

We thank the reviewers for their insightful and valuable comments. Our specific responses are addressed below and colored by blue. Changes made to the manuscript are in quotation marks.

Responses to Anonymous Referee #2

General comments

This study analyzes the emission sources and SOA formation processes in spring in the Seoul Metropolitan Area (SMA). The field measurement was well planned and a good data set is provided. The authors analyzed the data carefully and showed some interesting findings. However, the paper is too long, and does not reasonably focus on what they really want to know. Therefore, it is probably OK to be published in this journal after appropriate revision according to the following comments.

Major comments

(Overall) The length of the manuscript is better to shorten into half or two-thirds. The information and analyses should be more focused what the authors really want to know. Please clearly state the major findings in the main body and abstract. Less-important information should be shortened or moved to the supporting information. If I understand correctly the motivation of the authors, I recommend changing the constitution of the manuscript as follows. (1) The information written in Section 3.1 and 3.2 seems not critical. So the volume of these sections can be shortened greatly or may be merged into other sections. (2) It may be good to restructure the result section into three: (1) haze event, (2) high organic event, and (3) high sulfate event. Then authors can state the pollution mechanism and sources for each event.

In response to this comment, we have shorten the paper and cut the length by ~20%. Major changes were made at section 3.2 Characteristics and source apportionment of organic aerosol organic source, by shortening the discussions on the characteristics of individual OA factors and placed more general discussions in the supporting materials. Also some redundant discussions were removed and Tables 1 and 2 in the original manuscript have been moved to the supplementary.

(Overall) The authors indicated the importance of SOA on PM mass. It is good if the authors can show where (which region) the precursors (e.g. VOCs and NOx) came from, and the relative importance of ASOA and BSOA. In addition, please clarify the area or area size (and time scale) of “local”, “regional”, and “long-range transport”.

Good suggestions. First, the source regions of precursors appeared to be diverse, including both local emissions and regional transport. We mentioned the approximate locations of precursors in section 2.1 and show them on Fig. 1. Also for the importance of ASOA and BSOA, we think that ASOA might be more important since we did measurement at urban area however, as mentioned at section 2.1., when plume is dominant from East, perhaps BSOA is more important but not clear since no measurement has been done. Also VOC measurement (Fig. 2) doesn't clearly provide the source whether it is from the anthropogenic or biogenic. Without further supporting measurement/or information, it is too speculative to mention the importance of ASOA and BSOA. Relevant descriptions are below;

“Briefly, KIST is located ~ 400 m from a busy highway and is surrounded by a residential area and a commercial area, thus the air quality at this site tends to be influenced by abundant anthropogenic and primary sources. During spring, KIST, SMA in general, is influenced by highly consistent winds from west and south west (Fig. 1 c, d), where a number of cities and large-scale industrial facilities are located (Fig. 1a) and are significant sources of NO_x and SO_x (Kim et al., 2017). However, sometimes, dominant wind was blown from north and east, where emissions from agricultural and biogenic sources are generally more intense (Fig. S1). “

Finally for the clarification of area size (and time scale) of “local”, “regional”, and “long-range transport”, since we did not model this observation, we does not have exact scale for the above information. However, in this manuscript, when we are mentioning local, the scale is inside of city of Seoul, regional is from outside of Seoul. And long range transport is mainly discussing about the transportation of pollutants from the outside of Korea. For the clarification, relevant discussions are added at section 2.1 as below.

“In this manuscript, pollutants from inside and outside of the SMA are treated as “local” and “regional” scale pollutants, respectively. Air pollution episodes associated with transport from outside of Korea is considered as “long-range transport”. ”

(Overall) Recently, in many places especially in cold season, biomass burning is a large source of ambient PM. It would be good to state about how large of the biomass burning in this field campaign.

This campaign happened during spring/or and late spring, which is a warm season. Thus, it is hard to see the impact of biomass burning observing only 4 organic factors; SV-OOA, LV-OOA, HOA, and COA.

(p4,L1-15) The motivation of choosing “spring” as the study season should be clearly stated. It may be good to show average PM levels in four seasons in SMA. Are winter and spring the worst?

This study was performed during spring to investigate the photochemical formation of secondary species (e.g., O₃, SOA etc), not because air quality was worse during spring. In this regards, the motivation was discussed in the introduction. In response to the reviewer’s comment, we now briefly overview the seasonal PM concentration and then discuss why this study was done during spring although spring air quality is not the worst. Now the relevant section reads;

“In addition to various emission sources, previous studies have shown that the concentration and the composition of ambient aerosol in SMA are influenced by atmospheric processes and meteorological conditions as well (Heo et al., 2009; Kim et al., 2017). According to measurements by the Seoul Research Institute of Public Health and Environment, PM_{2.5} concentrations in SMA during past 9 years was generally higher during winter (DJF, average $\pm 1\sigma$ = $30 \pm 16 \mu\text{g}/\text{m}^3$) and spring (MAM; $29 \pm 14 \mu\text{g}/\text{m}^3$) than in summer (JJA; $23 \pm 13 \mu\text{g}/\text{m}^3$) and fall (SON; $23 \pm 14 \mu\text{g}/\text{m}^3$). Previous studies have shown that elevated anthropogenic emissions (e.g., from heating) coupled with a lower planetary boundary layer (PBL) height and stagnant

meteorological conditions are mainly responsible for poor air quality in Seoul during winter, although long-range transport of pollutants from upwind areas may have some influences as well (Kim et al., 2014; Kim et al., 2017). The severe air quality problem during spring in SMA is frequently driven by long range transport of wind-blown dust (yellow dust) and smokes from fires from the west and northwest (Kim et al., 2010). In addition, compared to winter, photochemical formation of secondary aerosol is expected to be more intense due to increased solar radiation and higher temperature during spring and affects air quality in SMA more actively. However, so far there is little information available on the formation, properties and transport of atmospheric aerosol during spring in SMA, although a fundamental understanding of aerosol chemistry and dynamics is necessary for predicting how changes in atmospheric composition influence air quality in this region.”

(p7, L15-17) I am bit curious about the validation method of AMS quantification. Did the authors validated AMS and SMPS quantification accuracy independently? I think the parallel measurement can give us only supporting information.

Thanks, we did the parallel measurement for the AMS and SMPS. For the further validation, we compare our PM₁+BC to PM_{2.5} concentration measured at the closest sampling site. It showed a good correlation ($r=0.76$) with a slop of 0.67, i.e., on average 67% of the PM_{2.5} mass is associated with submicron particles. To supporting the measurement, we add this analysis at the supporting material as Fig. S4 with relevant discussions as following;

“In addition, total PM₁ mass (= NR-PM₁ measured by AMS + BC) correlates well with PM_{2.5} mass measured using beta attenuation mass monitor (Thermo, FH62C14) at the Gireum site (~5 km to the west of the KIST site), showing the 67 % of PM_{2.5} (Fig. S4).”

(p11, L2) “haze periods, high organic/or sulfate period” . . . These three periods should be shown in Fig.2. Fig.2 is too small and busy. The reader cannot pick-up the information correctly. Fig.11 and Fig.S20 is good. So it may be good to move Fig.S20 to the main body of the manuscript.

Thanks, we mainly discussed two specific events; haze period and high organic period. High sulfate period occurred together with haze period. Fig. 2 is busy but this is the overview of the observation thus, we are trying to keep this figure here by enhancing the quality and showing the event period.

(p17, L31) “The diurnal pattern of COA displayed a large evening peak at ~ 19:00, i.e., dinner time, and a small lunch time peak at ~ 12:00.” I cannot see these peaks in Fig.8f. To me, it is highest at around 22:00 and decrease by 18:00.

Yes, as reviewer mentioned, 19:00 does not show the peak, rather enhancement starts from that time when the dinner time start. For the clarification, now the sentence reads;

“The diurnal pattern of the COA factor in this study displayed a large enhancement in the evening around 19:00, due to dinnertime cooking emissions coupled with lower boundary layer height, and a small peak at ~ 12:00 corresponding to lunchtime emissions.”

(p20, L20-21) “17:09 to 17:15” It is good if the authors can explain why the SOA increased in the evening (not afternoon). Is the SOA formed in the afternoon then transported? Or formed in the evening?

Thanks. Initial enhancement was driven by the transport which happen together with the enhancement of other species, then remain high due to intensive photochemical formation under stagnant conditions. We make this clear in the paragraph and now reads;

“PM₁ concentration jumped from 11 to 55 $\mu\text{g m}^{-3}$ between 17:00 to 17:45 on May 20, during which concentrations of all PM₁ species (except for COA), SO₂, NO₂, and biogenic and anthropogenic VOCs (e.g., isoprene and toluene) increased sharply (Fig. 2h). As shown in Fig. S20, the onset of this pollution episode was associated with a change of wind direction from southeast to northwest, indicating that it was mainly caused by transport of polluted air masses. Wind speed was low and wind direction alternated between north and east during the next three days, and the concentrations of most air pollutants rose and fell in correlation with the wind shifts. However, LV-OOA remained elevated after the initial sharp rise from 5.6 to 16 $\mu\text{g m}^{-3}$ and increased to a maximum concentration of ~ 25 $\mu\text{g m}^{-3}$ on May 23.”

(p23, L11) Please clearly state why you can conclude “spring plumes were long range transported”.

The evidences for the “spring plumes were long range transported” are discussed at the third paragraph of the section 3.4, saying that

“On May 24, there was a short clean period (7:30 to 11:30; Period S1) when average PM₁ concentration was only 9 $\mu\text{g m}^{-3}$ due to precipitation. After the precipitation, PM concentration started to increase substantially, accompanied with a change of aerosol composition. During both Period S1 and S2 (May 24, 11:30 – May 26, 18:00), the predominant wind direction was southwest (Fig. 11b). Analyses of the MODIS images (Fig. S21), backtrajectories, (Fig. S22) and meteorological conditions (Discover AQ report, Davis Peterson, NRL) all indicated direct transports of air masses from southwest, where large SO₂ emission sources are located. The change of PM₁ composition during Period S2 reflected the influence from such regional transport processes. For example, the mass fractions of species associated with regional sources, such as sulfate (28 vs 20% during entire period) and LV-OOA (18 vs 15%), increased (Fig. 11l, Table S2), whereas the fractions of local pollutants such as SV-OOA (5 vs 12%), HOA (5 vs 10%), COA (5 vs 7%) and BC (4 vs 7%) decreased compared to averaged PM₁ composition during entire period. In addition, the mass fraction of nitrate, one of the local secondary species, also enhanced (20 vs 17%), and this was mainly due to the gas-particle partitioning of HNO₃ and nighttime heterogeneous reactions in the nitrate formation facilitated by high RH (78%) and low temperature (18 °C) (Table S2). A good correlation ($r^2=0.48$) between nitrate and RH corroborates the role of aqueous processes (Fig. S23).”

To prevent readers to confuse by this summary paragraph here, the sentence relevant in the summary paragraph has been removed.

(Fig.1) The scales in Fig.1a&b cannot be read. Larger scale map (about 50-100 km size) is better in Fig.1a. Fig.1c,d,e are too small to read. “industrial facilities are located (west and south) and agricultural and biogenic areas (east and south)” cannot be understood from this map.

New figures including larger scale map with larger figure of c,d and e. Including the point sources (e.g., industrial facilities and biogenic areas) hasn't described in the figure since that makes figure more crowded. Instead, we describe those information in the text.

(Fig.3) Two of the right bottom figures (Org-EC and HOA-LV-OOA) should be shown in the same style of other figures.

Thank you for the suggestions. However, two of the right bottom figures show the different values than the rest of other figures, e.g. Concentration vs fractions. So we want to keep this format. However for the purpose of clarification, we mention this in the figure caption as follows;

“Two of the figures at the bottom from the right show the fraction of PM₁ mass and organic mass respectively.”

(Fig.8 e,f,g,h) The figure is too busy. BC, NO₃, Ozone, etc should be moved (or omitted) to other figures.

Thanks for the suggestions, however, those are useful information to understand the diurnal patterns of each organic factors. Thus we want to keep them on the figure. We will try to enhance the quality of figure.

Minor comments

(Abstract, p2, L1-2) It is better to insert a simple explanation in the beginning of the abstract about why the authors selected “spring” as the measurement season.

Thanks for the suggestion. We have already discussed why we did this during spring in the introduction as follows. Since the abstract is already long enough, we are thinking that it isn't necessary to add this in the abstract again.

“The severe air quality problem during spring in SMA is frequently driven by long range transport of wind-blown dust (yellow dust) and smokes from fires from the west and northwest (Kim et al., 2010). In addition, compared to winter, photochemical formation of secondary aerosol is expected to be more intense due to increased solar radiation and higher temperature during spring and affects air quality in SMA more actively. However, so far there is little information available on the formation, properties and transport of atmospheric aerosol during spring in SMA, although a fundamental understanding of aerosol chemistry and dynamics is necessary for predicting how changes in atmospheric composition influence air quality in this region.”

(p3, L17-19) Doesn't Korea have environmental quality standard of PM2.5? If they have, the authors should show these values as well here.

The annual air quality standard of PM2.5 in Korea is $25\mu\text{g m}^{-3}$ and this information is now provided in the manuscript.

(p3, L20-21) The approximate area size (x km²) of SMA should be described.

The approximate size of Seoul is 605.21 Km² (approximately 15 km in radius) and this has been added.

(p7, L1, and others) I think the URL information should be moved to the "References" section.
Thanks, it has been corrected.

(p7, L25) "Fig.6a and b" seems not correct figure number.

Thanks, it is the correct figure number but for the clarification. "Evolution pattern" changed to "Diurnal pattern".

(p13, L3-4) "≈20.0 ppb" should be "≈20 ppb". "≈41.7 ppb" should be "≈42 ppb".

Thanks, it has been corrected.

(p13, L22) ". . . number concentration (Fig. 3),". Fig.8 should be cited here.

Thanks, both figure 3 and 8 are related with this sentence, therefore figure 8 is added as suggested.

(p21, L29) "Fig.12" should be "Fig.11".

Thanks, it has been corrected.

(Table 1) The "0" at the column of "minimum conc" should be shown as "ND". The "-" at the column of "Fraction of total PM" should be shown as "100".

Thanks, it has been corrected.