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Abstract. This paper illustrates measurements carried out by the Raman lidar BASIL in the frame of the HD(CP)2 

Observational Prototype Experiment (HOPE), revealing the presence of a clear-air dark band phenomenon (i.e. a minimum 

in lidar backscatter echoes) in the upper portion of the convective boundary layer. The phenomenon is clearly distinguishable 10 

in the lidar backscatter echoes at 532 and 1064 nm, as well as in the particle depolarization data. This phenomenon is 

attributed to the presence of lignite aerosol particles advected from the surrounding open pit mines in the vicinity of the 

measuring site. The paper provides evidence of the phenomenon and illustrates possible interpretations for its occurrence. 

1 Introduction 

In the frame of the HD(CP)2 Observational Prototype Experiment (HOPE), the Raman lidar system BASIL was deployed 15 

and operated over a two-month period (April-May 2013)  in the Atmospheric Supersite JOYCE, located within the Jülich 

Research Centre. This site is approximately 3 km West of the Tagebau-Hambach open-pit lignite mine, which represents the 

largest operational lignite mine on Earth, with a maximum depth of ~ 200 m (Figure 1). The dump of this mine forms a large 

artificial hill, called Sophienhöhe, which reaches 302 m and is partially re-cultivated with forest. A second open-pit lignite 

mine, named Tagebau Inden,  is located approximately 3 km South-West of the Supersite.  20 

The Hambach and Inden mines lie in the sectors 29-114° (red shaded area in figure 1) and 180-240° (blue shaded area in 

figure 1), respectively, relative to the location of the Raman lidar. When wind blows from these directions, lignite particles 

from the two open-pit mines or the surrounding hill are lifted up from the ground and transported over the lidar site, with 

appreciable effects on the measurements. 

Evidence of this particle transportation was found in lidar elastic backscatter echoes in a variety of case studies during 25 

HOPE, with the appearance of a specific odd feature in the upper portion of the convective boundary layer (CBL). 

Specifically, a minimum in lidar backscatter echoes at 532 and 1064 nm, with a backscatter reduction of approximately 10 % 

is observed. This feature is found to have a vertical extent of approximately 100 m and persist over a period of several hours, 

with an alternation of intensifications and attenuations of the phenomenon. Similar features with a comparable temporal 

duration and backscatter reduction had been reported by Sassen and Chen (1995) in the presence of light precipitation 30 



events; this phenomenon, referred to as lidar dark band, was demonstrated to be ascribable to changes in scattering 

properties of precipitating particles taking place during the snowflake-to-raindrop transition in the proximity of the melting 

level (Sassen et al., 2005; Demoz et al., 2000; Di Girolamo et al., 2003; Di Girolamo et al., 2012b).  

Instead, the phenomenon reported in the present research effort appears in clear-air conditions and in the presence of strong 

convective activity within the boundary layer: we will refer to it in the following as the clear-air dark band phenomenon or 5 

the convective dark band phenomenon. In the following of this paper we provide experimental evidence of this phenomenon 

and a possible physical interpretation for its occurrence. 

The outline of the paper is the following. Section 2 provides a description of the experimental set-up and a brief overview of 

the HOPE field campaign. Section 3 illustrates the measurements collected for a selected case study, providing remarks on 

the meteorological conditions occurring during these periods. Section 4 illustrates the hygroscopic and scattering properties 10 

of the sounded particles, while section 5 formulates possible hypotheses for the interpretation of the observed phenomena. 

Finally, section 6 summarizes all results and provides some indications for possible future measurements and analysis. 

2 BASIL and the HOPE field campaign 

The University of Basilicata Raman lidar system (BASIL) is a ground-based Raman lidar hosted in a transportable sea-

tainer. BASIL performs high-resolution and accurate measurements of the vertical profiles of atmospheric temperature and 15 

water vapour, both in the daytime and at night-time, exploiting both the rotational and vibrational Raman lidar techniques in 

the UV (Di Girolamo et al., 2004, 2006, 2009a, 2016, Bhawar et al., 2011). Besides temperature and water vapour, BASIL 

also measures the vertical profiles of particle backscatter at 354.7, 532 and 1064 nm, particle extinction and depolarization at 

354.7 and 532 nm (Griaznov et al., 2007; Di Girolamo et al., 2009b, 2012a, b). BASIL makes use of a Nd:YAG laser source, 

equipped with second and third harmonic generation crystals, which emits pulses at 354.7, 532 and 1064 nm. The receiver is 20 

built around a large aperture Newtonian telescope (primary mirror diameter: 0.45 m, focal length: 2.1 m) and two small-

aperture telescopes (50mm diameter lenses). The large aperture receiver incorporates eight channels for the detection of eight 

different signals (primarily Raman lidar signals), while the two small-aperture receivers include another three measurement 

channels for the detection of additional lidar signals. These eleven detected signals allow determining the atmospheric 

variables listed above, plus additional ancillary parameters as the atmospheric boundary layer depth and the geometric (cloud 25 

base and top height, the latter in case of optically thin clouds) and optical (cloud optical depth for optically thin clouds) 

properties of clouds. More details on the experimental set-up of the system are provided in Di Girolamo et al. (2009a, 2017). 

In this paper we illustrate measurements carried out in the frame of the High-Definition Clouds and Precipitation for 

advancing Climate Prediction (HD(CP)2) Observational Prototype Experiment (HOPE, Macke et al., 2017). For the 

purposes of HOPE, BASIL was deployed in the Supersite JOYCE, located within the Jülich Research Centre (Central 30 

Germany, Lat.: 50°54’ N; Long.: 6°24’ E, Elev. 105 m). The system operated between 25 March and 31 May 2013, 

collecting more than 430 h of measurements distributed over 44 days and 18 Intensive Operation Periods (IOPs). 



3 Results 

The weather at the lidar site in Jülich on 18 April 2013 was characterized by the presence of clear sky conditions in the 

morning until 06 UTC and by the passage of a cold front shortly afterwards. The passage of the cold front was followed by a 

circulation change from a south-westerly to west/north-westly marine flow, with the sky clearing up in the late morning and 

the onset of a strong convective activity. Boundary layer clouds were found to form in the late morning and early afternoon, 5 

while broken cirrus clouds were observed throughout the day. 

Figure 2 illustrates the time–height cross-section of the particle backscattering coefficient at 1064 nm, β1064, as measured by 

BASIL (upper panel), and the vertical wind speed, as measured by the University of Cologne wind lidar (lower panel), in the 

time interval 12:00-13:00 UTC on 18 April 2013. For the purpose of these measurements, the two lidars were located within 

a distance of ~ 80 m. The upper panel of the figure clearly reveals the presence of a significant aerosol loading within the 10 

boundary layer, which is tracing the presence of a well-mixed and quasi-stationary CBL at this time of the day, extending up 

to approximately 2000 m. The figure also reveals the presence of alternating updrafts and downdrafts. The largest variability 

of β1064 is observed in the interfacial layer, as a result of the penetration of aerosol-rich air rising from the ground and the 

entrainment of aerosol-poor air sinking from the free troposphere. 

A persistent minimum in lidar backscatter is observed around 1200 m (black dashed line), with alternating intensity 15 

fluctuations. This minimum persists albeit the clear presence of up-drafts (orange eddies, with positive vertical wind speed 

values) and down-drafts (blue eddies, with negative vertical wind speed values), and thus cannot be related to an aerosol 

layered structure in the mixing layer. Note that the backscatter minimum occurs preferably during up-drafts, but not during 

down-drafts. This behavior is clearly highlighted in figure 2, where the black dashed lines indicating the lidar backscatter 

minima only appear in temporal coincidence with the vigorous updrafts, which are testified by the positive vertical speed 20 

values (up to 2-3 m s-1) measured by the wind lidar, but do not appear in coincidence with the downdrafts (negative vertical 

speed values down to -2-3 m s-1). The presence of a persistent minimum in lidar backscatter at 1200 m, preferably during up-

drafts, is also well visible in the particle backscattering coefficient data at 532 nm (not shown here). While we are 

concentrating on the time interval 12:00-13:00 UTC on 18 April 2013, additional evidence of this phenomenon was observed 

earlier and later in the day (i.e. 13:25-13:40, 13:50-14:05, 14:15-14:25, 14:35-15:00 UTC). The clear-air dark band 25 

phenomenon was also visible on other days (i.e. 20 April 2013) during HOPE, when the wind was blowing from directions 

overpassing the Hambach and Inden mines. 

Figure 3 illustrates the vertical profile of β1064 for the time interval 12:56:41-13:00:45 UTC on 18 April 2013 (4 min average, 

green line), together with the vertical profiles of temperature, relative humidity (RH) and wind direction and speed, as 

measured by the radiosonde launched at 13:00 UTC from the near-by station of Hambach (4 km E-SE). The clear-air dark 30 

band is found to extend from 1150 to 1275 m, with a vertical extension of 125 m and a minimum in particle backscattering at 

1225 m (backscatter reduction is 8 %, corresponding to 0.4 dB). This band takes place few hundred meters below both the 

Lifting Condensation Level (LCL, at 1725 m or 814 mbar) and the freezing level (at 1630 m or 823.2 mbar). The figure 

reveals that wind is blowing from directions in the interval from 265° (at surface) to 232°. More specifically, the particle 



backscattering reduction is located in the same height region (1125-1450 m) where wind is found to blow from directions in 

the interval 232-240º, i.e. from the directions where the Tagebau Inden open-pit lignite mine is located. In general, CBL 

wind direction measurements by radiosondes may be difficult to interpret as they may reflect rotations taking place within 

the convective plumes. However, wind direction values (236-242°) similar to those measured by the radiosonde are also 

present in the same height interval in the 1 h (12:00-13:00 UTC) average wind direction profile measured by the wind lidar 5 

(figure 4), with values throughout the whole profile from 270° (at surface) to 230° (at 1600 m). 

Figure 3 also reveals that the air at this height is characterized by RH values in the range 60-62 %. Lignite particles advected 

by the wind to the lidar site are captured and ingested within the updrafts and downdrafts associated with the intensive 

convective activity present at the lidar site. As a result of the adiabatic cooling associated with the uplift, air-parcels undergo 

a sudden RH increase from values in the range 60-62 % (environmental RH values at the base of the dark band) to values in 10 

the range 75-80 % (these latter being the values reached within the lifting air-parcel assuming an ideal adiabatic cooling with 

no air entrainment into the convective plumes or external air ingestion within the lifting air-parcel). This sudden increase of 

RH has important effects on the size growth of the uplifted lignite aerosols. 

Figure 5 illustrates the time–height cross-section of the particle depolarization ratio at 532 nm, 532, as measured by BASIL 

in the time interval 12:00-13:00 UTC on 18 April 2013, i.e. the same time interval considered in figure 2. Particle 15 

depolarization ratio, defined as the power ratio of the cross-polarized to the co-polarized components of the particle 

backscattering coefficient, provides an indication of the degree of asphericity of sounded particles. Particle depolarization 

depends not only on particles’ shape, but also on their size and refractive index (among other, Burton et al., 2015). Water-

coated aerosols, wet haze, fog, cloud droplets, and small raindrops can be assumed to be almost spherical and are 

characterized by very small values of 532, typically not exceeding 0.03. Low depolarizing particles, usually smoke or urban 20 

aerosol, have depolarization ratios between 0.03 and 0.1 (e.g. Burton et al., 2012), while high depolarizing particles, as 

desert or volcanic dust, have depolarization ratios varying between 0.25 and 0.35 (among others, Mona et al., 2012). 

A proper calibration of particle depolarization measurements requires accurate measurements of the cross- and co-polarized 

components of the particle backscattering coefficient. However, accurate measurements of these quantities may be difficult 

to obtain, often as a result of the depolarizing properties of different optical devices included in the receiver (Freudenthaler, 25 

2016). This translates into a non-negligible uncertainty affecting particle depolarization measurements, which includes both 

a systematic component (bias) and a random component (statistical error). For the present lidar system, these two 

components were estimated to be 10 and 20 %, respectively (Di Girolamo et al., 2012a). 

Figure 5 reveals a decrease in particle depolarization at the same height and time intervals of the dark band. More 

specifically, 532 decreases from values of  0.05-0.07 below the dark band to values of 0.02-0.03 within and above the dark 30 

band. A decrease of 532 within and above the dark band is compatible with the conjectured size growth of the uplifted dry 

lignite particles, initially having a more irregular shape, and then getting a more regular spherical shape as a result of the 

water uptake. Additionally, as previously observed for 1064, the decrease of 532 occurs during up-drafts, but not during 



down-drafts, as in fact during these latter values of 532 are in the range 0.02-0.04 both below and within the dark band. 

However, both below and within the dark band, values of 532 are rather low, which is typical of aerosols including a large 

portion of carbonaceous species as those resulting from fossil fuel combustion, having a rather spherical shape (Dieudonné et 

al., 2017; Müller et al., 2007). Particle depolarization ratio measurements, while providing some information on particle 

shape,  may also be used for aerosol typing and mass concentration studies (among others, Petzold, 2011; Burton et al., 5 

2012). 

The presence of the clear-air dark band phenomenon preferably during up-drafts is well documented also in figure 6, 

illustrating the simultaneous vertical profiles of β1064, 532 and RH as measured by BASIL, and the wind direction and 

vertical wind speed as measured by the wind lidar, for a number of consecutive up-drafts/down-drafts time intervals. Sharp 

lidar backscatter minima are only observed around 1200 m in temporal coincidence with positive vertical speed values 10 

(panels a, c, e, g), while slowly variable backscatter values are observed at these heights in temporal coincidence with 

negative vertical speed values (panels b, d, f, h). Wind direction values in the time intervals and vertical regions 

characterized by the presence of backscatter minima are very similar to those observed in these vertical regions  during the 

downdraft periods. This observation supports the hypothesis that the observed backscatter minima are not caused by the 

presence and sounding of different types of particles which might originate from different aerosol sources, as in fact sounded 15 

air masses are coming from the same direction both during updrafts and downdrafts. However, it is to be specified that wind 

direction measurements by Doppler wind lidar require a minimum integration time of 5 minutes, as in fact a number of off-

zenith measurements are needed to determine the horizontal wind component. This implies that a perfect time matching 

between BASIL measurements of β1064 and RH and wind lidar measurements of wind direction was not possible in figure 6, 

as in fact the integration time for BASIL measurements was taken coincident (within a of 10 sec, which is the maximum 20 

time resolution for BASIL measurements) with the duration of the updrafts and downdrafts, typically lasting 1-2 minutes, 

while the 5 min-integration time wind direction measurements may superimpose to consecutive updrafts/downdrafts. 

Additionally, the approach use to determine wind directions by Doppler wind lidar measurements is affected by a large 

uncertainty (typically around 25 degrees in the vertical regions characterized by the presence of backscatter minima). 

Similar considerations apply for RH measurements. Accounting for the error bar affecting these measurements, RH values 25 

observed by BASIL in the altitude region where backscatter minima take place have very similar values sounded during the 

updraft and downdrafts, which would support the hypothesis of the presence of a reversal (evaporation) process in the 

downdrafts, which instead is not observed. It is to be pointed out that vertical profiles of RH are obtained from water vapour 

mixing ratio and temperature profile measurements by BASIL, which are based on the application of the vibrational and 

rotational Raman lidar technique, respectively. Both techniques rely on Raman backscatter phenomena characterized by 30 

cross-sections which are several orders of magnitude smaller than the elastic backscatter cross-section. This makes the water 

vapour mixing ratio and temperature measurements, and consequently RH measurements, very difficult to  perform, 

especially in daytime around noon, as is the  case for the measurements illustrated in this paper, as a result of the large solar 

irradiance affecting the measurements during this portion of the day. This translates into a large statistical uncertainty 



affecting RH measurements, with a random error of 4-8 % (error bars in figure 6) in the altitude region (~ 1200 m) where the 

particle backscatter minima are observed. Clear-air dark bands were mostly observed in the absence of a cloud topped CBL. 

However, few clouds were observed for this specific case study in the upper portion of the CBL at 12:53-13:00 UTC 

(orange-brown features in the upper panel of figure 2 and strong backscattering enhancement observed above 1600 m in 

figure 3). The occurrence of these clouds is discussed in more detail in the final portion of section 4. 5 

4 Hygroscopic and scattering behavior of lignite particles  

Aerosol particles can be classified according to their affinity for water as hygroscopic, neutral or hydrophobic. The 

characterization of particle hygroscopicity is of primary importance in climate monitoring and prediction. Model studies 

have demonstrated that RH has a critical influence on aerosol climate forcing (Pilinis et al., 1995), with hygroscopic growth 

at large RH values having important implications in terms of aerosol direct effect (Wulfmeyer and Feingold, 2000). 10 

Lignite, often referred to as brown coal, is a combustible sedimentary rock formed from naturally compressed peat, with a 

carbon content around 60-70 %. The high moisture content of lignite (approximately 50 - 60%) is an undesirable inert 

component, which significantly reduces its calorific value. Consequently, when employed in conventional power plants, a 

considerable portion of lignite's energy content is typically required prior to combustion to evaporate this high portion of 

water. For this reason, following the mining process, raw lignite usually undergoes effective drying processes. This is indeed 15 

the case for the two open-pit lignite mines of Tagebau-Hambach and Tagebau Inden in the proximity of the lidar station, 

where a drying process based on the pulverization of the lignite particles is applied. 

Dried lignite particles produced in open pit lignite mines have a very marked hygroscopic behavior (Schobert, 1995; 

Krawczykowska, and Marciniak-Kowalska, 2012) and, as a result of this behavior, effectively absorb moisture from the 

atmosphere. Measurements of the particle size distribution of lignite particles escaped from heavy industrialized areas 20 

(mining and power stations operations) in the form of fly ash or fugitive dust have been reported by several authors (among 

others, Triantafyllou et al., 2006; Civiš, M., and Jan Hovorka, J., 2010). Specifically, Triantafyllou et al. (2006) were able to 

measure the particle size distribution of fly ash injected into the atmosphere from elevated stacks in power stations, 

identifying a prominent particle mode at ~ 8 μm, with approximately 80% of the particles smaller than 10 μm. Civiš and 

Hovorka (2010) reported size distribution measurements for brown coal with an average particle size of 1.84 μm. All these 25 

authors revealed a limited degree of poly-dispersion of atmospheric lignite particles. When considering a log-normal size 

distribution, the degree of poly-dispersion or width of the particle size distribution is expressed in terms of the percentage 

standard deviation of the logarithm of the distribution, . Narrow size distributions for brown coal particles, with values of 

in the interval 5-10 %, have been reported by a variety of authors (Mujuru et al., 2009; Civiš and Hovorka, 2010, Wang 

and Tichenor, 1981). 30 

The solution effect typically dominates hygroscopic particles’ growth when the radius is small (smaller than the critical 

radius rc), which results in small solution droplets being in equilibrium with water vapour at RH values less than 100 % (Yau 



and Rogers, 1989). At this stage, small increases in RH determine particles’ size growth until equilibrium is newly reached. 

This mechanism is possibly responsible for the lignite particle growth below the LCL, ultimately leading to the appearance 

of a minimum in lidar backscatter echoes (i.e. the above mentioned clear-air dark band phenomenon). The increase in 

particles’ radius associated with the relative humidity change experienced by the adiabatically uplifted air-parcel can be 

estimated based on the application of the Köhler equation. When RH values are smaller than 100 %, the Köhler equation is 5 

dominated by the solution term, which depends on the mass and molecular weight of the solute species and the so called 

van’t Hoff factor. Based on literature values of these quantities, the above specified increase of RH from 60-62 to 75-80 % 

would result in a particle size growth in radius by 10-20 %. In this study, we are considering an initial size for the dry lignite 

particles of 1.84 and 8 μm, as reported by Civiš and Hovorka (2010) and Triantafyllou et al. (2006), respectively. 

Scattering properties of lignite particles have been simulated based on the application of a light scattering code for spheres 10 

based on Mie theory (http://philiplaven.com/mieplot.htm). In this respect it is to be specified that the small values of 532 

characterizing the observed aerosol particles call for a very limited degree of asphericity, which makes Mie theory still 

successfully applicable for the simulation of particles’ scattering properties (Martin, 1993; Mishchenko and Lacis, 2003). In 

order to properly simulate the scattering processes, accurate information on particle refractive index are required, besides 

those on particle size distribution already provided above. Accurate measurements of lignite refractive index were reported 15 

by Lohi et al. (1992), who observed values of the real and imaginary part of the complex refractive index of 1.70 and 1x10-6, 

respectively. Similar values have were reported by McCartney and Ergun (1962) and Read (2008). Simulations of the 

scattering properties of lignite particles are illustrated in figure 7. The figure shows the variability of the quantity Qback˟r
2 as a 

function of r, with Qback, being the backscattering efficiency and r being the particle radius. These simulations are obtained 

by considering a log-normal size distribution with a value of   of 5 %. The simulation in the upper panel of the figure 20 

considers a minimum radius of 1.84 μm, as measured by Civiš and Hovorka (2010), while the simulation in the lower panel 

considers a minimum radius of 8 μm, as measured by Triantafyllou et al. (2006). Both simulations consider a sounding 

wavelength of 1.064 m, which is the laser wavelength used for the dark band lidar measurements illustrated in figure 2. The 

quantity Qback˟r
2 represents the single-particle backscattering coefficient, assuming a constant particle number density n. 

Figure 7 reveals the presence of marked oscillations in particle backscattering efficiency. As a result of these oscillations, for 25 

specific radius values of the dry lignite particles (for example, 6.5 μm, 7.5 μm, 18 μm, 28.5 μm, 41 μm), a reduction in 

Qback˟r
2 of 8-27 % (0.35-1.4 dB) is observed for a particle size growth by 10-16 %, which is compatible with the size growth 

experienced by these particles during their adiabatic ascent. Thus, we believe that the observed dark band phenomenon is 

associated with the oscillations in the particle backscattering coefficient, ultimately leading to Mie back-scattered signal 

intensity fluctuations. These backscattering coefficient oscillations are to be attributed to the limited degree of poly-30 

dispersion of atmospheric lignite particles. It is to be specified that these oscillations smooth down and finally disappear in 

case larger values of , i.e. wider particle size distributions (distributions with a higher degree of poly-dispersion), are 

considered. This is clearly highlighted in figure 8, which illustrates the simulated values of Qback for lignite particles as a 



function of particle radius, considering a log-normal size distribution with different values of   (0.1, 5, 10 and 20 %), again 

considering a sounding wavelength of 1.064 m. As for figure 7, the simulation in the upper panel considers a minimum 

radius of 1.84 μm, as measured by Civiš and Hovorka (2010), while the simulation in the lower panel considers a minimum 

radius of 8 μm, as measured by Triantafyllou et al. (2006). The figure clearly reveals that both in the smaller and larger 

particles domain, the consideration of progressively larger values of  leads to a progressive smearing down of the Qback 5 

oscillations, which are still present for values of   ≤ 10 %, but are almost absent for  = 20 %. 

An additional quantity, namely the backscatter color ratio, BCR, i.e. the ratio of total backscattering coefficients at 1064 and 

532 nm, was determined from BASIL measurements. Color ratio profiles measured during the time interval considered in the 

present study (12:00-13:00 UTC on 18 April 2013, not shown here) indicate values in the range 0.40-0.45 below the dark 

band and in the range 0.33-0.36 within the dark band region. The color ratio decrease is an indication of the increase of 10 

particle size. This represents an additional experimental evidence of the conjectured particles’ growth, which represents the 

basis of the given interpretation of the observed phenomenon. Furthermore, small backscatter color ratio values, as those 

found both below and within the dark band, are indicating relatively large particles (Burton et al., 2013), compatible with 

those conjectured in the present study and presently considered in our simulations. The variability of backscatter color ratio 

as a function of particle radius has been simulated with the same Mie scattering code already used above, with simulations 15 

revealing that values of BCR in the range 0.33-0.45 are compatible with particle size in the range 7-11 m. Finally, 

backscatter color ratio values in the range 0.33-0.45 combined with values of 532 in the range 0.02-0.07 are in agreement 

with previously observed values of these quantities as reported by a variety of authors (de Villiers et al., 2010, BCR=0.3-0.5 

and 532=0.02-0.08; Burton et al.; 2014, BCR=0.55 and 532=0.07; Burton et al., 2015, BCR=0.47 and 532=0.06-0.09). 

Similar values (BCR=0.35-0.54 and 532<0.05) were also reported by Franke et al. (2003) and Müller et al. (2007) for 20 

Southeast Asian aerosols, which were argued to possess a pronounced coarse mode, with large particles being originated 

mainly from coal and dried plants used for domestic heating and cooking (Müller et al., 2007). 

The comparison of simulated values of single-particle backscattering coefficient Qback˟r
2 (~ 3x10-11 m2 sr-1 for a particle 

radius of 4 m and ~ 1x10-9 m2 sr-1 for a particle radius of 20 m) with measured values of the volume backscattering 

coefficient 1064 (in figure 6, in the range 2.5-3.5x10-6 m-1 sr-1 within the dark band) leads to an estimate of particle number 25 

density n of 0.8-1.2x105 m-3 and 2.5-3.5x103 m-3 in the small and large particles’ domain, respectively. These values of n are 

in agreement with literature values for continental and urban polluted aerosols (among others, Mészáros, 1991, 0.8-3.5x105 

m-3 for a particle radius of 4 m and 1-2x103 m-3 for a particle radius of 20 m). 

The solution effect growth of particles to equilibrium size associated with increasing RH can be continued up to a RH value 

of 100 % and slightly beyond. Cloud formation at the top of the CBL will finally take place above the LCL if the critical 30 

saturation ratio, Sc, corresponding to the peak of the Koehler curve, is reached. Sc  is typically reached for super-saturation 

values of 0.5-1%, depending on the composition (and consequently the level of hygroscopicity) and size of the aerosol 

particle acting as condensation nuclei. In the case of lignite particles, typical values of Sc and of the critical radius, rc, are in 



the range 0.5-1% and 1-10 m, respectively. Up to this point RH had to be increased in order for the droplet to grow. 

However, if RH slightly exceeds Sc, the particle is enabled to grow beyond rc and its saturation ratio falls below Sc. As a 

consequence, the water vapour condensates on the droplet, which will continue to grow without the need for a further 

increase in saturation ratio (Yau and Rogers, 1989). When this occurs, clouds can form on the top of the CBL. These 

processes are responsible for the clouds observed in the upper portion of the CBL at 12:53-13:00 UTC (orange-brown 5 

features in the upper panel of figure 2). In the clouds, the droplet growth process does not continue indefinitely as many 

droplets are present and all of them compete for the same available water vapour. 

5 Discussion of the observed phenomena 

Raman lidar measurements illustrated in this paper reveal the presence of a persistent minimum (dark band) in lidar elastic 

backscatter echoes in the upper portion of the CBL. This phenomenon appears in clear sky conditions in the presence of 10 

strong convective activity and is mostly confined to updrafts. Adiabatic cooling within the updrafts leads to an RH increase 

and a consequent particles’ growth, especially of hygroscopic particles. If we assume that most of the particles we observe 

are dry hygroscopic lignite particles from the surrounding lignite open-pit mines and their size distribution is mono-disperse 

or very narrow, we must conclude that the observed dark band is related to the oscillations of the backscatter efficiency as 

described by Mie-theory, ultimately leading to intensity fluctuations of the Mie back-scattered radiation. In the presence of a 15 

wider particle size distribution the backscatter oscillations should smear out, if not disappear. This interpretation is also 

supported by the outcome of the lidar depolarization measurements. In fact, water uptake by uplifted dry lignite aerosols, 

initially having a more irregular shape, confers a more regular spherical shape to these particles, this shape change being 

responsible for the decrease in particle depolarization observed at the same height and time intervals of the dark band (figure 

6), again mostly confined to updrafts. 20 

The fact that the dark band and the depolarization decrease are confined to the up-drafts can be explained in two ways: either 

the adiabatic warming, and the consequent decrease in RH, in down-drafts does not lead to an inversion of the particle 

growth, i.e. there is a hysteresis, and humidified particles do not evaporate the water amount they incorporated during their 

way up. Or down-drafts transport other or modified particles than the up-drafts. These particles might be less hygroscopic 

and thus change their size less with RH. The possibility that particles within the down-drafts are different from those within 25 

the up-drafts increases in the interfacial layer due to the entrainment effects and is possibly testified by the presence of 

smaller particle backscatter values within the down-drafts with respect to those observed within the up-drafts (see figure 2). 

This is possibly associated with the entrainment of air from the free-troposphere at the top of the CBL, which may ultimately 

lead to changes in particle size distribution and scattering properties. Evidence of the sharp entrainment of air pockets from 

the free troposphere into the boundary layer, which gradually mix with the environmental air, has been reported by a variety 30 

of authors (Couvreux et al., 2005, 2007; Wulfmeyer et al., 2010, 2016; Turner et al., 2014). Particle size distribution within 

the down-draft could be not as narrow as in the updrafts, resulting in a smear out of backscatter efficiency oscillations. 



Few more words should be spent on these aspects. The hygroscopic growth of particles is dependent upon aerosol 

composition and may be monotonic (smoothly varying) or deliquescent (step change) growth. A dry hygroscopic aerosol 

transforms into a solution droplet when RH increases beyond the so called deliquescence point. Particle deliquescent growth, 

as the one characterizing lignite particles (Brooks et al., 2004), shows an hysteresis behavior during the uptake and loss of 

water, i.e. exhibit difference values for the deliquescence and efflorescence relative humidity (Sjogren et al., 2007); this 5 

hysteresis behavior ultimately determines a less efficient evaporation process (Seinfeld and Pandis, 2006). More specifically, 

when RH decreases, the solution droplet starts reducing in size through the evaporation of the previously up-taken water at 

the efflorescence point, which is found at a much lower RH value than the deliquescence point (Oatis et al., 1998). 

6 Summary and final remarks 

This paper illustrates measurements carried out by the Raman lidar system BASIL in the frame of HOPE, revealing the 10 

presence of a persistent minimum in clear-air backscatter echoes in the upper portion of the convective boundary layer. 

Backscatter reduction is approximately 10 %, has a vertical extent of approximately 100 m and persists over a period of 

several hours. We refer to this phenomenon as to the clear-air dark band or the convective dark band. This has to be 

distinguished from a similar phenomenon, with comparable temporal duration and backscatter reduction, observed in the 

presence of light precipitation events (Sassen and Chen, 1995; Demoz et al., 2000), the so called lidar dark band, ascribable 15 

to the changes in precipitating particles’ scattering properties taking place during the snowflake-to-raindrop transition. 

Dark bands illustrated in this paper are observed in the presence of strong convective activity within the boundary layer, 

when dry lignite aerosol particles are advected from the surrounding open pit mines; the bands are mostly confined to the 

convective updrafts. The phenomenon is interpreted as being related to the oscillations characterizing lignite particle 

backscatter efficiency, ultimately leading to Mie back-scattered signal intensity fluctuations. These backscatter efficiency 20 

oscillations are attributed to the limited degree of poly-dispersion and the high hygroscopicity of atmospheric lignite 

particles. Adiabatic cooling within the updrafts leads to an RH increase and a consequent particles’ growth. 

Adiabatically warming and thus decrease in RH in down-drafts does not lead to an inversion of the particle growth and 

humidified particles do not or only partially evaporate the water they took up during their way up. Additionally, down-drafts 

may transport other particles than the up-drafts. These are possible motivations for having clear-air dark bands mostly 25 

confined to updrafts. Observations and results illustrated in this paper support the interpretation of the phenomenon as a 

purely microphysical growth mechanism; however, the possibility that other mechanisms (for example, dynamics) may also 

participate and contribute to the appearance of the phenomenon cannot be completely excluded. 
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Figure 1: Locations of the Raman lidar system BASIL within the Jülich Research Centre (pink dot). The figure also indicates the 
location of the Tagebau-Hambach open-pit lignite mine (approximately 3 km East of the Research Centre), the large artificial hill 
Sophienhöhe (both within the angle cone 29-114º, red shaded area) and a second open-pit lignite mine (approximately 3 km South-
West of the Research Centre, within the angle cone 180-240º blue shaded area). 5 

  



 

 

Figure 2: Time–height cross-section of β1064 (upper panel) and the vertical wind speed (lower panel) in the time interval 12:00 - 
13:00 UTC on 18 April 2013The black dashed line in the upper panel around 1200 m highlights the presence of a persistent lidar 
backscatter reduction (clear-air dark band), with alternating intensity fluctuations. The red and blue areas in between the two 5 
plots indicate the up-draft and down-draft time intervals, respectively, identified in figure 6. 
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Figure 3: Vertical profile of β1064 at 13:00 UTC on 18 April 2013 (12:56:41-13:00:45 UTC, green line), together with the vertical 
profiles of temperature (blue line), RH (black line) and wind direction (red line) and speed (purple line) as measured by the 
radiosonde launched at 13:00 UTC from the near-by station of Hambach (4 km E-SE). 
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Figure 4: Vertical profile of wind speed and direction averaged over the time interval 12:00-13:00 UTC on 18 April 2013 as 
measured by the wind lidar located in the proximity of BASIL at the Supersite JOYCE. Profiles are reported with error bars, 
corresponding to ± 1 standard deviation. 
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Figure 5: Time–height cross-section of particle depolarization at 532 nm in the time interval 12:00 - 13:00 UTC on 18 April 2013. 

  



 

1x10-6 2x10-6 3x10-6 4x10-6
1000

1200

1400

1600

1800

2000

220 240 260 280 300

0 20 40 60 80 100

 
1064

RH (%) / 
532

x1000

Wind direction (degrees)

Vertical wind speed (m s-1)

 

H
ei

gh
t a

.g
.l.

 (
m

)




(m-1 sr-1)

12:01:34-12:04:37 UTC

-2 -1 0 1 2

 vert.wind speed

 

 
532

 

 wind direction
 RH

 

 
1x10-6 2x10-6 3x10-6 4x10-6

1000

1200

1400

1600

1800

2000

220 240 260 280 300

0 20 40 60 80 100

 
1064

RH (%) /
532

x 1000

Wind direction (degrees)

Vertical wind speed (m s-1)

 

H
ei

gh
t a

.g
.l.

 (
m

)




(m-1 sr-1)

12:04:37-12:06:39 UTC

-2 -1 0 1 2

 vert.wind speed

 

 
532

 

 wind direction
 RH

 

2x10-6 3x10-6 4x10-6 5x10-6
1000

1200

1400

1600

1800

2000

220 240 260 280 300

0 20 40 60 80 100

12:21:01-12:23:03 UTC
 

1064

RH (%) / 
532

x1000

Wind direction (degrees)

Vertical wind speed (m s-1)

 

H
ei

gh
t a

.g
.l.

 (
m

)




(m-1 sr-1)

-2 -1 0 1 2

 vert.wind speed

 

 
532

 

 wind direction
 RH

 

1x10-6 2x10-6 3x10-6 4x10-6
1000

1200

1400

1600

1800

2000

220 240 260 280 300

0 20 40 60 80 100

 
1064

RH (%) / 
32

x 1000

Wind direction (degrees)

Vertical wind speed (m s-1)

 

H
ei

gh
t a

.g
.l.

 (
m

)




(m-1 sr-1)

-2 -1 0 1 2

 vert.wind speed

 

 
532

 

12:23:03-12:24:04 UTC

 wind direction
 RH

 

2x10-6 3x10-6 4x10-6 5x10-6
1000

1200

1400

1600

1800

2000

220 240 260 280 300

0 20 40 60 80 100

 
1064

RH (%) / 
532

 x 1000

Wind direction (degrees)

Vertical wind speed (m s-1)

 

H
ei

gh
t a

.g
.l.

 (
m

)




(m-1 sr-1)

-2 -1 0 1 2

 vert.wind speed

 

 
532

 

12:35:17-12:36:18 UTC

 wind direction
 RH

 

1x10-6 2x10-6 3x10-6 4x10-6
1000

1200

1400

1600

1800

2000

220 240 260 280 300

0 20 40 60 80 100

 
1064

RH (%) / 
532

 x 1000

Wind direction (degrees)

Vertical wind speed (m s-1)

 

H
ei

gh
t a

.g
.l.

 (
m

)




(m-1 sr-1)

-2 -1 0 1 2

 vert.wind speed

 

 
532

 

12:36:18-12:37:19 UTC

 wind direction
 RH

 

 
3x10-6 4x10-6 5x10-6

1000

1200

1400

1600

1800

2000

200 220 240 260 280

0 20 40 60 80 100

 
1064

RH (%) / 
532

 x 1000

Wind direction (degrees)

Vertical wind speed (m s-1)

 

H
ei

gh
t a

.g
.l.

 (
m

)




(m-1 sr-1)

-2 -1 0 1 2

 vert.wind speed

 

 
532

 

12:56:41-13:00:45 UTC

 wind direction
 RH

 

2x10-6 3x10-6 4x10-6 5x10-6
1000

1200

1400

1600

1800

2000

200 220 240 260 280

0 20 40 60 80 100

12:55:39-12:56:41 UTC
 

1064

RH (%) / 
532

 x 1000

Wind direction (degrees)

Vertical wind speed (m s-1)

 

H
ei

gh
t a

.g
.l.

 (
m

)




(m-1 sr-1)

-2 -1 0 1 2

 vert.wind speed

 

 
532

 

 wind direction
 RH

 

 
Figure 6: Vertical profiles of β1064, 532 and RH (as measured by BASIL) and the wind direction and vertical wind 
speed as measured by the wind lidar) for eight consecutive up-drafts/down-drafts time intervals during the time 5 
period 12:00-13:00 UTC on 18 April 2013: a) 12:01:34-12:04:37, b) 12:04:37-12:06:39, c) 12:21:01-12:23:03 UTC, d) 
12:23:03-12:24:04 UTC, e) 12:35:17-12:36:18 UTC, f) 12:36:18-12:37:19 UTC, g) 12:56:41-13:00:45 UTC,  h) 
12:55:39-12:56:41 UTC). Green-dashed ellipses highlight dark band features during the updraft intervals. The up-
draft and down-draft time intervals considered in the present figure are identified in figure 2 with red and blue areas. 
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Figure 7: Simulations of the backscattering efficiency as a function of particle radius for lignite particles. Simulations consider a 
log-normal size distribution, with a percentage standard deviation of 5 %. Upper panel: selection of a minimum radius of 1.84 μm, 
as given by Civiš and Hovorka (2010), and a maximum radius of 10 μm; lower panel: selection of a minimum radius of 8 μm, as 
given by Triantafyllou et al. (2006) ), and a maximum radius of 100 μm. Both simulations consider a sounding wavelength of 1.064 5 
m. 
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Figure 8: Simulations of the backscattering efficiency at 1064 nm as a function of particle radius for lignite particles, considering a 
log-normal size distribution with values of   equal to 0.1, 5, 10 and 20 %. Upper panel: selection of a minimum radius of 1.84 μm, 
as given by Civiš and Hovorka (2010), and a maximum radius of 10 μm; lower panel: selection of a minimum radius of 8 μm, as 5 
given by Triantafyllou et al. (2006) ), and a maximum radius of 100 μm. Both simulations consider a sounding wavelength of 1.064 
m. 

 

 


