Interactive comment on "Amines in Boreal Forest Air at SMEAR II Station in Finland" by Marja Hemmilä et al. Anonymous Referee #1

Received and published: 14 November 2017

5

30

35

The manuscript "Amines in Boreal Forest Air at SMEAR II Station in Finland" provides an in-situ observation of 7 amine species in both particle and gas phases along with ammonia and ammonium ion over a continental rural area at the Finnish boreal forest site, Hyytiälä, in year 2015 from March to December. The study lasted for a total of 8 weeks, spread out over 8 months. It applies a newly developed measurement technique for amines that combines online ion chromatography and an

10 electrospray ionization quadrupole mass spectrometer. The data analysis relies on simple linear regression to explore the relationships between amines and several environmental factors including rainfall, soil temperature, soil moisture, ambient air temperature and ambient air relative humidity. In addition, the work is used to explore amine species, especially dimethylamine in new particle formation through nucleation process. The authors provide considerate insights of diurnal and seasonal variations of amines over the study region, and highlight the different production mechanisms and sources

15 among the detected amines.

The topic of this paper is relevant to the journal and has important scientific contributions to the knowledge of amines in remote continental area, especially with relative longer period observations compared with previous studies. The experimental design is good. However, improvements are needed in the Results section, especially for the quality of figures and tables, in order to deliver to readers more concise and better visualized results. Also, authors should provide more

20 thoughtful interpretations before drawing conclusions. Prior to publication, the authors should address the specific comments below.

1. Please provide detailed information of the sampling period. What was the ratio-

- nale to pick the 8 weeks during the 8 months? Since the study emphasizes seasonal
- 25 variations, how confident can one be with measurements from relative short sampling periods in each month to make conclusions about seasonal changes?

Our plan was to measure from spring to autumn, and not only 8 weeks. Unfortunately, the instrument had failiers and leaks, and 8 weeks was only we could achieve. Our data includes 117 data points in March, 112 in April, 163 in May, 91 in July, 133 in August, 128 in November and 54 in December and we have included this information to the Table 4. This is much more data than has been published earlier.

2. Section 2.2: Authors simply use one sentence to cite previous work as Junninen et al. 2009 without a brief description of what this portal is. A bit more information is warranted. In addition, Junninen et al. 2009 is missing in the reference list. Please check and add in.

In table 1, do environmental conditions have small or big variations during each month? please add standard deviations to each mean value. Also, it would be helpful to make statements of diurnal changes (i.e. day vs. night). Also, please provide information about rain, soil moisture, and soil temperature, as they are important environmental forters in the discussion.

40 factors in the discussion.

"SmartSmear is the data portal for vizualisation and download of continuous atmospheric, flux, soil, tree, physiological and water quality measurements at SMEAR research stations of the University of Helsinki" sentence was added to section 2.2. We also added the missing reference to the list. Table 1 was moved to Supporting Material (Table S1), because Referee 2 asked. We added

45 standard deviations to the Table S1. We also added information about rain, soil humidity and soil temperature to the Table S1, but the day and night means we did not find meaningful to add to the Table.

3. Misleading description at the very beginning of section 3.1: "Figure 1 shows the monthly means and medians of total amine concentrations (sum of gas and aerosol phases) ". Figure 1 only shows means. Correction is needed.

50 It is confusing to claim monthly mean changes as seasonal variations (shown in figure 1) unless the authors define the seasons at first. In the figure, half of the species (EA, DEA, PA and BA) have different scales than the rest. Please consider using two

different y-axis scale in one plot or having two separate plots in order to provide more clear trends for each species.

55 Please clarify the meaning(s)/significance of showing the sum concentrations of gas and particle phases measurements (Figure 1 and 2). Tables 3 and 4 seem to deliver similar cumulative results as Figures 1 and 2 but in separate phases, which are arguably better to understand.

60	The word "median" has been deleted. We have added which months refer to which season in chapter 2.1. Sentence "Total amine concentrations were used because we wanted to study amine sources and partitioning between aerosol and gas phase are dependent on environmental parameters." was added to chapter 3.1. Figure 1 was moved to Supporting material because the Referee 2 asked.
05	4. Line 185-190: "The concentration increase in March is characterized with rain (Fig. 4) and the later increase in April took place during night with decreasing wind speed and higher temperature. This increase could be due to evaporation from melting snow and ground." In Figure 4, the time scale on x-axis is too rough to provide ar vision of diurnal variation.
70	In provement is needed. It indicates rainfall is featured with high MMA concentration in March (Figure 4), which is mostly in the particle phase, as shown in Table 4. Does such high MMA relate to previous cloud processing? Except rainfall, do the other environmental conditions have potential influences? Authors should expand discussion here.
75	No detailed information of wind speed and ambient temperature is provided to support the discussion. More explanations and possible references could assist the discussion about evaporation from melting snow and ground.
80	We have split the Figure 4 in three pieces to make it clearer. We also add wind speed and ambient temperature data in April to the figure.
85	 5. For Section 3.1.4, the authors should include discussion to more extensive literature examining this species. There are a number of references in fact for all of the amines, but for DMA, at the minimum a couple of references with discussion of sources and behavior of DMA are the following: Youn, J. –S., et al. (2015). Dimethylamine as a major alkyl amine species in particles and cloud water: observations in semi-arid and coastal regions, Atmos. Environ., 122, 250-258, doi:10.1016/j.atmosenv.2015.09.061. Murphy, S. M., et al. (2007). Secondary aerosol formation from atmospheric reactions of aliphatic amines, Atmos. Chem. Phys., 7, 2313–2337.
90	We have added more discussion to Section 3.2.2 (former 3.1.4) with Youn et al. We could not find much discussion about dimethylamine in Murphy et al, but the reference was valuable to Introduction.
05	6. Figure 5: Time scale on x-axis is too rough to tell diurnal circle. Improvement is needed.
95	More detailed time scale for x-axis was added.
00	7. Section 3.1.4: Authors emphasize DMA (and TMA) concentration higher in summer (i.e. August) due to biogenic sources. However, interpretations/discussion leading to that conclusion are not convincing in my opinion. It mentioned that DMA does not

- 100 to that conclusion are not convincing in my opinion. It mentioned that DMA does not show correlation with biogenic tracer such as monoterpenes, while isoprene is noted as having light dependent emissions. Please provide supportive BVOC tracer information if the data is applicable. Are there BVOC tracers other than isoprene found related to variations of DMA and (or) TMA?
- 105 In Figure 6, DMA shows strong diurnal cycle while TMA doesn't. Is the DMA diurnal circle found only during summer, especially August? Why is it that TMA does not have such a strong diurnal circle as it also mentioned in section 3.1.2? Authors should expand discussions here.

110

The DMA diurnal cycle is found only in summer. It is determined by the balance between emissions, reactivity and mixing in the atmosphere. Therefore the compounds emitting from the same sources can have different atmospheric concentrations. Usually the diurnal variation is mainly determined by mixing, causing daytime minima, but if emissions are light dependent or strongly temperature dependent, then the maxima is at daytime. This is mentioned in section 3.2.4. However, we have not mentioned in the

115 text that higher summer time concentrations also indicate biogenic sources. This has been added to the text. Sources and source areas of DMA and TMA are not known, and different diurnal cycles can be caused by different balance between emissions, reactivity and mixing.

8. Figure 7: The current plot is hard to show the clear relationship between DMA and selected environmental factors, especially for data around July and December. Please consider zooming in time scale on x-axis, for an example, using a discontinued time series.

We have made the Figure clearer according to the reviewers wish.

```
125
```

9. Line 295- 300: Does TMA negatively correlate with ambient temperature consistently or is this sensitive to season?

130 Yes, it is sensitive to season, we added a picture to Supplement (Figure S5).

Minor comments

135 1. Authors should consider adding a site map in section 2.1 in order to provide readers visualized information of study area.

We have added a site map to Supporting material.

140 2. Line 115: Why are the DL calculation methods for DMA and TMA different from the rest? In table 2, DMA shows different DLs in two time periods, while TMA doesn't. Please clarify the reason(s).

The DMA and TMA DLs were calculated from blank-values, because they had some blank, when the other compounds did not. We have added explanation to the text.

3. Table 1: What is the difference between "mean" and "average"? If they are same, please be consistent.

Grey shade is not necessary if the color does not have meaning. Same comment applied to Table2.

We have changed "averages" to "means" and took the color off.

155 4. Table 2: Some species have a comma after their names while the others do not. Why NH3 and NH4+ are not mentioned in gas (particle) phase as the rest? Keep consistent style please.

We have added commas after every amine. We have added "gas" and "particle" after ammonia and ammonium. 160

5. Table 4: Typo for DMA median value (particle phase) in July. "4,9" should be "4.9".

We have changed it from "4,9" to "4.9".

165 6. Figure 4: Add label for x axis. Same comment for Figure 5. The x-axis represents dates, but it is unclear. In contrast, Figure 7 has better x axis format. ase be consistent in plot style.

We have added the labels.

7. Figure 7: Units on y axis should be in parentheses.

175 Interactive comment on **"Amines in Boreal Forest** Air at SMEAR II Station in Finland" bv Marja 180 Hemmilä et al.

Anonymous Referee #2 Received and published: 16 November 2017

General Comments

185

The Authors present several weeks of ambient observations of seven atmospheric alkyl amines in the gas and particle phases using the MARGA system interfaced with a quadrupole mass spectrometer. The quantities of these amines from each of the observation periods is reported and trends discussed from a variety of perspectives (e.g.

190 diurnal, inter-monthly, etc.) They investigate a variety of correlations of the measured amines with accompanying physical observations made at the same location. Overall, this manuscript is not suited for publication in Atmospheric Chemistry and Physics without many major issues being addressed. **Major Comments**

195

1. There are far too many data tables and figures that are irrelevant to the structure of the results and discussion. Most can be replaced with a single sentence. These detract from the quality of the observations and should be relocated to a Supporting 200 Information document. These are noted in detail below.

Asked figures and tables were moved to Supporting Material.

2. The Authors claim that they are reporting the longest time series of amines mea-205 surements to date, but the measurements are short-duration periods made in different months. A time series implies continuous data collection and the authors should revise the manuscript to be clear that they are reporting eight weeks of observations from different months over the course of a year from the same observation site. Further to this point, the sampling strategy reported and the findings discussed in the paper are

210 all weakened because of the intermittent nature of these observations. The limitations of the dataset need to be presented clearly. Figure 7 is the only depiction of the full measurement time series and it appears that even within each observation period that there are gaps in the data which are not clearly explained. How can the Authors justify their conclusions regarding monthly/seasonal trends if they do not measure continu-

215 ously throughout each?

> Number of data points in each month was added to Table 4. We also added clarification in Experimental section that due to instrumental problems good quality data was captured only 8 weeks, although we measured continuously. Even though measurements cover only 8 weeks, to our best knowledge, this is still largest data set of amine concentrations.

220

3. The manuscript does not appear to have a clear purpose or objective. There are several discussions made throughout the manuscript that are not joined in a clear narrative, the final paragraph of the introduction for example, which confuses the meaning and scientific contribution of the findings.

a. The Authors present an advancement in atmospheric amine measurement capabilities through the use of an ion chromatography-mass spectrometry system, but do not clearly demonstrate the necessary performance metrics (e.g. a sample chromatogram demonstrating the ability to speciate the suite of analytes likely to be accountered in

- 230 demonstrating the ability to speciate the suite of analytes likely to be encountered in the atmosphere). The data then presented in the tables and figures is still largely below the instrument detection limits (e.g. Table 4), so is this improvement really meeting the observational needs of the research community?
- 235 We have added chromatogram to Supplement Material. It would be great to have better time resolution and lower detection limits, but this is the best which is possible at the moment. Direct mass spectrometric methods have lower detection limits and higher time resolution, but data is not species specific.

b. A timeseries of diurnal observations and linkages to known boreal biogenic pro-240 cesses is discussed for some amines.

We added this sentence to Introduction.

c. The relationship of gaseous DMA to a variety physical observations is made, con-

- 245 cluding that new particle formation is higher when both DMA and RH are high. To me, this manuscript is a first long-term survey of sources and phase-distribution of amines at the sub-pptv level in a remote boreal forest environment using supporting physical measurements to initiate a better understanding of this entire class of compounds relative to what we already know about ammonia. The Authors should
- 250 carefully review the findings of their work and convey the purpose of their work clearly as it will also strengthen the structure of their results and discussion. The introduction should be subject to a major revision based on the determined purpose and presented structure of the resulting manuscript as it currently does not do so.
- 255 Introduction was improved.

4. The methods section is not detailed enough to evaluate whether the DLs for the MARGA-MS are robust and reliable. There are many issues here that need to be addressed that are detailed in the Technical Comments below.

260

265

Method section was corrected according to Technical Comments

5. The manuscript has many typographical and technical errors that should have been addressed prior to submission (e.g. use of the term 'aerosol particles'). The Authors are strongly encouraged to seek external review of their work by peers and colleagues after revision prior to resubmission for further review.

The manuscript has been checked by a native speaker.

270 Technical Comments

The following comments are not an exhaustive list of the corrections required for this manuscript to be acceptable for publication. The Authors, in addressing the major comments, will likely correct much of the unmentioned issues under their own revision.

275

Page 1, Line 15: The Authors state that they can separate and detect 7 different amines, but do not show any evidence of this performance, nor does the literature cited for the methodology used. If there is prior work demonstrating the quality of this method performance for amines, specifically, it should be cited and briefly summarized.

280 If not, then the Authors are missing an opportunity to present a significant advance in the online measurement of atmospheric amines simultaneously in the gas and particle phases. The chromatograms have been added to Supporting Material to demonstrate the separation of amines, and we have added more information about the method to the Experimental and Results sections.

Page 1, Line 17: The term 'possibly' is used here, which is speculative. Such conclusions, while potentially acceptable for the discussion, should not be present in an Abstract. Major findings with solid support only should be presented here.

290

The sentence with 'possibly' was deleted.

Page 1, Lines 21-22: There is no conclusive evidence presented for DMA and TMA biogenic sources. This is only true for EA.

295

EA correlated with monoterpenes, which has temperature dependent sources. DMA and TMA may for example have light dependent sources, like isoprene, or they may be emitted from soil.

Page 1, Lines 23-24: What is the purpose of presenting the means and medians for 300 these measurements in the Abstract? This does not seem necessary.

In our opinion the concentration levels are the most important and newest result, and therefore we want to include them in the abstract.

305 Page 1, Line 27: '0.63 EA' This is an example of missed typographical errors that should be identified prior to manuscript submission.

We corrected the miss-typings.

310 Page 2, Line 34: The amine class of compounds can be more broadly defined. R- can be used to represent both H- and alkyl- substituents.

We wanted to make a clear difference between ammonia and amines.

315 Page 2, Lines 35 and 38: 'aerosol particle' is incorrect terminology. These are interchangeable terms and typically one or the other is chosen for use throughout a manuscript.

We changed so that we use only 'aerosol', when it is possible.

320

Page 2, Lines 44-45: 'and' is used twice in a row. Another example of missed typographical error.

We corrected that.

325

Page 3, Lines 67-68: The Authors have not presented any information on the range of amines that have been measured, or are even estimated, to be present in the boreal forest prior to this sentence evaluating the potential utility of prior published methods. Depending on the chosen purpose of the manuscript, the Authors should either ex-

330 pand on the findings of previous boreal measurements, focus on the performance of the measurement technique relative to other reports, or link these two themes with a motivation of greater breadth.

We took off the sentence with DLs, and replaced it with "in this method ammonia/ ammonium samples could impede detection of some amines". However, the method was guite impressing.

Page 3, Line 89: Why are the exact dates for the measurements not given? The datasets, such as Figure 7, clearly show that these periods were not subject to continuous observation and the details should be provided here.

340

Measurements were continuous, except when we were calibrating, measuring blank or cleaning the instrument, or when the instrument was broken. Unfortunately, even than we visited the instrument weekly and checked it via internet almost daily, and

somebody in the field visited it almost daily, still sometimes afterwards we noticed, that something went wrong; so we took that data off. Number of proper measurement data points during each month was added to Table 4.

345

Page 4, Table 1: Move this to the SI and add soil humidity and soil temperature details to this section of the methods since they don't appear anywhere, but appear regularly throughout the results and discussion.

350 We have moved Table 1 to the Supplement Material.

Page 4, Line 103: Define the MARGA acronym first and then put the acronym in brackets.

355 We have changed that.

Page 4, Lines 105-106: This is far too brief of a description for the interfacing and operation of a mass spectrometer to an ion chromatograph. Does the MARGA suppress the IC eluent prior to analyte measurement? Were conductivity measurements made

360 prior to, but in series, with the mass spectrometer? What solvent and what ratio to the IC mobile phase was added prior to the electrospray? What were the desolvation and transmission settings of the mass spectrometer?

We have added the information to the text. MARGA does not suppress the IC eluent in cation side. Waste line from cation conductivity detector was leaded to ESI-needle, and no additional solvent was added. The table about MS settings was added to Supplement Material.

Page 4, Lines 112-113: Was the separation an isocratic or gradient separation? What was the time required for separation? What were the dimensions of the analytical sectors and the transfer of the sectors are set of the sectors and the sectors are set of the sectors and the sectors are set of the sectors and the sectors are set of the sectors

370 column and what was the particle size of the stationary phase?

We have added the information to the text. Separation was isocratic, and the time was 15 min.

- 375 Page 4, Lines 114-116: Are these the DLs for the IC system or for the MARGA? That is, were the S/N = 3 calculated from blank injections, the measurements made in 'blank-mode', or from MARGA solvents analyzed when the inlet was overflowed with zero air? Given the need for very sensitive measurement capabilities outlined in the introduction, the Authors should present a more detailed description of how the DLs
- 380 were determined and the quantitative metrics evaluated to conclude that they are reliable and robust representations of the capabilities of the MARGA. Characterizations of these parameters for IC systems measuring amines have been previously described by Erupe et al. (2010), Dawson et al. (2014) and Place et al. (2017), those with atmospheric interfaces by VandenBoer et al. (2011, 2012), and IC coupled to mass
- 385 spectrometry by Verriele et al. (2012)

The DLs are for the whole MARGA-MS –system (excluding the inlet), and the measurements were made in blank-mode. The references were gratefully checked and most of them were cited in the manuscript.

- 390 Page 5, Table 2: This belongs in the results section of the manuscript along with the remainder of the analytical performance metrics. The Authors could consider reporting the DLs as ng/m³ for the particle channel and pptv for the gas channel to improve the clarity of this table.
- 395 We have moved Table 2 to results section.

Page 5, Lines 122-125: How was the d10-DEA introduced to the MARGA-MS as an internal standard? Was it added to the solvent in the particle and gas channels, to the post-suppressor organic solvent, or only to standards that were injected offline?

400 What is the purpose of using this internal standard and how did it perform for the set of reported field measurements? Presumably it was used to track the spray ionization effi-

ciency on an ongoing basis in the post-suppressor organic solvent, but this is not clear. The Authors should also indicate how the internal standard was utilized in back calculating the quantities of all the measured amines and whether it reduced uncertainty in the measurements and by how much.

405 the measurements and by how much. Also, why is are the calibration standard values listed as '~' which means approximate? Further to this, the calibration range seems to be far above the observed values, which are typically below 10 ng/m'3, which is the lowest calibration standard, and is therefore extrapolating the calibration below the determined range. The Authors should

- 410 provide proof that the system sensitivity response from 0.1-10 ng/m³ is the same as from 10-300 with at least a 3-point calibration for all of the analytes. They should use this information to determine their measurement accuracy and precision as well, which is not evaluated.
- 415 We have added to the text "DEA₁₀ was used, because it behaved same way in IC-separation but had different mass than studied amines. 50,0 µl of DEA₁₀ was added to MARGAS ISTD solution bottle. When MARGA was taking the air sample, it was at the same time taking ISTD solution to similar sample syringes. When IC-analysis started, the ISTD and air sample solution mixed, and this solution went to IC-separation, conductivity detection and finally MS-detection. DEA₁₀ was used to correct possible loses to instrumentation and correct changes of MS response." ISTD went through the same analysis than analytes, so it corrects the
- 420 possible biases of the process. We have added accuracy and precision to Table 1.

Page 5, Lines 128-129: Since the MARGA was not operated continuously for the analysis of amines, it is important to specify whether the instrument blank values were collected before, during, or after the periods when continuous monitoring was being

425 performed. Again, I presume this was performed immediately before, intermittently during, and immediately after each observation period so that backgrounds could be corrected throughout each observation period, but the explicit information needs to be presented in the manuscript.

430 Because MARGA-MS was running all the time (except when it was broken, or we were calibrating or cleaning it), the blank values were supposed to collect once a month. Unfortunately the instrument had habit to stop just before or during the blank running, so we missed those blanks.

Page 5, Lines 131-133: If the DMA backgrounds are different due to cycling between sampling syringes, it should be possible to explicitly assign a background correction to samples collected with each set of syringes instead of averaging, which will decrease both accuracy and precision of the measurement.

We were able to get better results with averaging, since blank subtraction did not correct the difference totally.

440

Page 6, Line 135: This should be the start of a new methods section that describes the DMPS measurements.

Corrected.

- 445
 - Page 6, Line 149: Regression calculations can allow some insight into the physicochemical nature of the amines, but the results and discussion do little to explore the reasons why the variable the authors chose were investigated. What are the chemical and physical mechanisms that may be acting to release amines in the boreal environ-
- 450 ment? Is there a precedent from laboratory work or prior observations? Given those parameters explored, the working hypothesis seems to be testing whether there is similar release and exchange of amines in the boreal as might be expected given the extensive literature on ammonia. If this is the case, this reasoning should be emphasized throughout the manuscript and supported by citing the relevant literature.
- 455

The chemical and physical mechanisms behind the emissions are beyond the scope of this manuscript.

Page 7, Lines 167-168: 'amines were mainly in the aerosol phase' - the averages appear very close to 0.5 and likely are if the variability in the data is considered. The

460 range of the gas fraction values presented in Table 3 suggests this is the case. It

would be more accurate to say that the gas fraction was variable, with an average and standard deviation given for the entire dataset.

We included number of gas phase data and number of aerosol phase data above detection limit, and with this information it is correct to say, that amines were most in the aerosol phase.

Page 7, Figure 1: Move this to the Supporting Information. It repeats all of the data presented in Figure 2 and since the observations do not span the entire month, it may be more accurate to add the observation dates to the bar labels in the legend. It would

470 be more informative for the authors to present some continuous data in a figure that includes many of amines, ammonia/ammonium, the uncertainty in each measurement, and the DLs so that the quality of the MARGA-MS data can be ascertained.

We have moved the Figure 1 to the Supporting Material

475

Page 8, Figure 2: How many points are off scale in each of these panels? Why are the DEA measurements suggesting that there were negative quantities detected? Where are the November and December measurements for NH3+NH4?

480 Off scale bars showed the maxima of all measurements and this value is also shown in the figure. There are no negative values for DEA, minima are just detection limits. For some reason ammonia and ammonium data in winter was forgotten, but we have now added it.

Page 8, Table 3: Please check that the table formatting is done according to the guide-

485 lines of ACP

We have changed the form of Table 3 (and other tables too).

Page 9, Table 4: Move this table to the Supporting Information and replace with 2-3 simple sentences in the text. Why are both the mean and median values in this table? What does a difference between these two metrics tell us about the amine measurements and why? This table suggests that even MARGA-MS does not have adequate DLs for the boreal environment and the authors should comment on this in the discussion.

495

We have moved the Table 4 to the Supporting Material. With mean values we showed, that even though median (i.e. most of the data) was <DL, in some cases there still was remarkable concentrations above DL.

500 Page 10, Figure 3: Remove '(y-axis)' and '(x-axis)' from the caption. This is obvious. Consider a more descriptive caption.

We have removed '(y axis)'and '(x-axis)'.

- 505 Page 10, Figure 4: This date format is not consistent with previous figures, and the notation is not defined via the axis label. The data presented in this figure are clearly non-continuous between months and goes back to the points above regarding statements by the Authors suggesting that the dataset is continuous when it is not. What is the purpose of plotting rainfall on this figure? The discussion speculates on
- 510 'evaporation from melting snow and ground', but rainfall does not describe either of these processes. What is the physical or chemical rationale for this speculation? Is there precedent in the literature to support this?

We have added now the Figure 4b, which shows the effect of high night time temperature and decreasing wind speed, and this is also discussed in the text.

Pages 11 -18: The Authors compare their measurements for each species to those from other reports throughout. This would be more easily conveyed through the use of tables that present the data from this work in comparison to the findings of others,

520 listing relevant parameters such as rural and urban settings.

We have made a table, that compiles the results of our and other studies.

Page 11, Line 210: Why is TMA discussed before EA, but presented in Figure 6 follow-525 ing the description of EA in Figure 5? Please reorganize the discussion so that figures appear in the order that they are discussed.

We have re-organized the sections

- 530 Page 12. Figure 5: Most of the observations for EA are below the DL, so why is the line in the figure continuous? It would be more appropriate to add another trace here that denotes the cut off for the DL and to leave gaps in the EA dataset where the measurement is below the DL.
- 535 We changed the second x-axis so, that EA concentrations below DL are under it.

Page 13, Lines 265-266: Soils and surfaces in the boreal are acidic when measured in bulk, so it seems unlikely that deposition and re-emission is a plausible line of speculation. For example, a comparison using compensation point theory for ammonia in

540 these environments could suggest that deposition should be the final fate of bases at the surface, and could support a similar case for the amines since they are stronger bases than ammonia. This would be strong evidence against deposition and desorption cycles and indicate other mechanisms of emission (e.g. decomposition of organic matter).

545

The surfaces of leaves and needles are probably not that acidic, but it is not known based on the discussion with forest scientists.

Page 13, Figure 6: Why did the Authors not explore the diurnal nature of TMA in

- 550 July when the measured mixing ratios were highest? This compound is known to be released during the flowering of many plants to attract pollinators and should be discussed for context.
- We chose to show diurnal variation in August, because it was more pronounced for DMA then. For TMA July and August looked the 555 same.

Page 14, Line 279: 'concentrations of DMA vary with temperature' - Figure 7 does not demonstrate such a dependence, but the statistical findings in Table 5 do. There is no clear dependence to the eye in Figure 7 between DMA and air temperature.

560

We have made the Fig. 7 clearer, and also referenced to Table 5.

Page 14, Figure 7: These panels are not alphabetically labeled for reference in the

caption. Previous figures suggest there were DMA measurements made in August, but they are not shown on this figure. Why is this? The findings in Table 5 suggest that the correlations between DMA and a number of parameters are worth 565 noting and those plots would be more valuable than this figure. Consider replacing Figure 7 with a multi-panel figure showing these relationships and the regression statistics from Table 5.

We have checked that all the DMA(g) data were <DL in August. We added scatter plots between DMA(g) and ambient parameters shown in Fig. 7 in to Fig. 8 according to reviewers suggestion. However we wanted to keep time series as well, because seasonal behavior is more obvious there.

570

Page 15, Table 5: There is very little here that is meaningful to the discussion. It can be replaced with the figure noted in the previous comment and a couple sentences in the text. Move to the SI or consider removing from the manuscript entirely.

Table 5 was moved to Supplement. We wanted to show that most of the compounds are not depending on ambient conditions.

Page 17, Table 6: Same comment as Table 5.

580 Table 6 was moved to Supplement.

Page 19-22, Figures 8 and 9, Tables 7 and 8: Only depict and present the most meaningful results. That is, present the figure panels that convey information central to the discussion which cannot be easily replaced with three or fewer sentences in the text.

585 In this case, consider combining the most important findings from Figures 8 and 9 into one figure. Move the tables to the Supporting Information or consider removing them from the manuscript entirely.

We have moved the Tables in to the Supplement. We removed Fig. 9, since the particles in aerosol phase observed by MARGA-MS cannot explain the cluster mode particle number concentration.

Page 24, Line 389: Rewrite conclusions in light of changes to the manuscript.

We have done that. 595

Page 25, Line 454: This is the incorrect format for this reference. The proper citation format is presented at the beginning of the relevant chapter in the IPCC report. Also, throughout this section, there is no need for the large indent following each new reference. A space between each reference is sufficient. There are a number of other

600 errors throughout the reference section that the Authors should take time to address through careful inspection and consultation with the journal guidelines.

We have checked the reference lists and corrected the miss-typings.

605 References

- 610 Erupe, M. E., Liberman-Martin, A., Silva, P. J., Malloy, Q. G. J., Yonis, N., Cocker, D. R., and Purvis-Roberts, K. L.: Determination of methylamines and trimethylamine-N-oxide in particulate matter by non-suppressed ion chromatography, J. Chromatogr. A, 1217, 2070–2073, doi:10.1016/j.chroma.2010.01.066, 2010
- Place, B. K., Quilty, A. T., Di Lorenzo, R. A., Ziegler, S. E., and VandenBoer, T. C.:
 Quantitation of 11 alkylamines in atmospheric samples: separating structural isomers by ion chromatography, Atmos. Meas. Tech., 10, 1061-1078, doi:10.5194/amt-10-1061-2017, 2017

VandenBoer, T. C., Petroff, A., Markovic, M. Z., and Murphy, J. G.: Size distribution of alkyl amines in continental particulate matter and their online detection in the gas and particle phase, Atmos. Chem. Phys., 11, 4319–4332, doi:10.5194/acp-11-4319- 2011,

2011. VandenBoer, T. C., Markovic, M. Z., Petroff, A., Czar, M. F., Borduas, N., and Murphy, J. G.: Ion chromatographic separation and quantitation of alkyl methylamines and ethylamines in atmospheric gas and particulate matter using precon-

625 centration and suppressed conductivity detection, J. Chromatogr. A, 1252, 74–83, doi:10.1016/j.chroma.2012.06.062, 2012 Verriele, M., Plaisance, H., Depelchin, L., Benchabane, S., Locoge, N., and Meunier, G.: Determination of 14 amines in air samples using midget impingers sampling followed by analysis with ion chromatography in tandem with mass spectrometry, J.

630

Interactive comment on

Dawson, M. L., Perraud, V., Gomez, A., Arquero, K. D., Ezell, M. J., and Finlayson-Pitts, B. J.: Measurement of gas-phase ammonia and amines in air by collection onto an ion exchange resin and analysis by ion chromatography, Atmos. Meas. Tech., 7, 2733– 2744, doi:10.5194/amt-7-2733-2014, 2014

"Amines in Boreal Forest Air at SMEAR II Station in Finland"

635 Received and published: 30 November 2017 In this study, the authors measured the concentrations of several alkyl amines in the both gas phase and particle phase in boreal forest intermittently over a very long period. Analysis on the temporal variation, possible sources and relationships with mete-

orological conditions and particle number concentrations were made. This study pro vides a valuable dataset for the potential source apportionment of amines, which fits the scope of ACP. Highlights are the suggestion that soil can be both sinks and sources. However, in this manuscript, many of the analyses are very vague and are not clearly explained. Some critical information is missing in the manuscript. The authors should consider addressing the following issues before publication on ACP.

645

Major issues: The introduction to the manuscript consists of one paragraph talking about the importance of amines on new particle formation (NPF), and four paragraphs introducing existing measurement techniques. However in the results and discussion

650 part, NPF events were not identified, and the detection method was also not the main focus of this paper. The authors should rethink the contents in the introduction so that it can motivate the highlights of this study. Because the authors use a novel measurement technique, it would be valuable if they spent more time explaining its advantages and drawbacks.

655

685

We have improved the Introduction. We also have added more details and evaluation of the method to Experimental and Results sections

As amines are known for their very low ambient concentration (Ge et al., 2011a), it should be mentioned the length of measurement days, the total valid measurement numbers, and number of measurements above detection limits for each amines in each month. When the authors calculate mean or median concentrations, how do they account for the measurements that were below the limit of detection (e.g. in Figures 1 and 2)? Given how frequent these are, it will be very important for the interpretation of

665 their subsequent analyses.

More detailed descriptions about the measurements have been added. In Table S2, number of data points in each month is presented. When we are calculating means or medians, the values bolew DL were taking account as 0,5*DL.

- 670 Also, it is hard to understand N numbers in Table 3. For example, DEA has only 6 data above detection limits. However, according to Table 5 and 6, there were at least 81(=79+2) valid gas phase concentration measurement and 26 valid aerosol phase concentration. If there were only 6 measurement with simultaneous detectable level of DEA in both gas phase and particle phase, it means that gas phase was more likely to
- 675 have detectable concentration considering both channels had the same detection limit (Table 2). In that case, the authors should rethink about the statement made in Line 167 that amines were mainly in aerosol phase. The same problem happens to other amines as well.
- 680 We have improved former Table 3 (now Table 2). Beforehand it only presented the data above DL at the same time in gas and aerosol phase.

In the contents, the authors sometimes miss the indication of the phase in which amines were talking about, such as line 185, line 212, line 230. I suggest the authors use NR3(g), NR3(p), NR3(tot) to indicate gas phase, particle phase and total

concentration, respectively.

We have changed to NR3(g), NR3(a) and NR3(tot).

- 690 MARGA measures cations and anions simultaneously. How about anions such as nitrate and sulfate? They were not mentioned in this study. However, for the study of phase partitioning of amines, it is quite beneficial to learn whether amines are in the form of sulfate salts, nitrate salts or free amines (Ge et al., 2011b).
- 695 Unfortunately we don't have the data from anion side.

Line 94 and table 1: The average humidity was very high in March, November and December, was it because of multiple rainy days? How rainfall would affect on-line sampling? Also, indicate the main wind direction.

700

There was rain and also in March melting snow and ground. Inlet line was sheltered for rain. We have added the main wind direction to Table S1.

Line 111: Were particles dried before measurement? If yes, was it before or after the inlet? Also, why chose to collect PM10 instead of PM2.5 or PM1.0?

No, the particles were not dried, because in Steam Jet Aerosol Collector they get wet, and also the eluent is water. We chose PM10 because it was available and commonly used with MARGA.

- 710 Line 114: Metrosep C4-100/4.0 is a short column designed for quick measurement of major inorganic ions. Can it separate seven aminiums with no interference from inorganic ions? Does DEA also co-eluent with TMA? It's better for authors to show sample/standard spectrum in the supplement.
- 715 We have added the chromatogram of standard to Supplement Material. DEA and TMA were co-eluating a bit, but MS detection separate them totally due to different masses.

Line 115: Where did blank signals of DMA and TMA come from? Was it contamination?

720 It was instrument background.

Line 131-133: More clarification.

- We added to the text that we were not able to found more accurate reason for that.
- 725

Line 166 to 168: The data presented in Figure 1 and Table 4 have some discrepancies. The sum of gas phase and particle phase concentration (Table 4) did not equal to the total concentration in Figure 1.

730 Former Fig. 1 (now Fig. S4) contains also the values below the detection limit as 0.5*DL. In the former Table 4 (now Table S2) they are marked as <DL.

Figure 2: Why no ammonia/ammonium signals in November or December?

735 The signals were added, for some reason they were forgotten.

Line 188-189: more evidence or discussion is required to draw to that conclusion. Why melting snow could be a source when no linear regression was not identified between air temperature and MMA(g), and even negatively correlated with MMA(p) as stated in Table 5, and 60.

740 Table 5 and 6?

Also mixing and reactivity affect the concentrations of amines, and therefore hourly values do not correlate directly with temperature. In Table 5 and 6 there are the data from whole year, and snow melting period is not studied independently.

745 Line 215: show quantitatively about this increase.

Since this statement was too weak, we took of the sentence.

- Line 222-224: In the study of Dawson et al. (2014), their TMA measured concentration 750
 - ranged from 1.3-6.8 ppb, not ppm.

Corrected

- Line 230-231: It's hard to tell on the graph when the maximum appeared.
- 755

Figure was clarified.

Line 231-232: EA and monoterpene having similar diurnal variation is the main evidence for the authors to address that EA has biogenic source. However, as shown in

760 Figure 5, on July 11th, very high concentration of monoterpenes was observed, while EA concentration remained low. Compared to July 11th, on 12th, the monoterpenes concentration was only half of that on previous day, but EA concentration was more than tripled. On 14th, monoterpene had only one peak while EA exhibited two diurnal peaks. Their behavior was not consistent.

765

Concentrations in ambient air are determined by the balance between emissions, reactivity and mixing in the atmosphere. We are not claiming that sources are exactly the same, but similar. The source areas may not be the same either, and therefore wind direction affects too.

770

Line 255: The highest mean concentration of amines were usually observed in July, while the maximum concentrations prefer to appear in spring. Were there any intensive sources only in spring?

775 We are thinking melting snow, as we say in the text. We are going to study the spring snow more in future.

Line 264-270: Were the diurnal behavior the same for each sampling day? It is hard to tell solely from average data whether they were uniform pattern or influenced by some extreme data. Could DMA come from the re-suspension of soil since the authors

780 measured PM10 (include coarse mode particles)?

Diurnal variation for every measurement day (tot. 5) were similar. We expect that amines are in small particles.

According to Figure 6, DMA also had nighttime peak at around 1:00 am. The double

785 peak characteristic of DMA suggested it could be more than light-dependent sources.

This is true and we have added a sentence to the text.

Line 296 to 297 and Line 304: R2 is too small to address the linear relationship.

790

We agree the reviewer, however, looking at the summer data only, there is a positive correlation between temperature and TMA(g). We added a figure to Supplement (Fig. S6).

Line 299: Previous text only discussed that MMA could originate from melting snow

795 and ground, not TMA.

We added discussion also to chapter 3.2.2.

Line 344-349: The link between DMA and numbers of 1-2 nm particles is very weak. 800 The authors should consider removing this section. The 'improved' relationship under high RH condition does not support amines contribution to NPF as high RH would suppress NPF (Hamed et al., 2011).

We considered it is important to show it is weak, since there has been lots of discussion about the contribution of DMA to NPF. We 805 saw contradictory result than Hamed et al., and that is important to show.

Line 378-279: The correlation between PM10 NH4+ with cluster mode particle numbers is not very meaningful.

We agree, but that is an important information too. The Table 8 was moved to Supplement. $810\,$

Minor issues: Line 27: 0.63?

We took that off.

815

Line 47: HPLC is the abbreviation for high performance liquid chromatography.

We have changed that

820 Line 112: It is very unlikely to use 3.2 mol/L oxalic acid as eluent, as oxalic acid solubility under 25 degrees is only 1.6 mol/L.

There was a typing mistake; we have changed the unit to mmol/l.

825 Line 127: reword.

We did.

Line 202: Change ammonia to NHx=(NH3+NH4+)

830 We did.

Line 208-209: reword.

835 We did.

840

845

```
Line 215-216: reword.
```

We did.

Figure 3: there are four points largely deviated from the linear regression. Are they included in the calculation of linear regression as well?

Yes they are.

Figure 1 and Figure 3: change units to nmol/m3 or neq/m3 when comparing the relative importance of amines with NHx because amines have much higher molecular weight.

850

865

Put error bars on Figure 1 and Figure 6.

855 Figure 7: use breaks on x-axis to show clearer time series. Currently, it is hard to tell whether or not DMA shows similar temporal trend as T, ST or SH based on the graph.

We did

860 $\,$ Table 6 is not discussed in the main contents, the authors can move it to supplement. We did.

Reference: Dawson, M. L., Perraud, V., Gomez, A., Arquero, K. D., Ezell, M. J., and Finlayson-Pitts, B. J.: Measurement of gas-phase ammonia and amines in air by collection onto an ion exchange resin and analysis by ion chromatography, Atmospheric Mea-

870	Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part I. A review, Atmospheric Environ- ment, 45, 524-546, 10.1016/j.atmosenv.2010.10.012, 2011a.	
070	Ge, X., Wexler, A. S., and Clegg, S. L.: Atmospheric amines – Part II. Thermodynamic properties and gas/particle partitioning, Atmospheric Environment, 45, 561-577, 10.1016/j.atmosenv.2010.10.013, 2011b.	
875	Hamed, A., Korhonen, H., Sihto, SL., Joutsensaari, J., Järvinen, H., Petäjä, T., Arnold, F., Nieminen, T., Kulmala, M., Smith, J. N., Lehtinen, K. E. J., and Laakso- nen, A.: The role of relative humidity in continental new particle formation, Journal of	
880	Geophysical Research, 116, 10.1029/2010jd014166, 2011.	 Formatted: Font: 10 pt
885		
890		
895		
900		

Amines in Boreal Forest Air at SMEAR II Station in Finland

905 Marja Hemmilä¹, Heidi Hellén¹, Aki Virkkula^{1,2}, Ulla Makkonen¹, Arnaud P. Praplan¹, Jenni Kontkanen², Lauri Ahonen², Marku Kulmala², Hannele Hakola¹

¹ Finnish Meteorological Institute, P.O. Box 503, FI-00101 Helsinki, Finland

² Department of Physics<u>Institute for Atmospheric and Earth System Research/Physics</u>, Faculty of Science, University of Helsinki, P.O. Box 64, 00014 Helsinki, Finland

Correspondence to: Marja Hemmilä (marja.hemmila@fmi.fi)

- 915 Abstract. We measured amines in boreal forest air in Finland both in gas and particle phase with 1-hour time resolution using an online ion chromatograph (instrument for Measuring AeRosols and Gases in Ambient Air, MARGA) connected to an electrospray ionization quadrupole mass spectrometer (MS). The developed MARGA-MS method was able to separate and detect 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). The detection limits of the method for amines were low (0.2–
- <u>3.1 ng m³</u>), the accuracy of IC-MS analysis was 11–37% and the precision 10–15%. The proper measurements in the boreal forest covered about 8 weeks between March 2015 and December 2015. With MARGA MS we were able to separate and detect 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA). The amines were found to be an inhomogeneous group of compounds, showing different seasonal and diurnal variability. Total MMA (MMA(tot)) peaked together with the sum of
- 925 ammonia and ammonium ion already in March, possibly due to evaporation from melting snow and ground. In March monthly means for MMA were <2.4 ng m⁻³ and 6.8±9.1 ng m⁻³ in gas and aerosol phase, respectively, and for NH₃ and NH₄⁺, 52±16 ng m⁻³ and 425±371 ng m⁻³, respectively. Monthly medians in March for MMA(tot), NH₃ and NH₄⁺, were <2.4 ng m⁻³, 19 ng m⁻³ and 90 ng m⁻³ respectively. DMA(tot) and TMA(tot) had summer maxima indicating biogenic sources. We observed diurnal variation for DMA(tot) but not for TMA(tot). The highest concentrations of these compounds
- were measured in July. <u>ThenIn July</u> monthly means for DMA were <3.1 ng m⁻³ and 8.4±3.1 ng m⁻³ in gas and aerosol phase, respectively, and for TMA 0.4±0.1 ng m⁻³ and 1.8±0.5 ng m⁻³. Monthly medians in July for DMA were <DL and 4.9 ng m⁻³ in gas and aerosol phase, respectively, and for TMA 0.4 ng m⁻³ and 1.4 ng m⁻³. When relative humidity of air was >90%, gas phase DMA correlated well with 1.1_-2 nm particle number concentration (R²=0.63) suggesting that it participates in atmospheric clusteringnew particle formation. 0.63 EA concentrations were low all the time. Its₇ July means were <0.36 ng
- 935 m⁻³ and 0.4±0.4 ng m⁻³ in gas and aerosol phase respectively, but they-individual concentration data correlated well with monoterpene concentrations in July. Monthly means of PA and BA were all the time below detection limits.

Formatted: Superscript

Formatted: Superscript

940 1. Introduction

In atmospheric chemistry and secondary-aerosol production bases are crucial since they can neutralize acids and therefore accelerate several processes, like e.g. subsequent growth of newly born aerosol particles. Furthermore bases are significant since they diminish acidification. Amines are gaseous bases, whose general formula is RNH₂, R₂NH or R₃N. Due to their effective participation in neutralization it is hard to detect their real atmospheric concentrations. Globally, the main known

945 anthropogenic amine emissions are from animal husbandry, industry and compost processes, and the natural sources of amines are assumed to be ocean, biomass burning, vegetation and soil (Ge et al., 2011). It has been shown that Amines amines also-affect hydroxyl radical (OH) reactivity and therefore all atmospheric chemistry (Hellén et al. 2014, Kieloaho et al. 2013).

- Models based on quantum chemistry data have shown that <u>they-amines</u> could participate in <u>aerosol-new</u> particle formation (<u>NPF</u>) with sulfuric acid even at very low mixing ratios (Kurtén et al. 2008, Paasonen et al. 2012), <u>and also experiments in laboratory have proved formation of aminium salts when amines react with nitric or sulphuric acid (Murphy et al. 2007). Also In addition the recent laboratory experiments at <u>the</u> CLOUD chamber shows that already even at minute concentrations of dimethylamine (DMA) are able to produce new particles with sulphuric acid are produced (Almeida et al. 2013, Kürten et al. 2016). Atmospheric aerosol-particles affect flect the climate, because they can act as cloud condensation nuclei (IPCC
 </u>
- 2010). Atmospheric aerosol-particles affectanect ine chimate, because they can act as cloud condensation nuclei (IPCC 2014). They also scatter and absorb sun solar radiation. Amines also affect hydroxyl radiaal (OH) reactivity and therefore atmospheric chemistry (Hellén et al. 2014, Kieloaho et al. 2013).

Ambient_concentrations of gus-gas-phase amines have been measured earlier using different methods,-<u>; Samples samples</u> have been collected in phosphorie-phosphoric-acid-impregnated fiberglass filters (Kieloaho et al., 2013), to solid phase micro extraction fiber (SPME, Parshintsev et al. 2015),-and to ion-ion-exchange resin (Dawson et al. 2014) and they have also been percolated through an acidic solution (Akyüz M., 2007). Samples have been analyzed later in the laboratory with various chromatographic techniques, such as gas chromatography coupled to mass spectrometry (GC-MS) (Akyüz 2007, Parshintsev et al., 2015), ion chromatography (IC) (Dawson et al. 2014) and high pressure-performance_liquid chromatography coupled to mass spectrometry (HPLC-MS) (Kieloaho et al. 2013). The above_mentioned techniques have various shortcomings: quantitation based on collection onto fibers is problematic, collecting in filters requires long sampling times (usually several days), and percolating in acidic solutions requires intensive sample pre-treatment. Dawson et al. (2014) used weak cation exchange resin as a substrate for collection of gas-phase ammonia and amines. The method minimizes sample losses on walls during sampling and has quite short sampling times (less than an hour), but the detection

970 limits remain too high for the boreal forest environment.

Also-In addition novel in-situ methods for measuring ambient air gas-phase amines have been developed, usually based on mass-spectrometric detection: chemical ionization mass spectrometry (CIMS), (Sellegri et al. 2005, You et al. 2014), ambient pressure proton transfer mass spectrometry (AmPMS) (Hanson et al. 2011, Freshour et al. 2014), chemical 975 ionization atmospheric pressure interface time-of-flight mass spectrometry (CI-APi-TOF) (Kulmala et al. 2013, Sipilä et al. 2015, Kürten et al. 2016) and TOF-CIMS (Zheng et al 2015). These in-situ techniques have short time resolution and the limits of detections are small. However, these methods cannot separate amines with same masses (e.g. DMA and EA) and identification of the measured compounds remains uncertain. Chang et al. (2003) used high-efficiency planar diffusion scrubber IC (HEDS-IC) to successfully separate amines with identical masses.

980

985

ParticleAerosol phase amines have been sampled onto filters and analyzed later in the laboratory with similar techniques: LC-MS (Ruiz-Jiménez et al. 2012), GC-MS (Huang et al. 2014) and IC (Huang et al. 2014, van Pinxteren et al. 2015). With these methods sampling time was long (24-133 h) and biases may be introduced due to transport and pretreatment of samples. VandenBoer et al. (2011) measured amine concentrations both in gas and particle phase with an ambient ion monitor -IC (AIM-IC). This method had 60-min sampling time and relatively low detection limits (5-9 ng m⁻³). However, it could not separate TMA and DEA from each other. and Also because in atmospheric samples detection limits remain too high for measurements in the boreal forest. ammonia/ammonium can be present in concentrations several orders of magnitude higher than amines in this method they can impede detection of some amines (e.g. MMA and EA).

990 These methods have been utilized in short campaigns from a couple of days to a couple of weeks. Only Kieloaho et al. (2013) measured for a longer period, but their sampling time was long (24-72 h). Most of the measurements studies discussed previously were made in urban or sub-urban areas, and only some a few measurements (Sellegri et al. 2005, Kieloaho et al. 2013, Kulmala et al. 2013 and Sipilä et al. 2015) were made in a boreal forest-site. In these studies the observed alkylamine concentrations ranged from below detection limit to ~ 150 ppt_w, depending on the sampling time and the analysis method used.

995

The-Here we present the in-situ_method developed for atmospheric amine measurements in this study, using an online ion chromatography, instrument for Measuring AeRosols and Gases in Ambient air, coupled with mass spectrometer (MARGA-MS). for atmospheric amine measurements The method was used in the boreal forest, where amines are expected to affect 1000 secondary aerosol <u>-particle</u> formation even at extremely low concentrations (Kurtén et al. 2008, Paasonen et al. 2012, Almeida et al. 2013). We report seasonal and diurnal variations of amines in boreal forest air and their partitioning between gas and particleaerosol phase. A time series of diurnal observations and linkages to known boreal biogenic processes is discussed for several amines. Our investigation is the first long-term survey of sources and phase-distribution of amines at the sub-pptv level in a remote boreal forest environment. In this study we use supporting physical measurements to initiate a

Formatted: Subscript

1005 <u>better understanding of this entire class of compounds relative to what we already know about ammonia. To our best</u> knowledge our measurements constitute the longest time series of amine concentration measurements that have been made.

2. Experimental

1010 We measured amine and ammonia concentrations in 2015 from March to May (spring), July to August (summer) and November to December (early winter) with one-hour time resolution. However, due to instrumental problems, good-quality data were captured for a total only about 8 weeks,

2.1 Measurement site

Measurements were performed in a Scots pine forest at the SMEAR II station (Station for Measuring Forest Ecosystem-

1015 Atmosphere Relations) in Hyytiälä, Southern-southern Finland (61°510 N, 24°170 E, 180 m a.s.l., Hari and Kulmala, 2005, Fig. S1). The largest nearby city is Tampere, situated 60 km southwest from the station with approximately 364-222_000 inhabitants in the city itself (although 364 000 in the wider metropolitan area). The instrument was located in a container about 4 metersers outside the forest in a small opening. In addition to pines, also small spruces (Picea abies) were-growing nearby. The forest was planted about 50 years ago and its current tree height is about 19 m. We measured amine and

1020 ammonia concentrations from March to May, July to August and November to December 2015.

2.2 Meteorological conditions

Data for the mMeteorological parameters quantities were obtained from the SmartSmear AVAA portal (Junninen et al. 2009). SmartSmear is the data portal for visualization and download of continuous atmospheric, flux, soil, tree, physiological and water quality measurements at SMEAR research stations of the University of Helsinki. Table S1 shows the meteorological conditions during measurements periods.

1030 Table 1. Mean temperature and average wind speed and humidity during measurements. We have used only the data that was measured at the same time as our amine data for the calculations.

	Mean	Average	Average
Month	Temperature	Wind speed	Humidity (%)
	(* C)	(m/s)	

Formatted: Line spacing: 1.5 lines

Formatted: Font: 11 pt, Not Bold, English (U.S.)

March	0.4	2.6	87	
April	3.7	2.4	75	
May	9.7	1.8	69	
July	13.8	1.5	75	
August	17.8	1.4	74	
Novem	2.7	2.9	95	
ber				
Decem	-0.1	1.9	9 4	
ber				

1035 2.3 Measurement methods

	<u>2.3.1. MARGA-MS</u>	 Formatted: Font: Bold
	In the present study wWe used the MARGA (instrument for Measuring AeRosols and Gases in Ambient air (MARGA,	
	Metrohm-Applikon, Schiedam, Netherlands) (ten Brink et al. 2007) for sampling and measuringseparating amines. MARGA	
I	is an online ion chromatograph (IC) connected to a sampling system. In addition, this system was connected to an	
1040	electrospray ionization (ESI) quadrupole MS (Shimadzu LCMS-2020, Shimadzu Corporation, Kyoto, Japan) to improve	
	sensitivity of amine measurements (see Table S2 for MS settings). The MARGA instrument earlier used for measuring	
	anions and cations in Helsinki and Hyytiälä is described in more detailed in earlier papers (Makkonen et al. 2012 and 2014).	
	Ambient air was taken through a PM10 cyclone (URG 1032, Teflon coated) and polyethylene tubing (ID 0.5", length ~1 m)	
1045	with a flow rate of 16.71 min ⁻¹ . After passing the inlet, sample air entered to a wet rotating denuder (WRD), where the gases	 Formatted: Superscript
	diffused into the absorption solution (10 ppm hydrogen peroxide). Particles passed through the WRD and entered the steam	
	jet aerosol collector (SJAC), where they were collected in a supersaturated environment (in 10 ppm hydrogen peroxide).	
	During each hour liquid samples from the WRD and SJAC were collected in the syringes (25 ml), mixed with the internal	
	standard (LiBr and deuterated diethyl-d10-amine) and injected to the cation ion chromatograph. The two sets of syringes	
1050	worked in tandem, so that when a set of samples was collected, the previous ones were injected. In the cation chromatograph	
	3.2 mmol 1 ⁻¹ oxalic acid (Merck, Darmstadt, Germany) solution was used as an eluent (constant flow 0.7 ml min ⁻¹). To get	 Formatted: Superscript
	the detection limits lower we used a concentration column (Metrosep C PCC 1 VHC/4.0) before the analytical column	Formatted: Superscript
	(Metrosep C4-100/4.0, 100 mm x 4.0 mm i.d., stationary phase silica gel with carboxyl groups, particle size 5 µm). After	

 passing the cation column and the conductivity detector, samples were guided to the ESI-needle of the mass spectrometer

 1055
 without any additional solvent. All solutions used were made with ultrapure water (Milli-Q, resistivity ≥18 MΩ·cm)This new set up enabled amine concentration measurements in ambient air both in aerosol and gas phases. With MARGA MS we sampled, separated and detected 7 different amines: monomethylamine (MMA), dimethylamine (DMA), trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA).

- 1060 The sampling air flow was 16.7 1 min⁺ for a sampling time of 1 hour. We used PM10 inlet (URG 1032, 16.7 1 min⁺) with polyethylene tubing (ID 0.5" and length -1 m). The eluent used was oxalic acid (3.2 mol 1⁺, Merek, Darmstadt, Germany) with a flow of 0.7ml min⁺. We used a concentration column (Metrosep C PCC 1 VHC/4.0) before the analytical column (Metrosep C4 100/4.0). Detection limits (DL) for MARGA-MS were calculated from signal-to-noise ratios (3:1) for most of the compounds and they were similar in gas and particleaerosol phase, because their blank-values were so small -(Table 21 in section 3.1). However, DLs for DMA and TMA were calculated from blank-values (3 times standard deviations of blank-
- values) and the DLs were different for gas and particleaerosol-phase measurements.

Table 2. Detection limits (DL) of different amines, ammonia and ammonium. Conversions from (ng m⁻³) to ppt, has been made using conversion factor ppt, $= c(ng m^{-3}) : (0.0409*(MW))$ by Finlayson Pitts (2000).

Amine		DL (ng/m ³)	DL (ppt_*)
MMA		2.4	1.9
DMA(Ma	arch to August)gas	3.1	1.7
		1.1	
(Novembo	er to December) gas	0.37	0.20
		0.76	
TMA	gas	0.2	0.1
	particles	0.5	
EA,	both gas and particle	0.36	0.19
DEA,	both gas and particle	0.24	0.08
PA,	both gas and particle	0.31	0.13
BA,	both gas and particle	0.26	0.09
NH ₃		11.4	16.4
\mathbf{NH}_4^+		2.9	

	internal standard (ISTD) for all amines. DEA ₁₀ was used, because it behaved same way in IC-separation but had different	
	mass than studied amines. 50.0µl of DEA10 was added to the MARGAs ISTD solution bottle (LiBr). After the ion	
1075	chromatograph the ISTD mixed with the sample entered the MS-detection. DEA ₁₀ was used to correct for possible losses to	
	instrumentation and correct changes of MS response. A 3-point external calibration was used for all measured alkyl amines	-
	(concentration levels 10, 50 and 300 ng m ⁻³). The system was calibrated every two weeks, by stopping the air flow of the	
	MARGA and directing standard solutions to the sample syringe pumps, before analysis by IC-separation and MS-detection.	
	Ammonia (NH ₃) and ammonium (NH ₄ ⁺) (the sum of them referred to as NH ₈) were also measured with MARGA at the same	
1080	time with the method described in Makkonen et al. (2012 and 2014), except we used oxalic acid solution for eluent. For	
	NHg-measurements only conductivity detector was used and the internal standard was lithium bromide (Acros Organics,	
	New Jersey, USA). Instrumental blank values for MARGA-MS were measured every month or every other month with	L
	MARGAs blank-mode: the sample airflow was stopped, and the analysis cycle was running for 6 hours without sampling.	U
1085	Deuterated diethyl d ₁₀ amine (Sigma Aldrich: Isotec™; Sigma Aldrich, St. Louis, MO, USA) was used as an internal	
	et and end for all amines and a 2 maint antennal activation and an and for all ansatzed allest amines (a manufacture la set	

Deuterated diethyl-d₁₀-amine (DEA₁₀, Sigma-Aldrich: Isotec[™]: Sigma-Aldrich, St. Louis, MO, USA) was used as an

- system was calibrated every two weeks, by stopping the sample syringe pumps, before analysis by IC separation and MS detection. Ammonia (NH.) and (NH_4^+) were also measured with MARGA at the same time with the method described in Makkonen et al. (2012) 1090 was used and the internal standard was lithium by SA). Instrumental blank values were measured every month or every other month with MARGA's blank mode: the sample airflow was stopped, and the analysis cycle was running for 6 hours without sampling.
- In calculations the values under DLs were taken account as 0.5×DL. In the figures we used a moving average for DMA, 1095 because every other measured DMA concentration was a little higher than the other in-between one. The system used different syringes for sample collection every other hour and the reason for differences are expected to be losses or contamination in the syringes. Further causes for these minor differences were not found.

2.3.2 Aerosol measurements

1100 To study the role of amines in atmospheric particle formation, particle number concentration measurements were utilized. The particle number size distribution between 3 and 1000 nm was measured with a twin- Differential Mobility Particle Sizer (DMPS) system (Aalto et al., 2001). From these measurements, the particle concentration between 3 and 25 nm ($N_{3-25 \text{ nm}}$), referred to as the nucleation mode, and the total particle concentration between 3 and 1000 nm (N_{tot}) were obtained. In addition, the concentrations of sub-3 nm particles were measured with an Airmodus Particle Size Magnifier (PSM A11;

1105 Vanhanen et al., 2011). The PSM is a mixing-type condensation particle counter, in which particles are first grown to 90 nm

Formatted: Font: Bold Formatted: Font: Bold

- Formatted: Subscript Formatted: Subscript Formatted: Subscript Formatted: Subscript Formatted: Subscript Formatted: Superscript
- Formatted: Subscript Formatted: Subscript Formatted: Superscript Formatted: Subscript Formatted: Subscript

size by condensation of diethylene glycol, after which butanol is used to grow them to detectable sizes. The cut-off size of the PSM can be changed by altering the mixing ratios of saturated and sample flows, which allows the measurement of particle size distribution in the sub-3 nm size range. In this study, the particle concentration obtained for the size range between 1.1 and 2.0 nm (N_{1.1-2nm}) was used. In addition, the particle concentration between 2 and 3 nm (N_{2-3nm}), was obtained
by subtracting the total particle concentration measured with the highest cut-off size of the PSM from the total particle concentration measurements and their uncertainties, see Kontkanen et al. (2017) who have published the data set used in this study.

2.4 Regression calculations

1115 Simple linear regressions were calculated to find out-whether the basic meteorological conditions affect the amine concentrations. The statistical significance of the slope of the linear regression of the amine concentration y vs. the ambient condition x, i.e. $y = \beta_1 x + \beta_0$ was estimated. The null hypothesis, which means that the slope β_1 is not dependent on the ambient condition x (i.e., $\beta_1 = 0$), was examined using test statistics given by the estimate of the slope divided by its standard error (t = β_1 /s.e.). The test statistics were compared with the Student's t distribution on n - 2 (sample size -minus the number of regression coefficients) degrees of freedom. The analysis yields also the p value of the slope. The lower the p-value is, the stronger the evidence against the null hypothesis is. The statistical significance of the slope can be interpreted s o that if p > 0.1 there is no evidence against the null hypothesis, and p-values in the ranges 0.05-0.1, 0.01-0.05, and < 0.01 suggest respectively a weak, moderate and strong evidence against the null hypothesis in favor of the alternative. The regressions were calculated for amine concentrations vs. air temperature, relative humidity, wind speed, soil temperature and soil 1125 humidity.

	3, Results	•	Formatted: Font: 10 pt
1130	3.1 Characterization of MARGA-MS		Formatted: Line spacing: 1.5 lines
1150			Formatted: Font: 10 pt, Bold, English (U.S.)
	An on-line method for sampling, separating and detecting amines from the ambient air both in the gas and aerosol phase has		Formatted: Font: 10 pt, English (U.S.)
	been developed. With MARGA-MS we studied 7 different amines: monomethylamine (MMA), dimethylamine (DMA),		Formatted: Font: 10 pt, Bold, English
	trimethylamine (TMA), ethylamine (EA), diethylamine (DEA), propylamine (PA) and butylamine (BA), see Figure S2 for	$\langle \rangle$	(U.S.)
	the chromatogram. The time resolution of measurements was one hour, and as can be seen in Table 1, the detection limits		Formatted: Font: 10 pt, Bold, English (U.S.)
1135	were low, and precision (10-15%) and accuracy (11-37%) for the analytical method of MARGA-MS were moderately good	<u>.</u>	
	In addition to improved DLs, MS detection after MARGA also solved the problem with co-elution of amines with different		

	molecular masses and inorganic cations	(e.g. K+, Mg2+). V	/erriele et al. (2012	2) developed also an 1	IC-MS method for amines		
	with offline sampling with midget impi	ngers. They also no	ticed that adding N	AS detection after a co	onductivity detector		
	overcomes the co-eluting problem of IC	separation. They h	ad a 4-step gradie	nt elution in their met	thod, and suppression		
1140	before the conductivity detector. We wa	inted to keep our m	ethod as simple as	possible to make it e	asy to use in the field, and		
	isocratic elution without suppression wa	as good in that purp	ose.	-			
	The sub-la exclusion are denoted in th	- 6-14 4b4b	- 4 h - 4 1 ⁽ 6			C	
	<u>The whole analysis was conducted in the</u>	1 DA 1:11		rom sample transporta	ation. However, the		Formatted: Normal, Line spacing: 1.5 lines
	drawback in the analysis was that DEA	and BA, which hav	e the same molect	llar masses, did not se	eparate completely. From a		
	technical point of view one of the drawl	backs of the MARG	A-MS was that th	e system was quite vi	<u>alnerable. We lost many</u>		
1145	measuring days because some part of th	e system was broke	en. The MARGA s	ide also needed ~401	solutions (e.g. eluents,		
	absorbation solution for sampling, and i	nternal standard sol	lution) that needed	to be changed weekl	y. The ESI-chamber of the		
	MS needed to be cleaned weekly, becau	se oxalic acid was	crystallizing into in	t. Despite the drawbac	cks, to our knowledge with		
	the MARGA-MS method we achieved	he largest data set o	of amine concentra	tions available at the	moment.	(Formatted: English (U.S.)
1150							
1100							
1155							
	Table 1 Detection limits (DL) of differ		:tt	C			
	made using conversion factor $ppt_{n} = c(r)$	$(0.0409 \times (10.0409 \times (10.0409)))))))))$))))	(W)) by Finlaysor	-Pitts (2000), with M	IW the molar mass of the		
	amine, ammonia or ammonium The pi	ecision for IC-MS	analysis was defin	ed by calculating stan	ndard deviations of liquid		
	200 ng m ⁻³ standard measured 6 times i	n a row. In the data	series there were l	both gas and particle s	side measurements. The		
1160	accuracy for IC-MS analysis was calcul	ated by subtracting	the averages of th	e data series describe	d earlier from the expected		
	values, dividing those with the expected	I values and multipl	lying them by 100 ⁴	<u>%.</u>			
	Amine	DL (ng m ⁻³)	DL (ppt _v)	Precision (%)	Accuracy (%)		Formatted: Line spacing: single
	MMA both gas and aerosol	2.4	19	10	24		Formatted Table
		<u> </u>	1.2	10	<u></u>		Formatted: Line spacing: single
	DMA, (March to August) gas	<u>3.1</u>	<u>1.7</u>	<u>11</u>	<u>31</u> •	(Formatted: Line spacing: single
	aerosols						

(November to December) gas	<u>1.1</u>				
aerosols	<u>0.37</u>	<u>0.20</u>			
	<u>0.76</u>				
TMA, gas	<u>0.2</u>	<u>0.1</u>	<u>14</u>	<u>11</u>	Formatted: Line spacing: single
aerosols	<u>0.5</u>				
EA, both gas and aerosol	<u>0.36</u>	<u>0.19</u>	<u>11</u>	<u>16</u>	Formatted: Line spacing: single
DEA, both gas and aerosol	<u>0.24</u>	<u>0.08</u>	<u>15</u>	<u>37</u>	Formatted: Line spacing: single
PA, both gas and aerosol	<u>0.31</u>	<u>0.13</u>	<u>11</u>	<u>21</u>	Formatted: Line spacing: single
BA, both gas and aerosol	<u>0.26</u>	<u>0.09</u>	<u>12</u>	<u>14</u>	Formatted: Line spacing: single
<u>NH₃, gas</u>	<u>11.4</u>	<u>16.4</u>			Formatted: Line spacing: single
<u>NH4</u> ⁺ , aerosol	<u>2.9</u>				

3.1.1 Particle collection in the denuder of the MARGA

- 1165 Theoretical calculations of diffusional losses through an annular tube have been derived, e.g., by Winiwarter (1989). The numerical solution of the diffusional losses in an annular denuder presented by Fan et al. (1996) and Baron and Willeke (2001) were applied to calculate the size-dependent penetration in the denuder of the MARGA. The calculation needs as input the diameter of the inner and outer tubes (36.4 mm and 39.9 mm, respectively), the tube length 26.5 cm and the flow rate 16.7 LPM.
- 1170 The result of the calculation (Fig. 1) shows that 50% of particles smaller than about 6 nm are collected in the denuder and get interpreted as gas-phase compounds. It also shows that essentially all particles larger than about 20 nm get transported through the denuder and finally get interpreted correctly as particles. The cluster-mode particles are smaller than 2 nm and behave primarily like gases and more than ~80% of them do not penetrate the denuder, whereas more than ~85% of particles larger than 10 nm go through it. The size of nucleation-mode particles is approximately between 2–10 nm, or up to ~25 nm,
- 1175 depending on the definition of the size ranges, and they appear in the atmosphere mainly during NPF events. During these events they could be found both in the denuder and in the steam-jet aerosol collector, but that does not play an essential role because of their small mass even when the number concentration is high. An estimate of the masses involved can be given by assuming that the number concentration in a nucleation mode is 10 000 cm⁻³, its geometric mean diameter $D_e = 4$ nm, and the geometric standard deviation $\sigma_e = 1.5$. Assuming that the density of particles is 1.5 g cm⁻³ the mass of that mode is ~1.05

Formatted: Font: Bold, English (U.S.) Formatted: Font: Bold, English (U.S.) Formatted: Line spacing: 1.5 lines

Formatted: Normal

Formatted: Justified, Line spacing: 1.5 lines

Formatted: Superscript	
Formatted: Subscript	
Formatted: Subscript	
Formatted: Superscript	

1180 ng m⁻³. The diffusion losses in the denuder result in a growth of the geometric mean of the size distribution and decrease of mass concentration to ~0.69 ng m⁻³ which means that 65 % of the mass gets into the SJAC. The fraction of mass penetrating to the SJAC grows with a growing modal diameter so that for a single-mode distribution of $D_{g} = 10$ nm and $\sigma_{g} = 1.5$ the penetrated mass fraction is 95%.

3.1-2 Variability of the concentrations

- Formatted: Superscript
 Formatted: Superscript
- Formatted: Subscript

Formatted: English (U.S.)

Formatted: Normal

Formatted: English (U.S.)
Formatted: English (U.S.)
Formatted: English (U.S.), Subscript
Formatted: English (U.S.), Subscript
Formatted: English (U.S.), Subscript
Formatted: English (U.S.)
Formatted: Font: 10 pt, English (U.S.)

Figure 1-<u>S4</u> shows the monthly means and medians of total amine concentrations (tot, sum of gas and aerosol phases) and
Figure 2-2 shows the box and whisker plots to describe the statistics-distribution of the measured concentrations. Total amine concentrations -were used because we wanted to study how amine sources and partitioning between aerosol- (a) and gas phase (g) depend on environmental quantities. Even though the average ratios (gas/(gas+aerosol)) for values above DL in the aerosol phase. Table 42 are close to 0.5, aAmines were still mainly in the aerosol phase (Table -3-2 and 4S2), which is shown by the more data points >DL in the aerosol phase. Table S3 shows the number of data points in each month, as well as the mean and median values of concentrations of different amines, ammonia and ammonium. It can be seen, that most concentrations were below DL especially in the gas phase, so we can conclude that concentrations of amines in the boreal forest are low compared to for example ammonia or monoterpene concentrations (Hakola et al. 2012). In Table 3, concentrations in other

Figure 1, Size-dependent particle penetration probability in the annular denuder of the MARGA and a normalized number size distribution (dN/dlogD_o, D_c = 4 nm, $\sigma_c = 1.5$) of a nucleation mode before and after penetrating the denuder

studies are compared to our findings. Different seasonal patterns were found for different amines and they are described below.

100. to fit the scale. NH

1.15 li

Formatted: Font: 9 pt Formatted Table Formatted: Font: 9 pt Formatted: Font: 9 pt Formatted: Font: 9 pt Formatted: Font: 9 pt

1215	Table 32. Ratio of gas and aerosol phases. N(g)=number of gas phase data above detection limit (DL), N(a)=number of
	aerosol phase data above DL and N=number of data above detection limitDL at the same time both in the gas and aerosol
	phases, ratio=gas/(gas+aerosol) (when both values were above the DL).

	MMA	DMA	TMA	EA	DEA	<u>PA</u>	<u>BA</u>	NH ₃ NH _x	
<u>N(g)</u>	<u>29</u>	<u>116</u>	<u>308</u>	<u>62</u>	<u>86</u>	<u>20</u>	<u>38</u>	<u>285</u>	
<u>N(a)</u>	<u>183</u>	<u>550</u>	<u>391</u>	<u>82</u>	<u>29</u>	<u>35</u>	<u>26</u>	<u>844</u>	
Ν	<u>9</u>	53	208	21	<u>6</u>	<u>5</u>	<u>3</u>	596 282	
Average ratio	<u>0.41</u>	0.44	0.29	0.48	<u>_</u>	=	=	0.35	
		_							

Min ratio	<u>0.18</u>	0.09	0.10	0.05	<u>=</u>	<u>-</u>	_	0.05	 Formatted: Font: 9 pt
Max ratio	<u>0.52</u>	0.83	0.90	0.95	=		=	0.84	 Formatted: Font: 9 pt

Table 3. Comparison of concentrations of MMA, DMA, TMA and EA in different sites and seasons, gas and aerosol phase.

1220 Table 4. Monthly mean and median (med.) of gas and particle phase amines and ammonia.

ng m ⊸	Ma	rch	A	ril	M	ay	H	ıly	Aug	gust	Nove	mber		Formatted: English (U.S.)
	mean	med.	mean	med.	mean	med.	mean	med.	mean	med.	mean	med.	\sim	Formatted: English (U.S.), Supersci
Gas														Formatted: English (U.S.)
DEA	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	←DL	<dl< del=""></dl<>	←DL	≺DL	≺DL	<₽L	<dl< del=""></dl<>	<dl< del=""></dl<>	- - DL		
34	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	- - DL		
MA	<dl< del=""></dl<>	«DL	<dl< del=""></dl<>	≺DL	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	≺DL	<dl< del=""></dl<>	<dl< del=""></dl<>	0.4			
MA	0.4	«DL	0.4	≺DL	03	<dl< del=""></dl<>	0.4	0.4	0.3	<dl< del=""></dl<>	0.2			
<u>.</u>	CDL	«DL	< <u>←DL</u>	<u>≺DL</u>	< <u>−DL</u>	<u>∠DL</u>	≪DL	<dl< del=""></dl<>	< <u>←DL</u>	d	ZDL	<u></u>		
Δ.	∠DL	∠DL	∠DL	∠DL	∠DL	∠DL	∠DL	∠DL	∠DL	∠DL	∠DL	∠DL		
лла		<di< td=""><td></td><td><di< td=""><td><di< td=""><td></td><td></td><td><di< td=""><td></td><td></td><td>1.2</td><td></td><td></td><td></td></di<></td></di<></td></di<></td></di<>		<di< td=""><td><di< td=""><td></td><td></td><td><di< td=""><td></td><td></td><td>1.2</td><td></td><td></td><td></td></di<></td></di<></td></di<>	<di< td=""><td></td><td></td><td><di< td=""><td></td><td></td><td>1.2</td><td></td><td></td><td></td></di<></td></di<>			<di< td=""><td></td><td></td><td>1.2</td><td></td><td></td><td></td></di<>			1.2			
	52	10	52		<u>VI</u>	- 	<u> </u>		~DD		1.2			
чн₃	. 32	+>	34	<de< del=""></de<>	01	22	45	<de< del=""></de<>	00	<pe< del=""></pe<>				
Verose	<u>ਮ</u>												4	Formatted: Left
)EA	0.3	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>		
A	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>		
MA	1.5	<dl< del=""></dl<>	3.1	3.0	2.7	←DL	8.4	4,9	1.3	←ĐĿ	<dl< del=""></dl<>	<dl< del=""></dl<>		
<u>'MA</u>	1.1	<dl< del=""></dl<>	0.7	←DL	0.5	<dl< del=""></dl<>	1.8	1.4	0.6	0.6	0.5	<dl< del=""></dl<>		
A	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	←DL	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	≺DL	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>		
A	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	←DL	<dl< del=""></dl<>	<dl< del=""></dl<>	0.4	←DL	←DL	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>		
AMA	6.8	<dl< del=""></dl<>	2.9	←DL	<dl< del=""></dl<>	←DL	3.0	≺DL	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>	<dl< del=""></dl<>		
₩ ,+	425	90	144	64	145	97	136	92	88	28				
				0.	1.0		100		00				/	Formatted: Font: 9 pt
	Car	A	C!4.		Land	•	C		Vac		Deferrer		_ /	Formatted: Line spacing: Multiple
mine	(ppt.)	(ng m^{-3})	desc	ription	Local	<u>1011</u>	Season		rear		Kelerence			Formatted Table
IMA	<u><dl-8.8< u=""></dl-8.8<></u>	< <u>DL-61</u>	.2 Rura	l forest	Finlan	<u>ıd</u>	Spring-ear	ly winter	<u>2015</u>		This study			Formatted: Font: 9 pt. Subscript
	<u>3.8</u> max.		Rura	al forest	<u>AL, U</u>	I <u>SA</u>	Summer		<u>2013</u>		You et al. (2	2014)		Formatted: Font: 9 pt
	<u>~2</u>													Formatted: Font: 9 pt
														Formatted: Font: 9 nt

		<u>summer</u>	2012	Freshour et al. (2014)
Rural OF	K. USA	Spring	2013	Freshour et al. (2014)
Urban <u>M</u> I	N, USA	Autumn	2012	Freshour et al. (2014)
<u>Urban Tu</u>	irkey S	Summer	2004-2005	<u>Akyüz (2007)</u>
Urban Tu	<u>irkey V</u>	Winter	2005-2006	<u>Akyüz (2007)</u>
Rural forest Fir	nland S	Spring-early winter	2015	This study
Rural forest AI	L <u>, USA</u>	<u>Summer</u>	2013	<u>You et al. (2014)</u>
Semi-rural DF	E, USA	<u>Summer</u>	2012	Freshour et al. (2014)
Rural OF	K, USA	Spring	2013	Freshour et al. (2014)
Urban MI	N, USA	Autumn	2012	Freshour et al. (2014)
Urban <u>Tu</u>	irkey S	Summer	2004-2005	<u>Akyüz (2007)</u>
Urban Tu	<u>irkey</u>	Winter	2005-2006	<u>Akyüz (2007)</u>
Urban Ca	anada S	Summer	2009	VandenBoer et al. (2011)
R <u>ural</u> <u>Ca</u>	an <u>ada</u>	Autu <u>mn</u>	20 <u>10</u>	VandenBoer et al. (2012)
Rural forest Fir	nland 1	May-October	2011	Kieloaho et al. (2013)
Urb <u>an G</u>	A, <u>USA</u>	Summ <u>er</u>	2009	Hanson et al. (2011)
Semi-arid AZ	Z, USA	Whole year	2012-2013	Youn et al. (2015)
Rural forest Fir	nland S	Spring-early winter	2015	This study
Rural forest Fir	nland S	Spring	2002	Sellegri et al. (2005)
Rural forest US	<u>SA S</u>	<u>Summer</u>	2013	You et al. (2014)
Semi-rural DF	E, USA	Summer	2012	Freshour et al. (2014)
Rural OF	K, USA S	Spring	2013	Freshour et al. (2014)
Urban MI	N, USA	Autumn	2012	Freshour et al. (2014)
Rural forest AI	L, USA	Summer	2013	You et al. (2014)
<u>Urban</u> <u>Ca</u>	anada <u>s</u>	Summer	2009	VandenBoer et al. (2011)
Rural Ca	anada A	Autumn	2010	VandenBoer et al. (2012)
Rural forest Fir	nland 1	May-October	2011	Kieloaho et al. (2013)
Agricultural CA	A, USA	Autumn	2013	Dawson et al. (2014)
Wildfire [#] Ca	anada S	Summer	2015	Place et al. (2017)
Rural forest Fir	nland S	Spring-early winter	2015	This study
		Winter	2005-2006	<u>Akyüz (2007)</u>
	U-h T-	Urban Turkey V	Urban Turkey Winter	Urban Turkey Winter 2005-2006

3.12.1 MMA Monomethylamine

1225 A spring maximum was observed for MMA(tot) (max. 50 ng m⁻³) and the concentrations correlated with the sum of NH₃ and NH₄⁺ (R^2 =0.52, Fig. 32). During spring we observed two occasions when MMA(tot) and the sum of NH₃ and NH₄⁺

Formatted (... Formatted <u>...</u> Formatted (.... Formatted (... Formatted (... Formatted (... Formatted (.... Formatted (... Formatted (... Formatted (... Formatted Formatted (... Formatted (... Formatted ... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted (... Formatted [... Formatted (... Formatted (... Formatted (... Formatted (.... Formatted <u>...</u> Formatted (... Formatted (.... Formatted (...

Formatted

(....)

concentrations increased considerably at the same time. The concentration increase in March is characterized with rain (Fig. 44a) and the later increase in April took place during night with decreasing wind speed and higher temperature (Fig 34b). This increase could be due-connected to evaporation from melting snow and ground, and we are going to study spring snow more. Bigg et al., (2001), suggest that water from melting snow penetrate the soil and leaf litter beneath the snow, displacing gases produced by decomposition of organic material. These gases are then released to the air, where they participate in the nucleation process. OnAt humid conditions this bubbling of gases would be efficient, whereas the evaporation to air would be more efficient on warm, sunny days.

1235

Formatted: Centered

Figure 33. Concentrations (ng/m³) of total MMA (y axis) vs concentrations of $NH_3+NH_4^+$ (x axis) in March and April 2015.

respectively. Values are <u>in sameat similar</u> level<u>s to</u> <u>with</u>-our measurements. That is surprising, because in urban area there are lots of we expect many MMA-sources (e.g. industry and <u>automobilescars</u>, Ge et al. 2011), so higher mean concentrations would have been expected.

3.12.2 TMATrimethylamine

 $\frac{\text{TMA(tot) had higher concentrations in March after which they declined, before increasing again in July to their maximum}{\text{concentrations suggesting biogenic sources (Fig. 42, Fig. S4). TMA(tot) concentrations also peaked at the end of March during rain simultaneously with MMA(tot) and the sum of NH₃ and NH₄⁺ increasing from about 1.5 to 6.0 ng m⁻³, so melting$

Formatted: Subscript

Formatted: Subscript

Formatted: Subscript

snow and ground could also be the sources of TMA as discussed in 3.2.1. During summer TMA(tot) concentrations increased again concomitant with the sum of NH_3 and NH_4^+ in July. The share of the gas phase was throughout the measurements-roughly half of the aerosol phase concentration throughout the measurements (Table 32 and S2). TMA(tot)

- 1270 <u>did not show a clear diurnal variation (Fig. 45).</u> TMA<u>(tot)</u> had higher concentrations in March after which they declined, before increasing again in July to their maximum concentrations suggesting biogenic sources (Fig. 21). TMA<u>(tot)</u> concentrations also peaked at the end of March during rain simultaneously with MMA<u>(tot)</u> and the sum of NH₃- and NH₄⁺ increasing from about 1.5 to 6.0 ng m⁻³. . . so melting snow could also be the source of TMA. During summer measurements TMA(tot) increased again concomitant with the sum of
- 1275 NH₃-and NH₄[→] in July. This increase was not due to rain, and it happened simultaneously with the increase in nucleation mode particle concentration. The share of the gas phase was throughout the measurements roughly half of the particle<u>aerosol</u> phase concentration (Table 3 and 4<u>S2</u>). TMA did not show a clear diurnal variation (<u>Fig. 4</u>).

Kieloaho et al. (2013) collected filter samples of gaseous amines from the same boreal forest as we did from May to October
2011 and they also measured low concentrations for the sum of TMA(g) and PA(g) in July. In their measurements the concentrations increased during fallautumn. You et al. (2014) measured gaseous C₃-amines (TMA and PA) with CIMS in a forest in Alabama from June to early July in 2013 and their highest concentration (~15 ppt_v, ca. 36 ng m⁻³) was ~10 times higher than ours (3.5 ng m⁻³). Dawson et al. (2014) collected TMA-samples in ion resin cartridges from late August to middle September near a_cattle farm in Chino, California, and analysedanalyzed the samples with IC. Their results varied from 1.3-6.8 ppm_v-ppb_v (ca. 3.1_-16.4 µg m⁻³), so they measured ~1000 times higher concentrations than we did. This is not surprising, because cattle are a known source of amines. Sellegri et al. (2014) measured amines in March 2002 with CIMS in same boreal forest than-that we did. They found TMA(g) with mixing ratios 34_-80 ppt_v (ca. 82_-193 ng m⁻³), so their results are ~30 times higher than ours. Ambient conditions were different than ours when they measured TMA, and that-this could be one reason for the higher concentrations they observed.

1290

3.2.3 Dimethylamine

DMA(tot) concentrations also increased from about 3 to 6 ng m⁻³ during the MMA episode in April. Moreover, both particulate and gas phase DMA had maximum concentrations in July suggesting a biogenic source (the highest value was 14.5 ng m⁻³ in the aerosol phase and 7.5 ng m⁻³ in the gas phase). The particle fraction was again generally more abundant than the gaseous fraction-average. Because amines can be expected to partition in the aqueous aerosols (Ge et al. 2010), it is not surprising to find them mostly in the aerosol phase, considering the high average relative humidity measured (>68%). In August the concentrations decreased, and they were the lowest during early the winter. Kieloaho et al. (2013) measured also high gas phase concentrations of the sum of DMA and EA in July, reaching a maximum of ~75 ppt_y (ca. 138 ng m⁻³). In their measurements the concentration levels decreased in August similar to our measurements. High DMA and TMA

1300	concentrations in summer could indicate biogenic sources. However, these amines concentrations did not correlate with
	monoterpene concentrations like EA, although they react faster with OH radicals than EA (see section 3.1.32.4).
	VandenBoer et al. (2011) measured both DMA(g) and DMA(a) with AIM-IC from late June to early July 2009 in an urban
	area, with highest concentration of 2.7 ppt _v (ca. 4.6 ng m ⁻³) and 2.7 ng m ⁻³ which were at the same level as our DMA(g) in
	July (7.5 ng m ⁻³). Hanson et al. (2011) also measured DMA concentrations with AmPMS in an urban area with a little higher
1305	gas phase concentrations (maximum of 10 ppt _v , ca. 19 ng m ⁻³) than in the studies mentioned earlier. Ge et al. (2010) gives
	DMA also urban sources (e.g. tobacco smoke, automobiles), so that can explain results from Hanson et al. (2011). Youn et
	al. (2015) measured DMA aerosols and cloud water, and they noticed that DMA concentrations in PM1-aerosols peaked in
	September. We were also expecting high concentrations in autumn, but due to instrumental problems we unfortunately
	missed the season. In July we measured from PM10 particles the average concentration of 8.4 ng m ⁻³ , and Youn et al. (2015)

1310 measured from PM1 particles about twice as high concentration. Different measurement sites could explain the difference. Youn et al. also noticed that DMA(a) displays a unimodal size distribution with dominant peak between 0.18 and 0.56 μm, and concluded that it indicates aminium salt formation with sulphate..

In August, DMA(tot) had a diurnal variation with a daytime maximum (Fig. 5), but during some nights the concentrations also increased slightly. The DMA(tot) afternoon maxima could be caused by re-emission of DMA that has earlier deposited on surfaces and evaporates when temperature increases during the afternoon. The maximum could also be related to direct biogenic emission. Usually ambient concentrations of biogenic volatile organic compounds, which have temperature dependent emissions, peak during night-time due to weak atmospheric mixing and lack of hydroxyl radical reactions which only take place during daytime (Hakola et al. 2012). The concentrations of light dependent BVOC emissions such as isoprene have daytime maxima because they are emitted only during daytime. Thus, the DMA source could be light dependent. DMA(tot) peaks also at night. Because the atmospheric mixing in the night is weak and there are no OH-reactions, even small emissions can be trapped in a shallower atmospheric boundary layer and cause the increase in concentrations.

Formatted: Superscript

1330 3.12.3-4 EAEthylamine

EA(tot) concentrations were low throughout the measurements, but showed a clear diurnal variation in July with a maximum at night (Fig. 56). Monoterpene concentrations were measured simultaneously at the same site and had similar diurnal pattern. This type of diurnal variation is typical for many reactive compounds having local sources in boreal forest (Hakola et al. 2012). Low daytime concentrations are due to efficient strong atmospheric mixing and reactions with OH radicals sink 1335 reactions. The rate coefficients of alkyl amines are slightly lower, but comparable to monoterpene reactions with OH radical. The most common monoterpenes in the boreal forest are α -pinene, 3-carene and β -pinene (Hakola et al. 2012). Their Θ H radical-rate coefficients for reaction with OH are 53.7 · 10⁻¹², 88 · 10⁻¹², and 78.9 · 10⁻¹² cm³ molecule⁻¹ s⁻¹, respectively (Atkinson 1994), whereas MMA, EA, DMA and TMA rate coefficients with OH radicals-are 22.26.10⁻¹², 29.85.10⁻¹², 65.53·10⁻¹², and 69.75·10⁻¹² cm³ molecule⁻¹ s⁻¹, respectively (U.S. EPA, 2017). Similar diurnal patterns and reactivities indicates indicate that EA has a biogenic source. Kürten et al. (2016) measured C2-amines (i.e. DMA and EA) with CI-APi-1340 TOF in Germany near 3 dairy farms and forest from May to June 2014. They did not observe clear diurnal variation for C_2 amines. In our measurements, EA and DMA had opposite diurnal variations (see chapter section 3.1.42.3). That could be the one reason an explanation for results the observations of Kürten et al. (2016), where both $C_{e-amines}$ were measured together. Aküez (2007) measured EA(g) 0.35 ng m³ (mean concentration) in an urban area in Turkey during winters 2005-2006, and

1345 the concentrations were at the same level as ours.

Formatted: Subscript
Formatted: Superscript

3.1.4 DMA

entrations also increased from about 3 to 6 ng m³during the MMA episode in April. Moreover, both particulate DM and DMA had maximum concentrations in July (highest value in particle phase 14.5 ng m³ and in caseous phase 1355 75 no particulate fraction was again generally more abundant than the gaseous fraction average. Recause amines can ted to partition in the aqueous aerosols (Ge et al. 2010), it is not surprising to find them mostly in the particle phase considering the high average relative humidity measured (<68%). In August the concentrations decreased, and they st during early winter. Kieloaho et al. (2013) measured also high gas phase concentrations of the sum of DMA and EA in July, reaching a maximum of ~75 ppt. (ca. 138 ng m⁻³). In their measurements the concentration levels decreased in 1360 High DMA and TMA Angust concentrations concentrations did not correlate with mone Hov concentrations like EA although they react faster VandenBoer (2011)with highest concentration 2000 in 4<u>6 ng m⁻³)</u> level ous DMA in July (7.5 ng m⁻³). Hanson et al. (2011) also measured DMA concentrations with AmPMS in an urban as our ga 1365 area with a little higher gas phase concentrations (maximum of 10 ppt_u, ca. 19 ng m⁻³) than in the studies mentioned earlier.

Ge et al. (2010) gives DMA also urban sources (e.g. tobacco smoke, automobiles), so that can explain results from Hanson et al. (2011).

- In August DMA had diurnal variation with a daytime maximum (Fig. 6), but during some nights the concentrations also increased a bit. The DMA afternoon maxima could be caused by re-emission of DMA that has earlier deposited on surfaces and evaporates when temperature increases during afternoon. The maximum could also be related to direct biogenic emission. Usually ambient concentrations of biogenic volatile organic compounds peak during nighttime due to inefficient mixing and lack of hydroxyl radical reactions which only take place during daytime (Hakola et al. 2012). The concentrations of light dependent BVOC emissions such as isoprene have daytime maxima because they are emitted only during daytime.
- 1375 Thus, DMA source could be light dependent.

1380 August 2015.

3.2-3 Correlations with between meteorological parameters quantities and nano-particle concentrationsamines

We noticed that <u>especially the</u> concentrations of DMA(g) <u>vary withfollowed</u>, although vaguely, the variations of both air and 1385 <u>soil</u> temperature (Fig. <u>S5</u>?), so <u>it was reasonable to study whether there are any clear relationships between the amine</u> <u>concentrations and parameters describing ambient conditions. weWe decided to calculated</u> linear regressions of amines, ammonia and ammonium with different ambient conditions (vs. air relative humidity (RH) and temperature (T) as well as soil temperature (ST) and soil humidity (SH)). The results of the linear regression analyses of the amines, ammonia, ammonium, and the ambient conditions are presented in Tables S4 and S5 for the gas and aerosol phase, respectively.

1390

In the gas phase DMA had the strongest correlation with ambient condition parameters, suggesting that DMA(g) concentrations increase with increasing air temperature, soil temperature and soil humidity but decrease with increasing atmospheric humidity and wind speed. The scatter plots of DMA(g) vs these parameters (Fig. 7) shows, however, that the relationships are different in different seasons. The most consistent relationships of DMA(g) are with air and soil

 1395
 temperature, the slopes of the linear regressions are positive for the whole data and for summer alone (Fig. 8). Gas phase

 DMA had the strongest correlation with ambient conditions (Table 5).

Figure 7. Time series of DMA(g), air temperature (air T), soil temperature (ST) and soil humidity (SH) during the whole

1400 measurement period.

Figure 7. DMA in the gas phase vs selected ambient condition parameters: a) air temperature, b) relative humidity, c) wind
 speed, d) soil temperature, and e) soil humidity in spring, summer, and early winter. The linear regressions shown in the plots were calculated using the data points of all seasons.

Formatted: Centered

1410 Table 5. Regression statistics $(y = \beta_{1}x + \beta_{0})$ of amine and ammonia concentrations in the gas phase vs. ambient conditions. R²: the square of the Pearson's correlation coefficient; s.e.: standard error of β_{1} ; d.f.: degrees of freedom; $t = \beta_{1}/s.e.$; p: p-value of the Student's t distribution; air T: air temperature; RH: relative humidity of air; WS: wind speed at 16.8 m; soil T: soil temperature; soil Hum: soil humidity. The slopes, standard errors and t values are shown only for those regressions that have a p-value < 0.1. Very low p-values are highlighted by bold font.

×	У	$\frac{R^2}{R}$	$\beta_1 \pm s.e.$	d.f.	ŧ	₽
air T	MMA(g)	0.01		11		0.82
RH	MMA(g)	0.16		11		0.17
WS	MMA(g)	0.17		11		0.16
soil T	MMA(g)	0.00		21		0.94
soil Hum	MMA(g)	0.00		19		0.85
air T	DMA(g)	0.55	$\frac{0.29 \pm 0.03}{0.03}$	106	11.4	4.4E-20
RH	DMA(g)	0.36	-0.071 ± 0.009	106	-7.7	7.6E-12
WS	DMA <u>(g)</u>	0.30	-0.99 ± 0.15	106	-6.8	6.3E-10
soil T	DMA <u>(g)</u>	0.31	0.28 ± 0.04	115	7.2	6.2E-11
soil Hum	DMA(g)	0.63	$\frac{25 \pm 2}{2}$	113	13.9	3.7E-26
air T	EA(g)	0.08	-0.015 ± 0.007	49	-2.0	0.051
RH	EA <u>(g)</u>	0.00		49		0.83
WS	EA<u>(g)</u>	0.02		49		0.38
soil T	EA <u>(g)</u>	0.12	-0.12 ± 0.04	57	-2.8	0.0064
soil Hum	EA <u>(g)</u>	0.11	9 ± 4	54	2.6	0.013
air T	TMA(g)	0.06	-0.036 ± 0.009	297	-4.2	3.3E-05
RH	TMA(g)	0.01		297		0.18
WS	TMA(g)	0.01		<u>297</u>		0.038
soil T	TMA(g)	0.06	-0.05 ± 0.01	309	-4.5	1.2E-05
soil Hum	TMA(g)	0.09	$\frac{5.1}{\pm 1.0}$	297	5.3	2.3E-07
air T	PA <u>(g)</u>	0.02		12		0.66
RH	PA <u>(g)</u>	0.11		<u>12</u>		0.25
WS	PA <u>(g)</u>	0.00		12		0.84
soil T	PA <u>(g)</u>	0.00		18		0.91
soil Hum	PA <u>(g)</u>	0.12		12		0.22
air T	DEA <u>(g)</u>	0.00		79		0.67
RH	DEA(g)	0.00		78		0.57
WS	DEA(g)	0.03		79		0.10
soil T	DEA(g)	0.04	-0.07 ± 0.04	79	-1.9	0.066
soil Hum	DEA<u>(g)</u>	0.04		67		0.11
air T	BA <u>(g)</u>	0.11	-0.006 ± 0.003	29	-1.9	0.07
RH	<u>ВА(g)</u>	0.05		29		0.24
WS	BA <u>(g)</u>	0.04		29		0.31
soil T	BA <u>(g)</u>	0.11	-0.009 ± 0.004	31	-2.0	0.056
soil Hum	BA <u>(g)</u>	0.17	$\frac{1.1 \pm 0.5}{1.1 \pm 0.5}$	28	2.4	0.024
air T	NH ₃	0.07	$\frac{0.00142}{\pm 0.00023}$	527	6.3	6.8E-10
RH	NH ₃	0.04	-0.00040 ± 0.00008	527	-4.9	1.3E-06
WS	NH ₃	0.00		527		0.39
soil T	NH ₃	0.01	$\frac{0.00075}{\pm 0.00029}$	605	2.6	0.010
soil Hum	NH ₃	0.00		541		0.60

1415

the linear regression analyses of the amines, ammonia, ammonium, and the ambient conditions are presented In the gas phase the p-values are especially low for DMA vs. any of the ambient condition parameters, concentrations increase with increasing soil temperature and soil humidity but temperature ase with increasing atmospheric humidity and wind speed. TIn the gas phase the second strongest correlations <u>– even</u> 1420 though weak – are those of TMA vs-against environmental conditions (Table S4).- Interestingly, when looking at all data, TMA(g) concentration seems to decrease with increasing air and soil temperature (Fig. S6), opposite to the relationship of DMA vs.and temperature. As already mentioned TMA concentrations were high in spring and they are likely to originate partly from melting snow and ground, whereas DMA might have biogenic sources in summer, which could explain different 1425 correlation behavior behavior. The scatter plot of TMA(g) vs. temperature (Fig. S6) also reveals that the relationship is not consistent in all seasons: in summer it is even a vaguely positive, statistically not significant positivel relationship. The ammonia concentration increased with the air temperature in line consistent with Makkonen et al. (2014) and decreased with increasing relative humidity. The latter suggests that at high humidity surfaces are moist and ammonia gets adsorbed absorbed onto the water.

1430

All the gas phase amines except MMA were found to have <u>a</u> positive correlation with soil water content. The studied amines are water soluble and therefore negative correlation would be expected if the soil would act only as a sink. However, our results suggest that soil processes are producing amines and they may be enhanced with increasing humidity. Forest soils are a reservoir of the alkyl amines (Kieloaho et al. 2016) and modelling studies have shown that they can act as a source of alkyl amines to the atmosphere (Kieloaho et al. 2017). With their model Kieloaho et al. (2017) found <u>a</u> positive correlation with soil temperature for soil-to atmosphere flux of DMA, but correlation with soil water content was opposite <u>to our observation</u>.

1440

Table 6 Pagrassion statistics (v.	- B v	I R) of amina	concentrations	in the	aarosol	nhaca	ve ambient	conditions.	Detailed
Tuble 0. Regression statistics (y	- 1 4	- P0	y or annie	concentrations	- m the	- acrosor	phase	vs. amorem	conditions.	Detaned
column description as in Table 5										

×	y	₽ ²	$\beta_{\pm} \pm s.e.$	d.f.	ŧ	₽
air T	MMA(a)	0.10	-0.42 ± 0.08	235	-5.2	3.5E-07
RH	MMA <u>(a)</u>	0.09	0.11 ± 0.02	235	4.8	2.7E-06
WS	MMA <u>(a)</u>	0.05	$\frac{1.8 \pm 0.5}{1.8 \pm 0.5}$	235	3.6	4 .2E-04
soil T	MMA <u>(a)</u>	0.10	-0.47 ± 0.09	248	-5.3	2.6E-07
soil Hum	MMA <u>(a)</u>	0.05	$\frac{26 \pm 8}{2}$	226	3.3	0.0012
air T	DMA <u>(a)</u>	0.04	$\frac{0.12 \pm 0.03}{0.03}$	486	4.3	2.4E-05
RH	DMA<u>(a)</u>	0.02		486		0.0020
WS	DMA <u>(a)</u>	0.03	-0.9 ± 0.2	486	_3.9	1.2E-04
soil T	DMA <u>(a)</u>	0.04	0.17 ± 0.04	521	4 .6	4.6E-06
soil Hum	DMA <u>(a)</u>	0.00		487		0.15
air T	EA <u>(a)</u>	0.11	-0.055 ± 0.02	70	-3.0	0.0040
RH	EA <u>(a)</u>	0.03		70		0.14
WS	EA <u>(a)</u>	0.07	0.4 ± 0.2	70	2.2	0.030
soil T	EA <u>(a)</u>	0.06	-0.12 ± 0.05	75	-2.2	0.029
soil Hum	EA<u>(a)</u>	0.16	$\frac{18 \pm 5}{1}$	66	3.6	5.9E-04
air T	TMA(a)	0.01	-0.03 ± 0.01	372	-2.3	0.019
RH	TMA(a)	0.00		372		0.90
WS	TMA(a)	0.00		372		0.85
soil T	TMA(a)	0.01		383		0.028
soil Hum	TMA <u>(a)</u>	0.09	$\frac{5.5 \pm 1.0}{100}$	342	5.8	1.7E-08
air T	PA <u>(a)</u>	0.01		24		0.64
RH	PA <u>(a)</u>	0.01		24		0.67
WS	PA <u>(a)</u>	0.01		24		0.57
soil T	PA <u>(a)</u>	0.05		28		0.24
soil Hum	PA <u>(a)</u>	0.10		19		0.16
air T	DEA<u>(a)</u>	0.18	-0.05 ± 0.02	22	-2.2	0.038
RH	DEA<u>(a)</u>	0.09		22		0.15
WS	DEA<u>(a)</u>	0.07		22		0.22
soil T	DEA<u>(a)</u>	0.18	-0.07 ± 0.03	24	-2.3	0.028
soil Hum	DEA<u>(a)</u>	0.03		18		0.47
air T	<u>ВА(а)</u>	0.24	-0.020 ± 0.008	18	-2.4	0.028
RH	BA <u>(a)</u>	0.08		18		0.23
WS	BA <u>(a)</u>	0.02		18		0.58
soil T	BA <u>(a)</u>	0.21	-0.03 ± 0.01	19	-2.2	0.038
soil Hum	BA <u>(a)</u>	0.07		14		0.32
air T	$\overline{\mathrm{NH}}_4^+$	0.0382	-0.007 ± 0.001	65 4	-5.1	4.5E-07
RH	\mathbf{NH}_{4}^{+}	0.0610	$\frac{0.0031}{\pm 0.0005}$	65 4	6.5	1.4E-10
WS	$\overline{\mathrm{NH}_4}^+$	0.0355	$\frac{0.055}{\pm 0.011}$	654	4.9	1.2E-06
soil T	$\overline{\mathrm{NH}_4}^+$	0.0665	-0.012 ± 0.002	732	-7.2	1.3E-12

Formatted Table

soil Hum	$\overline{\mathrm{NH}_4^+}$	0.0221	$\frac{0.58 \pm 0.15}{2}$	668	3.9	1.1E-04
----------	------------------------------	-------------------	---------------------------	----------------	----------------	--------------------

1455

3.4 Correlations of amines with nano-particle concentrations

In addition to the dependency of amine concentrations on ambient conditions, the relationships between particleaerosol number and amine concentrations were studied with a similar regression analysis. The amine concentrations were compared with the total number concentration integrated from the size distributions measured with the DMPS (N_{tot}), with the 1460 particleaerosol number concentrations in the size ranges 1.1-2 nm and 2-3 nm, measured with the PSM ($N_{1,1-2nm}$ and N_{2-3nm}) respectively) and with the particleaerosol particle and cluster number concentrations between 3 and 25 nm measured with the DMPS (N_{3-25 nm}). The regression analysis results for the gas-phase amines and aerosol phase amines are presented in Tables 7 <u>S6</u> and <u>8S7</u>, respectively.

- 1465 The period during which both the MARGA-MS detected gas phase-DMA(g) concentrations above the detection limit and the PSM detected cluster-mode particleaerosols simultaneously was short. There were 33 data points for the regression analysis. There was a weak positive correlation between them (Fig. 82) even though the correlation was statistically not significant (R² = 0.06, p = 0.18, Table 786). The correlation had some dependence on the ambient conditions: air relative humidity (RH) and temperature (T) as well as soil temperature (ST) and soil humidity (SH). The correlation was more significant when both 1470 soil and air were humid (RH > 90 %, SH > $0.3 \text{ m}^3 \text{ m}^{-3}$). The linear regression calculated by using only those data that were
 - measured RH>90% has a higher correlation coefficient and slope is statistically significant ($R^2 = 0.63$, p = 0.006, Table S6. Fig. 9b) but it has to be noted that there were only 10 simultaneous data points at the high RH.

There was no correlation between the slightly larger $\frac{\text{particleaerosol}}{\text{particleaerosol}}$ (N_{2-3nm}) and DMA-in the gas phase(g) (Table 7<u>S6</u>), 1475 suggesting that DMA(g) took part in the initial steps of secondary particleaerosol formation namely clustering. This is qualitatively in agreement with an experimental CLOUD chamber study where it has been demonstrated that even very small amounts of DMA greatly enhance the formation of nano-particles (Almeida et al. 2013, Lehtipalo et al., 2016). In the aerosol phase DMA was the only amine that had a statistically significant correlation with the cluster-mode particle number concentrations and as for the gas-phase the correlation coefficient was higher at high relative humidity (Table 857, Fig. 9). Other ambient condition parameters guantities apparently did not affect this relationship (Fig. 89).

1480

Formatted: Font: Bold

Formatted: Centered

Figure 89. Cluster-mode <u>particleaerosol</u> number concentration $-(N_{1.1-2nm})$ as a function of dimethyl amine (DMA) concentration in the gas phase <u>and color-coded with a)</u>, air temperature (T), <u>b)</u> air relative humidity (RH), <u>c)</u> soil temperature (ST) and <u>d)</u> soil humidity (SH). In all subplots the black line shows the linear regression calculated by using all data and in <u>b</u>) the red line shows in addition the linear regression by using only those data that were measured at RH > 90%.

1	105

Table 7. Regression statistics ($y = \beta_{+}x + \beta_{0}$) of aerosol number concentrations vs. amine and ammonia concentrations in 1495 the gas phase. Detailed column description as in Table 5. Nite: particle number concentration integrated from the size distributions measured with the DMPS; N_{112nm} and N_{23nm}, particle number concentrations in the size ranges 1.2 - 2 nm and 2 3 nm, measured with the PSM; N_{125 nm}; particle number concentrations between 3 and 25 nm of the DMPS. The line of DMA(g) (* was calculated by using only those data that were measured when RH > 90%.

×	У	₽ ²	$\beta_{4} \pm s.e.$	d.f.	ŧ	P
MMA(g)	N _{tot}	0.11		21		0.12
MMA <u>(g)</u>	N_{1.1-2 nm}			θ		
MMA <u>(g)</u>	<mark>№</mark> 2-3-nm			0		
MMA <u>(g)</u>	N_{3-25 nm}	0.13	145 ± 83	21	1.7	0.097
DMA(g)	N _{tot}	0.16	222 ± 47	115	4.7	6.1E-06
DMA(g)	N _{1.1-2 nm}	0.06	$\frac{229}{\pm 166}$	31	1.4	0.18
<i>DMA<u>(g) (</u>*</i>	<u>₩_{1.1-2 nm}</u>	0.63	4 81 <u>± 130</u>	8	3.7	0.0061
DMA(g)	N_{2 3 nm}	0.00		34		0.95
DMA <u>(g)</u>	N_{3-25 nm}	0.04	58 ± 27	115	2.1	0.034
EA(g)	N _{tot}	0.01		57		0.58
EA(g)	N _{1.1-2 nm}	0.05		41		0.16
EA(g)	N _{2-3 nm}	0.07	-80 ± 44	43	-1.8	0.08
EA(g)	N _{3-25 nm}	0.03		57		0.23
TMA(g)	N _{tot}	0.00		309		0.23
TMA(g)	N1 1 2 nm	0.01		187		0.12
TMA(g)	N-2.3 nm	0.00		207		0.58
TMA(g)	N _{3-25 nm}	0.00		309		0.66
PA(g)	N _{tot}	0.03		18		0.45
PA(g)	N _{1.1.2 nm}	0.18		3		0.48
PA(g)	N _{2.3 nm}	0.01		6		0.84
PA(g)	N _{3-25 nm}	0.04		18		0.40
DEA(g)	N _{tot}	0.00		73		0.96
DEA(g)	N _{1.1.2 nm}			4		
DEA(g)	N _{2.3 nm}			4		
DEA(g)	N _{3-25 nm}	0.00		79		0.59
BA(g)	N _{tot}	0.10	2234 ± 1230	31	1.8	0.08
BA(g)	N _{112 nm}	0.01		16		0.74
BA(g)	$\frac{N_{2.3 \text{ mm}}}{N_{2.3 \text{ mm}}}$	0.16		17		0.09
BA(g)	N _{3-25 nm}	0.01		31		0.63
NH ₂	N _{tot}	0.00		605		0.93
NH ₃	N _{112 nm}	0.13	$\frac{10853}{\pm 1710}$	272	6.3	9.1E-10
NH ₃	N _{2.3 nm}	0.03	2154 ± 656	336	3.3	0.0011
NH ₃	N _{3-25-nm}	0.00		605		0.33

measured when	n RH > 90%.					
×	¥	₽ ²	$\beta_{\pm} \pm s.e.$	d.f.	ŧ	₽
MMA(a)	Ntot	0.04	53 ± 15	248	3.4	7.9E-04
MMA(a)	N _{1.1.2 nm}	0.05	-335 ± 159	77	-2.1	0.038
MMA(a)	N _{2.3 nm}	0.03		77		0.16
MMA(a)	N _{3-25 nm}	0.02		247		0.019
DMA <u>(a)</u>	N _{tot}	0.00		521		0.48
DMA<u>(a)</u>	N _{1.1-2 nm}	0.10	$\frac{99 \pm 20}{20}$	215	4.9	1.8E-06
DMA<u>(a)</u>(*	N _{1.1-2 nm}	0.14	59 <u>+ 23</u>	43	2.6	0.013
DMA <u>(a)</u>	N _{2-3 nm}	0.00		217		0.93
DMA<u>(a)</u>	N_{3-25 nm}	0.00		519		0.21
EA <u>(a)</u>	N _{tot}	0.01		75		0.42
EA <u>(a)</u>	N _{1.1-2 nm}	0.03		46		0.22
EA<u>(a)</u>	N_{2-3-nm}	0.01		37		0.51
EA <u>(a)</u>	N_{3-25 nm}	0.32	$\frac{103 \pm 17}{100}$	75	6.0	7.1E-08
TMA <u>(a)</u>	N _{tot}	0.00		383		0.91
TMA <u>(a)</u>	N _{1.1-2 nm}	0.00		232		0.75
TMA <u>(a)</u>	N _{2-3 nm}	0.00		204		0.32
TMA <u>(a)</u>	N_{3-25 nm}	0.00		382		0.74
PA <u>(a)</u>	N _{tot}	0.00		28		0.93
PA <u>(a)</u>	N _{1.1-2 nm}			+		
PA <u>(a)</u>	N_{2-3 nm}			θ		
PA <u>(a)</u>	N_{3-25 nm}	0.01		28		0.53
DEA<u>(a)</u>	N _{tot}	0.02		24		0.47
DEA<u>(a)</u>	N _{1.1-2 nm}			+		
DEA<u>(a)</u>	N_{2-3 nm}			+		
DEA<u>(a)</u>	N _{3-25 nm}	0.02		2 4		0.54
BA <u>(a)</u>	N _{tot}	0.03		19		0.44
BA <u>(a)</u>	N _{1.1-2 nm}			4		
BA <u>(a)</u>	N _{2-3-nm}			2		
BA <u>(a)</u>	N _{3-25 nm}	0.00		19		0.80
$\overline{\mathrm{NH}}_4^+$	N _{tot}	0.04	$\frac{1194}{\pm 224}$	732	5.3	1.3E-07
$\overline{\mathrm{NH}_4}^+$	N_{1.1-2 nm}	0.00				0.99
$\overline{\mathrm{NH}}_4^+$	N _{2-3 nm}	0.00				0.40
$\overline{\mathrm{NH}_4^+}$	N_{3-25 nm}	0.03	-703 ± 147	732	-4.8	2.12-06

1500 Table 8. Regression statistics $(y = \beta_{+}x + \beta_{0})$ of aerosol number concentrations vs. amine concentrations in the aerosol phase. Detailed column description as in Tables 5 – 7. The line of DMA(a) (* was calculated by using only those data that were measured when PH > 90%

Formatted:	English (U.S.)
Formatted:	English (U.S.)

Figure 9. Cluster mode particle number concentration (N_{1,1-2nm}) as a function of dimethyl amine (DMA<u>(a)</u> concentration in the aerosol phase, air temperature (T), air relative humidity (RH), soil temperature (ST) and soil humidity (SH).

1510 There were considerably more simultaneous data points of the cluster-mode particleaerosol number concentration and ammonia (NH₃). The correlation N_{1.1-2nm} vs. NH₃ was statistically significant ($R^2 = 0.13$, $p = 9.1*10^{-10} \le 0.001$, Table 7<u>S6</u>). In addition, this correlation apparently also depended on the ambient conditions so that in warm (T >15°C, ST > 14°C) and dry (RH < 60%, SH < 0.25 m³ m⁻³) conditions the positive correlation was more obvious (Fig. <u>4010</u>). In the aerosol phase ammonium (NH₄⁺) did not correlate at all with the cluster mode particle number concentrations but positively with the total

Formatted: Centered, Line spacing: Multiple 1.15 li

1520

Figure <u>1010</u>. Cluster-mode <u>particleaerosol</u> number concentration $(N_{1,1-2nm})$ as a function of ammonia (NH_3) concentration and <u>color-coded with</u>, <u>a</u>) air temperature (t), <u>b</u> air relative humidity (RH), <u>c</u> soil temperature (ST) and <u>d</u> soil humidity (SH).

1525

The other amines did not have any significant correlations with the particles in the smallest particle size ranges.

4. Conclusions

An on-line method using in-situ ion-chromatograph with mass-spectrometric detection for <u>sampling</u>, <u>separating</u> and detecting measuring amines in low concentrations from the ambient air both in the gas and aerosol phase was developed. In situ amine and ammonia measurements were conducted in SMEAR II station (Hyytiälä, Finland) from March 2015 to **Formatted:** Indent: Left: 0 cm, First line: 0 cm

Formatted: Centered

December 2015, covering altogether about 8 weeks. Concentrations of 7 different amines and ammonia in particleaerosoland gas-phase were measured with 1-hour time resolution.

- 1535 The developed MARGA-MS method was suitable for field measurements of amines. The DLs were low (0.2–11.4 ng m³), and the accuracy and precision of IC-MS analysis were moderately good. With the method amines with same masses or same retention time were separated, only DEA and BA were incompletely separated. However, MARGA-MS had some technical drawbacks (e.g. consumption of ~40 l of solutions per week).
- The amines turned out to be a heterogeneous group of compounds; different amines are likely to have different sources. All amines had higher concentrations in <u>the</u> aerosol phase <u>than in the gas phase</u>. MMA and TMA concentrations were <u>the</u> highest in spring <u>concomitant with ammonia and ammonium</u>. Melting of snow and ground can be the source of these compounds. <u>The decomposing litter and organic soil layer beneath snow can release organic compounds to snow cover and to the atmosphere. Measured concentrations of summed up ammonia and ammonium were also highest in spring and the</u>
- 1545 share of ammonia increased towards summer.

TMA hasd an additional maximum simultaneously with DMA during summer, which could indicate biogenic sourceand EA was only detected in July. The summer maxima could indicate biogenic sources. However, unlike EA, they DMA and TMA did not show similar diurnal variation as monoterpenes. The diurnal variation is determined by the balance between emissions, reactivity and mixing in the atmosphere. Usually ambient concentrations of biogenic volatile organic compounds, which have temperature dependent emissions, peak during nighttime due to inefficient mixing and lack of hydroxyl radical reactions which only take place during daytime. Theis missing daytime minima of DMA and TMA uum can be due to light dependent biogenic source, or TMA and DMA might be re-emitted from surfaces during daytime, when temperature increases.

1555

1560

All amines except MMA are positively correlated <u>positively</u> with soil humidity, which could indicate <u>a</u> humidity dependent production mechanism. <u>Gas-Gas-phase DMA correlated <u>positively</u> with small 1.1-2 nm <u>particleaerosol</u>s, when both soil and air were humid. It did not correlated with slightly <u>bigger-larger particleaerosol</u>s at all, suggesting that gas phase DMA may be important in new <u>particleaerosol</u> formation.</u>

Data availability. The datasets can be accessed by contacting the corresponding author.

Competing interests. The authors declare that they have no conflict of interest.

1565

Formatted: Superscript

Formatted: Font: (Default) Times New Roman, 10 pt

Formatted: Font: Not Bold, Italic		
Formatted: Font: Italic		
Formatted: Font: Not Bold		
Formatted: Font: Not Bold, Italic		
Formatted: Font: Not Bold		
Formatted: Justified		
Formatted: Left Space After: 12 pt		

	Acknowledgements		Formatted: Font: Not Bold, Italic
	The financial support by the Academy of Finland Centre of Excellence program (project no 272041) and Academy Research	\square	Formatted: Font: Not Bold, Italic
ļ	Fellow program (project no 275608) are gratefully acknowledged.		Formatted: Left, Space After: 12 pt

1570 References

- Aalto, P., Hämeri, K., Becker, E., Weber, R., Salm, J., Mäkelä, J. M., Hoell, C., O'Dowd, C. D., Karlsson, H., Hansson, H. C., Väkevä, M., Koponen, I. K., Buzorius, G., and Kulmala, M.: Physical characterization of aerosol particles during nucleation events, Tellus, 53 B, 344–358, 2001.
- Akyüz M.: Simultaneous determination of aliphatic and aromatic amines in indoor and outdoor air samples by gas chromatography-mass spectrometry, Talanta, 71, 486-492, 2007.
- Almeida, J., Schobesberger, S., Kurten, A., Ortega, I. K., Kupiainen-Maatta, O., Praplan, A. P., Adamov, A., Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Dommen, J., Donahue, N. M., Downard, A., Dunne, E., Duplissy, J., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Henschel, H., Jokinen, T., Junninen, H., Kajos, M., Kangasluoma, J., Keskinen, H., Kupc, A., Kurten, T., Kvashin, A. N., Laaksonen, A., Lehtipalo, K.,
- 1580 Leiminger, M., Leppa, J., Loukonen, V., Makhmutov, V., Mathot, S., McGrath, M. J., Nieminen, T., Olenius, T., Onnela, A., Petaja, T., Riccobono, F., Riipinen, I., Rissanen, M., Rondo, L., Ruuskanen, T., Santos, F. D., Sarnela, N., Schallhart, S., Schnitzhofer, R., Seinfeld, J. H., Simon, M., Sipila, M., Stozhkov, Y., Stratmann, F., Tome, A., Trostl, J., Tsagkogeorgas, G., Vaattovaara, P., Viisanen, Y., Virtanen, A., Vrtala, A., Wagner, P. E., Weingartner, E., Wex, H., Williamson, C., Wimmer, D., Ye, P., Yli-Juuti, T., Carslaw, K. S., Kulmala, M., Curtius, J., Baltensperger, U., Worsnop,
- 1585 D. R., Vehkamaki, H., and Kirkby, J.: Molecular Understanding of Sulphuric Scid-amine Particle Nucleation in the Atmosphere, Nature, 502 (7471), 359–363, doi:10.1038/nature12663, 2013.
 - AopWinTM module of the EPITM software suite, https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimationprogram-interface, EPA, U.S.A, 2017.
- Baron and Willeke, Aerosol Measurement, 2nd Edition, J Wiley and Sons, 2001.
- 1590 Bigg E.K.: The aerosol in a boreal forest in spring. Tellus B, 53, 510-51, doi: 10.3402/tellusb.v53i4.16626, 2001. Chang I.H., Lee D.S., and Ock S.H.: Condenser-type diffusion denuders for the collection of sulfur dioxide in a cleanroom,
 - Anal. Bioanal. Chem., 375, 456-459, 10.1007/s00216-002-1682-3, 2003. Dawson M.L., Perraud V., Gomez A., Arquero K. D., Ezell M. J., and Finlayson-Pitts B. J.: Measurement of gas-phase ammonia and amines in air by collection onto an ion exchange resin and analysis by ion chromatography, Atmos. Meas.
- Tech., 7, 2733-2744, DOI: 10.5194/amt-7-2733-2014, 2014.
 Fan, B.J., Cheng, Y.S., and Yeh, H.C: Gas Collection Efficiency and Entrance Flow Effect of an Annular Diffusion Denuder, Aerosol Sci. Technol., 25, 113-120, 1996.
 - Finlayson-Pitts, B.J. and Pitts J.N.: Chemistry of the upper and lower atmosphere: Theory, experiments and applications, Academic, US, 2000.
- 1600 Freshour, N.A., Carlson, K.K., Melka, Y.A., Hinz, S., Panta, B., and Hanson, D.R.: Amine permeation sources characterized with acid neutralization and sensitivities of an amine mass spectrometer, Atmos. Meas. Tech., 7, 3611-3621, 2014.
 Hakola, H., Hellén, H., Henriksson, M., Rinne, J., and Kulmala, M.: In situ measurements of volatile organic compounds in a boreal forest, Atmos. Chem. Phys., 12, 11665-11678, 2012.
- Hanson, D.R., McMurry, P.H., Jiang, J., Tanner, D., and Huey, L.G.: Ambient pressure proton transfer mass spectrometry:
 detection of amines and ammonia, Environ. Sci. Technol., 45, 8881-8888, 2011.
- Hari, P. and Kulmala, M.: Station for measuring ecosystem-atmosphere relations (SMEAR II). Boreal Env. Res., 10, 315-322, 2005.
 - Hellén, H., Kieloaho, A., and Hakola, H.: Gas-phase alkyl amines in urban air; comparison with a boreal forest site and importance for local atmospheric chemistry, Atmos. Environ., 94, 192-197, 2014.
- 1610 Huang, R.-J., Li, W.-B., Wang, Y.-R., Wang, Q. Y., Jia, W. T., Ho, K.-F., Cao, J. J., Wang, G. H., Chen, X., El Haddad, I., Zhuang, Z. X., Wang, X. R., Prévôt, A. S. H., O'Dowd, C. D., and Hoffmann, T.: Determination of alkylamines in

Formatted: Indent: Left: 0 cm, Hanging: 0.5 cm

- Formatted: English (U.S.) Field Code Changed Formatted: English (U.S.) Field Code Changed Formatted: English (U.S.) Formatted: English (U.S.) Formatted: Indent: Left: 0 cm, Hanging: 0.5 cm Field Code Changed
- Field Code Changed

atmospheric aerosol particles: a comparison of gas chromatography–mass spectrometry and ion chromatography approaches, Atmos. Meas. Tech., 7, 2027-2035, doi:10.5194/amt-7-2027-2014, 2014.

- IPCC: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1535 pp, 2013.
 - Junninen, H., Lauri, A., Keronen, P., Aalto, P., Hiltunen, V., Hari, P., and Kulmala, M.; Smart-SMEAR: on-line data exploration and visualization tool for SMEAR stations. Boreal Environment Research 14, 447–457, 2009.
- 1620Kieloaho, A.-J., Hellén, H., Hakola, H., Manninen, H.E., Nieminen, T., Kulmala, M., and Pihlatie, M.: Gas-phase
alkylamines in a boreal Scots pine forest air, Atmos. Environ., 369-377, DOI:10.1016/j.atmosenv.2013.08.019, 2013.
 - Kieloaho, A.-J., Pihlatie, M., Carrasco, M. D., Kanerva, S., Parshintsev, J., Riekkola, M.-L., Pumpanen, J., and Heinonsalo,
 J.: Stimulation of soil organic nitrogen pool: The effect of plant and soil organic matter degrading enzymes, Soil Biol. Biochem., 96, 97-106, DOI: 10.1016/j.soilbio.2016.01.013, 2016.
- 1625 Kieloaho A.-J., Pihlatie, M., Launiainen, S., Kulmala, M., Riekkola, M.-L., Parshintsev, J., Mammarella I., Vesala T., and Heinonsalo J.: Soil concentrations and soil-atmosphere exchange of alkylamines in a boreal Scots pine forest, Biogeosciences, 14, 1075-1091. DOI: 10.5194/bg-14-1075-2017, 2017.
- Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., Petaja, T., Sipilä, M. J., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Järvinen, E. P., Äijälä, M., Kangasluoma, J. P., Hakala, J. P.,
- 1630 Aalto, P. P., Paasonen, P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola, H., Makkonen, U., Ruuskanen, T., Mauldin III, R., Duplissy, J., Vehkamäki, H., Bäck, J., Kortelainen, A., Riipinen, I., Kurten, T. C., Johnston, M., Smith, J., Ehn, M. K., Mentel, T., Lehtinen, K., Laaksonen, A., Kerminen, V-M., and Worsnop, D.: Direct observations of atmospheric nucleation, Science, 339, 943-946, DOI: 10.1126/science.1227385, 2013.
- Kontkanen, J., Lehtipalo, K., Ahonen, L., Kangasluoma, J., Manninen, H. E., Hakala, J., Rose, C., Sellegri, K., Xiao, S.,
 Wang, L., Qi, X., Nie, W., Ding, A., Yu, H., Lee, S., Kerminen, V.-M., Petäjä, T., and Kulmala, M.: Measurements of sub-3 nm particles using a particle size magnifier in different environments: from clean mountain top to polluted megacities, Atmos. Chem. Phys., 17, 2163-2187, doi:10.5194/acp-17-2163-2017, 2017.
 - Kurtén, T., Loukonen, V., Vehkamäki, H., and Kulmala, M.: Amines are likely to enhance neutral and ion-induced sulfuric acid-water nucleation in the atmosphere more effectively than ammonia, Atmos. Chem. Phys., 8, 4095-4103, 2008.
- 1640 Kürten, A., Bergen, A., Heinritzi, M., Leiminger, M., Lorenz, V., Piel, F., Simon, M., Sitals, R., Wagner, A.C., and Curtius, J.: Observation of new particle formation and measurement of sulfuric acid, ammonia, amines and highly oxidized organic molecules at a rural site in central Germany, Atmos. Chem. Phys., 16, 12793-12813, 2016.
 - Lehtipalo, K., Rondo, L., Kontkanen, J., Schobesberger, S., Jokinen, T., Sarnela, N., Kurten, A., Ehrhart, S., Franchin, A., Nieminen, T., Riccobono, F., Sipila, M., Yli-Juuti, T., Duplissy, J., Adamov, A., Ahlm, L., Almeida, J., Amorim, A.,
- 1645 Bianchi, F., Breitenlechner, M., Dommen, J., Downard, A. J., Dunne, E. M., Flagan, R. C., Guida, R., Hakala, J., Hansel, A., Jud, W., Kangasluoma, J., Kerminen, V.-M., Keskinen, H., Kim, J., Kirkby, J., Kupc, A., Kupiainen-Määttä, O., Laaksonen, A., Lawler, M. J., Leiminger, M., Mathot, S., Olenius, T., Ortega, I. K., Onnela, A., Petäjä, T., Praplan, A., Rissanen, M. P., Ruuskanen, T., Santos, F. D., Schallhart, S., Schnitzhofer, R., Simon, M., Smith, J. M., Tröstl, J., Tsagkogeorgas, G., Tome, A., Vaattovaara, P., Vehkamäki, H., Vrtala, A. E., Wagner, P. E., Williamson, C., Wimmer,
- 1650 D., Winkler, P. M., Virtanen, A., Donahue, N. M. Carslaw, K. S., Baltensperger, U., Riipinen, I., Curtius, J., Worsnop, D. R., and Kulmala, M.: The effect of acid–base clustering and ions on the growth of atmospheric nano-particles, Nature Communications 7, 11594, DOI: 10.1038/ncomms11594, 2016.
- Makkonen, U., Virkkula, A., Mäntykenttä, J., Hakola, H., Keronen, P., Vakkari, V., and P.-Aalto, P.: Semi-continuous gas and inorganic aerosols measurements at a Finnish urban site: comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity, Atmos. Chem. Phys., 12, 5617-5631, 2012.
- Makkonen, U., Virkkula, A., Hellén, H., Hemmilä, M., Mäntykenttä, J., Äijälä, M., Ehn, M., Junninen, H., Keronen, P., Petäjä, T., Worsnop, D. R., Kulmala, M., and Hakola, H.: Semi-continuous gas and inorganic aerosol measurements at a boreal forest site: seasonal and diurnal cycles of NH3, HONO and HNO3, Boreal Env. Res. 19 (suppl. B), 311–328, 2014.

Formatted: English (U.S.) Formatted: English (U.S.) Field Code Changed **Field Code Changed** Field Code Changed **Field Code Changed Field Code Changed** Field Code Changed **Field Code Changed Field Code Changed Field Code Changed Field Code Changed** Field Code Changed Field Code Changed **Field Code Changed Field Code Changed** Field Code Changed Field Code Changed Field Code Changed **Field Code Changed**

Formatted: English (U.S.)

1660	Murphy, S. M., Sorooshian, A., Kroll, J. H., Ng, N. L., Chhabra, P., Tong, C., Surratt, J. D., Knipping, E., Flagan, R. C., and	Formatted: English (U.S.)
	Seinfeld, J. H.: Secondary aerosol formation from atmospheric reactions of aliphatic amines, Atmos. Chem. Phys., 7.	Formatted: English (U.S.)
	<u>2313–2337, 2007.</u>	
	Paasonen, P., Olenius, T., Kupiainen, O., Kurten, T., Petäjä, T., Birmili, W., Hamed, A., Hu, M., Huey, L. G., Plass-	
1665	Dueimer, C., Smith, J. N., wiedensonier, A., Loukonen, V., McGrath, M. J., Ortega, I. K., Laaksonen, A., Venkamaki, H. K., Kuraisen, J. M., Charles, M. O. the formation of enhancing of enhancing and heaters interactional transmission of the formation of the for	
1005	H., Kerminen, VM., and Kuimaia, M.: On the formation of subpluce acid – amine clusters in varying atmospheric	
	conditions and its initiatence on atmospheric new particle formation, Atmos. Chem. Phys., 12, 9115-9153, 2012.	
I	Parsninkev, J., Konkko, I., Henn, A., Hartonen, K., and Kiekkola, ML.: Determination of atmospheric amines by on-liber designation of the second se	
	derivalizationsond-phase functioextraction with 2,3,4,3,5,0-pentatuorooter-zytemotorormate and 9- flueronulmethownearbound ablerida. L Chromotogr. A. 1376. 46 50, 2015	
1670	Huger ymeunoxycarbonyr enioned, J. Chromatogi, A, 1576, 40-32, 2013.	
1070	attospheric sample: sonersting structural iconers by ion chromotography. Attospheric school 10, 1061, 1072	Hanging: 0.5 cm Space Before: 2 pt
	doi:10.5194/amit.10.1061-2017.2017	Thanging. 0.5 cm, Space before. 2 pt
	Buiz-Jiminez I Hautala S. S. Parshintsey I. Laitinen T. Hartonen K. Petäjä T. Kulmala M. and Riekkola M. J.	
I	Aliphatic and aromatic amines in atmospheric aerosal particles: comparison of three techniques in liquid	
1675	chromatography-mass spectrometry and method development Talanta 97 55-62 2012	
10/0	Sellegrin K. Hanke M. Umann B. Arnold F. and Kulmala M. Measurements of organic gases during aerosol formation	
I	events in the boreal forest atmosphere during OUEST. Atmos. Chem. Phys., 5, 373–384, 2005.	
	Sipilä, M., Sarnela, N., Jokinen, T., Junninen, H., Hakala, J., Rissanen, M. P., Praplan, A., Simon, M., Kürten, A., Bianchi,	Formatted: Indent: Left: 0 cm
	F., Dommen, J., Curtius, J., Petäjä, T., and Worsnop, D.R.: Bisulfate – cluster based atmospheric pressure chemical	Hanging: 0.5 cm
1680	ionization mass spectrometer for high-sensitivity (< 100 ppqV) detection of atmospheric dimethyl amine: proof-of-	
	concept and first ambient data from boreal forest, Atmos. Meas. Tech., 8, 4001–4011, doi:10.5194/amt-8-4001-2015,	
	2015.	
	VandenBoer, T. C., Petroff, A., Markovic, M. Z., and Murphy, J.G.: Size distribution of alkyl amines in continental	
	particulate matter and their online detection in the gas and particulate phases, Atmos. Chem. Phys., 11:4319–4332, 2011.	
1685	VandenBoer, T. C., Markovic, M. Z., Petroff, A., Czar, M. F., Borduas, N., and Murphy, J. G.: Ion chromatographic	
	separation and quantitation of alkyl methylamines and ethylamines in atmospheric gas and particulate matter using	
	preconcentration and suppressed conductivity detection, J. Chromatogr. A, 1252, 74–83,	
	<u>doi:10.1016/j.chroma.2012.06.062, 2012</u>	
	van Pinxteren, M., Fiedler, B., van Pinxteren, B., Iinuma, Y., Kortzinger, A., and Herrmann, H.: Chemical characterization	
1690	of sub-micrometer aerosol particles in the tropical Atlantic Ocean: marine and biomass burning influences, J. Atmos.	
	Chem., 72, 105-125, doi: 10.1007/s10874-015-9307-3, 2015.	
	Verriele, M., Plaisance, H., Depelchin, L., Benchabane, S., Locoge, N., and Meunier, G.: Determination of 14 amines in air	
	samples using midget impingers sampling followed by analysis with ion chromatography in tandem with mass	
1605	spectrometry, J. Environ. Monit., 14, 402–408, doi:10.1039/c2em100308, 2012.	
1095	winiwatter, w.: A calculation procedure for the determination of the efficiency in annual dehuders. Autos, Environ, 25, 1002 (2002)	
	1777-2002, 1997. Duiz liminaz I. Hautala S. S. Darshintaau, I. Laitinan T. Hartanan V. Datäiä T. Kulmala M. and Diakkala M. L.	
	Alightic and groundly on prince in structure approach particular comparison of these tradhightic in liquid.	
	exponent ography make an internet ward method douglopment. Takento, 07, 55, 62, 2012	
1700	You Y Kanawade V P de Gouw I A Guenther A B Madronich S Sierra-Hernández M R Lawler M Smith L	
1700	N Takahama S Ruggeri G Koss A Olson K Baumann K Weber R I Nenes A Guo H Edgerton E S	
	Porcelli L., Brune, W. H., Goldstein, A. H., and Lee, SH.: Atmospheric amines and ammonia measured with a	
	chemical ionization mass spectrometer (CIMS), Atmos, Chem. Phys., 14 12181-12194, doi:10.5194/acp-14-12181-2014,	
	2014.	
1705	Youn, JS., Crosbie, E., Maudlin, L.C., Wang, Z., Sorooshian, A.: Dimethylamine as a major alkyl amine species in	
	particles and cloud water: Observations in semi-arid and coastal regions, Atmos. Environ., 122, 250-258, 2015.	Formatted: Finnish
	Vanhanen, J., Mikkilä, J., Lehtipalo, K., Sipilä, M., Manninen, H. E., Siivola, E., Petäjä, T., Kulmala, M.: Particle size	
	magnifier for nano-CN detection, Aerosol Sci. Tech., 45, 533–542, 2011.	

 Zheng, J., Ma, Y., Chen, M., Zhang, Q., Wang, L., Khalizov, A. F., Yao, L., Wang, Z., Wang, X., and Chen, L.:
 Measurements of atmospheric amines and ammonia using the high resolution time-of-flight chemical ionization mass spectrometry, Atmos. Environ., 102:249–259, 2015.