

As such, the significant breakpoints are detected and adjusted at a confidence 310 

level of 95% at 1092 of the 2193 (49.8%) stations for the Ta time series; 1079 of the 311 

2193 (49.2%) stations for the Rs time series; 64 of the 2193 (2.9%) stations for 312 

precipitation frequency time series; 971 of the 2193 (44.2%) stations for the Ld time 313 

series; 944 of the 2193 (43.0%) stations for the water vapor pressure time series; and 314 
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956 of the 2193 (43.6%) stations for the cloud fraction time series. 315 

2.4 Trend Calculations, Partial Linear Regression, and Total Least Squares 316 

The bias, root mean squared error (RMSE) and, standard deviation and correlation 317 

coefficient (r) are used to assess the absolute value of Ta.  The trends in Ta and the 318 

relevant variables are calculated using the ordinary least squares method (OLS) and 319 

the two-tailed Student’s t-test. To determine whether the reanalyses contain biases in 320 

these trends, the two-tailed Student’s t-test is also applied to the differences in the 321 

time series between the reanalyses and the homogeneous observations. 322 

The partial least squares approach is used to investigate the net relationship 323 

between the detrended Ta values and the relevant variables (Rs, Ld and precipitation 324 

frequency) after statistically excluding the confounding effects among the relevant 325 

variables (Zhou et al., 2017). To evaluate the potential collinearity of independent 326 

variables in the regression model, the variance inflation factor (VIF) is calculated. The 327 

VIFs for Rs, precipitation frequency and Ld are less than 4. Specifically, the VIF for 328 

China of 2.19 is much less than the threshold of 10, above which the collinearity of 329 

regression models is bound to adversely affect the regression results (Ryan, 2008). 330 

The Pearson correlation coefficient (r) is used to reveal the spatial relationship 331 

between Ta and the relevant variables. To further investigate the relationship between 332 

the spatial distributions of the biases in the trends in Ta and the relevant parameters 333 

among the twelve reanalysis products, the weighted total least squares (WTLS) is 334 

adopted, in which the spatial standard deviations and correlations of pairs of variables 335 

on 1°×1° grid cells are included (Reed, 1989;York et al., 2004;Golub and Van Loan, 336 



17 
 

1980;Hyk and Stojek, 2013;Tellinghuisen, 2010): 337 
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where xi and yi are the median trends in x and y (e.g., Ta and Rs) for the ith reanalysis 345 

product; 
ix , 

ix and ri are the spatial standard deviations and correlations of the 346 

trends in x and y for the ith reanalysis product; βi is the least squares-adjusted value; Wi 347 

is the weight of the residual error; and b is the slope estimated by iterative methods 348 

with a relative tolerance of 10-16. 349 

The Monte Carlo method with 10000 experiments is applied to estimate the 90% 350 

confidence intervals of the slope b. In the Monte Carlo method, the grid index for the 351 

1°×1° grid cells over China, which ranges from 1 to 691, is generated as a random 352 

number. On this basis, we can sample the spatial pattern in the biases in the trends in 353 

Ta, Rs, Ld and precipitation frequency. We then calculate the median trends and their 354 

spatial standard deviations and correlations for each experiment used in the WTLS. 355 
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 356 

3. Results 357 

3.1 Dependency of Surface Air Temperature Differences on Elevation Differences 358 

Fig. 1 illustrates the differences in Ta from the NWP-like reanalyses and climate 359 

reanalyses relative to the homogenized station-based observations over China during 360 

the period of 1979-2010. When the Ta values measured at the stations are compared 361 

directly with those in the corresponding model grid cells, the results indicate that the 362 

reanalysis products underestimate Ta over most of the regions in China (by -0.28°C to 363 

-2.56°C). These discrepancies are especially pronounced over the Tibetan Plateau and 364 

Middle China, where the underestimation ranges from-2.75°C to -7.00°C and from 365 

-1.19°C to -2.91°C, respectively (Fig. 1 and Table 2). A homogenizinghomogeneous 366 

adjustment of 0.03°C from the raw Ta observations is insufficient to cancel the 367 

underestimation of Ta by the reanalyses (Fig. 1 and Table 2). Similar biases in Ta 368 

within various regions worldwide have been widely reported by previous studies 369 

(Mao et al., 2010;Pitman and Perkins, 2009;Reuten et al., 2011;Wang and Zeng, 370 

2012;Zhou et al., 2017;Zhou and Wang, 2016b). 371 

However, we found that the spatial patterns in the differences in Ta are well 372 

correlated with the elevation differences between models and stations, as reflected by 373 

correlation coefficients (r) of 0.85 to 0.94 (Figs. 2 and S1). These results are in 374 

accordance with the reports from NCEP-R1, NCEP-R2 and ERA-40 (You et al., 375 

2010;Ma et al., 2008;Zhao et al., 2008). The elevation differences (∆Height; Figs. 2 376 

and S1) between the stations and the model grids consists of the filtering error in the 377 
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elevations used in the spectral models (∆f) and differences in the site-to-grid 378 

elevations (∆s) due to the complexity of the orographic topography. We further 379 

quantify the relative contributions of these factors to the Ta differences. The elevation 380 

differences can explain approximately 80% of the Ta differences; approximately 74% 381 

is produced by the site-to-grid elevation differences, and approximately 6% is 382 

produced by the filtering error in the elevations used in the spectral models (Fig. 2). 383 

The regression coefficient of the differences in Ta is approximately 6°C/1 km, 384 

which is similar to the lapse rate at the surface (Fig. 2). Lapse rate values that exceed 385 

6°C/1 km can be seen over the Tibetan Plateau (shown as red dots in Fig. 2). This 386 

result is very consistent with the reported lapse rates over China (Li et al., 2015;Fang 387 

and Yoda, 1988). In addition, the rate of decrease in the model filtering error is 388 

approximately 4°C/1 km among the twelve reanalyses (Fig. 2). These results have 389 

important implications for the skill of the simulated Ta climatologies of the twelve 390 

reanalyses over China. 391 

3.2 Comparison of Regional-scale Surface Air Temperature Series 392 

Fig. 3 shows Taylor diagrams of annual Ta anomalies from the observations and 393 

reanalyses over China and its seven subregions. We find that the correlations between 394 

the annual Ta anomalies in the twelve reanalysis products and the observations are 395 

reasonably strong, as reflected by a median r of 0.95 (Fig. 3), despite the relatively 396 

weak correlations over the Tibetan Plateau associated with NCEP-R2 (r=0.24) and 397 

CFSR (r=0.53). The simulated time series of Ta anomalies over eastern China are 398 

depicted most accurately by the reanalyses (Fig. 3c-g). 399 
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Overall, the NWP-like reanalyses (denoted by numbers 3-7) display better skill 400 

than the climate reanalyses (denoted by numbers 8-14) in this regard (Fig. 3). 401 

ERA-Interim and JRA-55 display the best performance in the simulated time series of 402 

Ta anomalies over China (r=1.00, RMSE=0.05°C) and the seven regions (r=0.98, 403 

RMSE=0.1°C) (Fig. 3), perhaps due to their analysis of surface air temperature 404 

observations in ERA-Interim and JRA-55 (Table 1). 405 

Comparing the Ta values from MERRA2 and MERRA shows that MERRA2 406 

displays improved performance over northern China, as reflected by an increase in the 407 

correlation coefficient of 0.1 and a reduction in the RMSE of 0.1°C (Fig. 3). This 408 

result may occur because MERRA2 includes time-varying aerosol loadings (Balsamo 409 

et al., 2015;Reichle et al., 2011). However, the incorporation of this information does 410 

not improve the results over Southeast China (Fig. 3h). 411 

CERA-20C displays better performance than ERA-20C and ERA-20CM, perhaps 412 

related to the inclusion of coupled climate forecast models and data assimilation, as 413 

well as the assimilation of surface pressure data in CERA-20C (Fig. 3 and Table 1). 414 

NOAA 20CRv2c and NOAA 20CRv2 display moderate performance in this regard 415 

(r=0.8, RMSE=0.3°C) (Fig. 3), and the former reanalysis displays no improvement in 416 

performance, despite its use of new boundary conditions (Compo et al., 2011). 417 

3.3 Key Factors Regulating Regional Temperature Change 418 

This section discusses key factors that control regional temperature change from 419 

the perspective of energy balance and its partitioning. The Rs heats the surface, and 420 

the portion of this radiation that becomes the sensible heat flux heats the air near the 421 
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surface (Zhou and Wang, 2016b;Wang and Dickinson, 2013;Zhou and Wang, 2016c). 422 

Part of the energy absorbed by the surface is released back to space as outgoing 423 

longwave radiation; some of this radiation is reflected by clouds and is influenced by 424 

atmospheric water vapor, further warming the near-surface air (Wang and Dickinson, 425 

2013). This process is known as the greenhouse effect on Ta and is quantified by Ld. 426 

Existing studies have suggested that precipitation frequency better represents the 427 

interannual variability in soil moisture in China than the precipitation amount (Wu et 428 

al., 2012;Piao et al., 2009;Zhou et al., 2017;Zhou and Wang, 2017a); in turn, soil 429 

moisture affects vegetation growth and drives changes in surface characteristics (e.g., 430 

surface albedo and roughness). These changes alter the partitioning of available 431 

energy and thus regulate changes in Ta. 432 

Figs. 4 illustrates the partial relationships between the annual anomalies in Ta and 433 

Rs, the precipitation frequency and Ld. The results show that Ta is consistently 434 

positively correlated with Rs (except over the Tibetan Plateau) and Ld; however, it is 435 

consistently negatively correlated with precipitation frequency in the observations and 436 

the twelve reanalysis products (Fig. 4). Based on the observations, the interannual 437 

variations in Ta are jointly determined in part by precipitation frequency and Ld in 438 

Northeast China and the northern part of Northwest China (Fig. 4). All of the 439 

reanalyses roughly capture these factors over these regions, although they display 440 

differences in the relative magnitudes (Fig. 4). Specifically, ERA-20CM, NOAA 441 

20CRv2c, NOAA 20CRv2 and CFSR exhibit comparable relationships of Ta with 442 

precipitation frequency and Ld; however, MERRA, MERRA2, NCEP-R2, ERA-20C, 443 
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and CERA-20C overestimate the relationship between Ta and precipitation frequency, 444 

and ERA-Interim, JRA-55, and NCEP-R1 overestimate the relationship of Ta with Ld 445 

over these regions (Fig. 4). 446 

Over the North China Plain and Middle China, the interannual variations in Ta are 447 

partly jointly determined by Rs, precipitation frequency and Ld (Fig. 4). The 448 

reanalyses roughly capture the effects of these three factors on Ta, although they 449 

display diverse combinations (Fig. 4). Among these combinations, JRA-55, MERRA2, 450 

ERA-20CM and ERA-Interim are comparable to the observations over these regions 451 

(Fig. 4). Over Southeast China, the interannual variations in Ta are primarily regulated 452 

by Ld, precipitation frequency and Rs (Fig. 4). The reanalyses exhibit slightly 453 

overestimated relationships of Ta with Rs and underestimated relationships with 454 

precipitation frequency (Fig. 4). 455 

Over the Tibetan Plateau, the interannual variations in Ta are regulated by Rs and 456 

precipitation frequency (Fig. 4). Most of the reanalyses roughly capture the 457 

combinations of these factors but exhibit certain differences in the relative effects of 458 

Rs and precipitation frequency on Ta (Fig. 4). MERRA, MERRA2, NOAA 20CRv2c 459 

and NOAA 20CRv2 overestimate the relationships of Ta with Rs over the Tibetan 460 

Plateau (Fig. 4). 461 

Overall, the spatial patterns of the simulated partial correlation of Ta with Rs in 462 

the reanalysis products are significantly correlated with those seen in the observations; 463 

r=0.13-0.35 (p<0.05) for the NWP-like reanalyses, and larger values of r=0.24-0.41 464 

(p<0.05) are obtained for the climate reanalyses. Moreover, the spatial patterns in the 465 
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sensitivity of Ta to Rs exhibit significant correlations (r=0.12-0.17, p<0.05) for most 466 

of the climate reanalyses (Table 1). Precipitation frequency displays the largest spatial 467 

correlations (r=0.16-0.43, p<0.05) of the sensitivity of Ta with these three relevant 468 

parameters in the reanalyses (Table 3). Significant spatial correlations reflecting the 469 

relationship (including the partial correlation and sensitivity) of Ta with Ld are also 470 

found (Table 1). 471 

3.4 Regional Warming Trend Biases and Their Causes 472 

1) The Whole of China 473 

From 1979 to 2010 over China, Ta exhibits strong warming trends of 474 

0.37°C/decade (p<0.05) in the observations and 0.22-0.48°C/decade (p<0.05) in the 475 

twelve reanalyses (Figs. 5 and S2-S3, Table 2). ERA-Interim and JRA-55 display 476 

spatial correlations with the observations (r=0.47 and 0.54, p<0.05) that are due at 477 

least partly to the inclusion of some Ta observations, whereas NCEP-R2 and 478 

ERA-20C display the worst performance (Figs. S3, Tables 1 and 3). Furthermore, 479 

approximately 87% of the observed trends in Ta over China can be explained by the 480 

greenhouse effect (i.e., 65% can be explained by the trend in Ld), precipitation 481 

frequency (29%) and Rs (-7%, due to the trend in radiative forcing of -1.1 482 

W·m-2/decade) (Figs. S3-4). The influence of the greenhouse effect on the observed 483 

trends in Ta consists mainly of the trends in the atmospheric water vapor (42%) and 484 

the cloud fraction (3%) (Fig. S5). Among the reanalyses, over 90% of the trend in Ta 485 

can be explained by the greenhouse effect, precipitation frequency and Rs (Figs. S4-6). 486 

Specifically, ERA-Interim, JRA-55, MERRA and MERRA2 display the best ability to 487 
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capture the contributions of the greenhouse effect (48% to 76%), precipitation 488 

frequency (22% to 34%) and Rs (-4% to 13%) to the trend in Ta over China (Figs. S4 489 

and S6). The remaining NWP-like reanalyses (i.e., NCEP-R1 and NCEP-R2) 490 

substantially overestimate the contribution of Rs to the trend in Ta, whereas the 491 

climate reanalyses overestimate the contribution from Ld (Figs. S4 and S6). 492 

Here, wWe further quantify the contributions to the biases in the trend in Ta made 493 

by those in Rs, Ld and precipitation frequency among the twelve reanalyses over China 494 

and its seven subregions (Figs. 6-7). Over China, the overestimated Rs trends (by 495 

0.00-3.93 W·m-2/decade; Figs. S8 and S13) increase the trends in Ta (by 496 

0.02-0.16°C/decade; Fig. 7) in the twelve reanalyses; the underestimated Ld trends (by 497 

-0.25 to -1.61 W·m-2/decade for the NWP-like reanalyses; Figs. S10 and S15) 498 

decrease the trends in Ta (by -0.05 to -0.25°C/decade for the NWP-like reanalyses; 499 

Fig. 7); and the biases in the trends in precipitation frequency (by approximately -1.5 500 

days/decade for the NWP-like reanalyses and approximately 2.6 days/decade for the 501 

climate reanalyses; Figs. S9 and S14) decrease the trends in Ta (by 0.01 to 502 

0.05°C/decade for the NWP-like reanalyses and -0.01 to -0.06°C/decade for the 503 

climate reanalyses; Fig. 7). Together, these effects produce an underestimate in the 504 

trends in Ta on the order of 0.10°C/decade in the reanalyses (Fig. 7 and Table 2). 505 

2) Seven Subregions 506 

However, aAveraged trends over large areas may mask regional differences that 507 

reflect diverse regional warming biases and their causes (Figs. 5-7). The 508 

mean-adjusted spatial patterns of the biases in the trends in Ta appear to be consistent 509 
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among the twelve reanalyses (Fig. S7) and mimic the spatial patterns in the 510 

overestimated Rs trends over the North China Plain, South China and Northeast China 511 

(Fig. S8), given the spatial correlations between these variables in most of the 512 

reanalyses (r=0.11-0.42, p<0.05) (Figs. 6 and S7-8, Table 3). However, the reanalyses 513 

still underestimate the trends in Ta over most of the regions. The key reason for this 514 

underestimation is the increase in precipitation frequency over Northwest China, the 515 

Loess Plateau, and Middle China seen in the NWP-like reanalyses and that seen over 516 

broader regions in the climate reanalyses (Figs. 5-6 and S9). This relationship is 517 

reflected by their negative spatial correlation, which has a maximum value of -0.62 518 

(p<0.05) for MERRA (Table 3). Moreover, the decrease in Ld, which occurs due to the 519 

decreases in the atmospheric water vapor and cloud fraction that occur in the 520 

NWP-like reanalyses (Figs. S10-12), substantially cancels the warming effect of the 521 

overestimation of Rs on Ta over eastern China (Figs. 5 and S7). The opposite changes 522 

occur over Southeastern China in the climate reanalyses (Figs. 5 and S10). The effect 523 

of the changes in Ld is reflected by its spatial correlations of up to 0.50 (p<0.05) 524 

(Table 3). 525 

The corresponding contributions to the biases in the Ta trend from are calculated 526 

from those in Rs, Ld and precipitation frequency over seven subregions of China (Figs. 527 

6-7).  528 

Here, we further quantify the contributions to the biases in the trend in Ta made 529 

by those in Rs, Ld and precipitation frequency among the twelve reanalyses over China 530 

and its seven subregions (Figs. 6-7). Over China, the overestimated Rs trends (by 531 
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0.00-3.93 W·m-2/decade; Figs. S8 and S13) increase the trends in Ta (by 532 

0.02-0.16°C/decade; Fig. 7) in the twelve reanalyses; the underestimated Ld trends (by 533 

-0.25 to -1.61 W·m-2/decade for the NWP-like reanalyses; Figs. S10 and S15) 534 

decrease the trends in Ta (by -0.05 to -0.25°C/decade for the NWP-like reanalyses; 535 

Fig. 7); and the biases in the trends in precipitation frequency (by approximately -1.5 536 

days/decade for the NWP-like reanalyses and approximately 2.6 days/decade for the 537 

climate reanalyses; Figs. S9 and S14) decrease the trends in Ta (by 0.01 to 538 

0.05°C/decade for the NWP-like reanalyses and -0.01 to -0.06°C/decade for the 539 

climate reanalyses; Fig. 7). Together, these effects produce an underestimate in the 540 

trends in Ta on the order of 0.10°C/decade in the reanalyses (Fig. 7 and Table 2). 541 

Over northern China, biases in the trend in Ta result primarily from those in 542 

precipitation frequency and Ld (Figs. 6-7). Over Northeast China, the observations 543 

exhibit an amplified warming of 0.41°C/decade (p<0.05; Fig. 4 and Table 2). This 544 

warming is significantly underestimated by NCEP-R1, JRA-55, NOAA 20CRv2 and 545 

NOAA 20CRv2c (by on the order of -0.15°C/decade) and is overestimated by 546 

MERRA and CFSR (by on the order of 0.2°C/decade) (Figs. 6-7). These biases in the 547 

trends in Ta in the reanalysis are jointly explained by the warming 548 

(0.04-0.48°C/decade) induced by the underestimated trends in precipitation frequency 549 

and the cooling (-0.04 to -0.42°C/decade) induced by the underestimated trends in Ld 550 

(Fig. 7). 551 

Over Northwest China, the biases in the trend in precipitation frequency and Ld 552 

are mainly explained by the overestimated warming in NCEP-R2 (by 0.22°C/decade) 553 
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(Fig. 7). The substantially underestimated trend in Ld induced by the decrease in the 554 

atmospheric water vapour and cloud fraction (Figs. S9-S12 and S16-17) lead to an 555 

underestimate of the warming in MERRA (by -0.22°C/decade) (Fig. 7). 556 

Most of the reanalyses display weakened warming over the Tibetan Plateau and 557 

the Loess Plateau (Fig. 5 and S3, Table 2). In particular, NCEP-R1 and NCEP-R2 fail 558 

to reproduce the warming over the Tibetan Plateau, and MERRA fails to reproduce 559 

the warming over the Loess Plateau (Fig. 5 and S3, Table 2). The significant cooling 560 

biases in the trends in Ta (by -0.02 to -0.31°C/decade) over the Tibetan Plateau and 561 

the Loess Plateau result from the underestimated trends in Ld and the overestimated 562 

trends in precipitation frequency seen in most of the reanalyses (Figs. 5-7 and S9-12). 563 

These cooling biases are further induced by the underestimated trends in Rs (Figs. 5-7 564 

and S8). 565 

Over southern China, the biases in the trend in Ta are regulated by the biases in 566 

the trends in Rs, Ld and precipitation frequency (Figs. 6-7). Over Southeast China, the 567 

significantly overestimated trends in Ta (by 0.04, 0.02 and 0.17°C/decade, 568 

respectively) are induced by the overestimated trends in Rs (by 4.25, 3.34 and 6.27 569 

W·m-2/decade, respectively) seen in ERA-Interim, JRA-55 and CFSR (Figs. 6-7 and 570 

S8). The underestimated trends in Ta are induced by the overestimated trends in 571 

precipitation frequency and Ld in NCEP-R1, MERRA, ERA-20CM, CERA-20C, 572 

NOAA 20CRv2 and NOAA 20CRv2c (Figs. 6-7 and S9). 573 

Over Middle China, the significantly overestimated trends in Ta (by 0.04, 0.06, 574 

0.11, 0.03, 0.11 and 0.14°C/decade, respectively) are induced by the overestimated 575 
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trends in Rs (by 2.09, 1.50, 2.59, 1.20 and 4.81 W·m-2/decade, respectively) seen in 576 

ERA-Interim, JRA-55, ERA-20C, ERA-20CM, CERA-20C and CFSR (Figs. 6-7 and 577 

S8). The overestimated trends in precipitation frequency may lead to cooling in the 578 

trends in Ta in the reanalyses, especially for MERRA (which reflects an induced bias 579 

in the trend of -0.15°C/decade) over Middle China (Figs. 6-7 and S9). 580 

Due to the underestimated trends in the atmospheric water vapor and the cloud 581 

fraction (Figs. S11-12), the underestimation of Ld produces a cooling effect on the 582 

trend in Ta (by -0.05 to -0.32°C/decade) in the reanalyses over the North China Plain 583 

(Figs. 6-7 and S10). However, due to the lack of inclusion of plausible trends in 584 

aerosol loading, the substantial increases in Rs over the North China Plain (Fig. S8) 585 

have strong warming effects on the trends in Ta (by 0.01 to 0.21°C/decade) in the 586 

reanalyses (Figs. 6-7 and S8). The biases in the trends in precipitation frequency (of 587 

approximately -2.5 days/decade for the NWP-like reanalyses and approximately 1.5 588 

days/decade for some of the climate reanalyses) contribute some part of the biases in 589 

the trends in Ta (approximately 0.05°C/decade for the NWP-like reanalyses and 590 

-0.03°C/decade for the climate reanalyses). 591 

Overall, the biases in the trends in Ta in the reanalyses can be substantially 592 

explained by those in Ld, precipitation frequency and Rs, but this effect varies 593 

regionally (Figs. 6-7). Over northern China, the biases in the trend in Ta (which are on 594 

the order of -0.12°C/decade) result primarily from a combination of those in Ld 595 

(which are on the order of -0.10°C/decade) and precipitation frequency (which are on 596 

the order of 0.05°C/decade), with relatively small contributions from Rs (which are on 597 
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the order of -0.03°C/decade). Over southern China, the biases in the trend in Ta 598 

(which are on the order of -0.07°C/decade) are caused by those in Rs (which are on 599 

the order of 0.10°C/decade), Ld (which are on the order of -0.08°C/decade) and 600 

precipitation frequency (which are on the order of -0.06°C/decade) (Fig. S18). Note 601 

also that the incorporation of the observed changes in surface air temperatures in 602 

ERA-Interim and JRA-55 may introduce biases into the trends in the output Ta values; 603 

however, the use of partial correlation and regression analysis would lead to smaller 604 

impacts of the biases in these physical variables in quantifying their contributions to 605 

the trends in Ta. 606 

3.5 Spatial Linkages of Biases in the Warming Trends in the Twelve Reanalyses 607 

We next integrate the relationships of the spatial patterns in the biases in the 608 

trends in Ta with those in Rs, Ld and precipitation frequency over China in the twelve 609 

reanalyses (Fig. 8). The results show that the biases in the trends in Ta show 610 

significant correlations with Rs (r=0.80, slope=0.06, p=0.09) and precipitation 611 

frequency (r=-0.83, slope=-0.04, p=0.02) and Ld (r=0.77, slope=0.10, p=0.10) in the 612 

twelve reanalyses if information on these patterns is included. When the spatial 613 

patterns of the biases in the trends in these variables are not considered, the biases in 614 

the trends in Ta show relatively small correlations with Rs (r=0.32, slope=0.02, p>0.1), 615 

precipitation frequency (r=-0.51, slope=-0.02, p=0.09) and Ld (r=0.14, slope=0.02, 616 

p>0.1) in the reanalyses (Fig. 8). Similar results are obtained for the atmospheric 617 

water vapor (r=0.71, p=0.1) and the cloud fraction (r=-0.74, p=0.09) if their spatial 618 

patterns are considered (Figs. S19), and this relationship involving the cloud fraction 619 
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is very similar to that associated with Rs (Figs. 8 and S19). Within the subregions of 620 

China, the biases in the trends in Ta show significant correlations with Rs (r=068 to 621 

0.90, p<0.1), precipitation frequency (r=-0.55 to -0.94, p<0.1) and Ld (r=0.53 to 0.93, 622 

p<0.1) when the spatial patterns in the reanalyses are included (Fig. S20). These 623 

results provide a novel perspective that can be used to investigate the spatial 624 

relationships between biases in the trends in Ta and relevant quantities in reanalyses. 625 

 626 

4. Discussion 627 

In this section, we first examine the possible impacts of data homogenization on 628 

the trends in Ta. The trends in Ta derived from the original dataset are almost as high 629 

as those from the homogenized dataset, especially over the North China Plain and 630 

Northwest China (Fig. 5 and Table 2). Homogenization primarily adjusts breakpoints 631 

in time series (Wang, 2008), which occur mainly due to station relocation and changes 632 

in instruments (Cao et al., 2016;Li et al., 2017;Wang, 2014), and it helps to 633 

objectively depict trends in Ta, thus permitting the assessment of the modelled trends 634 

in Ta and its spatial patterns that are present in the reanalyses. 635 

We found that the elevation differences between the models and the stations 636 

influence the biases in the trends in Ta but cannot explain the spatial patterns in the 637 

biases in the trends in Ta (average r=0.11) (Fig. S21). Comparison of the models that 638 

use the same grid (NOAA 20CRv2c vs. NOAA 20CRv2, MERRA vs. MERRA2, 639 

NCEP-R1 vs. NCEP-R2 and ERA-20C vs. ERA-20CM) shows that the one is 640 

correlated with elevation differences, but the other is not, which implies that this 641 
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statistical correlation does not have physical significance. In addition, elevation 642 

differences do not change with time. Nevertheless, the spatial patterns in the 643 

normalized trends in Ta (excluding the impacts of the absolute value of temperature 644 

on the trends) are very near to those of the trends (Fig. S22), implying that the 645 

differences in the absolute value of temperature have an important effect, given that 646 

the site-to-grid inconsistency can be neglected. 647 

In the reanalyses, vegetation is only included as climatological information, but 648 

the vegetation displays a growth trend during the study period of 1979-2010 within 649 

China (Fig. S23). This discrepancy positively enlarges the biases in the trends in Ta 650 

due to the vegetation cooling effect (Zeng et al., 2017;Trigo et al., 2015). This effect 651 

is reflected by the negative spatial correlation (r=-0.26, p=0.00) between the inverted 652 

trend in the NDVI and the biases in the trend in Ta (Fig. S23). The growth of 653 

vegetation reduces Ta by regulating surface roughness, surface conductivity, soil 654 

moisture and albedo to partition greater amounts of available energy into latent heat 655 

fluxes, which leads to the formation of more precipitation (Shen et al., 656 

2015;Spracklen et al., 2013). Thus, the inclusion of vegetation growth will improve 657 

the simulation of trends and especially the spatial pattern of Ta in the reanalyses 658 

through the incorporation of more complete physical parameterizations (Li et al., 659 

2005;Dee and Todling, 2000;Trigo et al., 2015). 660 

Due to their inclusion of surface air temperature observations, ERA-Interim and 661 

JRA-55 display high skill in reproducing the observed patterns; they have near-zero 662 

means (0.01 and 0.01°C/decade) and the smallest standard deviations (0.16 and 663 
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0.15°C/decade) of the trend biases among the twelve reanalysis products. However, 664 

pattern differences of 37.8% (standard deviation of trend bias/China-averaged trend) 665 

are still evident (Figs. 5 and 8). Although it does not incorporate surface air 666 

temperature observations, ERA-20CM presents a pattern (with a mean of 667 

-0.04°C/decade and a standard deviation of 0.15°C/decade; Figs. 5 and 8) that is 668 

comparable to those of ERA-Interim and JRA-55 and better than that of ERA-20C 669 

(mean of -0.08°C/decade and standard deviation of 0.20°C/decade; Figs. 5 and 8), 670 

which uses the same forecast model as ERA-20CM. These results imply that 671 

ensemble forecasting could be used to meet important goals. The ensemble 672 

forecastingsimulation technique used in ERA-20CM also displays advantages in that 673 

it yields an improved simulated pattern of biases in the trends in Rs (SD=1.84 674 

W·m-2/decade, 171%), precipitation frequency (SD=2.78days/decade, 122%) and Ld 675 

(SD=1.25 W·m-2/decade, 82%) (Fig. 8). 676 

We consider the degree to which the ensemble assimilation technique can 677 

improve the spatial patterns of the biases in the trends in Ta in the reanalyses. We find 678 

that this technique can detect the biases in the trends in Ta over more another 679 

approximately 12% (8%) of the grid cells in CERA-20C, which incorporates 10 680 

ensemble members (NOAA 20CR2vc and NOAA 20CR2v employ 56 ensemble 681 

members) (Figs. 5 l-n). However, the biases in the trends in Ta over these grid cells 682 

are not significant at a significance level of 0.05, according to Student’s t-test, 683 

implying that the ensemble assimilation technique cannot explain the spatial pattern 684 

of the biases in the trends in Ta identified in this study (in Figs. 5 l-n). 685 
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To provide a preliminary discussion of the improvements in climate forecast 686 

models in reflecting patterns in climate trends, we compare the spatial patterns of the 687 

biases in the trends in Rs, precipitation frequency and Ld in the reanalyses  because 688 

observations of these variables are that do not incorporate observationsincluded in the 689 

reanalyses. We find that the climate forecast models, i.e., ERA-20C, ERA-20CM, 690 

CERA-20C, NOAA 20CRv2c and NOAA 20CRv2, display better performance in 691 

reproducing the pattern of biases in the trends in Rs (mean of 1.36 vs. 2.18 692 

W·m-2/decade; SD of 2.04 vs. 2.71 W·m-2/decade), precipitation frequency (mean of 693 

1.32 vs. -1.44%/decade; SD of 3.57 vs. 6.14%/decade) and Ld (mean of 0.12 vs. -0.85 694 

W·m-2/decade; SD of 1.33 vs. 1.50 W·m-2/decade) than the NWP-like models, i.e., 695 

ERA-Interim, NCEP-R1, MERRA, JRA-55, NCEP-R2 and MERRA2 (Fig. 8). In 696 

addition, because the SST boundary condition evolves freely in CFSR, the patterns of 697 

biases in the trends in Rs, precipitation frequency and Ld in CFSR differ substantially 698 

from those in the other reanalyses. 699 

We also consider whether the spatial pattern of biases in the trend in Ta is altered 700 

by the atmospheric circulation patterns simulated by the ERA-20CM ensemble. In 701 

ERA-20CM, the atmospheric circulation patterns are influenced by SSTs and sea ice 702 

and then partly mediate the influence of global forcings on the trends in Ta. In 703 

ERA-20CM, the probability distribution function of the biases in the trends in Ta from 704 

outside the ensemble ranges incorporates that from Student’s t-test at a significance 705 

level of 0.05 (Fig. 5k). This result has important implications in that 1) the climate 706 

variability in the ensembles under the different model realizations of SSTs and sea ice 707 
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cover does not change the pattern of the biases in the trends in Ta (Fig. 5k); moreover, 708 

2) Student’s t-test exhibits a suitable ability to detect the significance of the biases in 709 

the trends in Ta (Fig. 5k) when considering the effects of interannual variability on the 710 

trend. 711 

Overall, producing global or regional reanalyses that adequately reflect regional 712 

climate is challenging using the current strategy, and further improvements are 713 

required. The results and discussion above indicate some potential but challenging 714 

approaches that can be used to maximize the signal component corresponding to the 715 

regional climate in final reanalyses and robustly narrow the uncertainties in trends. 716 

1) MERRA2’s pioneering incorporation of time-varying aerosol loadings 717 

provides a way of improving the representation of regional temperature changes over 718 

regions such as the North China Plain where the impacts of aerosols on surface 719 

temperatures are significantMERRA2 incorporates time-varying aerosol loadings in a 720 

pioneering attempt to improve regional warming over the North China Plain to some 721 

extent. Thus, we encourage research groups to include accurate aerosol information 722 

and improve the skill of simulation of the energy budget and partitioning, especially 723 

of regional surface incident solar radiation, in other reanalyses. 724 

2) To improve regional climate modelling, forecast output should be produced 725 

using a physical ensemble like that employed in ERA-20CM to quantify the 726 

uncertainties associated with the relevant parameterizations in the reanalyses, due to 727 

the impossibility of optimizing all of the biases. Meanwhile, careful ensemble design 728 

would likely yield useful information for use in improving models, assimilation 729 
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methods and the bias correction of observations by exploring the interdependency 730 

among sources of errors. Such designs would undoubtedly have additional benefits for 731 

further development, leading to the next generation of reanalyses. 732 

3) To improve coupled land-atmospheric interactions, the true dynamics of land 733 

cover and use should be incorporated. Moreover, the physical parameterizations 734 

should be improved, including the responses of surface roughness, surface 735 

conductivity and albedo to regional climate. These changes would represent an 736 

improvement over the use of constant types and fractions of vegetation, as is done in 737 

ERA-Interim (Zhou and Wang, 2016b). 738 

4) Given the implications of the spurious performance of the freely evolving 739 

boundary conditions in CFSR, homogeneous and accurate records of SST and sea ice 740 

should be produced. 741 

Next-generation reanalyses, including both global and regional reanalyses, will 742 

assimilate and analyse in situ observations, satellite radiance, and other remote 743 

observations. In addition to short-term accuracy and long-term trends, they will also 744 

focus on spatial patterns by incorporating or improving accurate representations of 745 

land surface conditions and processes within the coupled weather and climate Earth 746 

systems. Thus, these reanalyses will advance the simulation of land-atmosphere 747 

interactions to yield high skill in studies of regional warming and the detection and 748 

attribution of regional climate change using various datasets, which frequently include 749 

global and regional reanalyses (Zhou et al., 2018;Zhou and Wang, 2016d;Herring et 750 

al., 2018;Trenberth et al., 2015;Stott, 2016;Dai et al., 2017;Zhou and Wang, 2017b). 751 
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Additionally, the uncertainties associated with regional warming could be ascertained 752 

using physics ensembles with various equiprobable realizations of boundary 753 

conditions. 754 

 755 

5. Conclusions 756 

 The reanalyses display differences in Ta when compared to the observations with 757 

a range of -10~10°C over China. Approximately 74% and 6% of these differences can 758 

be explained by site-to-grid elevation differences and the filtering error in the 759 

elevations used in the spectral models. These results imply fairly good skill in the 760 

simulation of the climatology of Ta in the twelve reanalyses over China. Moreover, 761 

the twelve reanalyses roughly capture the interannual variability in Ta (median 762 

r=0.95). In the reanalyses, Ta displays a consistently positive correlation with Rs and 763 

Ld and is negatively correlated with precipitation frequency, as seen in observations, 764 

despite the evident spatial patterns in their magnitudes over China. 765 

 Ta exhibits a strong warming trend of 0.37°C/decade (p<0.05) in the observations 766 

and 0.22-0.48°C/decade (p<0.05) in the twelve reanalyses over China. In the 767 

observations, approximately 87% of the observed trend in Ta over China can be 768 

explained by the greenhouse effect (i.e., 65% can be explained by the trend in Ld), 769 

precipitation frequency (29%) and Rs (-7%, due to the trend in radiative forcing of 770 

-1.1 W·m-2/decade). 771 

However, the biases in the trends in Ta seen in the reanalyses relative to the 772 

observations display an evident spatial pattern (mean=-0.16~0.11°C/decade, 773 
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SD=0.15-0.30°C/decade). The spatial patterns of the biases in the trends in the values 774 

of Ta in the reanalyses are significantly correlated with those in Rs (maximum r=0.42, 775 

p<0.05), precipitation frequency (maximum r=-0.62, p<0.05) and Ld (maximum 776 

r=0.50, p<0.05). Over northern China, the biases in the trends in Ta (which are on the 777 

order of -0.12°C/decade) result primarily from a combination of those in Ld (which 778 

are on the order of -0.10°C/decade) and precipitation frequency (which are on the 779 

order of 0.05°C/decade), with relatively small contributions from Rs (which are on the 780 

order of -0.03°C/decade). Over southern China, the biases in the trends in Ta (which 781 

are on the order of -0.07°C/decade) are regulated by the biases in the trends in Rs 782 

(which are on the order of 0.10°C/decade), Ld (which are on the order of 783 

-0.08°C/decade) and precipitation frequency (which are on the order of 784 

-0.06°C/decade). 785 

If information on spatial patterns is included, the simulated biases in the trends in 786 

Ta correlate well with those of precipitation frequency, Rs and Ld in the reanalyses 787 

(r=-0.83, 0.80 and 0.77, p<0.1); similar results are obtained for the atmospheric water 788 

vapor and the cloud fraction (r=0.71 and -0.74, p<0.1). These results provide a novel 789 

perspective that can be used to investigate the spatial relationships between the biases 790 

in the trends in Ta and the relevant parameters among the twelve reanalyses. Therefore, 791 

improving simulations of precipitation frequency and Rs helps to maximize the signal 792 

component corresponding to the regional climate. In addition, the analysis of Ta 793 

observations helps to improve the performance of regional warming in ERA-Interim 794 

and JRA-55. iIncorporating vegetation dynamics in reanalyses and the use of accurate 795 



38 
 

aerosol information, as in MERRA-2, would advance the modelling of regional 796 

warming. The ensemble technique adopted in ERA-20CM, a twentieth-century 797 

atmospheric model ensemble that does not assimilate observations, significantly 798 

narrows the uncertainties of regional warming in the reanalyses (standard 799 

deviation=0.15°C/decade). 800 
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system, surface observations included associated with surface air temperatures, sea ice and sea surface temperatures 1200 

(SSTs) and greenhouse gas (GHG) boundary conditions. The number in the parentheses in the Model Name column is the 1201 

year of the version of the forecast model used. More details on each product can be found in the associated reference. 1202 

Reanalysis Institution Model Name 
Model 

Resolution 
Period 

Assimilation 

System 

ERA-Interim ECMWF IFS version Cy31r2 (2007) 
T255 ~80 km, 

60 levels 

1979 

onwards 
4D-VAR 

JRA-55 JMA 
JMA operational numerical weather prediction 

system (2009) 

T319 ~55 km, 

60 levels 
1958-2013 4D-VAR 

NCEP-R1 NCEP/NCAR 
NCEP operational numerical weather prediction 

system (1995) 

T62 ~210 km, 

28 levels 

1948 

onwards 
3D-VAR 

NCEP-R2 NCEP/DOE Modified NCEP-R1 model (1998) 
T62 ~210 km, 

28 levels 

1979 

onwards 
3D-VAR 

MERRA NASA/GMAO
GEOS-5.0.2 atmospheric general circulation 

model (2008) 

0.5°× 0.667° 

~55 km, 72 

levels 

1979 

onwards 

3D-VAR with 

incremental 

updating (GEOS 

IAU) 

MERRA-2 NASA/GMAO

Updated version of GEOS-5.12.4 used in 

MERRA; its land model is similar to that of 

MERRA (2015) 

0.5°× 0.625° 

~55 km, 72 

levels 

1980 

onwards 

3D-VAR with 

incremental 

updating (GEOS 

IAU) 

ERA-20C ECMWF 
IFS version Cy38r1 (2012), coupled 

atmosphere-land-ocean-waves system 

T159 ~125 km, 

91 levels 
1900-2010 4D-VAR 

ERA-20CM ECMWF Similar to that used in ERA-20C (2012) 
T159 ~125 km, 

91 levels 
1900-2010 3D-VAR- 

CERA-20C ECMWF 
IFS version Cy41r2 (2016), coupled 

atmosphere-ocean-land-waves-sea ice system 

T159 ~125 km, 

91 levels 
1901-2010

CERA ensemble 

assimilation 

technique 

NOAA 

20CRv2c 

NOAA/ESRL 

PSD 

NCEP GFS (2008), an updated version of the 

NCEP Climate Forecast System (CFS) coupled 

atmosphere-land model 

T62 ~210 km, 

28 levels 
1851-2014

Ensemble Kalman 

filter 

NOAA 

20CRv2 

NOAA/ESRL 

PSD 
Same model as NOAA 20CRv2c (2008) 

T62 ~210 km, 

28 levels 
1871-2012

Ensemble Kalman 

filter 

CFSR NCEP 
NCEP CFS (2011) coupled 

atmosphere-ocean-land-sea ice model 

T382 ~38 km, 

64 levels 
1979-2010 3D-VAR 
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Table 1. Continued from right column. 1203 

Related Assimilated and Analysed Observations Sea Ice and SSTs GHG Forcing Reference 

1) Includes in situ observations of near-surface air 

temperature/pressure/relative humidity 

2) Assimilates upper-air temperatures/wind/specific humidity 

3) Assimilates rain-affected SSM/I radiances 

A changing suite of SST and 

sea ice data from 

observations and NCEP 

Interpolation by 1.6 

ppmv/year from the 

global mean CO2 in 

1990 of 353 ppmv 

(Dee et al., 

2011b) 

1) Analyses available near-surface observations 

2) Assimilates all available traditional and satellite observations 

In situ observation-based 

estimates of the COBE SST 

data and sea ice 

Same as CMIP5 
(Kobayashi 

et al., 2015) 

1) Initiated with weather observations from ships, planes, station 

data, satellite observations and many more sources 

2) No inclusion of near-surface air temperatures 

3) Uses observed precipitation to nudge soil moisture 

4) No information on aerosols 

Reynolds SSTs for 1982 on 

and the UKMO GISST data 

for earlier periods; sea ice 

from SMMR/SSMI 

Constant global mean 

CO2 of 330 ppmv; no 

other trace gases 

(Kalnay et 

al., 1996) 

1) No inclusion of near-surface air temperatures 

2) No information on aerosols 
AMIP-II prescribed 

Constant global mean 

CO2, 350 ppmv; no 

other trace gases 

(Kanamitsu 

et al., 2002) 

1) Neither MERRA nor MERRA-2 analyse near-surface air 

temperature, relative humidity, or other variables 

2) Radiosondes do provide some low-level observations 

 

Reynolds SSTs prescribed Same as CMIP5 
(Rienecker 

et al., 2011) 

1) Includes newer observations (not included in MERRA) after 

the 2010s 

2) Includes aerosols from MODIS and AERONET measurements 

over land after the 2000s and from the GOCART model before 

the 2000s 

3) Assimilates observation-corrected precipitation to correct the 

model-generated precipitation before reaching the land surface 

 

AMIP-II and Reynolds 

SSTs 
Same as CMIP5 

(Reichle et 

al., 2017) 

1) Assimilates surface pressures from ISPDv3.2.6 and 

ICOADSv2.5.1 and surface marine winds from ICOADSv2.5.1 

2) Uses monthly climatology of aerosols from CMIP5 

SSTs and sea ice from 

HadISST2.1.0.0 
Same as CMIP5 

(Poli et al., 

2016) 

Assimilates no data and includes radiative forcings from CMIP5 

SSTs and sea ice 

realizations from 

HadISST2.1.0.0 used in 10 

members 

Same as CMIP5 
(Hersbach et 

al., 2015) 

1) Assimilates surface pressures from ISPDv3.2.6 and 

ICOADSv2.5.1 and surface marine winds from ICOADSv2.5.1 

2) Assimilates no data in the land, wave and sea ice components 

but uses the coupled model at each time step 

SSTs from HadISST2.1.0.0 Same as CMIP5 
(Laloyaux et 

al., 2016) 

Assimilates only surface pressure and sea level pressure 
SSTs from HadISST1.1 and 

sea ice from COBE SST 

Monthly 15° gridded 

estimates of CO2 from 

WMO observations 

(Compo et 

al., 2011) 

Same as NOAA 20CRv2c 
SSTs and sea ice from 

HadISST1.1 

Monthly 15° gridded 

estimates of CO2 from 

WMO observations 

(Compo et 

al., 2011) 

1) Assimilates all available conventional and satellite 

observations but not near-surface air temperatures 

2) Atmospheric model contains observed changes in aerosols 

3) Uses observation-corrected precipitation to force the land 

surface analysis 

Generated by coupled 

ocean-sea ice models; 

evolves freely during the 6-h 

coupled model integration 

Monthly 15° gridded 

estimates of CO2 from 

WMO observations 

(Saha et al., 

2010) 

 1204 
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Table 2. Differences (unit: °C) relative to the homogenized observations and trends (unit: °C/decade) in surface air 1205 

temperatures (Ta) from 1979 to 2010 over China and its seven subregions. The bold and italic bold fonts indicate results 1206 

that are significant according to two-tailed Student’s t-tests with significance levels of 0.05 and 0.1, respectively. 1207 

1208 

 Region 
China 

Tibetan 

Plateau 

Northwest 

China 
Loess Plateau Middle China 

Northeast 

China 

North China 

Plain 

Southeast 

China 

Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend Diff. Trend

ERA-Interim -0.87 0.38 -3.49 0.33 -1.82 0.37 -0.32 0.50  -1.19  0.28  -0.03  0.42 -0.02 0.45 -0.03 0.37 

NCEP-R1 -2.56 0.23 -6.80 0.11 -4.45 0.39 -1.77 0.21  -2.91  0.23  -1.28  0.27 -1.21 0.23 -1.33 0.22 

MERRA -0.48 0.25 -3.48 0.33 0.95 0.14 1.14 0.09  -1.35  0.12  -0.22  0.52 0.67 0.26 -0.27 0.24 

JRA-55 -1.10 0.38 -3.49 0.42 -1.70 0.39 -0.58 0.52  -1.61  0.30  -0.25  0.37 -0.26 0.41 -0.50 0.34 

NCEP-R2 -2.10 0.25 -5.76 -0.07 -4.29 0.58 -1.33 0.10  -2.80  0.20  -0.51  0.36 -0.38 0.23 -1.14 0.36 

MERRA2 -0.91 0.28 -3.41 0.35 0.34 0.32 0.12 0.19  -1.35  0.23  -0.73  0.41 -0.24 0.18 -0.64 0.25 

ERA-20C -1.42 0.29 -6.56 0.33 -1.95 0.31 0.03 0.21  -2.01  0.35  -0.19  0.32 1.05 0.19 -0.47 0.28 

ERA-20CM -1.48 0.32 -5.93 0.28 -1.39 0.38 -0.36 0.33  -2.13  0.27  -0.23  0.41 -0.31 0.34 -0.51 0.29 

CERA-20C -2.06 0.34 -7.00 0.41 -2.15 0.38 -0.78 0.36  -2.59  0.34  -0.76  0.43 -0.40 0.19 -1.20 0.29 

NOAA 20CRv2c -0.28 0.22 -2.75 0.39 -0.01 0.28 1.62 0.16  -1.68  0.18  -0.16  0.11 1.06 0.15 0.18 0.22 

NOAA 20CRv2 -0.32 0.24 -2.78 0.33 -0.01 0.29 1.48 0.20  -1.77  0.19  -0.07  0.25 0.97 0.21 0.12 0.19 

CFSR -1.74 0.48 -5.09 0.46 -1.03 0.44 -0.25 0.40  -2.91  0.37  -0.49  0.67 -0.37 0.47 -1.58 0.51 

Obs-raw 0.03 0.40 0.03 0.46 0.09 0.44 0.01 0.52  0.05  0.30  0.00  0.40 0.05 0.42 0.03 0.36 

Obs-homogenized 0.37 0.44 0.36 0.50   0.24   0.41 0.38 0.33 
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Table 3. Spatial pattern correlation (unit: 1) of three groups: partial relationships, trends and simulated biases in the trends in 1209 

surface air temperature (Ta) against surface incident solar radiation (Rs), precipitation frequency (PF) and surface downward 1210 

longwave radiation (Ld). The bold and italic bold fonts indicate results that are significant according to two-tailed Student’s 1211 

t-tests with significance levels of 0.05 and 0.1, respectively. 1212 

Pattern Correlation

Partial Relationship Trend Trend Bias 

(Ta, Rs) (Ta, PF) (Ta, Ld) (Ta, Ta) (Ta, Rs) (Ta, PF) (Ta, Ld) (Ta, Rs) (Ta, PF) (Ta, Ld)

Corr. Slope Corr. Slope Corr. Slope               

ERA-Interim 0.29 0.01 0.03 0.31 0.21 0.25 0.47  -0.11  -0.04  0.33  0.26 -0.12 0.10 

NCEP-R1 0.30 0.06 0.18 0.30 0.36 0.00 0.02  -0.36  -0.02  0.62  -0.03 -0.04 0.43 

MERRA 0.29 0.06 0.13 0.39 0.05 0.20 0.21  0.66  -0.81  -0.53  0.42 -0.62 -0.05 

JRA-55 0.35 0.21 0.22 0.16 0.29 0.27 0.54  -0.33  0.31  0.57  0.00 0.14 0.29 

NCEP-R2 0.22 0.03 0.20 0.36 0.27 0.04 -0.08  0.18  -0.29  0.28  0.15 -0.14 0.35 

MERRA2 0.13 0.05 0.26 0.43 0.09 0.30 0.22  0.30  -0.11  0.11  -0.02 -0.12 0.28 

ERA-20C 0.28 -0.07 -0.07 0.43 0.19 0.02 -0.07  0.18  -0.33  0.03  0.11 -0.25 0.31 

ERA-20CM 0.24 -0.04 -0.03 0.32 0.26 0.18 0.28  -0.32  0.31  0.83  -0.02 0.12 0.34 

CERA-20C 0.41 0.17 0.10 0.37 0.08 0.07 0.29  0.50  -0.58  -0.07  -0.01 -0.22 0.23 

NOAA 20CRv2c 0.39 0.15 -0.22 0.25 0.14 0.15 0.08  -0.07  -0.11  0.55  -0.25 -0.05 0.50 

NOAA 20CRv2 0.38 0.15 -0.21 0.18 0.14 0.23 0.19  -0.02  -0.20  0.56  -0.18 0.11 0.47 

CFSR 0.33 0.12 0.10 0.19 0.37 0.21 0.19  0.11  -0.26  0.07  0.31 -0.08 0.15 

Obs-raw -0.07  0.27  0.50  

Obs-homogenized  -0.09  0.35  0.32  
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Figure Captions: 1213 

Figure 1. The multiyear-averaged differences in surface air temperatures (Ta, unit: °C) 1214 

during the period of 1979-2010 from the twelve reanalysis products relative to the 1215 

homogenized observations over China. The reanalysis products are (a) ERA-Interim, 1216 

(b) NCEP-R1, (c) MERRA, (d) JRA-55, (e) NCEP-R2, (f) MERRA2, (g) ERA-20C, 1217 

(h) ERA-20CM, (i) CERA-20C, (j) NOAA 20CRv2c, (k) NOAA 20CRv2 and (l) 1218 

CFSR. The mainland of China is divided into seven regions (shown in Fig. 1c), 1219 

specifically ① the Tibetan Plateau, ② Northwest China, ③ the Loess Plateau, ④ 1220 

Middle China, ⑤ Northeast China, ⑥ the North China Plain and ⑦ South China. 1221 

Figure 2. The impact of inconsistencies between station and model elevations on the 1222 

simulated multiyear-averaged differences in surface air temperatures (Ta, unit: °C) 1223 

during the study period of 1979-2010 over China. The elevation difference (∆Height) 1224 

between the stations and the models consists of the filtering error in the elevations 1225 

used in the spectral models (∆f) and the difference in site-to-grid elevations (∆s) due 1226 

to the complexity of orographic topography. ∆f is derived from the model elevations 1227 

minus the ‘true’ elevations in the corresponding model grid cells from GTOPO30. The 1228 

GTOPO30 orography is widely used in reanalyses, e.g., by ECMWF. The colour bar 1229 

denotes the station elevations (unit: m). The relationship of the Ta differences is 1230 

regressed on ∆Height (shown at the bottom of each subfigure) or ∆f and ∆s (shown at 1231 

the top of each subfigure); the corresponding explained variances are shown. 1232 

Figure 3. Taylor diagrams for annual time series of the observed and reanalysed 1233 

surface air temperature anomalies (Ta, unit: °C) from 1979 to 2010 in (a) China and 1234 
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(b-h) the seven subregions. The correlation coefficient, standard deviation and root 1235 

mean squared error (RMSE) are calculated against the observed homogenized Ta 1236 

anomalies. 1237 

Figure 4. Composite map of partial correlation coefficients of the detrended surface 1238 

air temperature (Ta, unit: °C) against surface incident solar radiation (Rs), precipitation 1239 

frequency (PF) and surface downward longwave radiation (Ld) during the period of 1240 

1979-2010 from observations and the twelve reanalysis products. The marker ‘+’ 1241 

denotes the negative partial correlations of Ta with Rs over the Tibetan Plateau in 1242 

NCEP-R2, ERA-20C and ERA-20CM. 1243 

Figure 5. (a, b) The observed trends in surface air temperature (Ta, unit: °C/decade) 1244 

and the simulated biases in the trends in Ta (unit: °C/decade) during the period of 1245 

1979-2010 from (c) raw observations and (d-o) the twelve reanalysis products over 1246 

China with respect to the homogenized observations. The squares denote the original 1247 

homogeneous time series, and the dots denote the adjusted homogeneous time series. 1248 

The probability distribution functions of all of the biases in the trends are shown as 1249 

coloured histograms, and the black stairs are integrated from the trend biases with a 1250 

significance level of 0.05 (based on two-tailed Student’s t-tests). The cyan and green 1251 

stars in (k-n) represent estimates of the biases in the trends outside the ensemble 1252 

ranges whose locations are denoted by the black dots shown in (k-n). 1253 

Figure 6. Composite map of the contributions (unit: °C/decade) of the biases in the 1254 

trends in three relevant parameters, surface incident solar radiation (Rs, in red), 1255 

surface downward longwave radiation (Ld, in green) and precipitation frequency (in 1256 
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blue) to the biases in the trends in surface air temperature (Ta) during the study period 1257 

of 1979-2010, as estimated using the twelve reanalysis products over China. 1258 

Figure 7. Contribution s(unit: °C/decade) of the biases in the trends in surface air 1259 

temperatures (Ta) from three relevant parameters, surface incident solar radiation (Rs, 1260 

in brown), surface downward longwave radiation (Ld, in light blue) and precipitation 1261 

frequency (PF, in deep blue) during the study period of 1979-2010 from the twelve 1262 

reanalysis products over China and its seven subregions. 1263 

Figure 8. Spatial associations of the simulated biases in the trend in surface air 1264 

temperature (Ta) versus three relevant parameters among the twelve reanalysis 1265 

products (solid lines indicate the NWP-like reanalyses, and dashed lines indicate the 1266 

climate reanalyses). The probability density functions (unit: %) of these biases in the 1267 

trends are estimated from approximately 700 1°×1° grid cells that cover China. The 1268 

median values (coloured dots with error bars of spatial standard deviations) of the 1269 

biases in the trends in Ta (unit: °C/decade) in the twelve reanalyses are regressed onto 1270 

those of (a) the surface incident solar radiation (Rs, unit: W·m-2/decade), (b) 1271 

precipitation frequency (unit: days/decade) and (c) the surface downward longwave 1272 

radiation (Ld, unit: W·m-2/decade) using the ordinary least squares method (OLS, 1273 

denoted by the dashed grey lines) and the weighted total least squares method (WTLS, 1274 

denoted by the solid black lines). The 5-95% confidence intervals of the regressed 1275 

slopes obtained using WTLS are shown as shading. The regressed correlations and 1276 

slopes are shown as grey and black text, respectively. 1277 
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1278 

Figure 1. The multiyear-averaged differences in surface air temperatures (Ta, unit: °C) 1279 

during the period of 1979-2010 from the twelve reanalysis products relative to the 1280 

homogenized observations over China. The reanalysis products are (a) ERA-Interim, 1281 

(b) NCEP-R1, (c) MERRA, (d) JRA-55, (e) NCEP-R2, (f) MERRA2, (g) ERA-20C, 1282 

(h) ERA-20CM, (i) CERA-20C, (j) NOAA 20CRv2c, (k) NOAA 20CRv2 and (l) 1283 

CFSR. The mainland of China is divided into seven regions (shown in Fig. 1c), 1284 

specifically ① the Tibetan Plateau, ② Northwest China, ③ the Loess Plateau, ④ 1285 

Middle China, ⑤ Northeast China, ⑥ the North China Plain and ⑦ South China. 1286 
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 1287 

Figure 2. The impact of inconsistencies between station and model elevations on the 1288 

simulated multiyear-averaged differences in surface air temperatures (Ta, unit: °C) 1289 

during the study period of 1979-2010 over China. The elevation difference (∆Height) 1290 

between the stations and the models consists of the filtering error in the elevations 1291 

used in the spectral models (∆f) and the difference in site-to-grid elevations (∆s) due 1292 

to the complexity of orographic topography. ∆f is derived from the model elevations 1293 

minus the ‘true’ elevations in the corresponding model grid cells from GTOPO30. The 1294 

GTOPO30 orography is widely used in reanalyses, e.g., by ECMWF. The colour bar 1295 

denotes the station elevations (unit: m). The relationship of the Ta differences is 1296 

regressed on ∆Height (shown at the bottom of each subfigure) or ∆f and ∆s (shown at 1297 
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the top of each subfigure); the corresponding explained variances are shown. 1298 
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 1299 

Figure 3. Taylor diagrams for annual time series of the observed and reanalysed 1300 

surface air temperature anomalies (Ta, unit: °C) from 1979 to 2010 in (a) China and 1301 

(b-h) the seven subregions. The correlation coefficient, standard deviation and root 1302 

mean squared error (RMSE) are calculated against the observed homogenized Ta 1303 

anomalies.1304 



62 
 

 1305 

Figure 4. Composite map of partial correlation coefficients of the detrended surface 1306 

air temperature (Ta, unit: °C) against surface incident solar radiation (Rs), precipitation 1307 

frequency (PF) and surface downward longwave radiation (Ld) during the period of 1308 

1979-2010 from observations and the twelve reanalysis products. The marker ‘+’ 1309 

denotes the negative partial correlations of Ta with Rs over the Tibetan Plateau in 1310 

NCEP-R2, ERA-20C and ERA-20CM. 1311 
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 1312 

Figure 5. (a, b) The observed trends in surface air temperature (Ta, unit: °C/decade) 1313 

and the simulated biases in the trends in Ta (unit: °C/decade) during the period of 1314 

1979-2010 from (c) raw observations and (d-o) the twelve reanalysis products over 1315 

China with respect to the homogenized observations. The squares denote the original 1316 

homogeneous time series, and the dots denote the adjusted homogeneous time series. 1317 

The probability distribution functions of all of the biases in the trends are shown as 1318 

coloured histograms, and the black stairs are integrated from the trend biases with a 1319 

significance level of 0.05 (based on two-tailed Student’s t-tests). The cyan and green 1320 

stars in (k-n) represent estimates of the biases in the trends outside the ensemble 1321 
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ranges whose locations are denoted by the black dots shown in (k-n). 1322 
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 1323 

Figure 6. Composite map of the contributions (unit: °C/decade) of the biases in the 1324 

trends in three relevant parameters, surface incident solar radiation (Rs, in red), 1325 

surface downward longwave radiation (Ld, in green) and precipitation frequency (in 1326 

blue) to the biases in the trends in surface air temperature (Ta) during the study period 1327 

of 1979-2010, as estimated using the twelve reanalysis products over China. 1328 
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 1329 

Figure 7. Contribution s(unit: °C/decade) of the biases in the trends in surface air 1330 

temperatures (Ta) from three relevant parameters, surface incident solar radiation (Rs, 1331 

in brown), surface downward longwave radiation (Ld, in light blue) and precipitation 1332 

frequency (PF, in deep blue) during the study period of 1979-2010 from the twelve 1333 

reanalysis products over China and its seven subregions. 1334 
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 1335 

Figure 8. Spatial associations of the simulated biases in the trend in surface air 1336 

temperature (Ta) versus three relevant parameters among the twelve reanalysis 1337 

products (solid lines indicate the NWP-like reanalyses, and dashed lines indicate the 1338 

climate reanalyses). The probability density functions (unit: %) of these biases in the 1339 

trends are estimated from approximately 700 1°×1° grid cells that cover China. The 1340 

median values (coloured dots with error bars of spatial standard deviations) of the 1341 

biases in the trends in Ta (unit: °C/decade) in the twelve reanalyses are regressed onto 1342 

those of (a) the surface incident solar radiation (Rs, unit: W·m-2/decade), (b) 1343 

precipitation frequency (unit: days/decade) and (c) the surface downward longwave 1344 

radiation (Ld, unit: W·m-2/decade) using the ordinary least squares method (OLS, 1345 

denoted by the dashed grey lines) and the weighted total least squares method (WTLS, 1346 

denoted by the solid black lines). The 5-95% confidence intervals of the regressed 1347 

slopes obtained using WTLS are shown as shading. The regressed correlations and 1348 

slopes are shown as grey and black text, respectively. 1349 
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