
Response to Reviewers for manuscript ‘Maximizing Ozone Signals Among Chemical, 
Meteorological, and Climatological Variability’ (https://www.atmos-chem-phys-
discuss.net/acp-2017-954/) 
 
We would like to thank the reviewers for their valuable comments.  
 
Below we work through each of the reviewers’ comments, with the comments in black 
and our responses in red. We also include any alterations to the text in red after our 
responses with the specific additions indicated with underlines. Line references refer to 
the tracked changes document. 
 
Anonymous Referee #1 Received and published: 13 December 2017  

General comments:  

This paper discusses the use of different temporal and spatial averaging scales to detect 
trends in surface ozone over the United States. This is an interesting topic that is useful to 
the community, and the approach is novel. However, I have two general concerns that I 
would like to see addressed:  

1. The relevance of the particular methods discussed for detection of air quality trends 
should be better clarified or caveated, since the averaging time-scales suggested (10- 15 
years) are comparable to the trends we seek to detect, and temporal and spatial averaging 
can blur localized signals of high ozone that are relevant to public health.  

This is a very valid point, and one that we underemphasized in the original manuscript. 
We have updated portions of this manuscript to focus more on ‘signals’ rather than 
‘trends’ (as we include trends as one type of signals). We add language to the discussion 
(Line 521-524 and 591-594) and conclusions (Lines 611-651, 615-616, 633-644, 652-
656) that highlights the difficulty in balancing data availability, observation/simulation 
length, averaging times, and error thresholds. See our responses to the specific comments 
below for details on these additions. 

2. Given the heavy dependence of the analysis on model simulations, I would like to see 
more rigorous evaluation of the model’s ability to accurately predict the spatial and 
temporal variability of surface ozone and its response to changes in meteorology and 
emissions.  

The CESM1.2 CAM-chem model has been extensively evaluated in previous papers 
mentioned in the methods section. We have added more explicit references to this 
evaluation throughout the manuscript (Lines 201-202 and 221-222). We have added 
additional evaluation of the model capabilities compared to the available observations 
with regard to meteorological variability (updated Figure 2 and reference to Brown-
Steiner et al, in review, see following paragraph). We do not examine the impact of 
emissions variability in this manuscript, as this is beyond the scope of the current work, 
but we add additional emphasis in the conclusions that emissions variability studies are 
needed in future research:  



Lines 618-620: “Taking into account the complex interactions involving trends and 
variability between emissions, chemistry, meteorology, and climatology necessitates a 
variety of strategies.” 

Lines 652 – 656: “While we have detrended the CASTNET observations to compare to 
the constant year-2000 cycled emissions in the simulations, the CASTNET time series 
inherently includes the compounded variability of both meteorological and emission 
sources. Future studies will need to expand this analysis to include trends and variability 
in the emissions, as well as in the meteorology.” 

In addition, these model runs (along with others) are more thoroughly compared to 
observations in a second paper which is now in discussion in GMD, and we have added a 
reference to this paper to this manuscript: Brown-Steiner, B., Selin, N. E., Prinn, R., 
Tilmes, S., Emmons, L., Lamarque, J.-F., and Cameron-Smith, P.: Evaluating Simplified 
Chemical Mechanisms within CESM Version 1.2 CAM-chem (CAM4): MOZART-4 vs. 
Reduced Hydrocarbon vs. Super-Fast Chemistry, Geosci. Model Dev. Discuss., 
https://doi.org/10.5194/gmd-2018-16, in review, 2018. 

In addition, a number of other statistical techniques have been applied to the problem of 
separating emission effects from other drivers of variability (for example, Camalier et al., 
Atmos. Environ., 2007, and references therein), with the potential advantage of detecting 
changes on shorter timescales. How do the results in this paper compare to other 
statistical methods? Perhaps this could be discussed in the discussion or conclusion 
sections.  

We have added language in the conclusion that contrasts our methodologies to other 
methodologies, and encourages a multi-strategy approach: 

Lines 615-622: “Our analysis and conceptual framework presented here cannot solve this 
tension, but it does demonstrate some strategies which can allow for a selection of spatial 
and temporal averaging scales, and a consideration of the error threshold, that can aid in 
this signal detection on a case-by-case basis. Taking into account the complex 
interactions involving trends and variability between emissions, chemistry, meteorology, 
and climatology necessitates a variety of strategies. This work quantifies the impact of 
spatial and temporal averaging in signal detection, which can be used in conjunction 
with ensembles of simulations, statistical techniques, and other strategies to further out 
understanding of the chemical variability in our atmosphere.” 

We have also included Camalier et al., 2007 (Line 71) and other recommended citations 
from below (Line 69, Line 71) to the introduction in order to provide as much 
information to readers about the possible strategies and methodologies used for signal 
detection.  

Specific comments:  

Line 28: How is the “chemical variability” that is not related to “meteorological 
variability” different from an air quality signal?  



Chemical variability can result from more than just meteorological variability (e.g. 
emissions variability, which we do not address in this paper) and also non-linear 
interactions between chemistry, emissions, meteorology, climatology, and surface 
processes. We have clarified this in the abstract: 

Line 28-30: “However, the magnitude of a surface air quality signal is generally small 
compared to the magnitude of the underlying chemical, meteorological, and 
climatological variabilities (and their interactions) that exist both in space and in time, 
and which include variability in emissions and surface processes.” 

Line 41: The authors state on line 31 that part of the motivation for this study is to 
identify the impact of emission reduction policies on e.g. ozone. Here, however, they 
suggest averaging over 10-15 years. This seems pretty long compared to the timescale of 
air quality changes and compared to the available data records, which for many 
CASTNET sites in only on the order of 20 years.  

We recognize that our suggestion of averaging over 10-15 years is challenging, but it is 
consistent with recent literature (e.g. Barnes et al. 2015; Garcia-Menendez et al. 2017). 
We hope with this manuscript to demonstrate some of the difficulties that arise when 
trying to detect the impact of, for instance, emissions reduction policies on ozone. In 
particular, we hope to demonstrate that the variability in atmospheric chemistry needs to 
be quantified, examined, and addressed in a direct manner when identifying signals, and 
that the temporal and spatial context of the particular signal needs to be provided as 
supporting evidence that a particular signal is robust. We have added the following 
sentences to the conclusion section to emphasize this point. 

Lines 633-641: “We recognize that achieving a 10 – 15 year temporal averaging window 
is difficult, but this recommendation is consistent with recent literature (e.g. Barnes et al., 
2015; Garcia-Menendez et al., 2017). For studies where 10 – 15 years of averaging is 
impractical, we recommend that some spatial and temporal context is provided that 
demonstrates that the signals being examined are robust and not the result of internal 
variability or noise.” 

We also add language on Lines 43-46 and 611-615, in response to additional reviewer 
comments below. 

Line 42: If you average over several hundred kilometers, do you risk missing policy or 
health-relevant ozone exceedences that occur at more local scales?  

Absolutely! Again, we hope to demonstrate the challenges of identifying chemistry 
signals at small spatial scales. In particular, if you are examining signals and the smallest 
spatial scales, it is likely a longer temporal period will be required to ‘escape’ the 
variability at that scale. We address this in the Discussion Section, in particular Line 513 
in asking “What is the magnitude of ozone variability due to meteorology alone at the 
smallest spatial scale?” To further clarify this in the manuscript, we added the following 
to the abstract: 

Lines 43-46: “If this level of averaging is not practical (e.g. the signal being examined is 



at a local scale), we recommend some exploration of the spatial and temporal variability 
to provide context and confidence in the robustness of the result.” 

Line 66: For signal detection, see also Weatherhead et al., Physics & Chemistry of Earth, 
2002; Strode and Pawson, JGR, 2013; Deser et al., Climate Dynamics, 2011 

These citations have been added as further examples of the history and difficulties in 
signal detection into the introduction, as Camalier et al., 2007 (Lines 69 and 71). 

Lines 96-110: While it is true that the 4th highest MDA8 criteria includes some 
averaging, it is also aimed at capturing the high end of the distribution rather than just the 
long-term mean. Isn’t this lost by simply averaging over longer periods?  

It is, and the 4th highest MDA8 metric has been designed for a practical legal purpose. It 
is also a standard metric used throughout the literature, so we felt that examining the 
impact of spatial and temporal averaging on this metric would be an appropriate way of 
adding to the literature, and the broader context of this particular metric. We add the 
following sentence to address this: 

Lines 286-289: “Some of the averaging strategies we present can average away the high 
ozone behavior this MDA8 O3 metric is intended to quantify, but it is such a well-
reported metric that focusing our analysis on it allows for ready comparisons to other 
studies.” 

Line 148: Since you are interested in different spatial scales, why not include urban air 
quality sites as well as CASTNET?  

Since the CASNTET observations are from more rural sources, they are generally 
accepted as more appropriate to compare to coarse-grid cell models such as CAM-Chem. 
We add additional references to other studies that used CASTNET observations in this 
way: 

Line 240: “(e.g. Brown-Steiner et al., 2015; Phalitnonkiat et al., 2016)”  

Future research should extend analysis like that presented here to models of different 
resolutions (and the associated observations). We have added this suggestion to the last 
paragraph of the Discussion Section: 

Lines 591-594: “Furthermore, future research examining the impact of spatial and 
temporal averaging using regional-scale models, models with different resolutions, and 
the inclusion of urban observations could provide additional insight into understanding 
chemical variability and averaging techniques.” 

Line 205: Please highlight the key differences between this and the earlier model version.  

The Tilmes et al. (2015) reference (and references therein) fully documents CESM1.2, 
although we had previously omitted the reference from this sentence. It has been added in 
Lines 191, 198, and 221. 



Line 252: The assertion that the spatial variability is well-captured is not really evident in 
Figure 2. Maybe overplot the observations on top of the model map, or report the spatial 
correlation between the model and the observations.  

We have updated Figure 2b to better compare model/observations. We also add a 
reference in the caption to Brown-Steiner et al. (in review, GMDD), which performs 
additional model-observation comparisons of CAM-Chem. 

Section 3.1 and Fig. 2: It would be helpful to show the temporal variability of the 
observations along side that of the model  

Since we only compare the year 2000 in this figure (this was not clear in the caption and 
this has been updated), there is not enough data for a full comparison of temporal 
variability, but Figure 2b has been updated and additional references to Brown-Steiner et 
al. (in review, GMDD) on Line 898, which extends model-observation comparisons for 
MOZART-4 (and other mechanisms). 

Line 255: Clarify that it is the standard deviation in the model.  

We have now clarified this as follows: 

Line 301: “…The standard deviation of the simulated MDA8 O3…” 

Line 272: What is the correlation between the modeled and observed timeseries? Figure 
3e suggests a lot of mismatches between the observations and model. What does this 
mean in terms of the uncertainty in your model-based findings?  

Model correlations to observations depend on the region (with R2 values ranging from 
0.42 – 0.88, see the updated Figure 2b), and Figure 3e compares the average over the 
entire Eastern US. Comparisons of the seasonal correlations to observations are available 
in Brown-Steiner et al. (in review, GMDD) and are generally high for MOZART CAM-
chem (0.8 – 0.9). References to this paper are added to this manuscript (Lines 198, 201-
202, Figure 2 Line 898). Since we include cycled year 2000 emissions for out 
simulations, we do not expect a high correlation for the entire time series, even when 
compared to the detrended CASTNET observations since we do not simulate the real-
world emissions variability, especially when comparing individual sites to model grid 
boxes. This additional uncertainty that comes from assuming cycled emissions has been 
noted in other comments, and additional language has been put in the Discussion and 
Conclusions to explore the implications (Lines 521-524 (see below), 611-615 (see 
above), 652-656 (see below)). 

Section 3.2, first paragraph: Some of this could go in the methods section.  

We moved up the more technical description to the newly added Section 2.4 (Line 257-
274). 

Lines 374-375: Can you explain why? Do these regions have higher variability?  



Yes, this has been clarified and the reader is pointed to Figure 2d: 

Lines 446-448: “Shorter windows (or smaller thresholds) are needed in the Western US 
(where variability is smaller, see Figure 2d) than in the Eastern US (where variability is 
larger) as well as over coastal and highly populated regions.” 

Line 430: The relationship between chemical and meteorological variability also de- 
pends on emission levels (e.g. Bloomer et al., GRL, 2009), and these are unlikely to 
remain constant over a decadal averaging window. Thus the real situation will be more 
complicated than the constant-emission model-based analysis shown here. The model-
based analysis is still useful, but should be more carefully caveated.  

We add additional text at the end of this paragraph to caveat the limits of our 
methodology and highlight the complexities that arise when considering trends and 
variability in emissions, meteorology, and climate: 

Lins 521-524: “A more comprehensive analysis of chemical variability will need to 
account for both meteorological and emission variability, which is complicated by 
temporal trends in both the emissions of ozone precursor species and the climate.” 

Technical:  Line 374: “Shorter” not “short”  

This has been corrected Line 446).



Anonymous Referee #2 Received and published: 15 February 2018  

General Comments —————-  

This manuscript describes an evaluation of the variability of surface ozone concentrations 
over the United States during summer. In particular, the authors analyze the effects of 
meteorological variability on ozone concentrations, and the dependence of this variability 
on temporal and spatial averaging scales. The goals is to use averaging to provide a more 
robust estimate of the uncertainty in the "true" ozone concentration, independent of the 
influence of meteorological "noise". The idea that spatial or temporal averaging can 
reduce meteorological variability is not a new one, but this paper presents a useful and 
innovative framework for analyzing the choice of time and space scales, depending on 
the uncertainty threshold required for a particular application. This writing in this paper 
could be improved significantly to clarify the methods used and the basis for the 
recommendations being made. I list below some such suggestions for ways the 
manuscript can be improved. With revisions, this paper would be appropriate for 
publication in ACP, and would be a helpful contribution to the literature on detecting 
robust signals in ozone over a noisy background.  

Specific Comments —————–  

Abstract  

line 41 – This 10-15 year time period pertains to detecting a robust estimate of mean 
ozone concentrations. What are the implications for detecting trends (e.g., driven by 
emission changes) in ozone? For instance, large robust trends in ozone were detected in 
observations as a result of emission reductions following the NOX SIP Call. This 
manuscript claims to provide information on estimating trends in ozone, but does not 
really provide specific information on trend detection methodologies.  

We explore some of the literature on ozone trends in the introduction  (Cooper et al., 
2012, Barnes et al., 2016, and others), and although we do not provide specific trend 
detection methodologies, we feel that we have demonstrated the potential risks of 
calculating trends based on an individual selection of years. You are correct in that we 
use the word ‘trend’ in many places where we really mean ‘signal,’ so we have changed 
the word ‘trend’ to ‘signal’ in several of these places throughout the manuscript to better 
reflect our intended message: the description of signals that we present in the 
introduction. 

We have also added language (addressing other comments) that address the implications 
of the 10 – 15 year time period throughout the manuscript (Lines 46 and 633-644, 
addressed in previous comments, and Lines 611-615): 

Lines 611-615: “In particular, it would be impractical to delay interpreting observations 
for 10 – 15 years, or alternatively to expand the spatial averaging such that small-scale 
features are smoothed away. Nonetheless, it is unwise to over-interpret trends and 
signals based on observations from a limited spatial area and over a short temporal 



period.” 

lines 44-46 – For which other quantities might these results be applicable? What features 
of the spatiotemporal distribution dictate the choice of optimal spatial and temporal 
averaging periods.  

Those are excellent questions and we intentionally left this open to the reader. Naturally, 
this analysis could apply to other chemical species, but also chemistry-meteorology 
interactions (e.g. ozone-temperature relationship), surface features (land use cover, plant 
functional type, surface roughness, albedo, cloud and boundary layer variables, etc). We 
add the following to the discussion section, indicating some quantities that this strategy 
may apply to: 

Lins 580-584: “In particular, low-frequency oscillations (e.g. ENSO, and others) and 
other forms of internally or externally forced trends (e.g. anthropogenic and natural 
changes in emissions) are readily adaptable to this type of analysis, which could address 
signals pertaining to precipitation, biogenic emissions, boundary layer variables, cloud 
properties, and many others.” 

1. Introduction  

lines 93-95 – Mention also internal (unforced) variability.  

Added: 

Line 99-101: “This approach cannot address structural uncertainties and internal 
(unforced) variability between models, but is capable of identifying parametric 
uncertainties within a single model.” 
 
lines 91-97 – There is not a clean distinction between running ensembles of model runs 
with different initial conditions versus "expand[ing] the temporal averaging window". In 
the case of "climatological" runs such as those done here with CAM-Chem, running more 
years in a single simulation is nearly identical in practice to running more years of a 
single simulation.  

We agree. There are many modeling choices (ensembles with different initial conditions 
and internally simulated meteorology, ensembles with internally simulated meteorology 
and different emissions (either transient or cycling a single year), ensembles with forced 
meteorology and different emissions, ensembles with different sets of online/offline 
forcing datasets (oceans, ice, land, etc.). What we have done in this paper is one strategy, 
and we hope that future studies will select other strategies. We have added the following 
sentence to the conclusion to indicate that what we present is one strategy among many: 

Lines 641-644: “We also recognize that our analysis is just one strategy for enhancing 
signal detection capabilities, and will ideally be used alongside others, such as perturbed 
initial condition ensembles, running simulations with either internal or forced 
meteorology, and examining a region or time period with different models or 
parameterizations.” 



lines 123-125 – You mention here that the objective is to "limit the likelihood of over- 
confidence in an estimate of surface ozone". Presumably, the goal is more than that. 
Rather than just providing an improved (large) estimate of local variability, the aver- 
aging method suggested here also aims to reduce the underlying uncertainty due to 
meteorological variability.  

Yes, this has been added: 

Lines 130-132: “Our objective in this study is to provide a framework for selecting 
spatial and temporal averaging scales that reduces the uncertainty in analyzing ozone 
signals and limits the likelihood of over-confidence in an estimate of surface ozone that 
arises from meteorological variability.” 

lines 154-155 – Model resolution is not addressed in this study. How would varying 
model resolution compare with the other "parametric" changes in the model discussed 
here?  

That is an excellent question that was outside of the scope of this paper, but we have 
added this as a path for future research at the end of the Discussion Section: 

Line 585: “Furthermore, future research examining the impact of spatial and temporal 
averaging using regional-scale models, models with different resolutions, and the 
inclusion of urban observations could provide additional insight into understanding 
chemical variability and averaging techniques.” 

2.1 CAM-Chem  

In this section and throughout the paper, the model name "MOZART" seems to be used 
interchangably with "CAM-chem", including in the names of the simulations. This is 
confusing, since MOZART and CAM-chem, although closely related, are distinct 
models. Please clarify throughout the paper.  

Throughout the manuscript, we have updated the descriptions. We leave in the name 
MOZART when we are specifically referencing the chemical mechanism and CAM-
chem when we are more generally talking about the simulation. This has been made 
explicit in the methods section: 

Lines 196-198: “We conduct our simulations using the MOZART-4 chemical mechanism 
(Emmons et al., 2010), which is a full tropospheric chemical mechanism integrated into 
CAM-Chem (e.g. Brown-Steiner et al., in review).” 

line 200 – Here and elsewhere throughout the paper, clarify that you are only considering 
the effect of future *climate*, not actually fully simulating future conditions (e.g., future 
emissions).  

We have clarified this on Line 215 (“…We also include two reference simulations of the 
future climate, …”) and throughout the manuscript. 



2.3 Telescoping Regional Definitions lines 230-232 – This sentence is repetitive of Intro.  

This sentence has been removed. 

3.1 Spatial and Temporal Comparisons  

line 248 – Throughout the paper, the notation "DM8H" is used for the daily maximum 8-
hour ozone concentration. Elsewhere in the literature, this seems to be referred to as 
"MDA8".  

DM8H has been changed to MDA8 throughout the manuscript. 

line 248 – "MOZART" –> "CAM-chem"  

We have corrected this here and throughout the manuscript. 

lines 255-259, Figure 2 – Show standard deviation and/or variability from the 
observations as well. If the standard deviation were similar between the model and 
observations, would the model ozone bias cause the (relative) variability to differ 
significantly?  

Figure 2b has been updated with a direct comparison between the model and the 
observations. The standard deviation comparison between the model and the observations 
again depends on the region. Table 1 summarizes both standard deviation and the 
variability (standard deviation / mean) to demonstrate the impact of the different 
magnitudes of ozone that result from model bias on both the absolute standard deviation 
(ppbv) and the relative standard deviation as represented by variability (%). We have also 
added a clarification: 

Lines 305-307: “We include this relative standard deviation metric since the CAM-chem 
biases make it difficult to compare standard deviations directly.” 

line 283 – Add "(Figure 2, Table 1)" after "Here".  

This has been added, Lines 300-301. 

lines 283-285 – This sentence is repetitive of the first paragraph in this section.  

We have removed this sentence (and the insertion from the previous comment has been 
moved to the first paragraph of this section). 

line 289 – Add "from continental to a single NE U.S. grid box" after "telescoping re- 
gions".  

This has been added, Line 342. 

line 290 – Add "albeit with lower overall variability" after "captures this trend".  



This has been added, Line 343. 

3.2 Variability, Averaging Windows, and Thresholds  

line 314 – Add "underlying variability at the" before "particular choice of spatial and 
temporal scale".  

This has been added, Line 358. 

line 328 – Does "variability" here refer to standard deviation (as suggested by the ppbv 
thresholds) or as previously used, the relative variability (s.d./mean)? Confusing. Make 
sure to define the quantities being discussed.  

We do not mean the previously defined definition of variability, so we have clarified this 
on Line 395, where we replaced “variability” with “anomaly for any selection of 
averaging window”.  

line 329 – Clarify what is meant here by "This difference".  

This has been clarified on Line 395, replacing the word “difference” with “potential 
error.”  

3.3 Selection of Temporal Averaging Scales  

line 358-359 – Add "meteorological variability causing ozone anomalies" before 
"exceeding particular thresholds", if this is the intended meaning.  

This interpretation is the intended meaning, so “meteorological variability causing ozone 
anomalies” has been added to line 430. 

line 363 – "Increas[ing] the threshold" is not really a strategy for "filtering out the noise". 
It is more like accepting the higher level of noise.  

This has been clarified: 

Line 435: “…either average over longer periods, or acknowledge the level of noise and 
increase the threshold.” 

lines 367 -370 – Confusing as written. Separate out the mention of Fig.S3 to a second 
sentence, e.g., "Similarly, in Supplemental Figure S3, one column (the 5-year averaging 
window) is selected."  

We agree that these sentences were confusing as written. They have been updated and 
clarified: 

Lines 439-442: “Supplemental Figure S3 extends the analysis of Figure 5 by comparing 
the MOZ_2000, MOZ_2050, and MOZ_2100 simulations across the four thresholds for 
the 5-year averaging window. Figure 6 similarly compares the 1 ppbv ozone threshold 



across the four averaging windows for MOZ_2000, MOZ_2050, and MOZ_2100.” 

line 369 – "Figure 6" –> "Figure 5" 

We have clarified this section, Lines 439-442. 

 line 369 – Add "compare with" before "equivalent plots".  

We have clarified this section, Lines 439-442. 

line 370 – "Figures 7" –> "Figures 6".  

We have clarified this section, Lines 439-442. 

4. Discussion  

line 434 – Add "variability" after "surface ozone".  

We have added this text, Line 525. 

line 460 – Cut comment in parentheses about future simulations. It is not known whether 
the future simulations will/would exhibit biases.  

We agree with the reviewer, and have deleted this text. 

5. Conclusions 

line 502 – Add "and" after "configurations".  

We have added this text, Line 603. 

line 506 – Add "summertime" before "surface ozone". Clarify throughout conclusions 
that the analysis presented here is restricted to summer.  

We have added the phrase “summertime” before references to ozone throughout the 
conclusion section (Lines 598, 607, 623, 628, and 645). 

line 513 – Add "summertime" before "ozone variability".  

We have added this text, Line 623. 

line 523 – As mentioned earlier, the discussion of trend detection in the manuscript is 
very weak. Much more could (and should) be said about the application of the averag- 
ing methods presented here for trend detection. For instance, what are the implications of 
needing 10-15 year averaging windows for the length of timeseries needed to detect 
ozone trends (e.g., forced by climate change or emissions changes)?  

In addition to additional examination of the implications of the 10 – 15 year averaging 
window ((Lines 43-46, Lines 611-615), we add the following text: 



Lines 652-656: “While we have detrended the CASTNET observations to compare to the 
constant year-2000 cycled emissions in the simulations, the CASTNET time series 
inherently includes the compounded variability of both meteorological and emission 
sources. Future studies will need to expand this analysis to include trends and variability 
in the emissions, as well as in the meteorology.” 

lines 524-530 – Mention here the compounding of (meteorological) variability in the 
observations with changes caused by variability/trends in emissions.  

We address this along with the previous comment (Lines 633-644). 

Figure 2 – Add the standard deviations plotted here standard deviations of daily ozone 
concentrations? If so, then for comparison with Figure 5, it would be useful also to show 
the interannual standard deviation of seasonal mean ozone.  

These are for MDA8 O3 mixing ratios, and is clarified in the caption (Line 899). Because 
the value of standard deviation would be different for every time and spatial scale, we 
don not think that it is practical to include interannual standard deviations here. We focus 
much of this manuscript on the variability and thresholds at the smallest spatial scales, 
which is represented in Figure 2 and Table 1. 

Figure 3 – Explain that the CAM-chem simulation has fixed year-2000 emissions and 
SST, but time-varying meteorology. Why are the CASTNET values for 2000 "de- 
trended", instead of showing raw 2000 values? Change "MOZART" to "CAM-chem". In 
legend text in panel (a), also change "MOZART" to "CAM-chem".  

Explanation added, terms updated. The detrending is centered at the year 2000, so the 
raw and detrended values are the same. This has been clarified in the caption, Lines 922-
924. 

Figure 4 – Define what is meant here by "variability". Is it the standard deviation, or the 
relative variability (s.d./mean)? Mention in caption that this plot shows summer ozone 
only. This is confusing from how the vertical axis is plotted. 

It has been clarified that this is a plot of summertime MDA8 O3 anomaly, Line 940. 

Figure 8 – Change panel titles to the names of the regions. Keep the description of the 
regimes for filtering effectiveness in the text instead.  

The panel titles have been updated in Figure 8 and the descriptions of the regions have 
been moved to the Caption of Figure 8 (Lines 980-982). 
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Abstract 22 
 23 
The detection of meteorological, chemical, or other signals in modeled or observed air quality 24 

data – such as an estimate of a temporal trend in surface ozone data, or an estimate of the mean 25 

ozone of a particular region during a particular season – is a critical component of modern 26 

atmospheric chemistry. However, the magnitude of a surface air quality signal is generally small 27 

compared to the magnitude of the underlying chemical, meteorological, and climatological 28 

variabilities (and their interactions) that exist both in space and in time, and which include 29 

variability in emissions and surface processes.. This can present difficulties for both policy-30 

makers and researchers as they attempt to identify the influence or 'signal' of climate trends (e.g. 31 

any pauses in warming trends), the impact of enacted emission reductions policies (e.g. United 32 

States NOx State Implementation Plans), or an estimate of the mean state of highly variable data 33 

(e.g. summertime ozone over the Northeastern United States).  Here we examine the scale-34 

dependence of the variability of simulated and observed surface ozone data within the United 35 

States and the likelihood that a particular choice of temporal or spatial averaging scales produce 36 

a misleading estimate of a particular ozone signal. Our main objective is to develop strategies 37 

that reduce the likelihood of overconfidence in simulated ozone estimates. We find that while 38 

increasing the extent of both temporal and spatial averaging can enhance signal detection 39 

capabilities by reducing the 'noise' from variability, a strategic combination of particular 40 

temporal and spatial averaging scales can maximize signal detection capabilities over much of 41 

the Continental US. We recommend temporal averaging of at least 10 - 15 years combined with 42 

regional spatial averaging over several hundred kilometer spatial scales. If this level of averaging 43 

is not practical (e.g. the signal being examined is at a local scale), we recommend some 44 

exploration of the spatial and temporal variability to provide context and confidence in the 45 

robustness of the result.  These results are consistent between simulated and observed data, and 46 

within a single model with different sets of parameters. The strategies selected in this study are 47 

not limited to surface ozone data, and could potentially maximize signal detection capabilities 48 

within a broad array of climate and chemical observations or model output. 49 

50 
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1 Introduction 63 

The capability to detect air quality signals – be they meteorological, chemical, or of some 64 

other type – is a fundamental component of modern climate science and atmospheric chemistry. 65 

The debate over the existence or length of a global warming hiatus (Lewandowski et al., 2015; 66 

Roberts et al., 2015; Medhaug et al., 2017) and research examining the time of emergence of 67 

climatological (Weatherhead et al., 2002; Deser et al., 2012; Hawkins and Sutton, 2012; Elía et 68 

al., 2013; Schurer et al., 2013), meteorological (Giorgi and Bi, 2009; King et al., 2015), chemical 69 

(Camalier et al., 2007; Strode and Dawson, 2013; Barnes et al., 2016; Garcia-Menendez et al., 70 

2017), and other sectoral signals (e.g. Monier et al., 2016) embody an accumulation of 71 

techniques and strategies for filtering noise (due to natural variability) and maximizing the 72 

capability to detect statistically significant signals and trends in noisy data. It is well established 73 

that temporal averaging (e.g. Lewandowski et al., 2015) and spatial averaging (e.g. Frost et al., 74 

2006; Hawkins and Sutton, 2012; Barnes et al., 2016) can enhance signal detection capabilities 75 

in atmospheric data. Here we extend this research by quantifying the impact of both spatial and 76 

temporal averaging – individually and in combination – of surface ozone on the magnitude of the 77 

calculated variability, which is largely driven by the influence of meteorological variability on 78 

the atmospheric chemistry (e.g. Jacob and Winner, 2009). We offer recommendations for 79 

strategically averaging in space and time to maximize signal detection capabilities. In particular, 80 

we examine estimates of mean ozone and of the ozone variability that results from meteorology, 81 

although our approach can be generalized to other air quality applications. 82 

For observed ozone data, strategies for reducing spatial and temporal noise are limited: a 83 

longer time series is needed, more observations need to be made, or the spatial region over which 84 

the ozone observations are being averaged over needs to be enlarged. For surface ozone 85 

estimates using models, however, there exist a variety of strategies for reducing the noise (due to 86 

chemical and meteorological variability) relative to the strength of the signal, although they 87 

cluster into three main types. The first strategy is to average or combine multiple runs of 88 

structurally different models under the assumption that errors, biases, and uncertainties within 89 

the individual models are reduced and the multi-model or multi-dataset mean is a best estimate 90 

of the actual, aggregated ozone field. This is most notably done with multi-model ensembles 91 

within the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) 92 

framework (Lamarque et al., 2013; Young et al., 2013; Stevenson et al., 2013), and this approach 93 
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tends to assume that all members in the ensemble are independent and equally skillful. This 94 

assumption, however, may result in a loss of some valuable information (Knutti, 2010). Another 95 

form of this strategy is to run multiple model runs within a single model, but under different 96 

initial conditions or sets of parametric assumptions (e.g. Deser et al, 20102012; Monier et al., 97 

2013, 2015; Kay et al., 2015; Garcia-Menendez et al., 2015, 2017). This approach cannot address 98 

structural uncertainties and internal (unforced) variability between models, but is capable of 99 

identifying parametric uncertainties within a single model.  100 

The second strategy to reduce ozone variability is to expand the temporal averaging window, 101 

which can influence the interpretation of the determined ozone value (e.g. Brown-Steiner et al., 102 

2015). The Environmental Protection Agency (EPA) National Ambient Air Quality Standard 103 

(NAAQS) for ozone (US EPA, 2015) explicitly takes this into account, both in the length of the 104 

averaging period (daily maximum 8-hour average) and the selection criteria for the standard 105 

(fourth-highest over the previous 3 years). The calculated ozone variability can be further 106 

reduced by utilizing even longer averaging periods, such as monthly (e.g. Rasmussen et al., 107 

2012), seasonal (e.g. Fiore et al., 2014; Barnes et al., 2016), annual, or decadal mean values (e.g. 108 

Garcia-Menendez et al., 2017). This strategy is analogous to the averaging of meteorological 109 

data to derive a climate signal, and just as Lewandowsky et al. (2015) recommend averaging 17 110 

or more years in order to achieve climatological estimates of temperature trends, there is a 111 

growing body of literature recommending averaging short time scale chemical variability (what 112 

could be called chemical weather, see Lawrence, 2005) for 15 or more years (e.g. Garcia-113 

Menendez et al, 2017) in order to achieve an estimate of the what could be called the chemical 114 

climate (see Möller, 2010). 115 

The third strategy to reduce ozone variability is to average surface ozone values over larger 116 

spatial regions, and while there is a significant body of literature discussing the capability and 117 

interpretation of coarse resolution model representations of the sub-grid scale heterogeneity 118 

(Pyle and Zavody, 1990; Searle et al., 1998, Wild et al., 2006), there are few that strategically 119 

expand the spatial scale over which averaging is applied in order to maximize signal detection 120 

capabilities. This strategy has been applied in other fields of the atmospheric sciences as well as 121 

for general gridded datasets (e.g. Pogson and Smith, 2015), and spatial averaging has been 122 

suggested as a means of reducing temperature variability and smoothing biases at the smallest 123 

spatial scales within a single model run (Räisänen and Ylhäsi, 2011). This “scale problem” has 124 
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also been noted as an important consideration when analyzing aerosol indirect effects 125 

(McComiskey and Feingold, 2012) and for the detection and attribution of extreme weather 126 

events (Angélil et al., 2017). 127 

Our objective in this study is to provide a framework for selecting spatial and temporal 128 

averaging scales that reduces the uncertainty in analyzing ozone signals and limits the likelihood 129 

of over-confidence in an estimate of surface ozone that arises from meteorological variability. 130 

This type of framework can be useful from two different research perspectives. The first research 131 

perspective has a priori an ozone estimate (either observed or modeled) at a certain spatial and 132 

temporal scale (e.g. a 3-year simulation of surface ozone over the Northeastern US) and wants to 133 

quantify the likelihood that this estimate is representative of the long-term ozone behavior (rather 134 

than overly sensitive to meteorological variability of that particular 3-year period). Since ozone 135 

is strongly influenced by natural fluctuations in meteorology (Jacob and Winner, 2009; Jhun et 136 

al., 2015) and since extremes in surface ozone and temperature tend to co-occur (Schnell and 137 

Prather, 2017), atypically hot or cold periods can strongly influence ozone behavior over short 138 

time scales. 139 

The second research perspective is to identify an ozone signal of a certain magnitude (or 140 

threshold) and needs to decide what spatial and temporal averaging scales are needed to best 141 

identify that signal. The ozone signal could be large (e.g. determining the effectiveness or 142 

compliance with a 5 ppbv incremental reduction of the EPA NAAQS for ozone (US EPA, 2015)) 143 

or small (e.g. identifying annual ozone trends within the US, which Cooper et al. (2012) show 144 

can be on the order of 0.10 – 0.45 ppbv), and can be highly sensitivity to spatial and temporal 145 

heterogeneity and meteorological variability. Barnes et al. (2016) found that surface ozone trends 146 

over 20-year periods can vary by ± 2 ppbv due solely to climate variability, while interannual 147 

variability can be on the order of ± 15 ppbv (Fiore et al., 2003; Tilmes et al., 2012; Lin et al., 148 

2014) and day-to-day variability can be even larger, extending regularly from near-background 149 

levels of 40 – 50 ppbv up to 100 ppbv during the summertime (Fiore et al., 2014).  150 

In this study, we quantify the impact of both temporal and spatial averaging on the calculated 151 

ozone variability – due solely to meteorological variability – in order to maximize the capability 152 

to detect trendssignals. We use simulated ozone (with the Community Atmosphere Model with 153 

Chemistry, CAM-chem) and observational data (with the EPA’s Clean Air Status and Trends 154 

Network, CASTNET) within the United States in order to answer the following four questions: 155 
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(1) Within a given dataset (model or observations), with both spatial and temporal coverage, 156 

what is the magnitude of the ozone variability due to meteorology at the smallest scale, and how 157 

does spatial and temporal averaging reduce this variability? (2) Are there combinations of 158 

temporal and spatial averaging scales that maximize the signal detection capability for surface 159 

ozone data? (3) How sensitive are the above strategies to different configurations (i.e. emissions, 160 

meteorology, and climate) of the CAM-chem modeling framework? And (4) How could they be 161 

applied to other datasets (chemical, meteorological, or climatological)? We limit our focus to 162 

spatial scales within the United States as it has high spatial and temporal variability and 163 

numerous observations, and since averaging over larger regions (e.g. the Northern Hemisphere, 164 

or the globe) would produce a smaller calculated variability. 165 

In Section 2, we describe the CAM-chem model and our simulations, as well as the 166 

CASTNET observational database and the regional definitions used throughout this paper. In 167 

Section 3 we quantify the temporal and spatial variability of surface ozone, show how temporal 168 

and spatial averaging reduces the calculated ozone variability, and demonstrate the spatial 169 

heterogeneity of the calculated ozone variability. In Section 4, we discuss the potential strategies 170 

that could be used to maximize ozone trend signal detection due to meteorological variability, 171 

explore uncertainties, and make recommendations for future research.  172 

 173 

2 Methods 174 

 175 

 We examine both present-day (one simulation and one observed dataset) and future (two 176 

simulations) surface ozone in this study. For present-day analysis, we simulate surface ozone 177 

using CAM-chem, a component of the Community Earth System Model (CESM) and available 178 

observations within the US from the EPA CASTNET database. For future analysis, and in order 179 

to examine the potential for patterns of variability to change in the future, we utilize two existing 180 

simulations of CAM-chem conducted by Garcia-Menendez et al. (2017). Much of this analysis is 181 

conducted using the R language (R-Project, www.r-project.org). Here we summarize each of the 182 

three datasets and our approach to our analysis in Section 3. 183 

 184 

2.1 CAM-chem 185 

The present-day simulation (MOZ_2000) was conducted using CAM-chem model 186 

version 1.2.2, with the CAM4 atmospheric component (see Tilmes et al., 2015; 2016 for model 187 
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description and evaluation). The model has been used extensively for a wide range of 188 

atmospheric chemistry research and is included in the Atmospheric Chemistry and Climate 189 

Model Intercomparison Project (ACCMIP, (Lamarque et al., 2012; Young et al., 2012 and 190 

references therein). We conduct our simulations using the Model for Ozone and Related 191 

chemical Tracers, version 4 (MOZART-4) chemical mechanism (Emmons et al., 2010), which is 192 

a full tropospheric chemical mechanism integrated into CAM-Chem (e.g. Lamarque et al., 2012; 193 

Tilmes et al., 2015; Brown-Steiner et al., in review). with oOffline forced meteorology from the 194 

Modern-Era Retrospective analysis for Research and Applications (MERRA) reanalysis product 195 

(Rienecker et al., 2011) for 26 meteorological years (1990 – 2015). Additional model evaluation 196 

and comparisons to surface and ozonesonde observations can be found in Brown-Steiner et al. 197 

(in review). This simulation has 56 vertical levels – adopted from MERRA meteorology – and 96 198 

latitudinal and 144 longitudinal grid cells. We aim to isolate the variability to the 199 

meteorologically-driven impact on atmospheric chemistry so we repeat year-2000 anthropogenic 200 

emissions from the ACCMIP (Atmospheric Chemistry and Climate Model Intercomparison 201 

Project) inventory (Lamarque et al., 2012) and all non-biogenic emissions for all meteorological 202 

years, and include specified long-lived stratospheric species (O3, NOx, HNO3, N2O, N2O5) as in 203 

MOZART-4 (Emmons et al., 2010), an online biogenic emissions model MEGAN (Guenther et 204 

al., 2012), and forced sea ice and sea surface temperatures to year 2000 historical conditions. 205 

Like many state-of-the-art chemical tracer models, the CAM-chem exhibits some biases, most 206 

notably for our purposes a high bias in simulated surface ozone in the Eastern US (e.g. Lamarque 207 

et al., 2012; Brown-Steiner et al., 2015; Travis et al., 2016; Barnes et al., 2016). Recent efforts 208 

have been successful in partially reducing these biases (e.g. Sun et al., 2017).  209 

We also include two reference simulations of the future climate, MOZ_2050 and 210 

MOZ_2100 (simulating the meteorological years 2035 – 2065 and 2085 – 2115, respectively) 211 

using the CESM CAM-chem simulations described in detail by Garcia-Menendez et al. (2017) 212 

with one set of initial condition data, and a climate sensitivity of 3.0 ˚C.  These simulations do 213 

not include projections of any changes in future emissions. Compared to the present-day 214 

simulation (MOZ_2000)s, these future simulations (MOZ_2050 and MOZ_2100) have several 215 

parametric differences: the model version is 1.1.2 (see Tilmes et al., 2015 and references for 216 

information on model development), the atmospheric component is CAM3, the emissions (which 217 

are held constant at year-2000 levels) are from the Precursors of Ozone and their Effects in the 218 
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Troposphere database (see Garcia-Menendez et al., 2017), and the meteorology is derived from a 219 

linkage between the Massachusetts Institute of Technology Integrated Global System Model 220 

(MIT IGSM) and the CESM CAM model (Monier et al., 2013), and as such has 26 vertical 221 

levels. For a full description of these simulations, see Garcia-Menendez et al. (2017). 222 

 223 

2.2 CASTNET 224 

The observational database comes from the EPA Clean Air Status and Trends Network 225 

(CASTNET), which has more than 90 surface observational sites within the United States and 226 

has been collecting hourly surface meteorological and chemical data since 1990 (US EPA, 2016 227 

and https://www.epa.gov/castnet). We collected data from all sites that reported complete ozone 228 

data from each year and removed data that was marked invalid within the downloaded EPA files. 229 

The number of sites that matched these criteria varied from year to year, but generally we have 230 

between 55 and 94 sites throughout the 1991 – 2014 period. The CASTNET observational 231 

network is located primarily in rural sites, and thus is considered to be a reasonable comparison 232 

to coarse grid cell model output (e.g. Brown-Steiner et al., 2015; Phalitnonkiat et al., 2016). 233 

Since a notable trend in observed ozone data exists, especially in the Northeastern US (Frost et 234 

al., 2006), and since the simulations have no change in anthropogenic emissions, and thus no 235 

ozone trend, we detrended the CASTNET data for each of the four averaging regions (described 236 

below) using a simple linear regression. 237 

  238 

2.3 Telescoping Regional Definitions 239 

In order to isolate the impact of the size of the spatial scale over which ozone data is 240 

averaged, we analyze ozone data at different spatial scales. The largest region considered is the 241 

entire Continental US, while the smallest regions considered are at the individual grid cell level 242 

of the CESM CAM-chem model (1.9˚x2.5˚ latitude/longitude). We focus on the US since there 243 

are CASTNET observations that provide adequate coverage in both space and time, and since the 244 

US has significant temporal and spatial variability. Data and statistics for the other regions (i.e. 245 

the Midwestern and Southeastern US) are included in the Supplemental Material, but do not alter 246 

the conclusions we draw from the Northeastern US. For CESM CAM-chem data, we averaged 247 

all grid cells within each region, while for the CASTNET data we first average sites within each 248 
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corresponding CESM CAM-chem grid cell, and then averaged these data together. These 249 

telescoping regions are shown in Figure 1. 250 

 251 

2.4 Temporal Averaging Windows 252 

To explore the impact of temporal averaging, we examine ozone across a range of 253 

temporal averaging windows, that range from 1 day up to the full 26 years for the CESM data 254 

(1990-2015), the full 24 years for the detrended CASTNET data (1991 – 2014), and the 30 years 255 

available from the future scenarios of Garcia-Menendez et al. (2017). Each averaging window, 256 

therefore, can be considered to be a “sample” of possible realizations of meteorology. For 257 

instance, a selection of an averaging window of 1 year has 26 possible slices within the 1990 – 258 

2015 MOZ_2000 data, while a selection of an averaging window of 10 years has 17 possible 259 

slices within the CESM data (N = # years – length of window +1). In this study, we consider all 260 

realizations to be equally likely and compare them to each other and to the long-term trend. 261 

However, if we were only able to simulate 5 years, we would not be able to compare to the long-262 

term trend, and so be unable to completely quantify the likelihood of error in the context of the 263 

long-term behavior. 264 

 265 

3 Results 266 

Here we examine the spatial and temporal behavior of MOZ_2000, MOZ_2050, and 267 

MOZ_2100 and compare MOZ_2000 to present-day CASTNET observations. We introduce the 268 

moving temporal averaging windows, explore possible thresholds of acceptable error or signal 269 

strength, and examine the influence of expanding spatial averaging regions. Finally, we combine 270 

these temporal and spatial averaging techniques into a single framework.  271 

 272 

3.1 Spatial and Temporal Comparisons 273 

Figure 2 plots the averaged spatial distribution of the daily maximum daily  8-hour 274 

average ozone average (DM8HMDA8 O3) for summertime (JJA) days for 1990-2015 for the 275 

present-day MOZARTCAM-chem simulation, MOZ_2000 (Figure 2a) and for compares to the 276 

year 2000 for CASTNET data (Figure 2b). Some of the averaging strategies we present can 277 

average away the high ozone behavior this MDA8 O3 metric is intended to quantify, but it is 278 

such a well-reported metric that focusing our analysis on it allows for ready comparisons to other 279 
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studies. The well-known high ozone bias in the Eastern US (e.g. Lamarque et al., 2012; Travis et 280 

al., 2016; Barnes et al., 2016) is apparent, but otherwise the spatial variability over the entire 281 

Continental US is well captured. While we do examine the magnitude of surface ozone in this 282 

paper, most of our analysis is focused on the variability around the mean value (the anomaly), 283 

and as we show below, the CASTNET observations and CESM results are largely consistent in 284 

their representation of ozone variability (Figure 2, Table 1). The standard deviation of the 285 

simulated DM8HMDA8 O3 is large over the Eastern US and the Pacific Coast, with peak values 286 

of ± 25 ppbv over the highly populated Atlantic Coast (Figure 2c). The variability (defined as the 287 

standard deviation divided by the mean, expressed as a percentage) is lowest over the Western 288 

US (~ 15%), only slightly higher over the Eastern US (up to 25%), and highest (up to 50%) over 289 

the coastal regions (Figure 2d). We include this relative standard deviation metric since the 290 

CAM-chem biases make it difficult to compare standard deviations directly. The future climate 291 

simulations, MOZ_2050 and MOZ_2100 (Figure 2e and 2f, respectively), although run with 292 

different parametric settings than MOZ_2000 (see Section 2), simulate a similar spatial 293 

distribution of surface ozone, although under the warmer simulated climate of 2050 and 2100. 294 

These future climate simulations have a similar spatial pattern to the present-day simulation 295 

(Figure 2a), with high ozone levels in the Eastern US that increases from 2050 to 2100 (see 296 

Garcia-Menendez et al. (2017) for more details). 297 

Figure 3 compares boxplots over the four telescoping regions (Figure 1) for MOZ_2000, 298 

the CASTNET data, the detrended CASTNET data, and for the single year 2000 for the 299 

CASTNET data (Figures 3a-d), and Table 1 summarizes relevant statistics. In order to compare 300 

CASTNET ozone to the simulated ozone, which do not have a trend over time, we detrend the 301 

CASTNET data in order to remove the impact of any temporal trends (e.g. NOx emissions 302 

reductions) on ozone. The Northeastern US ozone bias is apparent at the smaller spatial scales 303 

(Figures 3c,d) and is less apparent when averaging over larger regions (Figures 3a,b). Figure 3e 304 

compares the year-to-year boxplots of the JJA DM8HMDA8 O3 for the MOZ_2000 and the 305 

detrended CASTNET data, and demonstrates the variability both in the median and spread of the 306 

ozone values in both the modeled and simulated data. While the MOZ_2000 ozone is generally 307 

higher than the CASTNET data, there are years in which the CASTNET data has higher ozone 308 

extremes. The red box plot in Figure 3e, which corresponds to the red box plot in Figure 3b, 309 



 12 

indicates that the year 2000 was an anomalously low year for observed ozone, although not the 310 

lowest.  311 

While all the CESM CAM-chem simulations have high ozone biases in the Northeastern 312 

US (Figures 2 and 3, Table 1), their capability to simulate ozone variability is consistent with the 313 

available observations (for present day) and for expectations of ozone variability changes in the 314 

future climate (for MOZ_2050 and MOZ_2100). Here we examine the variability defined as the 315 

standard deviation divided by the mean (expressed as a percent), instead of the standard 316 

deviation alone, in order to account for the model biases in the magnitude of the simulated 317 

ozone. It is clear that variability increases when the size of the averaging region decreases, a fact 318 

that is well noted in the literature, as in Hawkins and Sutton (2012) for climate variables and 319 

Barnes et al. (2016) for ozone. As can be seen in in Table 1, the CASTNET variability increases 320 

as the spatial scale decreases (10%, 13%, 16%, and 20% for our telescoping regions from 321 

continental to a single Northeastern U.S. grid box), and MOZ_2000 largely captures this trend, 322 

albeit with lower overall variability (5%, 10%, 15%, and 15%). This increase in ozone variability 323 

with decreasing spatial scale is maintained in the future climate simulations (6%, 10%, 16%, and 324 

21% for MOZ_2050 and 7%, 12%, 17%, and 20% for MOZ_2100). Table S1 contains statistics 325 

for the other telescoping regions. 326 

 327 
 328 

3.2 Variability, Averaging Windows, and Thresholds 329 

As we aim to quantify the potential tradeoffs that result from a particular choice of 330 

temporal and spatial scales on the assessment of ozone variability within the US, we represent 331 

the spatial scale by applying the telescoping regions (see Figure 1 and Section 2.3) and we 332 

represent the temporal scale through the use of moving averaging windows (see Section 2.4). that 333 

range from 1 day up to the full 26 years for the CESM data (1990-2015), the full 24 years for the 334 

detrended CASTNET data (1991 – 2014), and the 30 years available from the future scenarios of 335 

Garcia-Menendez et al. (2017). Each averaging window, therefore, can be considered to be a 336 

“sample” of possible realizations of meteorology. For instance, a selection of an averaging 337 

window of 1 year has 26 possible slices within the 1990 – 2015 MOZ_2000 data, while a 338 

selection of an averaging window of 10 years has 17 possible slices within the CESM data (N = 339 

# years – length of window +1). In this study, we consider all realizations to be equally likely 340 

and compare them to each other and to the long-term trend. However, if we were only able to 341 
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simulate 5 years, we would not be able to compare to the long-term trend, and so be unable to 342 

completely quantify the likelihood of error in the context of the long-term behavior. We frame 343 

much of the following analysis from the perspective of limited simulation length in order to 344 

approximate the question that decision-makers and modelers face when constrained by limited 345 

computational capabilities or available data: what i’s the likelihood that a particular estimate (of 346 

both the mean and the variability) is not a true representation of the true mean and variability, but 347 

rather a product of the underlying variability at the particular choice of spatial and temporal 348 

scale?  349 

Figure 4 presents this likelihood by plotting all possible estimates of DM8HMDA8 O3 (as 350 

anomalies from the long-term mean) over all possible selections of averaging window (from 1 351 

day up to the complete time series) for our telescoping regions. The semi-cyclical and highly 352 

auto-correlated nature of surface ozone is apparent at all spatial scales, with alternating cycles of 353 

anomalously high and low ozone. The temporal impact of anomalous ozone events is indicated 354 

by the vertical and right-leaning diagonal striations, which show that anomalous ozone events 355 

can impact estimates of ozone values within averaging windows up to 15 or 20 years. Figure 4 356 

demonstrates how small-scale anomalously high or low ozone values (that come only from 357 

meteorological variability) can impact temporal averages of 5, 10, or even 20 years. For instance, 358 

a selected 5-year averaging window within the MOZ_2000 simulation averaged over the 359 

Northeastern US could be 2.5 ppbv higher or lower than the 25-year mean value of 74 ppbv, a 360 

difference potential error of 7%. Horizontal lines in Figure 4 mark the length of averaging 361 

windows that are needed to ensure that ozone variability anomaly for any selection of averaging 362 

window does not exceed a given threshold (5, 1, and 0.5 ppbv for solid, dashed, and dotted lines 363 

respectively). This potential error difference is larger within smaller regions and at the shorter 364 

selections of the averaging window. While the high and low ozone anomalies differ in time 365 

between CASTNET, MOZ_2000, MOZ_2050, and MOZ_2100 in Figure 4, the impact of spatial 366 

and temporal averaging is consistent.   367 

We also quantify this variability in Supplemental Figures S1 and S2, which plots the 368 

likelihood (as a percentage) that a particular selection of spatial (rows) and temporal (x-axis) 369 

scale estimates ozone values that exceed a particular threshold (colored lines) away from the true 370 

mean value. For instance, if we are interested in characterizing ozone behavior (e.g. estimating a 371 

trend, or the mean value) in the Northeastern US, but were limited to a 5-year simulation, there is 372 
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more than a 50% likelihood that the simulated ozone is 1 ppbv away from the 26-year mean, and 373 

an 80% likelihood that the discrepancy is greater than 0.5 ppbv. However, these data indicate 374 

that there is a virtual certainty that the estimate will be within 2.5 ppbv of the true mean value. 375 

We should note that, at the grid-cell level and within a 10-year period, the surface ozone 376 

variability can exceed 1 ppbv but is unlikely to exceed 2.5 ppbv (Figure 4), and that a 20-year 377 

trend is very likely to be able to identify significant ozone signals among the impact of 378 

meteorological variability on atmospheric chemistry. Our results also align with the results from 379 

Garcia-Menendez et al. (2017), which recommended that simulations need to be at least 15 years 380 

long to identify anthropogenically-forced ozone signals on the order of 1 ppbv. 381 

Figures 4 and Supplemental Figures S1 and S2 compare the CASTNET observations to 382 

the three CESM CAM-chem simulations, and while there are minor differences, there are broad 383 

features that are consistent. First, using longer temporal averaging windows reduces the 384 

influence of small-scale ozone variability at all spatial scales, and depending on the acceptable 385 

threshold, one can select a temporal scale that effectively reduces the likelihood of exceeding 386 

that threshold to zero. Second, larger spatial scales also reduce this likelihood of exceeding a 387 

given threshold, but not as effectively as longer temporal scales. Finally, the impact of both 388 

temporal and spatial averaging on ozone variability is largely consistent for the CASTNET 389 

observations and for all three CESM CAM-chem simulations. 390 

 391 

3.3 Selection of Temporal Averaging Scales 392 

 Figure 5 extends this analysis to examine the spatial heterogeneity of this likelihood of 393 

the meteorological variability causing ozone anomalies exceeding particular thresholds at the 394 

grid cell level. Here we plot four thresholds (0.5, 1, 2.5, and 5 ppbv) and four averaging windows 395 

(1, 5, 10, and 20 years) for the MOZ_2000 simulation. Ozone variability is highest in the Eastern 396 

US. At the grid-cell level, there are two strategies for filtering out the noise associated with 397 

natural meteorological variability (and thus enhancing signal detection capabilities): either 398 

average over longer periods, or acknowledge the level of noise and increase the threshold. For 399 

these data, it is virtually certain that any 20-year average will be within 5 ppbv of a full 25-year 400 

mean value (which itself may not be an accurate representation of a longer simulation), and 401 

virtually certain that any 1-year average will be at least 0.5 ppbv away from the mean. 402 
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Figure 6 and Supplemental Figure S3 compare extends the analysis of Figure 5 by 403 

comparing the MOZ_2000, MOZ_2050, and MOZ_2100 simulations by selecting one column 404 

(across the four thresholds for the 5-year averaging window). Figure 6 similarly  andcompares 405 

one row (the 1 ppbv ozone threshold across the four averaging windows) from Figure 6 forfor 406 

MOZ_2000 to equivalent plots for, MOZ_2050, and MOZ_2100. Interpreting Figures 7 6 and 407 

Supplemental Figure S3 give largely consistent interpretations than the analysis above (Figure 408 

5). Namely, that at the grid-scale level, increasing the temporal averaging window (Figure 6) or 409 

increasing the acceptable ozone threshold (Supplemental Figure S3) are effective at reducing the 410 

impact of the meteorological variability on estimates of the ozone signal. Shorter windows (or 411 

smaller thresholds) are needed in the Western US (where variability is smaller, see Figure 2d) 412 

than in the Eastern US (where variability is larger), and grid-cellsas well as over coastal and 413 

highly populated regionstend to need longer windows (or higher thresholds). Finally, the 1 ppbv 414 

threshold and the 5-year averaging window plots (in either Figure 5 or Supplemental Figure S3) 415 

indicate that the spatial distribution and location of the peak variability may shift into the future, 416 

although this may be due to parametric differences between MOZ_2000, MOZ_2050, and 417 

MOZ_2100. Future simulations will be needed to check this shift in peak ozone variability. 418 

 419 

3.4 Selection of Spatial Averaging Scales 420 

 We examine the impact of increasing the spatial averaging region (Figure 7) at four 421 

different temporal averaging windows (1, 5, 10, and 20 years) and for the smallest ozone 422 

threshold from the previous section (0.5 ppbv). It is evident that at all temporal averaging 423 

windows, expanding the number of surrounding grid cells that are averaged together consistently 424 

decreases the likelihood of exceeding the 0.5 ppbv threshold, although these reductions are 425 

relatively small at the 1-year window, especially over the Eastern U.S. While increasing the 426 

spatial averaging from a single grid-cell up to include the surrounding 81 grid cells (bottom row 427 

in Figure 7) manages to essentially smooth away much of the spatial heterogeneity in surface 428 

ozone (by moving down any column in Figure 7), it does not eliminate the likelihood of 429 

exceeding the 0.5 ppbv threshold over much of the Eastern U.S. For instance, even at a 20-year 430 

averaging window, and by averaging together the surrounding 81 grid-cells over locations in the 431 

Eastern U.S., there is still a 20-70% likelihood of exceeding the 0.5 ppbv threshold due to the 432 

small-scale impact of the meteorological variability on atmospheric chemistry. 433 
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 434 

3.5 Combination of Spatial and Averaging Scales 435 

We now examine the combined impact of temporal and spatial averaging on reducing the 436 

influence of small-scale ozone variability in order to enhance ozone signal detection capabilities. 437 

Table S2 summarizes our analysis by dividing the likelihood of the ozone variability estimates 438 

exceeding selected thresholds away from the long-term mean into four categories: (1) the length 439 

of the averaging window over which ozone is averaged (columns); (2) the magnitude of the 440 

ozone threshold of interest (rows); (3) the observed (CASTNET) and modeled (MOZ_2000, 441 

MOZ_2050, and MOZ_2100) ozone data (sub-columns); and (4) the size of the spatial extent 442 

over which ozone is averaged (sub-rows). A graphical representation consistent with the data 443 

presented in Table S2 is plotted in Figure 8 for the Continental US average and for three grid 444 

cells that represent various cases. In each plot in Figure 8, by moving along columns from left to 445 

right, we can see the influence of increasing the size of the temporal averaging window, and by 446 

moving along rows (from the bottom to the top), we can see the influence of increasing the 447 

spatial averaging scale. By taking in the entire plot as a whole, we can get a feel for the 448 

combined influence of both temporal and spatial averaging. Supplemental Figure S4 contains a 449 

plot for each grid cell in the Continental US. 450 

On average within the Continental US, both temporal and spatial averaging are effective 451 

at reducing the calculated DM8HMDA8 O3 anomaly, although temporal averaging is more 452 

effective (Figure 8a). There are many grid cells in the Eastern and Western US coasts (Figure 8b, 453 

Supplemental Figure S4), where both spatial and temporal averaging are effective, but their 454 

combined usage is especially effective. There are also many grid cells where temporal averaging 455 

is effective, but spatial averaging is barely effective, or not effective at all (Figure 8c and 456 

Supplemental Figure S4). Finally, there are some grid cells, particularly in the Central US 457 

(Figure 8d and Supplemental Figure S4), where spatial averaging over smaller regions is 458 

effective, but spatial averaging of larger regions actually increases the calculated DM8HMDA8 459 

O3 anomaly by including surrounding grid cells that have higher variability. 460 

 461 

4 Discussion 462 

We now return to the original three research questions posed in Section 1. First, what is 463 

the magnitude of ozone variability due to meteorology alone at the smallest scale, and what is the 464 
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impact of increasing the scale of temporal and spatial averaging? In both observed and modeled 465 

DM8HMDA8 O3 surface data, the small-scale variability driven solely by the meteorological 466 

variability impact on atmospheric chemistry (expressed as the standard deviation as a percentage 467 

of the mean) can exceed 20% (Table 1, Figure 2d). The chemical variability examined here is the 468 

result of fluctuations in meteorology, which itself results from larger-scale climatological 469 

drivers. While variability in emissions also influences atmospheric chemistry, our analysis has 470 

removed the influence of emissions variability and isolated the variability due to meteorology. A 471 

more comprehensive analysis of chemical variability will need to account for both 472 

meteorological and emission variability, which is complicated by temporal trends in both the 473 

emissions of ozone precursor species and the climate.  474 

There is high temporal and spatial heterogeneity of surface ozone variability (Figure 2d), 475 

with the lowest values found in the Western US (< 10%), higher values found in the Eastern US 476 

(up to 20%), and the highest values over coastal or heavily populated regions (up to 30%). 477 

Averaging over longer temporal scales (by increasing the averaging window) and over larger 478 

spatial scales (by expanding the averaging region) can reduce the magnitude of the calculated 479 

variability, with temporal averaging proving to be more effective than spatial averaging in most 480 

cases (Figure 8). In this study, we performed simple spatial averaging, but there are other 481 

methodologies for smoothing two-dimensional signals (e.g. Räisänen et al., 2011; Pogson and 482 

Smith, 2015) that could potentially increase signal detection capabilities. 483 

Second, are there combinations of temporal and spatial averaging that maximize the 484 

filtration of calculated ozone variability, and thus maximize the potential for signal detection? 485 

Figure 8 (and Supplemental Figure S4) demonstrate clearly that there are cases in which the 486 

combined usage of temporal and spatial averaging can reduce the calculated variability better 487 

than either strategy alone (see Figure 8b), although there are many regions within the Eastern US 488 

in which spatial averaging has little to no impact on reducing the calculated variability (Figure 489 

8c) or even results in an increase in the calculated variability (Figure 8d). There are no such 490 

cases (see Supplemental Figure S4) in which expanding the temporal averaging scale increases 491 

the calculated ozone variability. This could potentially enable region-specific averaging 492 

strategies that help decision-makers identify and meet regional air quality objectives. 493 

Third, are these results dependent on the particular parameterizations of the CESM 494 

CAM-chem model, and are they consistent with the available CASTNET observations? The 495 
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three CESM CAM-chem simulations exhibited consistent representations of ozone variability, 496 

consistent with our understanding of future changes to the climate (and meteorology) and the 497 

resulting impact on atmospheric chemistry (Table 1, Figures 4, S1, and S2). Compared to the 498 

CASTNET observations (which we detrended to remove the influence of changing precursor 499 

emissions), the present-day simulation (MOZ_2000) exhibited a high ozone bias in the Eastern 500 

US (which is also evident in the future simulations, MOZ_2050 and MOZ_2100), while the 501 

representation of the ozone variability is comparable (Table 1). 502 

Finally, how may these strategies be applied to other datasets, be they chemical, 503 

meteorological, or climatological?  Much of this analysis could be applied to any dataset that has 504 

spatial and temporal coverage, as long as some set of acceptable thresholds is provided. While 505 

our time step in this analysis is daily (given the DM8HMDA8 O3 metric), and applied only to 506 

summertime (JJA) days, any time step (i.e. hourly, monthly, annual, decadal) could be utilized as 507 

long as cyclical trends (e.g. diurnal or seasonal cycles) are removed. Indeed, the sliding-scale 508 

presentation in Figure 8 and Supplemental Figure S4 can specifically be utilized to identify 509 

particular spatial and temporal scales that are sufficient to identify signals at particular thresholds 510 

and to identify particular geographic regions that are best suited to identify a given signal. For 511 

example, Sofen et al. (2016) identified regions across the globe where additional observations 512 

would be particularly suited to improve our understanding of surface ozone behavior, and our 513 

analysis could potentially be used to identify particular temporal and spatial averaging scales that 514 

could further maximize the capability for trend detection. In particular, Sofen et al. (2016) noted 515 

that the peak in the power spectrum of the El Niño-Southern Oscillation (ENSO) on surface 516 

ozone is at the 3.8 year time scale, and that within some regions within the US, the amplitude of 517 

the ENSO influence on surface ozone approached 0.5 ppbv (and up to 1.1 ppbv globally). Our 518 

analysis shows that there are no grid cells within the Continental US where a 0.5 ppbv signal can 519 

be identified at the 5-year (or shorter) temporal averaging scale (Supplemental Figure S4), but 520 

that there are many regions – especially within the Western US – in which even a modest amount 521 

of spatial averaging can identify surface ozone signals below the 1 ppbv level with a 5-year or 522 

shorter averaging window. The type of sliding-scale analysis – in which spatial and temporal 523 

averaging are utilized individually and in combination – as presented in Figure 8 and 524 

Supplemental Figure S4 could readily be applied to a wide range of atmospheric (and other) 525 

topics to aid in the capability to identify signals that exist both in space and in time. In particular, 526 



 19 

low-frequency oscillations (e.g. ENSO, and others) and other forms of internally or externally 527 

forced trends (e.g. anthropogenic and natural changes in emissions) are readily adaptable to this 528 

type of analysis, which could address signals pertaining to precipitation, biogenic emissions, 529 

boundary layer variables, cloud properties, and many others. 530 

Finally, we did not quantify statistical significance (as in Lewandowski et al., 2015) as 531 

our goals were to understand the general nature of ozone variability at all scales and for all signal 532 

strengths. Statistical significance testing (and other statistical techniques) can certainly provide 533 

additional information as to the strengths of ozone signals within the underlying variability, and 534 

can be used to extend these results in a case-by-case manner, but we leave this testing to future 535 

studies that can focus on particular air quality objectives at particular temporal and spatial scales. 536 

Furthermore, future research examining the impact of spatial and temporal averaging using 537 

regional-scale models, models with different resolutions, and the inclusion of urban observations 538 

could provide additional insight into understanding chemical variability and averaging 539 

techniques. 540 

 541 

5 Conclusions 542 

We quantified the impact of spatial and temporal averaging at different scales – both 543 

individually and combined – on estimates of summertime surface ozone variability and the 544 

resulting likelihood of over-confidence in estimates of chemical signals over the United States 545 

using CASTNET observations and the CESM CAM-chem model. We simulate three multi-546 

decadal time periods, each with constant surface emissions, and find that this analysis is 547 

consistent across our simulated time periods, and that our results are not sensitive to particular 548 

configurations and parametric choices within the CESM CAM-chem (i.e. emissions, 549 

meteorology, and climate). We also provide a conceptual framework for gaining understanding 550 

of the influence of spatial and temporal averaging that may be adapted to a wide range of 551 

atmospheric and surface phenomena, provided sufficient spatial and temporal coverage. Here we 552 

focus on summertime surface ozone, a highly variable (in both space and time) atmospheric 553 

constituent with severe human health impacts and implications for planetary climate, which is 554 

the focus of many local, regional, and national policies. However, the resultant magnitude of 555 

these changes and trends signals are small compared to the magnitude of the day-to-day ozone 556 

variability, and detecting these changes and trends signals can be challenging. In particular, it 557 
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would be impractical to delay interpreting observations for 10 – 15 years, or alternatively to 558 

expand the spatial averaging such that small-scale features are smoothed away. Nonetheless, it is 559 

unwise to over-interpret trends and signals based on observations from a limited spatial area and 560 

over a short temporal period. Our analysis and conceptual framework presented here cannot 561 

solve this tension, but it does demonstrate some strategies which can allow for a selection of 562 

spatial and temporal averaging scales, and a consideration of the error threshold, that can aid in 563 

this signal detection on a case-by-case basis. Taking into account the complex interactions 564 

involving trends and variability between emissions, chemistry, meteorology, and climatology 565 

necessitates a variety of strategies. This work quantifies the impact of spatial and temporal 566 

averaging in signal detection, which can be used in conjunction with ensembles of simulations, 567 

statistical techniques, and other strategies to further out understanding of the chemical variability 568 

in our atmosphere. 569 

In order to quantify the impact of spatial and temporal averaging on summertime ozone 570 

variability, we start by selecting four telescoping spatial regions (the Continental US, the Eastern 571 

US, the Northeastern US, and a single grid cell within the Northeastern US) and examine all 572 

possible choices for averaging windows (ranging from daily to multi-decadal windows), 573 

although we focused primarily on averaging windows of 1, 5, 10, and 20 years. We find that – 574 

consistent with previous studies – summertime ozone variability is largest at the smallest scales, 575 

and is frequently on the order of ±10 – 20 ppbv, or which is roughly 15-20% of the mean ozone 576 

signal. In order to minimize the chemical noise that results from meteorological variability – and 577 

thus enhance the signal – we find averaging windows of 10-15 years (and sometimes longer at 578 

the smaller spatial scales) combined with modest (nearest-neighbor) spatial averaging 579 

substantially improve the capability for trend signal detection. We recognize that achieving a 10 580 

– 15 year temporal averaging window is difficult, but this recommendation is consistent with 581 

recent literature (e.g. Barnes et al., 2015; Garcia-Menendez et al., 2017). For studies where 10 – 582 

15 years of averaging is impractical, we recommend that some spatial and temporal context is 583 

provided that demonstrates that the signals being examined are robust and not the result of 584 

internal variability or noise. We also recognize that our analysis is just one strategy for 585 

enhancing signal detection capabilities, and will ideally be used alongside others, such as 586 

perturbed initial condition ensembles, running simulations with either internal or forced 587 

meteorology, and examining a region or time period with different models or parameterizations.  588 



 21 

We show that the largest summertime ozone variability is found in the Eastern US (Figure 5, 589 

Figure S4), and subsequently there are many regions within the Eastern US where even a 20-year 590 

averaging window has a non-negligible likelihood of estimating ozone variability that is 591 

dependent (with possible error in the 1 – 3 ppbv range) on the particular years selected. In 592 

addition, over much of the Eastern US, simulations of 5-years or shorter have a substantial 593 

likelihood (40 – 90%, Figures S1 and S2) of reflecting the influence of meteorological variability 594 

on chemistry rather than the mean state of surface ozone, with the possibility of 5 – 10 ppbv 595 

error (Figure S4). While we have detrended the CASTNET observations to compare to the 596 

constant year-2000 cycled emissions in the simulations, the CASTNET time series inherently 597 

includes the compounded variability of both meteorological and emission sources. Future studies 598 

will need to expand this analysis to include trends and variability in the emissions, as well as in 599 

the meteorology. 600 

Finally, we demonstrate a conceptual framework that allows for a “sliding-scale” view of 601 

surface ozone variability, in which both temporal and spatial averaging is examined at every grid 602 

cell within the Continental US. We show that the magnitude of estimates of ozone variability can 603 

be reduced with both temporal and spatial averaging, although temporal averaging tends to be 604 

more effective. While there are many regions in which both temporal and spatial averaging used 605 

in conjunction substantially reduce the estimate of ozone variability, there are some regions 606 

where spatial averaging is ineffective, or even counter-effective. In contrast, this is not the case 607 

for temporal averaging, which consistently reduces the magnitude of estimated ozone variability. 608 

Our analysis could be combined with other studies (e.g. Sofen et al., 2016) to guide 609 

observational and modeling strategies and identify regions and scales at which particular signals 610 

are most likely to be identified. 611 

612 
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 833 

Figure 1: Telescoping Spatial Regions included in this study. The largest scale we consider is the Continental 834 
US (outer border). We focus on the Eastern US, by subdividing into three subregions: the Midwest (blue), 835 
Northeast (black), and Southeast (red). Within each subregion we telescope into a 3x3 grid cell (yellow), 2x2 836 
grid cell (purple), and a 1x1 grid cell (green). In the paper, we only show a subset of these telescoping regions, 837 
and we include the rest in the Supplemental Material.  838 
 839 
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 842 
Figure 2: Continental US surface maps of (a) present-day MOZARTCAM-chem mean DM8HMDA8 O3; (b) 843 
CAM-Chem (y-axis) present-day CASTNET mean DM8H O3comparison to CASTNET observations (x-axis) 844 
for the year 2000 (see Brown-Steiner et al. (in review) for additional comparisons); (c) present-day 845 
MOZARTCAM- chem standard deviation of MDA8 O3; (d) present-day MOZARTCAM- chem variability 846 
(standard deviation divided by mean, as a percent); (e) future MOZARTCAM- chem year 2050 mean 847 
DM8HMDA8 O3; and (f) future MOZARTCAM- chem year-2100 mean DM8HMDA8 O3. All model results 848 
are averaged over every JJA day in the time series, while the CASTNET results are only for the year 2000. 849 
The numbers in Figure 2b are slopes (left) and R

2
 values (right). 850 
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852 

 853 
 854 

Figure 3: (a-d): Boxplots for surface DM8HMDA8 O3 for every summertime (JJA) day from 1991 – 2014 855 
averaged over the Continental US, the Eastern US, the Northeastern US, and a single grid cell in the 856 
Northeastern US from CESM CAM-chem (grey), CASTNET observations (blue), detrended CASTNET 857 
observations centered at the year 2000 (green), and since the CAM-chem simulations have cycled year-2000 858 
emissions and boundary conditions, the detrended CASTNET values for the year 2000 only (red). (e) 859 
Comparison of the yearly JJA DM8HMDA8 O3 estimates averaged over the Eastern US for MOZARTCAM-860 
chem (grey) and the detrended CASTNET (green) from 1991 – 2014. The single red boxplot coincides with 861 
the red boxplot in (b). The units are in ppbv, and for each boxplot the box contains the Inter Quartile Range 862 
(IQR), the horizontal line within the box is the median, and the whiskers extend out to the farthest point 863 
which is within 1.5 times the IQR with circles indicating any outliers.  864 
 865 

 866 

Formatted: Font: (Default) Times

New Roman, 10 pt



 37 

 867 
 868 

Figure 4: A representation of the variabilityComparisons of the variability represented by of the 869 
summertime DM8HMDA8 O3 anomaly (from the long-term summertime mean) for the four datasets in 870 
this study (CASTNET, MOZ_2000, MOZ_2050, MOZ_2100, columns) averaged over the four 871 
telescoping regions (CUS, EUS, NEUS, NEUS 1x1, rows). In each panel, the horizontal axis is the 872 
number of years in the dataset (24 years (1991-2014) for CASTNET, 26 years (1990-2015) for 873 
MOZ_2000, and 30 years (2036-2065 and 2086-2115) for MOZ_2050 and MOZ_2100), and the vertical 874 
axis represents the length of the averaging window (ranging from 1 day (bottom row) up to the entire 875 
time series (top pixel)). Each pixel represents the estimate of the ozone anomaly for a given averaging 876 
window (vertical axis) ending at a given time (horizontal axis). Horizontal lines indicate the length of 877 
averaging window required to guarantee that the variability drops below thresholds of 5 ppbv (solid), 1 878 
ppbv (dashed), and 0.5 ppbv (dotted).  879 
 880 
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 882 
 883 

Figure 5: Spatial Plots over the Continental US plotting the likelihood (%) that an estimate of ozone 884 
exceeds a given threshold due to meteorological variability (rows) at the grid-cell level when using 885 
different lengths of averaging windows (columns) for the present-day CESM simulation (MOZ_2000). 886 
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 888 

 889 

Figure 6: As in Figure 5, but only the second row (1 ppbv threshold), for present-day CAM-chem 890 
(MOZ_2000), future CAM-chem 2050 (MOZ_2050), and future CAM-chem 2100 (MOZ_2100). 891 
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 894 
Figure 7: Combined impact of temporal and spatial averaging on reducing ozone variability on the 895 
likelihood (%) of exceeding the 0.5 ppbv threshold (as in Figures 5, 6, and Supplemental Figure S3) for 896 
the present-day MOZ_2000 simulation. The top row is the same as in Figure 6, while the lower rows 897 
have averaged the values within a 3x3, 5x5, 7x7, and 9x9 grid box surrounding each individual grid cell.   898 
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 901 

Figure 8: The maximum potential calculated DM8HMDA8 O3 anomaly [ppbv] from the long-term mean 902 
for (a) the Continental US average and three individual grid cells taken from (b) Southern California, 903 
demonstrating effective temporal and spatial averaging, (c) the Northeast, where spatial averaging is 904 
ineffective, and (d) the Rocky Mountains, where spatial averaging initially reduces the anomaly, but 905 
then increases the anomaly as surrounding regions get included in the spatial average. demonstrating 906 
the impact of temporal and spatial averaging, with tThe number of years included in the temporal 907 
averaging window increaseing along the x-axis and the number of grid cells included in the spatial 908 
averaging window increaseing along the y-axis. A full map of the Continental US can be found in the 909 
Supplemental Material (Figure S4). Note that the color scale is non-linear, and the color transitions are 910 
selected to match the thresholds established throughout this paper. 911 
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 913 
Table 1: Statistical Summary of the CASTNET observations and the three CAM-chem simulations for 914 
different spatial averaging regions within the US. Variability is defined as the standard deviation 915 
divided by the mean value (in percent). Biases are only included for the present-day CAM-chem 916 
simulation compared to the CASTNET data. Similar tables for the other regions in this study are 917 
included in the Supplemental Material.  918 
 919 
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Supplemental Material 

 

Supplemental Figure S1: The likelihood (percent, vertical axis) that an estimation of the mean MDA8 O3 

value for a given length of temporal averaging window (years, horizontal axis) is farther away from the 

long-term mean value than a given threshold: 5 ppbv (blue), 2.5 ppbv (purple), 1 ppbv (green), and 0.5 

ppbv (blue). Individual columns represent the four datasets used in this study: CASTNET, present-day 

MOZART (MOZ_2000), and the two future MOZART simulations (MOZ_2050, MOZ_2100). 

Individual rows are spatially averaging over the telescoping regions seen in Figure 1.  
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Supplemental Figure S2 (as in Figure S1, but for the Southeastern and Midwestern US) 
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Figure S3: As in Figure 5, but only the second column , (5-year averaging window), for present-day 

CAM-chem (MOZ_2000), future CAM-chem 2050 (MOZ_2050), and future CAM-chem 2100 

(MOZ_2100).for present-day MOZART, future MOZART 2050, and future MOZART 2100. 
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Supplemental Figure S4: As in Figure 8, plotting maximum potential calculated DM8H O3 

anomaly [ppbv] from the long-term (1990 – 2014) mean, but for every grid cell in the Continental US. 

Covers the same Continental US extent as in Figures 5, 6, 7, and S3. 
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Supplemental Table S1: Statistical Summary of MDA8 O3 for the CASTNET observations and the 

three CAM-chem simulations for the Southeastern and Midwestern US. Variability is defined as the 

standard deviation divided by the mean value (in percent). Biases are only included for the present-day 

CAM-chem simulation compared to the CASTNET data. Note that there were no CASTNET sites at the 

1x1 grid cell regions. 
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Table S2: Summary of the likelihood (%) of the ozone variability exceeding a given threshold (2.5, 1.0, 

0.5 ppbv, rows) away from the long-term mean for a given an averaging window length (5, 10, 15 years, 

columns). We excluded the 5 ppbv threshold and the 1-year and 20-year averaging windows as they 

have very high or very low likelihoods, respectfully. Within each block, the Percentage Likelihood is 

further subdivided into the telescoping regions (CUS, EUS, NEUS, NE1x1, sub-rows) and the MDA8 O3 

dataset (CASTNET, MOZ_2000, MOZ_2050, MOZ_2100, sub-columns).   
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