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Abstract. Mobile laboratory measurements provide information on the distribution of CH4 emissions from point sources such 

as oil and gas wells, but uncertainties are poorly constrained or justified. Sources of uncertainty and bias in ground-based 

Gaussian derived emissions estimates from a mobile platform were analyzed in a combined field and modeling study. In a 

field campaign where 1009 natural gas sites in Pennsylvania were sampled, a hierarchical measurement strategy was 

implemented with increasing complexity. Of these sites, ~93% were sampled with an average of 2 transects (standard 15 

sampling), ~5% were sampled with an average of 10 transects (replicate sampling) and ~2% were sampled with an average of 

20 transects while simultaneously deploying a tower to measure high-frequency meteorological data (intensive sampling). Five 

of the intensive sampling sites were modeled using large eddy simulation (LES) to reproduce CH4 concentrations in a turbulent 

environment. The LES output and derived emission estimates were used to compare with the results of a standard Gaussian 

approach. The LES and Gaussian derived emission rates agreed within a factor of 2, in most cases with average differences of 20 

25%. A controlled release was also used to investigate sources of bias in either technique. The Gaussian agreed with the release 

rate more closely than the LES underlying the importance of inputs as sources of uncertainty for the LES. The LES was also 

used as a virtual experiment to investigate optimum number of repeat transects and spacing needed to produce representative 

statistics. Approximately 10 repeat transects spaced at least 1 min apart are required to produce statistics similar to the observed 

variability over the entire LES simulation period of 30 min. In addition, other sources of uncertainty including source location, 25 

wind speed and stability were analyzed. In total, atmospheric variability, observed by repeat measurements at individual sites 

under relatively constant conditions, was found to be the most significant contributor to total uncertainty. Accurate 

measurements of this condition provide a reasonable estimate of the lower bound for emission uncertainty. It is recommended 

that future mobile monitoring schemes quantify this metric under representative conditions to accurately estimate emission 

uncertainty. 30 
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1 Introduction 

 Reducing emissions of short-lived greenhouse gases through regulations has been considered a potentially viable way 

to mitigate climate change without intensively regulating CO2, which poses economic and political challenges. In particular, 

reducing CH4, a potent greenhouse gas and the main component of natural gas, may have significant immediate climate benefits 

(Bowerman et al., 2013, Baker et al., 2015, Zickfeld et al., 2017) and be a viable mitigation option. However, the large numbers 5 

and types of components in the natural gas supply chain that may leak require the development of efficient and accurate 

methods to quantify emissions. Specifically, techniques are needed that are available to researchers at every level (government, 

industry and academic), accurate enough to locate and quantify specific sources of fugitive emissions and allow for self-

monitoring, independent verification and understanding of common leak sources. 

 To this end, various independent CH4 emission estimation techniques have been implemented. Table 1 shows the 10 

methods that have been primarily applied to oil, coal and gas extraction and infrastructure which account for ~30% of the total 

global anthropogenic CH4 emissions (Kirschke et al., 2013). The myriad of sites and types of emission sources have 

necessitated the development and application of multiple techniques. Examples include satellites (Kort et al., 2014) remote 

sensing from aircraft (Kuai et al., 2016, Frankenberg et al., 2016, Thorpe et al., 2016), in-situ aircraft measurements (Karion 

et al., 2013 and 2014, Peischl et al., 2013 and 2015, Caulton et al., 2014, Petron et al., 2014, Lavoie et al., 2015, Ren et al., 15 

2017), long-term monitoring from short and tall towers (Petron et al., 2012), unmanned aerial vehicles (Nathan et al., 2015) 

and various ground-based techniques. Ground-based techniques include flask sampling (Townsend-Small et al., 2015), tracer 

correlation techniques (Lamb et al., 2015, Subrumanian et al., 2015, Zimmerle et al., 2015, Omara et al., 2016), chamber 

sampling (Allen et al., 2013 and 2014, Kang et al., 2014), thermal/optical imaging (Galfalk et al., 2015, Ravikumar et al., 

2017) and combined measurement/dispersion modeling techniques from stationary (Brantley et al., 2014, Foster-Witting et al., 20 

2015) and mobile platforms (Lan et al., 2015, Rella et al., 2015, Yacovitch et al., 2015).  

 Every technique has considerable advantages and disadvantages related to operational cost, sampling efficiency, 

processing time and uncertainty. Table 1 compares the author reported uncertainties for several techniques. These uncertainty 

estimates should be compared with caution: self-reported uncertainties are not computed in identical manners and some may 

not include the same sources of uncertainty in their considerations or additional systematic biases to the same extent. The 25 

values reported for emission uncertainties, usually significant, are generally not from measurement uncertainties. Even 

instruments that produce high accuracy measurements that must be transformed into an emission rate can be confounded by 

transformation methods that rely upon limited or unrepresentative meteorological conditions such as small scale turbulence 

characterization, boundary layer processes or assigning background conditions to a variable atmosphere. Notable, however, is 

the large range of uncertainties reported by ground-based mobile dispersion techniques. These techniques rely on accurate and 30 

precise concentration measurements coupled with dispersion models (Gaussian, AERMOD, WindTrax, etc.) to produce an 

emission estimate and are subject to various uncertainties in the model, notably atmospheric diffusion coefficients. These 

techniques are attractive due to their relatively low cost, computational requirements and high sampling efficiency of individual 
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sources. However, as seen in Table 1, current results lag behind the standard for other measurement techniques in this field. 

Therefore there is a critical need for improved sampling methods and/or data processing in this field to close the gap between 

data quality. 

1.1 Theory of the Gaussian Plume Model 

Approximations of scalar dispersion were investigated as early as the 1930s and were developed to describe non-5 

reactive pollutant dispersal from elevated stacks (Sutton, 1932; Bosanquet and Pearson, 1936). As models improved, the 

Gaussian plume model was developed assuming that scalar concentration has a normal distribution function (Batchelor, 1949, 

Hilst, 1957). Additional investigation of near surface conditions where particles can either deposit to or reflect off the surface 

led to the current Gaussian plume analytical model (shown in Eq. 1), which can be directly derived from the advection–

diffusion equation under some simplifying assumptions (as explained in Veigele and Head, 1978). Variations of this equation 10 

can be found in many papers and textbooks (for example Gifford, 1968, Zannetti, 1990).   

𝐶(𝑥, 𝑦, 𝑧) =  
𝑄
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This function relies on the 3-D distances (x,y,z) of a receptor from a source as well as the source height h, mean horizontal 

wind speed u, and a source strength, Q. The dispersion coefficients (σy, σz) encode the strength of turbulent mixing and are 

calculated according to any of several analytical parameterizations based on Pasquill-Giffords stability class scheme. 15 

Atmospheric stability classes range from very unstable (A) to very stable (F). Class D is defined as neutral. The model describes 

the probability density function (pdf) of a scalar concentration (C) downwind of a source, meaning it describes average plume 

locations and concentrations. However, the instantaneous observed plume structure deviates greatly from the average behavior, 

with fluctuating peak concentration location and displaying lower or higher concentration. 

 The Gaussian plume model is used to calculate emissions by comparing the model output to the observations. This 20 

can be done in a variety of ways. The stationary dispersion techniques used by Brantley et al. (2014) and Foster-Wittig et al. 

(2015) utilize the model at a single point and relate changes in concentration to changes in wind direction and thus speed. 

These procedures either follow or are related to the well-defined U.S. EPA OTM 33a and are not discussed further. The mobile 

dispersion techniques investigated in this study and others (Lan et al., 2015, Rella et al., 2015, Yacovitch et al., 2015) compare 

observed concentrations at continuous downwind x and y locations (i.e. along a road) to the modeled output along this road. 25 

Various techniques have also incorporated averaging schemes and additional z dimensional data (Lan et al., 2015, Rella et al., 

2015). Wind direction and speed are either fixed to the prevailing direction or rotated to match the observations. While data 

can be collected and processed quickly, the application of a Gaussian model that describes average plume behavior to 

instantaneous data has apparent shortcomings and no standard uncertainty protocol has been established.  
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1.2 Previous Work 

Robust uncertainty analyses of Gaussian emission retrievals are not reported in most studies, which instead focus on 

the novel application of the methods. Yacovitch et al. (2015) reported an asymmetric 95% confidence interval on their emission 

rates of 0.334(x) – 3.34(x) where x is the reported emission rate by using a controlled release as a proxy. Lan et al. (2015) used 

a Monte Carlo approach based on assumed uncertainty in source height, wind speed and wind direction for an average 95% 5 

confidence interval of roughly 0.5(x) – 1.5(x). Rella et al. (2015) also used a controlled release to calculate the variation in 

their measurement of a constant emission and reported a 95% confidence interval of 0.28(x) – 3.6(x). These methods report 

uncertainty methods that are comparable in nature. Notably, Lan et al.’s (2015) Monte Carlo method produced the smallest 

confidence interval, but accounted only for assumed uncertainty in three parameters and may neglect other factors (distance, 

stability, emission variability). The controlled release method employed by Yacovitch et al. (2015) and Rella et al. (2015) is 10 

useful in that direct observations of measurement variability can be made and potential bias in the measurements can be 

determined. However, these methods produce large uncertainty ranges that may be unsuitable to reliably separate large 

emissions from normal emissions. Additionally, implementing a controlled release is not trivial due to long set-up times of 

equipment and restricted access to locations suitable for the release. These conditions may make a controlled release 

experiment prohibitive for many applications with strict time or budget constraints or for those where site access is limited. 15 

The Gaussian model is attractive as a method for inferring emission rates as it is fast and generalizable with the ability 

to account for changes in stability, wind speed and source elevation. However, the uncertainties for this method change 

depending upon how it is implemented and whether it is extended to situations outside the reasonable limits of the generalized 

form. Such situations would include using an average plume for unconstrained instantaneous measurements or modeling over 

complex topography. A method for implementation of this technique is needed that identifies best practices and is supported 20 

by observations and modeling. 

In our study, we combine traditional Gaussian methods, advanced large eddy simulation modeling and a controlled 

release to assess in situ variability of emission retrievals from CH4 plumes downwind of natural gas well pads in the Marcellus 

Shale in Pennsylvania. We also investigate sources of potential bias in the controlled release and modeling methods. The basic 

architecture of this method uses (1) advanced modeling of a preselected sample site to enable investigation of optimum 25 

sampling strategies, (2) application of strategies to our sample collection process and (3) evaluation of additional sources of 

uncertainty and bias using advanced modeling and a controlled release. 

2 Methods 

2.1 Instrumentation 

 Data were collected in Pennsylvania during three campaigns in July 2015, November 2015 and June 2016 using the 30 

Princeton Atmospheric Chemistry Experiment (PACE). A Honda CR-V has been modified to accommodate a roof rack that 
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hold sensors ~1 m above the car, to limit the possibility of self-sampling. The roof rack is equipped with a LICOR 7700 to 

measure CH4 and LICOR 7500A to measure CO2 and H2O; both sensors record at 10 Hz. Meteorological data and GPS data 

were collected at 1 Hz with a Vaisala WXT520 and Garmin unit in July 2015 and June 2016 and with an Airmar WS-200WX 

in November 2015. More information on the mobile lab design and instrumentation can be found in Tao et al. 2015. The 

LICOR sensors were calibrated prior to each campaign using a blank (N2) and a 2.12 ppm CH4 standard in air and were also 5 

periodically calibrated with a 1.8724 ± 0.0030 ppm CH4 and 394.51 ± 0.07 ppm CO2 NOAA standard. Data were synchronized 

and logged using a custom LabVIEW program.  

 In addition, at select sites a tower was set up to measure high-frequency meteorological data. This tower included a 

second pair of LICOR 7500A and 7700 along with a METEK uSonic-3 Class A sonic anemometer to measure 3-D wind 

components. The tower was typically set alongside the road at a height between 2 and 3 m. Initially, the tower was constructed 10 

using a standard tripod, but was later adapted to the bed of a pick-up truck to allow faster deployment. The air flow around the 

pick-up truck was modeled (using Fluent, http://www.ansys.com/Products/Fluids/ANSYS-Fluent) to determine optimum 

placement of sensors above the vehicle to minimize local flow distortions. Three orientations were tested, with the truck cab 

facing 0°, 90° and 180° with a 0° mean wind flow. Deflection was observed in all three cases, but the distortion was minimal 

at ~2 m above the pickup bed. The final design of the mobile lab, the instrumentation rack and the mobile tower is shown in 15 

Fig. 1. 

2.2 Site Sampling 

 Unconventional natural gas well pads were selected before sampling using a pseudo-random method. All datasets 

were accessed from the Pennsylvania Spatial Data ACCESS (www.pasda.psu.edu). Sites were screened for distance (<300 m 

from public road), obstructions (elevation difference >50 m, trees) and wind direction. These characteristics were determined 20 

to be the most crucial for successfully sampling sites in this area as topography and vegetation made detecting plumes farther 

than 300 m difficult as the source could not be visually verified. Routes were primarily planned for efficiency around the 

forecast mean wind direction; however, the distribution of the sample relative to the population of key factors (well age, 

production, and operator) was routinely examined to identify and correct for over- and under- representation. Additional details 

on the sampling strategy can be found in Sect. 3. 25 

As a source of validation, an experimental controlled release of CH4 was also performed. The controlled release 

allows the retrieved emissions to be compared to known emission rates from a constant source. A pure (99.5%) CH4 cylinder 

was vented at various controlled flow rates to produce different measurable emission rates. The release site was selected for 

flat, open topography and isolated from any potential sources. Background transects were collected for approximately 30 min 

before the experiment to ensure no contaminating signals would be detected. An interfering signal from a large mulch pit was 30 

detected and the release set up was moved away from the source to ensure no signal mixing. The cylinder was set ~100 m from 

a public road at an altitude of 1 m. The release was performed over several hours, during afternoon and evening to span 

different stability classes. Figure S1 shows a diagram of the release set-up. 
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2.3 Inverse Gaussian Method (IGM) 

 The IGM approach has been used extensively as described in Sect. 1.1. Applied here, the method uses the sampled 

source location as input to first identify downwind transects. Transect selection must be finalized by the user. The peak CH4 

location is assumed to correspond to the prevailing wind direction and centerline plume direction (x in Eq. 1). The along-wind 

and across-wind (y in Eq. 1) distances are then calculated using the synchronous GPS data. Distances are calculated for each 5 

measurement point as a transect may not necessarily be perpendicular to the wind. The receptor altitude (z in Eq. 1) is fixed at 

2.5m, the height of the instrumentation above the road.  Unless measured on site, meteorological data including wind speed, 

and stability are taken from NOAA’s Ready Archived meteorology (https://www.ready.noaa.gov). These data are available in 

3-hour increments and are interpolated to 1 hour data for use in the model. The hourly data are matched to the closest 

observation based on time. The stability data are used to identify the proper z and y dispersion parameters based on Briggs 10 

(1973) for rural areas.  

 As discussed in Sect. 1.1, the comparison between the observations and modeled output along a downwind transect 

is used to calculate emission rate. First, Eq. 1 was solved for the x and y measurement points using a reference emission rate 

(Qref) taken to be 1 kg s-1 for simplicity. A comparison of observations and model output (using the reference emission) from 

21 downwind transects is shown in Fig. 2. Note that the roads were not necessarily perpendicular to the wind, therefore the 15 

superposition of the plume on the roadway may not show a full Gaussian profile. Second, the observations and modeled 

concentrations were both integrated along y (summed since they consist of discrete points). Finally, because the concentrations 

scale linearly with the emission rate according to Eq. 1, the emission rate can be estimated as shown in Eq. 2.  

𝑄 =
∑ 𝐶𝑂𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛

∑ 𝐶𝑀𝑜𝑑𝑒𝑙
× 𝑄𝑟𝑒𝑓            (2) 

Where Σ implies summation. This method, with integrated concentrations, has the advantage of not relying on regressions 20 

between the instantaneous data and model data which may have very low correlation as the instantaneous plume is not expected 

to mirror a Gaussian profile on such a short time scale.  

2.4 Large-Eddy Simulation 

Large-eddy simulation (LES) is used to simulate the dispersion of CH4 for sites that had been sampled with a tower 

for approximately 1 hour and sampled with the mobile lab with at least 10 transects at both the beginning and end of the 25 

observation period. The LES turbulent modeling technique is the most suitable for high Reynolds number flow and dispersion 

in the atmospheric boundary layer. The LES code used in this study has been widely validated (Bou-Zeid, Meneveau, and 

Parlange, 2005; Tseng, Meneveau, and Parlange, 2006; Li et al., 2016). Briefly, the LES code solves the resolved continuity, 

Navier-Stokes, and scalar conservation equations on a Cartesian grid, and models the unresolved motions using the Lagrangian 

scale-dependent dynamic subgrid-scale model (Bou-Zeid, Meneveau, and Parlange, 2005). The sharp interface (Mittal and 30 

Iaccarino, 2005) immersed boundary method is used to simulate flow with the presence of large solid structures (e.g. tanks in 

this study) in the field (Chester, Meneveau, and Parlange, 2007; Li, Bou-Zeid, and Anderson, 2016; Tseng, Meneveau, and 
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Parlange, 2006). Volumetric scalar sources are located on top of the structures or at other points around the source structure if 

needed to simulate the gas emissions. A pseudo-spectral method is used for horizontal spatial derivatives and second-order 

finite difference method is used for vertical spatial derivative with the needed treatments to overcome the Gibbs phenomenon 

following Li, Bou-Zeid and Anderson (2016). Second-order Adams-Bashforth method is used for time integration. The inflow 

velocity is a turbulent logarithmic profile generated from a separate simulation over homogeneous flat terrain. The inflow 5 

scalar is kept at a constant background concentration.  

In total, 5 sites were simulated. Most sites were set up with 1 or 2 m horizontal and vertical grid resolution with total 

simulation domain size of 256 m in x (along-wind) and y (cross-wind) directions and 100 m in z (vertical) direction. Site 5, 

the controlled release, was set up with 1 m horizontal resolution and 0.2222 m vertical resolution with a full z dimension of 

33.33 m; this was done to improve resolution of a source at low elevation. Site layouts are shown in Fig. 3. Sites were simulated 10 

for at least 30 min to allow the simulated turbulence to reach steady state. LES output is rescaled with the measured friction 

velocity and the scalar flux rate imposed in the simulation (i.e. to get a LES Qref = 1 kg s-1) to allow direct comparison to the 

Gaussian model estimates. Table S1 summarizes conditions and domain parameters for all 5 sites. Sites were primarily selected 

for simple geometry with flat terrain and homogeneous upwind conditions. Generally, elevation differences across the domains 

were less than 4 m and structures could be easily seen and photographed from the road to aid in site set-up.  15 

3 Sampling Strategy 

3.1 Model-Based Design of Sampling Strategy 

 As the LES output represents the best estimate for the ‘truth’ of how a plume evolves in a turbulent environment, a 

useful extension of the LES analysis would be to examine the output as a reference case to understand how ‘sampling’ the 

model environment by taking instantaneous ‘measurements’ of the concentration fields affects emission retrievals. The 20 

turbulent structures that LES can resolve are illustrated in Fig. 4, which contrasts instantaneous plumes and averaged plumes 

in both the horizontal stream-wise (x-y) and vertical cross-wind (y-z) perspective. To optimize sampling there are two 

important variables (1) the number of measurements and (2) the time interval between measurements. Increasing the number 

of measurements is expected to increase the accuracy of the retrieval; however, the time interval may also affect results as 

measurements with short spacing may sample similar coherent plume structures.  25 

Using the LES output, random samples were picked from 1-N samples (N being the total number of available samples 

for a given scenario) with time intervals of 30s, 1 min, 2 min and random. These ‘transects’ were then integrated to replace 

Cobservation in Eq. 2 and the average LES profile was used as CModel to produce an emission rate. As shown in Fig. 5 (a-h) the 

effect of increasing the number of measurements clearly reduces the range of retrievals, but the benefits of adding transects 

slow down around 10 samples beyond which increasing the number of transects reduces the retrieval scatter very slowly. The 30 

5-95% range of observations for percent difference (pd) decreases by 60% at 10 transects, but only decreases by an additional 

10% by extending up to 70 transects. The 5-95% range of observation for relative standard deviation (rsd) follows a similar 
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but less extreme pattern with the range of observations decreasing by 20% up to 10 transects and decreasing by an additional 

15% by extending up to 70 transects. Additionally, retrievals with 30s spacing (c-d) show increased bias as even high numbers 

of samples may measure plume structures that are similar as indicated by the low scatter, but are not very representative of the 

whole simulation. However, the 1 min (e-f), 2 min (g-h) and random (a-b) intervals look very similar indicating a 1 min interval 

can be used as a practical lower limit (this might somewhat depend on turbulence intensity and stability in the atmosphere 5 

however). Notably, the random sample shows an rsd of ~25% even at the maximum number of measurements (N). This 

confirms that there is variability expected simply due to atmospheric variability. Atmospheric variability may have many 

sources; in these simulation variability is attributed to turbulence. However, in a real dynamic environment atmospheric 

variability could also include effects of mean wind flow change and plume meandering, especially in low wind speed 

conditions (Vickers et al., 2008, Mortarini et al., 2016). These results indicate that in order to sample such that the 10 

measurements reflect the actual variability in the atmosphere, sites must be sampled with at least 10 transects with >1 min 

spacing. 

3.2 Field Implementation  

 Field measurements were designed to target neutral stability found in the morning and evening with each sampling 

outing typically lasting four hours. Most sites were sampled 1-3 times (denoted as standard sampling), occasional sites were 15 

sampled with ~10 transects (replicate sampling) and a few sites were sampled with >10 transects as well as a tower (intensive 

sampling). Typically 2 replicate sampling sites were picked per outing to capture atmospheric variability for a given condition. 

The goal of the sampling strategy was to produce 1000 standard sampling sites, 100 replicate sampling sites and 10 intensive 

sampling sites. This was based upon the approximate amount of time to acquire each sample. 

Field campaigns were deployed in the Marcellus shale spanning northeast and southwest Pennsylvania. In the end 20 

940 well pads were sampled with standard sampling, 53 with replicate sampling and 17 sites with intensive sampling. These 

replicate sampling sites were generally chosen at the beginning and end of each sampling period to observe changes in 

variability that may be due to changes in atmospheric conditions. For standard sampling sites with multiple passes, the average 

rsd of emissions was 67% and the average maximum percent difference was 58%. The average rsd of emissions for the replicate 

sampling sites was 77% and the average maximum percent difference was 150%. The rsd ranged from 12% to 260%. These 25 

results are consistent with the LES results shown in Sect. 3.1 predicting small numbers of transects will yield an artificially 

low rsd and more transects are needed to produce an accurate measure of variability. While there is a large range in the rsd 

observed, ~75% had rsd values less than 100%. 
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4 Source Strength Determination 

4.1 Source Strength Determination Strategy 

Comparisons between the IGM calculated emission rates and LES output should be done with care because the LES 

cannot be scaled to different distances and wind angles easily. In addition, the base scenario for the Gaussian approach at all 

standard sites assumes there is only one source at the 1 m well-head location because the well-head is the only geolocated 5 

structure in a public database and is the only structure common at every site. Sites may have varying numbers of well-heads, 

but they are generally very close together (<10 m) so a centralized point is used for sites with multiple well heads.  However, 

the Gaussian can in fact be adjusted to include multiple sources and source heights. In order to ensure that the differences 

between outputs are due to the calculated model diffusion and not differences in model set-up, we compare three scenarios: (i) 

the base scenario is the IGM approach used for all sites that assumes there is a single source at the well-head at 1 m (SS 10 

Gaussian), (ii) the second scenario assumes the sources are other structures on the domain (i.e. storage tanks and processing 

equipment) that are taller and uses a multi-source Gaussian (MS Gaussian) model and (iii) the LES that simulates sources at 

the same locations and heights as the MS Gaussian. A schematic of the source determination strategy is shown in Fig. 7. 

To compare to the LES results, the observations were indexed to coordinates on the 256 by 256 m horizontal LES 

grid. The resulting transects were interpolated within the range of observations to account for grid cells with multiple data 15 

points or missing data points. The LES time series spanning ~30 minutes were averaged to produce a pseudo Gaussian 

distribution excluding a ~5 min warm up time. LES statistics (mean and std. dev. of scalar and wind components) were plotted 

as a function of time to determine the onset of a steady state (Fig. S2). The LES output was scaled according to Eq. 3 where 

M is the mass introduced into the simulation and u
*
 is the tower-observed friction velocity. For some sites the LES generated 

winds did not match observations (due to various potential input error sources such as surface roughness), so an additional 20 

correction factor was applied to the retrieved emissions as shown in Eq. 4. The prime indicates corrected values and the 

corrected wind speed comes from averaged tower observations. The peaks of the interpolated observations were centered to 

align with the peak location of the LES average plume as shown in Fig. 8; LES does not replicate the small changes in wind 

direction that can occur in the real-world (unless they are known and imposed).  The LES scaled concentration at 3 m (the 

mobile lab measurement height) was treated as CModel in Eq. 2 to produce LES derived emission rates. This methodology is 25 

used to calculate the LES emissions shown in Sects. 4.2 and 4.3. 

𝐶𝐿𝐸𝑆
𝑆 =

𝐶𝐿𝐸𝑆

𝑀 𝑢∗
              (3) 

𝑄𝐿𝐸𝑆
′ =

𝑢𝐿𝐸𝑆
′

𝑢𝐿𝐸𝑆
𝑄𝐿𝐸𝑆            (4) 

4.2 Controlled Release 

 The controlled release experiment (Site 5) utilized 3 leak rates: 0.97 kg hr-1, 0.22 kg hr-1 and 0.09 kg hr-1. Due to the 30 

low height of the release, the LES domain was modified to have vertical resolution of 0.2222 m with a total domain height of 
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33.33m.  Boxplots of emission retrievals from three scenarios are shown in Fig. 9 and statistics are summarized in Table 2. 

The two Gaussian retrievals compare using NOAA winds, which is the base scenario for all sites, and using the in-situ 

measured wind. Since the controlled release used one release point, there is only one source at a known height and the SS 

Gaussian approach is used. The agreement increases greatly using the in-situ wind data as NOAA overestimated the winds 

during the latter two release rates.  5 

The Gaussian approach with in-situ measured wind agrees quite well with the release, surprisingly better than the 

LES. This may be due to effects of stability the Gaussian can account for, but were not simulated in the LES where neutral 

conditions were assumed; this will be further discussed in Sect. 5.1. In this case the conditions shifted from slightly unstable 

to neutral during the second release, with the friction velocity (an important scaling parameter for LES) decreasing from 0.21 

m s-1 to 0.10 m s-1. The slightly better performance of the Gaussian method in the experiment suggests that the correction 10 

factors for stability are at least as important an input as the direct calculation of diffusion in LES across a dynamic environment. 

While the LES investigation is useful to investigate sources of error induced by sampling strategy, a controlled release is the 

most direct way to detect sources of bias, which otherwise would not be apparent. In general, the close agreement across a 

range of release rates shows no apparent bias, with the results scattered low and high relative to the release rate. While LES 

can readily account for unstable or stable conditions, this would come at a large computational cost as multiple demanding 15 

simulations would be needed. The results here show that this is in fact not necessary, at least over flat homogeneous terrain, 

as the Gaussian model provides a comparable performance at a very small fraction of the modeling effort. 

The controlled release was also used as an observational constraint to investigate the sampling strategy identified by 

the LES. This was done by randomly selecting an increasing number of transects from each release and comparing the averages. 

The results in Fig. 10 are in excellent agreement with the LES results pattern seen in Fig. 5 where the average converges 20 

beyond 10 transects. This reiterates the importance of the sampling protocol and also shows the range of results possible if 

only a limited amount of transects are used. During each release, even though a constant source is being emitted, a few (1-3) 

transects showed no observed plume whatsoever.  

4.3 Field Sites 

Comparison between means for sites 1-4 are shown in Table 3. Relatively good agreement is found between the LES 25 

emission retrieval and the SS and MS Gaussian approach for Sites 1-4. The range of emission retrievals vary within a factor 

of two with average differences of 44%. Due to the effort to standardize the comparison between all approaches by centering 

and correcting the observations, the difference in emission is entirely due to the difference in the dispersion each model 

produces. The Gaussian models assume stability corrected diffusion coefficients from Briggs (1973) while the LES makes no 

assumptions and allows turbulence to be numerically solved. The LES, however, was only run under neutral stability in this 30 

study. As shown in Fig. 11, the horizontal dispersion generally matches well between the LES and the MS Gaussian, while the 

vertical dispersion exhibits slightly different behavior. In the sites studied the LES predicts peak flux at lower altitudes closer 

to the source and at higher altitudes farther from the sources with the equivalence point around 100 m (additional figures of 
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Gaussian and LES dispersion are shown is Figures S3-S5). The differences are due to the distance scaling in the Briggs (1973) 

model being different from the LES. While there are other analytical models for distance specific dispersion coefficients, the 

Briggs 1973 actually matches the LES profiles better across the range of sites explored here than several other common models 

(Gifford, 1976, Smith, 1968; see Figures. S6-S9). Vertical dispersion is generally more important than the horizontal dispersion 

as integrating across a transect will effectively nullify any differences resulting from horizontal diffusion. However, if a 5 

difference in vertical dispersion exists, this can drastically change the retrieved emission rate. Without observations at multiple 

heights, it is impossible to verify which assumption is correct. In the range of distances investigated in this study (<200 m) the 

overall discrepancy is small.  

5 Uncertainty Analysis and Discussion 

5.1 Other Uncertainty Sources 10 

 For this analysis, we have assumed the source to be constant during the time span of the measurements (typically 1 

hour). This may not be true for all sites and may be a driver of variability. Regardless, we assume that source emission 

variability at this scale should be treated as measurement variability as it is not clear that there is a reason to quantify emission 

variability at scales less than 1 hour. Other sources of uncertainty we have investigated and found to be negligible include 

source location and source height in most cases. While well pads can be a few thousand m2 in area, infrastructure that could 15 

generate leaks is usually clustered such that observed potential sources span a range of 50 m. Source locations were changed 

for Sites 1 and 2 as shown in Table 4 according to the location of potential sources including a wellhead (1), a gas processing 

unit (2) or a storage tank (3) and the resulting emission retrieval were compared. Changing the across-wind location has 

virtually no effect on emission retrieval, while changing the along-wind location can potentially change the emissions. This 

can be investigated theoretically by comparing the expected model sum as a function of distance assuming a 50 m shift in 20 

source location as shown in Fig. S10. This scenario assumes typical conditions observed in this dataset (3 m receptor height, 

1.5 m s-1 wind and neutral stability). Generally, changing the along-wind location of the sources changes the emission retrieval 

by less than 35% when measuring at >100 m downwind. However, at closer distances where the uncertainty in source location 

is on the order of the downwind distance this could be a major source of error. For reference, the median distance between 

observation and sources in this dataset is about 200 m with no sites closer than 30 m and only 5 sites less than 50 m. We also 25 

investigated the sensitivity of source height, which we estimate ranges from 1 m for wellheads to 8 m for some large storage 

tanks, as shown in Fig. S11. The results indicate that source height variation changes the emission retrieval by less than 15%, 

again due to the large distance from the source. 

 Additionally, as shown in Sect. 4.1, inaccurate wind data can be a potential source of error. Because the modeled CH4 

concentration scales with wind in both the Gaussian and LES models, uncertainty in this parameter is necessary to constrain. 30 

In the context of this analysis, we compared the NOAA wind to tower measurements of winds at 18 tower sites. NOAA wind 

speeds differed from the tower data on average by 50%. Given the linear relationship between the inverse of wind speed and 
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Q in the Gaussian equation (Eq. 1), uncertainty in the wind speed should produce the same magnitude uncertainty in the 

emission rate.  

 The final additional source of uncertainty investigated pertains to stability. The stability class determines the 

analytical equation used to derive the diffusion coefficients, thus affecting the emission rate. By again comparing a theoretical 

case, the effect of changing the stability class can be seen in Fig. S12. Making the stability class less stable will decrease the 5 

modeled concentration and consequently increase the emission retrieval while making the stability class more stable will have 

the opposite effect. The magnitude of the difference between consecutive stability classes is relatively consistent, averaging 

40%. 

 Not investigated here, but potentially very important to uncertainty, is the effect of terrain including both non-uniform 

slopes and structures such as trees. In this analysis we have intentionally sampled sites that were determined to be relatively 10 

flat and open. All of the sites modelled in this study follow this criteria, even though not every site in our sample is as simple. 

The geometric mean of the absolute terrain slope for all of our ~1000 sampled sites was 3% and ~60% of the sites sampled 

had an absolute terrain slope of less than 5%. Nevertheless, some sites did contain more complex topography that could cause 

drastically different dispersion parameters. Such sites would need to be analyzed on a case by case basis as dispersion over 

complex topography is usually not generalizable because every site is unique (e.g. the inverse Gaussian modeling approach 15 

might work very well at one site but poorly at another). This analysis would be non-trivial and requires high resolution 

topography data, surface heat flux fields and many other inputs for accurate modelling. Another possible pathway to fully 

investigate the effects of terrain is to investigate correlation between site emissions determined using Gaussian models and 

terrain slope. From these analyses one can determine screening criteria to preserve data quality and examine the skill of 

Gaussian models over complex terrain in general. This is the subject of forthcoming work using the larger dataset and not 20 

discussed here. 

5.2 Total Uncertainty Estimate 

 The sources for uncertainty and bias in the Gaussian measurements discussed in this analysis are summarized in Table 

5. These include the uncertainty in the Gaussian diffusion constant by comparing to LES calculated diffusion, uncertainty due 

to source location and height and uncertainty due to wind speed and stability class. In addition, the LES was used to observe 25 

bias in the Gaussian derived concentration distributions and the controlled release was used to evaluate bias in both the 

Gaussian and LES results. Finally, the LES was used to determine the optimum sampling pattern to constrain actual 

atmospheric variability. The largest contributor to total uncertainty is atmospheric variability. As atmospheric variability is 

impossible to separate from other sources of uncertainty, such as wind speed, it is not surprising that it is the largest source of 

uncertainty. As described in Sect. 3.1, the LES derived atmospheric variability (defined as the standard deviation of emissions 30 

retrieved) is expected to be ~25%, considerably less than the standard deviation observed directly since the LES can capture 

effect of turbulence, but not due to changes in the mean flow and meandering plumes which can contribute significantly to 

overall atmospheric variability (Vickers, Mahrt and Belusic, 2008, Mortarini et al., 2016). This is also the practical limit of 
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uncertainty for this method since other sources of uncertainty could be mitigated by better on-site measurements and source 

location detection, but some atmospheric variability is impossible to reduce. While the higher observed atmospheric variability 

may be partially explained by far more complex real world conditions leading to higher standard deviations, this also 

emphasizes the possibility that other sources of uncertainty are contained in this realization of atmospheric variability. For 

instance most sites, while relatively flat, still have some inhomogeneous terrain that can influence and deflect wind or lead to 5 

increased turbulence. To combine the remaining sources of error a Monte Carlo simulation of errors through the Gaussian 

equation was performed. This approach was determined to be the most appropriate as opposed to adding in quadrature as 

uncertainties may not be normally distributed and emissions are constrained to be above zero, causing a skew to the emission 

retrievals. The combined effects produce a skewed distribution with a standard deviation of 100%. As discussed in Sect. 5.1, 

this analysis focuses on relatively flat, simple sites and is not intended to be generalized to extremely complex sites. We caution 10 

that the plume diffusion uncertainty is therefore a minimum expected value and could be a major source of uncertainty for 

very complex sites not investigated here. 

5.3 Uncertainty through Different Averaging Approaches 

 One additional consideration is the method used to average transects to derive an emission estimate. We have chosen 

to average the emissions deduced from individual transects. Alternatively, the multiple transects themselves could be averaged 15 

to produce a single emission estimate. The latter method should theoretically be more Gaussian in shape and more comparable 

to the model, but requires enough transects to produce a Gaussian profile and may not be appropriate for sites with a limited 

number of transects. However, we analyzed a representative site as a comparison to provide information as to what, if any, 

difference in retrieved emissions may be expected with this method. As an example, Site 3 was chosen to average the multiple 

transects previously shown in Fig. 2. The averaged plume, shown in Fig. 12, was then used to calculate the emission rate using 20 

the IGM approach, also using the model averaged across all transects. The averaged transect emission rate is 1.2 kg hr-1, 

extremely close to the 1.1 kg hr-1 average of all single transects. The single transects range from passes with no plume detected 

to a maximum of 2.6 kg hr-1. 

 Averaging multiple transects has the benefit of reducing the influence of atmospheric variability on the uncertainty 

of the measurement; however, longer measurement time is still required due to the need for many transects. Each approach, 25 

averaging emissions vs. averaging transects, produces similar final results indicating that averaging method is not a driver of 

emission uncertainty. Either approach may be acceptable given the constraints and intent of a sampling session. The variability 

of single transects of emissions may be a useful tool for data quality control while averaged transects may be useful in 

additional analysis intent on pinpointing the location of an unknown source. 

5.4 Advantages and Disadvantages 30 

 Of the approaches compared in this analysis, the LES results require far more computational and processing time. 

Though inputs can be estimated from other sources (i.e. NOAA), we chose to measure meteorological variables directly which 
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contributed to significantly longer measurement time. While this should be considered best practice when producing 

computationally expensive LES outputs, there are no inherent differences between inputs needed for LES and Gaussian 

approaches and the Gaussian approach also benefits from on-site measurements making in-field measurement time 

theoretically similar. In practice, the additional set-up time for meteorological instrumentation can increase total measurement 

time for sites intended for LES to >1 hour. Table 6 summarizes main advantages and disadvantages for each technique. The 5 

main advantage of the LES is the ability to directly calculate the plume diffusion rather than rely on simplified models. 

However, the LES simulations shown here have all been initialized for neutral conditions, which is the stability class we 

targeted during sampling. This is a relatively transient atmospheric phase typically only occurring in the morning and evening 

around sunrise and sunset and generally other stability classes are encountered. The Gaussian method enables easy corrections 

for different stabilities allowing quick processing of data collected in these regimes. While LES can be programmed with 10 

different stabilities, the additional computational cost is great and the system energy change must be known which introduces 

another source of uncertainty as actual heat fluxes may vary over the domain of interest and single point measurements may 

not be accurate. For these reasons, LES alone would not be the recommended method of calculating emission rates based on 

our study. Likewise, the single transect method, though fast, has many sources of uncertainty. Hence, the combination of all 

of these approaches described in Sect. 3 is expected to maximize sampling efficiency while minimizing uncertainty.  15 

6 Comparison to Previous Uncertainty Estimates 

 Overall, we find LES to be a useful tool to examine Gaussian sampling strategy and sources of uncertainty for mobile 

laboratory measurements. Subsampling the LES output generates an optimum sampling pattern of at least 10 transects per site 

to obtain reliable statistics of measurement uncertainty due to atmospheric variability, which is the largest source of 

uncertainty. When sampling at distances greater than 150 m downwind of sites, the uncertainty due to source location and 20 

height are generally less than 20% (for cases where source location is known within 50 m and source height is known within 

10 m). Using the LES and a controlled release, we confirm that the Gaussian model performs well and no sources of bias using 

our approach are observable. LES is therefore not required for studies where source strength calculation is the main goal. The 

emission retrievals generally fall within a range of two. From this we use Monte Carlo analysis to extrapolate that the 95% 

confidence interval for sites with standard sampling (n=2) ranges from 0.05x–6.0x where x is the emission rate. Using the 25 

same approach, sites that had multiple passes and wind measurements (replicate/intensive) can be further constrained to 0.07x 

–2.5x. This uncertainty estimate is higher than Lan et al. (2015) who reported 0.5x–1.5x at the 95% confidence interval. Their 

study is identical to the theoretical lower limit of uncertainty we calculate by assuming only the LES predicted atmospheric 

variability of 25%. It should be noted that Lan et al. (2015) did incorporate some averaging over a time frame of >10 min to 

their measurements which, as discussed in Section 5.3, can also decrease uncertainty. However, this would not mitigate all 30 

other sources of error previously discussed.  
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In addition, our standard sampling uncertainty range is greater than other Gaussian approaches with controlled 

releases which reported 0.28(x) – 3.6(x) and 0.334(x) – 3.34(x) (Rella et al., 2015, Yacovitch et al., 2015); the uncertainty 

range of the multi-transect sites studies here was similar in magnitude. However, their analysis did not account for additional 

sources of uncertainty (source location, stability, wind speed) which can result in uncertainties larger than the reported values. 

As described in Sect. 3.2, the observed atmospheric variability can range from 10-200% meaning that in-situ observations of 5 

variability and post screening out conditions with unacceptably high variability may be a viable way to reduce uncertainty. 

Other factors such as wind speed and stability can have a strong effect and can be quantified to reduce uncertainty.  

7 Recommendations 

While the uncertainty derived for mobile Gaussian techniques is large compared to many other techniques discussed 

in Sect. 1, it is low enough to reliably separate ‘normal emissions’ from ‘extreme emissions’ that are orders of magnitude 10 

larger. Many emission sources exhibit lognormal distributions where this condition is met, making sampling a reliable way to 

identify extreme emission sites. However, longer sampling time, reliable mobile wind sampling and visualization of plume 

distributions are needed to feasibly constrain this method to under 50% for routine measurements. In summary, to facilitate 

more constrained uncertainty from other mobile platform based Gaussian emission estimates we recommend the following: 

1. Sites should be isolated to reduce contamination from other sources and be accessible from thoroughfares at least 100 15 

m away. 

2. On-site wind measurement should be collected whenever possible. 

3. Additional data be collected such as photographs (used here) or IR imagery to precisely locate the sources whenever 

possible. 

4. Ideally, all sites should use ≥ 10 sampling transects to reliably measure atmospheric variability. 20 

5. For experiments where sampling frequency is at a premium, at least 1 site per sampling outing should be repeated 

with ≥ 10 sampling transects to reliably measure atmospheric variability. 

6. Uncertainty analysis should be a systematic part of Gaussian sampling design. 

7. In the absence of other experiments to study measurement uncertainty (controlled releases), the repeat measurements 

may be a suitable approximation for the minimum expected uncertainty. 25 

8. While the strategy described in the study was developed for well pads, the findings are generalizable to other ‘point-

like’ sources (<2,500 m2 and >100 m downwind) with simple terrain. 
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Tables 

Table 1. Comparison of CH4 emission measurement techniques and reported uncertainties. 

Technique Referenced Study Reference Uncertainty Range* 

Ground-Based                  

Thermal Imaging 
Gålfalk et al., 2016 3-15% 

Aircraft Remote Sensing 
Kuai et al., 2016, Frankenberg et al., 2016,  

Thorpe et al., 2016 
5-20% 

Satellite Remote Sensing Kort et al., 2014 15% 

Chamber Sampling Allen et al., 2013 and 2014, Kang et al., 2014 20-30% 

Ground-Based                    

Tracer Correlation 

Lamb et al., 2015, Roscioli et al., 2015,  

Subrumanian et al., 2015, Zimmerle et al., 2015,  

Omara et al., 2016 

20-50% 

Aircraft/UAV                       

Mass Balance 

Karion et al., 2013 and 2015, Peischl et al., 2013, 2015 and 

2016, Caulton et al., 2014, Pétron et al., 2014,  

Lavoie et al., 2015, Nathan et al., 2015, Ren et al., 2017 

20-75% 

Ground-Based              

Stationary Dispersion 
Brantley et al., 2014, Foster-Wittig et al., 2015 25-60% 

Tall Tower Monitoring Pétron et al., 2012 50-100% 

Ground-Based                   

Mobile Dispersion 
Lan et al., 2015, Rella et al., 2015, Yacovitch et al., 2015 50-350% 

* Uncertainty range reflects author reported uncertainty on emission numbers, not necessarily measurement uncertainty. Some 

author’s specify a 95% confidence interval, others use 1 or 2 standard deviations and others compute upper and lower bounds. 
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Table 2. Summary of mean emissions from three scenarios for the controlled release (± 1σ). 

Scenario Release 1 (kg hr-1) Release 2 (kg hr-1) Release 3 (kg hr-1) 

Release Rate 0.97 0.22 0.09 

No. of Transects 19 10 13 

Gaussian w/ NOAA winds 0.97 ± 0.76 0.79 ± 0.40 0.35 ± 0.15 

Gaussian w/ tower winds 0.72 ± 0.54 0.23 ± 0.12 0.10 ± 0.04 

LES 0.94 ± 0.76 0.44 ± 0.20 0.22 ± 0.11 
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Table 3. Comparison of mean emission rates using three scenario from four sites (± 1σ). 

 

Scenario Site 1 (kg hr-1) Site 2 (kg hr-1) Site 3 (kg hr-1) Site 4 (kg hr-1) 

SS Gaussian 1.0 ± 1.4 0.19 ± 0.14 1.08 ± 0.76 0.19 ± 0.26 

MS Gaussian 2.2 ± 4.7 0.24 ± 0.31 1.8 ± 1.2 0.29 ± 0.27 

LES 1.5 ± 2.2 0.18 ± 0.15 0.76 ± 0.50 0.18 ± 0.16 
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Table 4. Comparison of emissions for different source location scenarios. 

Site Scenario 
Emission 

(kg hr-1) 

Change in x 

distance (m) 

Change in y 

distance (m) 

Change in z 

distance (m) 

Difference 

(%) 

1 

1 0.54 -- -- -- -- 

2 1.33 40 0 1 150 

3 0.47 0 15 7 13 

2 

1 0.14 -- -- -- -- 

2 0.15 58 49 1 7.5 

3 0.14 72 0 7 5 
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Table 5. Sources and magnitude of uncertainty. 

Uncertainty Source Notes Expected Uncertainty 

Atmospheric Variability Requires ≥10 transect to quantify, not independent from 

other uncertainty sources 
77% 

Instrumental Uncertainty LI 7700 stated precision of 5 ppb 1% 

Plume Turbulent Diffusion Potentially source of uncertainty and bias 25% 

Source Location Combined x, y and z uncertainty low at distance >150m 15% 

Stability Potential 1 stability class discrepancy 40% 

Wind Speed Uncertainty scales linearly 50% 

Total  100% 
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Table 6. Summary of advantages and disadvantages of each technique. 

 
Measurement Time Processing Time Sources of Uncertainty 

Single Transect Gaussian Short (<10 min) Short (~few minutes) 
Many sources, atmospheric 

variability unconstrained 

Multi-Transect Gaussian Moderate (15-30 min) Short (~few minutes) 
Atmospheric variability 

constrained, diffusion 

unconstrained 

Multi-Transect LES 
Moderate to Long  

(15 min-1 hr) 
Very Long (several days) 

Atmospheric variability 

constrained, diffusion 

constrained 
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Figures 

 

Figure 1. (a) The Princeton atmospheric chemistry experiment (PACE), (b) close-up of PACE roof rack with 

instrumentation and (c) mobile tower platform.  5 
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Figure 2. (a) Observations of CH4 at a site showing multiple downwind transects and the local crosswind (y) distance. 

(b) Gaussian outputs along the same downwind transects. 
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Figure 3. Site layouts showing emitting structures in yellow and the road in magenta for (a) Site 1, (b) Site 2, (c) Site 3, 

(d) Site 4 and (e) Site 5. For visibility the roads are shown thicker than reality. 
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Figure 4. Comparison of instantaneous (a/c) and 15 min averaged (b/d) plume for Site 3. Panels a and b show scalar 

with arbitrary units (A.U.) in a x-y cross section at an altitude of 15 m and panels c and d show a x-z cross section at a 

225 m downwind distance. The release locations are shown with a white marker (+). 
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Figure 5. The percent difference (a,b,e,f) between emission retrieval and known simulation emission rate and rsd 

(c,d,g,h) of the emission retrieval using various amounts of transects and random (a,c), 30 second (b,d), 1 minute (e,g) 

or 2 minute (f,h) transect spacing. Box and whiskers plots show the 50% percentile (red), 25 and 75% percentile (blue) 

and 10 and 90% percentile (black). The recommended 10 transect criteria is shown in green. 5 
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Figure 6. Finalized sampling strategy employed in this study showing actual measurements with increasing complexity 

and decreasing sample size. 
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Figure 7. Finalized source strength determination strategy employed in this study showing models with increasing 

complexity and decreasing uncertainty. In this schematic u
*
 is friction velocity and zo is terrain roughness length. 
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Figure 8. (a) Site 3 raw observations as indexed to the LES domain and (b) after they have been aligned with the peak 

of the LES plume. 
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Figure 9. Results from three controlled release experiments for (a) the Gaussian approach using NOAA winds, (b) the 

Gaussian approach using tower measured winds and (c) from the LES. Box and whiskers plots show the 50% percentile 

(red), 25 and 75% percentile (blue) and minimum and maximum values (black). The mean is shown in magenta, green 

dots represent individual measurements and the black star is the actual release rate. 5 
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Figure 10. A comparison of the convergence of the plume rate by averaging randomly selected transects for (a) the 0.97 

kg hr-1 release rate, (b) the 0.22 kg hr-1 release rate and (c) the 0.09 kg hr-1 release rate. The actual release rate is shown 

as a dashed black line. Box and whiskers plots show the 50% percentile (red), 25 and 75% percentile (blue) and 

minimum and maximum values (black). Outliers are shown in red. 5 
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Figure 11. Comparison of three scenarios for Site 3 showing images of (a) single source Gaussian, (b) multi-source 

Gaussian and (c) averaged LES. The comparison of vertical distributions of (d) concentrations and (e) fluxes and of the 

horizontal distributions of (f) concentrations and (g) fluxes are also shown. 
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Figure 12. (a) Observations of CH4 at Site 3 showing multiple downwind transects in gray and the averaged transect in 

black. (b) Gaussian outputs in gray along the same downwind transects and the averaged profile in black. 
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