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Abstract 

Over the 21st century changes in both tropospheric and stratospheric ozone are likely 

to have important consequences for the Earth’s radiative balance. In this study, we 

investigate the radiative forcing from future ozone changes, using the Community 

Earth System Model (CESM1), with the Whole Atmosphere Community Climate 20 

Model (WACCM), and including fully coupled radiation and chemistry schemes. 

Using year 2100 conditions from the Representative Concentration Pathways 8.5 

(RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing 

of (1) climate change, (2) reduced concentrations of ozone depleting substances 

(ODSs), and (3) methane increases. We calculate future ozone radiative forcings and 25 

their standard error (associated with interannual variability of ozone) relative to year 

2000 of (1) 33 ± 104 mWm−2, (2) 163 ± 109 mWm−2, and (3) 238 ± 113 mWm−2, due 

to climate change, ODSs and methane, respectively. Our best estimate of net ozone 

forcing in this set of simulations is 430 ± 130 mWm−2 relative to year 2000, and     
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760 ± 230 mWm−2 relative to year 1750, with the 95 % confidence interval given by 

±30 %. We find that the overall long-term tropospheric ozone forcing from methane 

chemistry-climate feedbacks related to OH and methane lifetime is relatively small 

(46 mWm−2). Ozone radiative forcing associated with climate change and 

stratospheric ozone recovery are robust with regard to background climate conditions, 5 

even though the ozone response is sensitive to both changes in atmospheric 

composition and climate. Changes in stratospheric-produced ozone account for          

~ 50 % of the overall radiative forcing for the 2000–2100 period in this set of 

simulations, highlighting the key role of the stratosphere in determining future ozone 

radiative forcing. 10 

 

1 Introduction 

Ozone is an important trace gas that plays a key role in the Earth’s radiative budget, 

atmospheric chemistry and air quality. As a radiatively active gas, ozone interacts 

with both shortwave and longwave radiation. In the troposphere, ozone is an 15 

important regulator of the oxidising capacity (both itself and as the main source of 

hydroxyl radicals, OH), as well as being an important pollutant, with negative effects 

on vegetation and human health (e.g. Prather et al., 2001; UNEP, 2015). However, 

approximately 90% of ozone by mass is found in the stratosphere – protecting the 

biosphere from harmful ultraviolet solar radiation (WMO, 2014) – and is an important 20 

source of ozone in the troposphere and its budget (e.g. Collins et al., 2003; Sudo et al., 

2003; Zeng and Pyle, 2003). Therefore, its future evolution – in the troposphere and 

the stratosphere – is an important concern for climate change and air quality during 

the 21st century. Future changes in emissions of ozone precursors (e.g. methane), 

ODSs and climate are thought to be major drivers of ozone abundances (e.g. 25 

Stevenson et al., 2006; Kawase et al., 2011; Young et al., 2013; Banerjee et al., 2016).  

Stratospheric-tropospheric exchange (STE) of ozone significantly influences 

the abundance and distribution of tropospheric ozone (e.g. Zeng et al., 2010; Banerjee 

et al., 2016). The Brewer-Dobson circulation (BDC) governs the meridional transport 

of air and trace constituents in the stratosphere, and is characterized by upwelling in 30 

the tropics, poleward motion in the stratosphere and sinking at middle and high 

latitudes (Butchart, 2014, and references therein). The BDC is commonly thought to 
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consist of a shallow branch, controlling the lower stratosphere region, and a deep 

branch controlling the middle and upper stratosphere. The latter presents two cells 

during the spring and fall seasons, and one stronger cell into the winter hemisphere 

(Birner and Bönisch, 2011). Although observational estimates and climate models 

suggest an acceleration of the stratospheric mean mass transport via the BDC 5 

associated with climate change (e.g. Oberländer et al., 2013; Ploeger et al., 2013; 

Butchart, 2014; Stiller et al., 2017), significant uncertainty still remains (Engel et al., 

2009; Hegglin et al., 2014; Ray et al., 2014). The tropopause is the boundary that 

“separates” the troposphere and the stratosphere, two chemically and dynamically 

distinct regions. Defining the tropopause is crucial to diagnose budget terms of trace 10 

gases such as the STE of ozone (e.g. Prather et al., 2011), although the chosen 

definition may affect the resulting analysis (e.g. Wild, 2007; Stevenson et al., 2013; 

Young et al., 2013). 

Stratospheric ozone is expected to recover towards pre-industrial levels during 

the 21st century due to the implementation of the Montreal Protocol and its 15 

Amendments and Adjustments (WMO, 2014), as ODS concentrations slowly decrease 

in the atmosphere (e.g. Austin and Wilson, 2006; Eyring et al., 2010). Indeed, the 

global ozone layer has already shown the first signs of recovery (WMO, 2014; 

Chipperfield et al., 2017). Future ozone recovery can affect tropospheric composition 

via enhanced STE of ozone and reductions in tropospheric photolysis rates, both 20 

associated with higher levels of ozone in the stratosphere. Previous modelling studies 

that have isolated the impacts of stratospheric ozone recovery have shown that the 

increased STE is the most important driver of changes in the tropospheric ozone 

burden (Zeng et al., 2010; Kawase et al., 2011; Banerjee et al., 2016). However, 

tropospheric ozone is also significantly affected by the change in ultraviolet radiation 25 

reaching the troposphere brought about by the ticker stratospheric ozone layer. In 

turn, reductions in ozone photolysis result in lower OH concentrations – i.e. 

O3+hν   λ<320  nm   →  O(1D)+  O2  – and therefore longer methane lifetime, with 

consequences for long-term tropospheric ozone abundances (e.g. Morgenstern et al., 

2013; Zhang et al., 2014). 30 

The broad impacts of future climate change on the distribution of ozone are 

robust across a number of modelling studies and multi-model activities (Kawase et al., 

2011; Young et al., 2013; Arblaster et al., 2014; Banerjee et al., 2016; Iglesias-Suarez 
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et al., 2016). Stratospheric cooling leads to further ozone loss in the polar lower 

stratosphere (through enhanced heterogeneous ozone destruction) and ozone increases 

in the upper stratosphere (through reduced NOx abundances and HOx-catalysed ozone 

loss, and enhanced net oxygen chemistry) (Haigh and Pyle, 1982; Rosenfield et al., 

2002). In addition, a projected acceleration of the BDC leads to an enhanced STE of 5 

ozone (e.g. Garcia and Randel, 2008; Butchart et al., 2010), which results in (i) 

decreases in tropical lower stratospheric ozone, associated with a relatively faster 

ventilation and reduced ozone production (Avallone and Prather, 1996); and (ii) ozone 

increases in the upper troposphere, particularly in the region of the subtropical jets, 

linked to the descending branch of the BDC (e.g. Kawase et al., 2011; Banerjee et al., 10 

2016). On the other hand, a warmer and wetter climate results in reduced tropospheric 

ozone levels – i.e. linked to a decrease in net chemical production due to enhanced 

ozone chemical loss – (e.g. Wild, 2007).  

Climate feedbacks associated with future ozone changes are surrounded by 

large uncertainties. Lightning is a major natural source of nitrogen oxides (LNOx) in 15 

the troposphere (Galloway et al., 2004), with important consequences for atmospheric 

composition in the mid-upper troposphere and the lower stratosphere. The current best 

estimate of annual and global mean LNOx emissions is 5 ± 3 Tg(N) yr−1, with 

chemistry-climate models suggesting LNOx emissions sensitivity to climate change of 

~ 4–60 % K−1 (Schumann and Huntrieser, 2007, and references therein). Although 20 

more recent modelling studies find LNOx emissions climate sensitivity lying at the 

lower end of the above estimate (Zeng et al., 2008; Banerjee et al., 2014), results from 

a multi-model activity suggest large uncertainty in the magnitude and even the sign of 

future projections response due to different parameterizations (Finney et al., 2016). 

Most LNOx emissions occur in the mid-upper tropical troposphere over the 25 

continents, where photochemical production of ozone is most efficient in the 

troposphere – i.e. low background concentrations and longer lifetimes of NOx, lower 

temperatures affecting ozone loss chemistry and abundant sunlight (e.g. Williams, 

2005; Dahlmann et al., 2011). A small but significant fraction of lightning-induced 

NOx emissions are converted into less photochemically active nitric acid (HNO3, via 30 

HO2 + NO reaction), which can be removed through wet deposition or transported 

into the lower stratosphere (acting as a reservoir of NOx) (e.g. Jacob, 1999; Søvde et 

al., 2011). In addition, OH concentrations increase with LNOx emissions and the 
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resultant lightning-produced ozone – i.e. via NO + HO2 and O(1D) + H2O respectively 

– with a corresponding reduction in methane lifetime. This resulting climate feedback 

is important because methane is a potent greenhouse gas (GHG) and ozone precursor.  

To date, ozone is the third largest contributor to the total tropospheric radiative 

forcing (RF) since the pre-industrial period, with overall increases in its concentration 5 

contributing a global radiative forcing over 1750–2011 of +0.35 Wm−2 (Myhre et al., 

2013). In this study, we use the concept of radiative effect (RE) to diagnose the 

contribution of ozone changes on the global radiative budget. The ozone RE is the 

radiative flux imbalance between incoming shortwave solar radiation and outgoing 

longwave infrared radiation (at the tropopause, after allowing for stratospheric 10 

temperatures to re-adjust to radiative equilibrium), which results from the presence of 

both anthropogenic and natural ozone (Rap et al., 2015). Note that RF is therefore the 

change in RE over time (e.g. Myhre et al., 2013). Ozone shows two distinct regimes 

with regard to its RE, with positive (longwave radiation) and negative (shortwave 

radiation) effects for increases in stratospheric ozone, and positive (for both longwave 15 

and shortwave radiation) effects for ozone increases in the troposphere (e.g. Lacis et 

al., 1990; Forster and Shine, 1997). In addition, changes in the distribution of ozone – 

i.e. latitudinal and vertical structure – are of a particular interest for its RE, due to 

horizontally varying factors such as, surface albedo, clouds and the thermal structure 

of the atmosphere (e.g. Lacis et al., 1990; Berntsen et al., 1997; Forster and Shine, 20 

1997; Gauss et al., 2003). Previous studies showed highest radiative efficiency of 

ozone in the tropical upper troposphere (e.g. Worden et al., 2011; Riese et al., 2012; 

Rap et al., 2015), a region greatly influenced by changes in stratospheric influx (e.g. 

Hegglin and Shepherd, 2009; Zeng et al., 2010; Banerjee et al., 2016) and lightning-

produced ozone (e.g. Banerjee et al., 2014; Liaskos et al., 2015) in a warmer climate. 25 

Modelling experiments used in the latest Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC) followed the Representative 

Concentration Pathways (RCPs) emission scenarios for short-lived precursors (van 

Vuuren et al., 2011) and long-lived species (Meinshausen et al., 2011). The RCPs are 

named according to the total radiative forcing at the end of the 21st century relative to 30 

1750. For example, while the RCP8.5 emissions scenario refers to the total 8.5 Wm−2 

RF by 2100, future tropospheric ozone RF was projected to account for up to ~ 9 % 

(0.6 ± 0.2 Wm−2) of the total RF (Stevenson et al., 2013). Note that the methane 
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concentration in 2100 is more than double that in the year 2000 following the RCP8.5 

emissions scenario. 

Previous research has investigated impacts on ozone abundances and 

distributions associated to future changes in climate, ODSs and ozone precursor 

emissions in a processed-based approach – i.e. imposing one single forcing at a time – 5 

(Collins et al., 2003; Sudo et al., 2003; Zeng and Pyle, 2003; Zeng et al., 2008; Zeng 

et al., 2010; Kawase et al., 2011; Banerjee et al., 2016). Other modelling studies 

focused on the radiative effects of tropospheric (e.g. Gauss et al., 2003; Stevenson et 

al., 2013) and stratospheric (Bekki et al., 2013) ozone changes under future emission 

scenarios in a non processed-based fashion. One study has recently identified the 10 

indirect tropospheric and stratospheric ozone RF between 2000 and 2100 due to 

individual perturbations (Banerjee et al., 2018). Yet the upper limit of future ozone 

RF remains poorly constrained. For example, climate models do not even necessarily 

agree on the sign of the indirect ozone forcing resulting from climate change and 

associated feedbacks (e.g. LNOx). Furthermore, there are uncertainties arising from 15 

the interactions and non-linearities between different agents (e.g. combined forcing 

may differ from the sum of individual forcings due to different background 

conditions), as well as and long-term changes (e.g. methane feedback associated with 

changes in lifetimes).  

Here we aim to narrow this gap by assessing how key factors drive net ozone 20 

radiative forcing, and providing an estimate of the uncertainty arising from non-

linearities and long-term feedbacks. We use the Community Earth System Model 

(CESM1) in its “high-top” (up to 140 km) atmosphere version – the Whole 

Atmosphere Community Climate Model (WACCM) – and a series of sensitivity 

simulations to quantify the radiative effects of ozone due to (1) climate change, (2) 25 

lightning-induced NOx emissions, (3) stratospheric ozone recovery, and (4) methane 

emissions between 2000 and 2100 following the RCP8.5 emissions scenario. We 

explore the robustness of the ozone radiative forcings associated with the above 

drivers under different background conditions due to non-linearities in ozone 

responses. Moreover, here we use a synthetic ozone tracer to unambiguously identify 30 

stratospheric- and tropospheric-produced ozone forcing. Note this study does not 

address reductions in anthropogenic NOx and non-methane volatile organic 
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compounds emissions, since they play a marginal role in future ozone RF under the 

RCP8.5 scenario (based on an additional simulation not presented here). 

The CESM1-WACCM model, sensitivity simulations and ozone radiative 

effect calculations are described in Section 2. A present-day model evaluation, future 

projected ozone changes and associated radiative effects are presented in Sect. 3. 5 

Different sources of uncertainties are discussed and accounted for in Sect. 4. Finally, a 

summary and concluding remarks are presented in Sect. 5. 

 

2 Methodology 

2.1 Model description 10 

We use the CESM (version 1.1.1) chemistry-climate model with a configuration that 

fully couples the atmosphere and land components. A comprehensive description of 

the model is given by Marsh et al. (2013, and references therein).  

The atmosphere component of CESM is WACCM version 4, a high-top model 

that extends from the surface to approximately 140 km in the lower thermosphere, 15 

with a vertical resolution ranging from 1.2 km near the tropopause to ~ 2 km near the 

stratopause, and horizontal resolution of 1.9º x 2.5º (latitude by longitude). The 

chemical scheme is the Model for Ozone and Related Chemical Tracers (MOZART) 

for the troposphere (Emmons et al., 2010) and the stratosphere (Kinnison et al., 2007), 

including recent updates (Lamarque et al., 2012; Tilmes et al., 2015). It includes 169 20 

chemical species with detailed photolysis, gas-phase and heterogeneous reactions (see 

Tables A1 and A2 in Tilmes et al., 2016). Recent updates in the orographic gravity 

wave forcing – reducing the cold bias in Antarctic polar temperatures – (Calvo et al., 

2017; Garcia et al., 2017) and the polar stratospheric chemistry (Wegner et al., 2013; 

Solomon et al., 2015) are included in the model. Concentrations of radiatively active 25 

gas-phase compounds such as ozone, nitrous oxide (N2O), methane (CH4) and 

halogenated ODSs, are coupled to the model radiation scheme. Lightning-induced 

NOx (LNOx) emissions are parameterized using the cloud top height method (Price 

and Vaughan, 1993), and annual global mean LNOx emissions are scaled to simulate 

present-day values of between 3–5 Tg N yr−1. 30 
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A stratospheric ozone tracer (O3S) is implemented to represent the abundance 

and distribution of stratospheric-produced ozone in the troposphere (Roelofs and 

Lelieveld, 1997). O3S is equivalent to ozone in the stratosphere. In the troposphere it 

undergoes the same chemical loss processes as ozone, but does not undergo dry 

deposition, following the recommendations for the Chemistry-Climate Model 5 

Initiative (CCMI) (Eyring et al., 2013; Morgenstern et al., 2017). To account for dry 

deposition of O3S, we apply an annual global correction factor based on an additional 

model simulation (not used in the main results). This correction factor is 

approximately linear, ranging from 0.7 at the surface to 0.95 around 250 hPa. 

The land component is the Community Land Model version 4, which has the 10 

same horizontal resolution as the atmosphere component and interactively calculates 

dry deposition for trace gases in the atmosphere (Val  Martin et al., 2014) and biogenic 

emissions using the Model of Emissions of Gases and Aerosols from Nature 

(MEGAN) version 2.1 (Guenther et al., 2012). 

2.2 Experimental setup 15 

This modelling set-up uses time slice simulations driven by sea surface temperatures 

(SSTs) and sea ice climatologies from previous CESM1-WACCM fully coupled 

simulations performed as part of the CCMI (SENC2-8.5; see Morgenstern et al., 

2017). An average over 1990–2009 is used to represent the year 2000; since the 

existing model simulation did not cover the period 2090–2109, an average over  20 

2080–2099 is used to represent conditions at the end of the 21st century (nominally 

2100). Note, however, that the perturbed concentrations of atmospheric gases are 

taken from year 2100 in the RCP8.5 scenario, and hence these experiments are 

labelled as 2100 in the manuscript. Each time slice experiment is integrated for 20 

years, with the last 10 years analysed in this study (i.e. the spin-up period covered the 25 

first 10 years). Seasonally varying boundary conditions are specified for carbon 

dioxide (CO2), N2O, CH4, and ODSs (halogen-containing compounds), as 

recommended for CCMI (Eyring et al., 2013). Changes in ozone precursors – other 

than CH4 – and land-use changes are not explored here (i.e. these are fixed at year 

2000 levels in all experiments). Volcanic eruptions are not included in the 30 

experiments, and the incoming solar radiation is fixed at 1361 Wm−2. The quasi-

biennial oscillation is imposed by relaxation of equatorial winds (90–3 hPa) with an 
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approximate 28-month period between eastward and westward phases (Marsh et al., 

2013).  

Table 1 lists the simulations used in this study. The control simulation (Cnt) 

had all boundary conditions set to the year 2000. Then each sensitivity simulation 

added one single driver (i.e. boundary condition changed to the year 2100) at a time. 5 

For example, while the climate-related ozone RF (with fixed LNOx emission) is 

explored comparing the Clm−Cnt simulations, the forcing associated with changes in 

lightning-induced NOx emissions is quantified comparing the Lnt−Clm simulations, 

and so forth. This method provides a different estimate of the overall net ozone RF 

compared to exploring the impact of the individual drivers alone (e.g. it accounts for 10 

non-linear effects that may be neglected by exploring each perturbation compared to 

the reference simulation). However, since the attribution of forcings to individual 

drivers may be sensitive to different background conditions, we also evaluate the 

robustness of the experimental design (see Sect. 3.5).  

Here we provide specific details of the boundary conditions. The simulations can be 15 

classified into three main groups: 

1. Sensitivity simulations that explore the impacts of climate change. Here SSTs, 

sea ice and main GHGs (i.e. CO2 and N2O) are specified to year 2100 levels 

(see above for explanation of SST and sea ice fields). The upper end emission 

scenario of the RCPs family is explored (RCP8.5). Natural biogenic emissions 20 

(e.g. isoprene) are calculated online, which are mainly governed by changes in 

CO2, climate and land use (Squire et al., 2014). The indirect ozone radiative 

effect resulting from this climate feedback is implicitly contained in the 

climate signal. However, unlike LNOx emissions it mainly impacts ozone in 

the lower troposphere, where ozone shows relatively small radiative efficiency 25 

(Rap et al., 2015). To isolate the impacts of lightning-produced ozone, 

additional experiments are performed with year 2000 levels for LNOx 

emissions (fLNOx). Fixed LNOx simulations follow the approach of Banerjee 

et al. (2014), imposing the monthly mean LNOx emissions climatology from 

the Cnt run and switching off its interactive calculation in the model. To 30 

justify this method, we compared temperature and tropospheric ozone fields 

between the Cnt and Cnt+fLNOx simulations and found negligible differences 

(not shown). 
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2. Stratospheric ozone recovery due to the slow decrease of ODS concentrations 

(referring to the total organic chlorine and bromine species) regulated under 

the framework of the Montreal Protocol is investigated. Based on the CCMI 

recommendations, halogen species (CFC11, CFC12, CFC113, CFC114, 

CFC115, CCl4, HCFC22, HCFC141b, HCFC142b, CF2ClBr, CF3Br, CH3Br, 5 

CH3CCl3, CH3Cl, H1202, H2402, CH2Br2, and CHBr3) are specified to year 

2100 levels for the halogen scenario A1 (WMO, 2011), which includes the 

early phase-out of hydrochlorofluorocarbons agreed in 2007. Note that two 

brominated short-lived species (CH2Br2 and CHBr3) were included in these 

experiments to accurately represent bromine loading and thus the associated 10 

ozone depletion, providing  an  additional  bromine  surface  mixing  ratio  of  

~ 6 ppt on top of that from the longer-lived bromine compounds. 

3. Future levels of methane and its impacts on ozone are investigated. 

Concentrations of CH4 are imposed to year 2100 levels from the RCP8.5 

pathway – i.e. approximately double concentrations compared to year 2000. 15 

Note that methane levels were kept at year 2000 levels for the sensitivity 

simulations described above that explore climate change impacts. 

2.3 Radiative transfer calculations 

To calculate the resulting all-sky REs of ozone we use the ozone radiative kernel (O3 

RK) technique based on Rap et al. (2015), updated for the whole atmosphere    20 

(Figure 1). The O3 RK, defined as the derivative of the radiative flux relative to small 

perturbations in ozone, was calculated using the offline version of the SOCRATES 

radiative transfer model with nine longwave (LW) and six shortwave (SW) bands, 

which is based on Edwards and Slingo (1996). Radiative flux calculations employed a 

monthly mean climatology of temperature, water vapour and ozone from the 25 

European Centre for Medium-Range Weather Forecast (ECMWF) ERA-Interim, and 

year 2000 surface albedo and clouds from the International Satellite Cloud 

Climatology Project (Rossow and Schiffer, 1999). Stratospherically adjusted REs of 

ozone were computed using the fixed dynamical heating approximation (Fels et al., 

1980), which assumes that the atmosphere adjusts to a new equilibrium state via 30 

radiative process only – i.e. without dynamical feedbacks – on a relatively short 

period (~ few months). A 1 ppb perturbation in ozone is added to each layer in turn, 



 11 

and temperatures above 200 hPa are adjusted iteratively until they converge to a new 

local radiative-dynamical equilibrium and the change in net flux at the 200 hPa level 

is diagnosed. The O3 RK is then constructed from the changes in net flux resulting 

from the ozone perturbations applied to all atmospheric layers. The 200 hPa level is 

used for the stratospheric temperature adjustment as an approximation for the level at 5 

which the transition to local radiative-dynamical equilibrium in the stratosphere 

occurs. The net O3 RK (Fig. 1a) illustrates the importance of the upper troposphere 

and lower stratosphere, particularly at low latitudes, where changes in ozone are very 

efficient in affecting the radiative flux of the Earth. The LW component (Fig. 1b) is 

positive throughout the atmosphere and dominates the net O3 RK, although the SW 10 

component (Fig. 1c) outweighs the former in the upper stratosphere (i.e. negative 

sensitivity).  

We compared the ozone RF calculated using the O3 RK technique (i.e. by 

multiplying the simulated ozone change with the net O3 RK interpolated to the 

model’s grid) with the corresponding RF calculated directly with the SOCRATES 15 

radiative transfer model (see supplementary material, Fig. S1). The good agreement 

between the two methods (global mean difference of 0.01 Wm−2) is consistent with 

the Rap et al. (2015) findings, where the O3 RK was proposed as an efficient and 

accurate method to estimate ozone RFs, which is particularly well suited for multi-

model intercomparison activities.  20 

A chemical tropopause definition (Prather et al., 2001), using the 150 ppb 

ozone level of the Cnt simulation, is employed to differentiate ozone changes and 

associated RFs occurring in the troposphere and the stratosphere. Compared to the 

latter, we found a negligible difference in the partitioning of tropospheric-

stratospheric forcing using a consistent chemical tropopause definition to the driver 25 

investigated (i.e. higher tropopause associated with climate change). 

 

3 Results 

3.1 Present-day ozone radiative effects and model validation 

A detailed present-day ozone evaluation of a similar model and experimental set-up 30 

was presented by Tilmes et al. (2016). In summary, simulated monthly mean ozone 
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shows good agreement with observational estimates within a 25 % range in spring and 

summer. Zonal and annual mean tropospheric ozone shows the best agreement with 

observations at low and mid-latitudes (±5 DU), a key region for its radiative effect 

(e.g. Rap et al., 2015). Likewise, the zonal and annual mean stratospheric ozone 

agrees fairly well with satellite estimates in the Southern Hemisphere (SH) and low 5 

latitudes (±30 DU), but larger deviations are found at mid- and high latitudes in the 

Northern Hemisphere (NH), a discrepancy also apparent in the models of the 

Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) 

(Iglesias-Suarez et al., 2016). The tropospheric ozone budget (production, loss, dry 

deposition, stratospheric input), burden and lifetime for the Cnt simulation             10 

(see Table 2 and Fig. S2) are within previous multi-model activities estimates 

(Stevenson et al., 2013; Young et al., 2013; Young et al., 2018). 

Figures 2a-2b show the annual mean ozone RE calculated for the Cnt 

simulation (year 2000 or “present-day” hereafter) and the Tropospheric Emission 

Spectrometer (TES) from July 2005 until June 2008 (05–08). TES is the first product 15 

providing tropospheric ozone profiles suitable for RE studies and has been previously 

evaluated against other observational estimates (e.g. Osterman et al., 2008), showing 

small bias in the troposphere and the stratosphere of approximately 3–4 DU. The 

annual and global ozone RE in the Cnt simulation is 2.26 ± 0.14 Wm−2 (1 standard 

error associated with interannual variability), within the TES range of                  20 

2.21–2.26 Wm−2. The spatial distribution of simulated and observed ozone REs are 

fairly well correlated (r = 0.6, p < 0.01), although note that the noisier TES signal is 

largely the result of averaging only three years. Both the simulated and observed 

present-day ozone REs reveal a positive poleward gradient, with a minimum in 

tropical regions (approximately 20ºN-20ºS) that is associated with the relatively low 25 

ozone levels found in the upper troposphere and lower stratosphere (see Fig. S2). A 

peak is found at high latitudes in the NH, driven by transport of relatively rich 

tropospheric ozone air from mid-latitudes coupled with only moderate ozone 

depletion in the NH stratosphere. This is in contrast with a lower RE values within the 

SH polar vortex, driven by the larger stratospheric ozone depletion over Antarctica 30 

(Solomon et al., 2015). Figure 2c compares the Cnt annual mean ozone RE against the 

TES data set. Compared to TES, the simulated annual mean tends to overestimate the 

RE in the NH and underestimate it in the SH, consistent with the bias in the ozone 
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distribution (Tilmes et al., 2016). Significant biases are mainly confined to the 

tropical and subtropical regions – i.e. bias is defined here when the simulated RE 

±1.96 standard error (~ 95 % confidence interval) is outside the observed range. 

Although tropical and subtropical regions are of particular interest for future changes 

in ozone and its resulting radiative forcing (i.e. highest radiative efficiency), there is a 5 

large NH/SH compensation as shown by the annual and global mean forcings. Note 

the RE is the radiative flux imbalance at a given time due to a radiatively active 

species (e.g. with and without ozone), whereas the RF refers to the change in RE over 

time. 

3.2 Ozone changes 10 

Figure 3 shows modelled annual and zonal mean ozone changes by 2100 compared to 

present-day. We present results from adding one single perturbation at a time. 

Climate (Clm−Cnt; Fig. 3a) shows similar pattern of ozone response to that 

found previously (e.g. Kawase et al., 2011; Banerjee et al., 2014). In the troposphere, 

ozone decreases primarily as a consequence of a warmer and more moist climate, 15 

which drives increased ozone loss via an enhanced O(1D) + H2O flux (Johnson et al., 

2001). Reduced net chemical production is partially offset by an increase in the STE 

(Table 2), driven by an enhanced BDC (Zeng and Pyle, 2003). The fingerprint of this 

change in the BDC can be seen in the lower stratosphere, both for decreases in the 

tropics and increases at mid-latitudes, respectively associated with the enhanced 20 

ascending and descending regions (Hegglin and Shepherd, 2009). In this simulation, 

the 70 hPa tropical (20°N-20°S) and zonal mean upwelling (Andrews et al., 1987) 

increases by 3.4 % dec−1 compared to Cnt (100 year trend). This trend is in agreement 

with current climate models projections of ~ 3.2 ± 0.7 % dec−1 between 2005–2099 

following the RCP8.5 (Hardiman et al., 2014). Additional ozone depletion over the 25 

Antarctic is consistent with stratospheric cooling due to enhanced GHG levels      

(Fig. S4a), driving enhanced heterogeneous ozone loss chemistry (WMO, 2014). In 

contrast, cooling in the upper stratosphere results in ozone increases associated with a 

slowdown of catalytic Ox cycles (Haigh and Pyle, 1982; Rosenfield et al., 2002). 

Future lightning (Lnt−Clm; Fig. 3b) shows an increase in LNOx emissions by 30 

~ 33 %, which results in ozone increases mainly in the tropical and subtropical upper 

troposphere. However, present-day LNOx emissions have significant uncertainties and 
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climate models do not agree even on the sign of the change due to different lightning 

parameterizations (Finney et al., 2016). Nevertheless, the simulated present-day LNOx 

emissions of 4.8 ± 1.6 Tg(N) yr−1 lies within observationally-derived estimates, and 

the model’s LNOx sensitivity to climate of 10.8 % K−1 is at the upper end of the two 

standard deviation climate model range (8.8 ± 2 % K−1) (Finney et al., 2016). The net 5 

global tropospheric ozone responses to climate will be largely determined by the 

interplay between (non-lightning) climate-induced ozone losses and lightning-induced 

ozone production. 

Reductions in inorganic chlorine and bromine abundances (O3r−Ltn; Fig. 3c) 

result in stratospheric ozone increases. Upper stratospheric ozone recovers largely due 10 

to decreases in ClOx-catalysed ozone destruction. Due to reduced heterogeneous 

ozone loss chemistry, the largest changes are found in polar regions in the lower 

stratosphere, with increases of ~ 450 % over the Antarctic (November) and ~ 45 % 

over the Arctic (April). Greater abundances of stratospheric ozone result in an 

approximately 20 % increase in the STE (Table 2) driving higher levels of 15 

tropospheric ozone, particularly at mid- and high latitudes in the SH (related to ozone 

hole recovery) and tropical and subtropical upper troposphere (the descending region 

of the BDC), which is consistent with previous model estimates (Banerjee et al., 

2016). The BDC-driven increases are somewhat offset by the larger overhead ozone 

column reducing actinic fluxes and therefore ozone photochemical production   20 

(Table 2) (Banerjee et al., 2016).  

Methane is a greenhouse gas, an ozone precursor in the troposphere and plays 

various roles in the stratosphere, and these processes are difficult to isolate from the 

rest. Future methane (Mth−O3r; Fig. 3d) emissions show a widespread increase of 

ozone in the troposphere, with annual and global tropospheric column ozone increase 25 

of 15 ± 8 % (Table S1). Previous modelling studies reported similar increases of    

10–13 % (Brasseur et al., 2006; Kawase et al., 2011). Compensation between ozone 

decreases in the upper stratosphere (enhanced HOx-catalysed chemistry) and increases 

in the lower stratosphere (smog-like chemistry and the partitioning of active/inactive 

chlorine) (Randeniya et al., 2002; Stenke and Grewe, 2005; Portmann and Solomon, 30 

2007; Fleming et al., 2011; Revell et al., 2012), results in small changes of 2 ± 5 % 

for the annual and global stratospheric column ozone. 



 15 

3.3 Ozone radiative forcing 

Figure 4 shows maps of annual mean radiative forcing between 2000 and 2100 due to 

changes in ozone for the whole atmosphere, along with zonal mean forcings 

associated with changes in the troposphere and the stratosphere for single perturbation 

simulations. Note that zonal mean forcings are weighted by latitudinal area (i.e. 5 

cosine-latitude), allowing direct comparison with the total forcing. Annual and global 

mean forcing values and their standard error (i.e. due to ozone changes only) are listed 

in Table 3. Ozone radiative forcing shows strong dependence on the vertical 

distribution of the change (e.g. Lacis et al., 1990; Forster and Shine, 1997; Rap et al., 

2015) and to a lesser extent on the horizontal distribution (e.g. Berntsen et al., 1997). 10 

Differences can be seen in both the geographical pattern of the forcing and in the 

magnitude related to the drivers.  

The global forcing associated with climate (Clm−Cnt; Fig. 4a) of                

−70 ± 102 mWm−2 is relatively small and not highly statistically significant (errors 

denote 1 standard error associated with the 10 year interannual variability of ozone 15 

change unless otherwise specified). The geographical pattern shows a relatively 

strong and significant forcing at high latitudes in the NH, related to ozone increases in 

the lower stratosphere (transport from enhanced BDC) and upper stratosphere 

(reduced chemical loss due to cooling). However, this is outweighed by a negative 

tropospheric forcing in the tropics and a negative stratospheric forcing in the SH 20 

extra-tropical region. The latter is largely due to additional ozone depletion in the 

lower stratosphere (i.e. reduction of STE; not shown).  

Future lightning-induced NOx emissions (Ltn−Clm; Fig. 4b) shows relatively 

large though not significant global ozone forcing of 104 ± 108 mWm−2, mainly the 

result of simulated tropospheric ozone changes of 2.1 ± 2.3 DU. Two distinct peak 25 

regions are evident around the subtropical belts, where large ozone changes are 

coincident with relatively cloud-free areas, higher temperature, and a low solar zenith 

angle. The strongest positive forcing is found over the Sahara and Middle East 

deserts, associated with greater surface albedo.  

Ozone recovery (O3r−Ltn; Fig. 4c) drives a significant forcing of                 30 

163 ± 109 mWm−2. This forcing is largely confined to the mid- and high latitudes, 

particularly in the SH (due to ozone hole recovery), and is mainly linked to the 
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stratosphere. Extra-tropical STE is especially important in the SH. This is 

demonstrated by tropospheric forcing of about ~ 100 mWm−2 in this region, which is 

largely the result of stratospheric-produced ozone transported to the troposphere. 

Methane emissions show a large positive forcing around the subtropical belts 

(Mth−O3r; Fig. 4d), which is principally confined to the troposphere, as there is a 5 

compensation between changes in the lower and upper stratosphere (Fig. 3d). In the 

tropical and subtropical troposphere, methane is more readily oxidised partly 

associated with higher OH levels, which results in relatively large ozone increases 

(Fig. 3d). In addition, significant forcings at high latitudes, particularly over the 

Arctic, are linked to the stratosphere (i.e. reduced ozone loss via decreased 10 

active/inactive chlorine partitioning).  

Figure 5 shows maps of annual mean normalised tropospheric ozone radiative 

forcing (NRF) between 2000 and 2100 for the four sensitivity simulations. The NRF  

– defined here as the tropospheric ozone radiative forcing divided by the tropospheric 

column ozone – is a useful diagnostic to gain insight into radiative effects of ozone 15 

changes. Very similar global NRFs of ~ 39 mWm−2 DU−1 due to (non-lightning) 

climate and methane, indicates relatively evenly distributed ozone changes in the 

troposphere. In contrast, more localised lightning-produced ozone results in higher 

global NRF of 46 mWm−2 DU−1, whereas ozone increases at high latitudes due to 

ozone recovery results in smaller NRF of 35 mWm−2 DU−1. This highlights the 20 

dependence of the resulting forcings on the vertical and horizontal distribution of 

changes in ozone. 

Previous studies have shown that the radiative forcing from tropospheric and 

stratospheric ozone do not have distinct drivers (Søvde et al., 2011; Shindell et al., 

2013). Our results support this and show that climate change, ODSs and methane 25 

have consequences for both tropospheric and stratospheric ozone radiative forcing 

(Table 3). In this set of simulations, changes in ozone occurring in the troposphere 

and the stratosphere respectively contribute ~ 70 % and 30 % to the total annual and 

global forcing of 435 ± 108 mWm−2.  

Further insight can be gained by attributing ozone forcing based on its origin 30 

in the stratosphere or the troposphere. In these simulations, we used a stratospheric 

ozone tracer (see Sect. 2) to unambiguously differentiate ozone with tropospheric 
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origin (O3T) from that with stratospheric origin (O3S). Table 3 shows such “source 

classified” ozone radiative forcings, using the “O3S/ozone” and “O3T/ozone” ratios 

for tropospheric and stratospheric forcings respectively. Stratospheric-produced ozone 

contributes to ~ 50 % of the annual and global future ozone forcing in this set of 

simulations, which strongly reinforces the importance of stratospheric-tropospheric 5 

interactions. 

 

3.4 Methane feedback and resulting ozone forcing 

Future climate change and emissions of ODSs and methane will affect the oxidising 

capacity of the atmosphere (e.g., via hydroxyl radicals, OH), which influences the 10 

methane lifetime (τCH4) and its concentration. In turn, changes in methane 

concentrations result in a “long-term” response of tropospheric ozone at decadal time 

scales (e.g. Fuglestvedt et al., 1999; Wild and Prather, 2000; Holmes et al., 2013). The 

simulations considered here neglect this feedback by imposing fixed and uniform   

lower boundary conditions for methane. However, we can estimate how methane 15 

concentrations would have adjusted if they were free to evolve, as well as the 

associated ozone response and radiative forcing. Using the method described by Fiore 

et al. (2009, and refences therein), we calculate global mean equilibrium methane 

abundances, [CH4]eq, by 

                         CH4 eq = CH4 Cnt  ×   
τCH4(𝑝)
τCH4(𝑟)

!

                                                                                                                                                  (1) 

where Cnt represents the fixed boundary conditions for year 2000; (p) and (r) refer to 20 

the perturbation and reference simulations respectively; and f is a feedback factor 

which accounts for the response of methane to its own lifetime. The feedback factor is 

explicitly calculated for WACCM using the O3r “(a)” and Mth “(b)” simulations, as 

follows 

                        𝑓 =   
1

1− 𝑠                                                                                                                                                                                                                                     (2) 

where s is calculated by 25 

                        𝑠 =
    ln   τCH4 b      −   ln   τCH4 a   
  ln   BCH4 b      −    ln   BCH4 a                                                                                                                                         3  
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and where BCH4 is the annual and global mean methane burden. We calculate a value 

of f of 1.43 which is at the upper end of the literature range (1.19–1.53) (Prather et al., 

2001; Stevenson et al., 2013; Voulgarakis et al., 2013) but within 7 % of the 

observationally constrained best estimate of 1.34 (Holmes et al., 2013).  

The ozone response to this methane feedback is estimated by linear 5 

interpolation: 

                        ∆O3 eq  − Cnt =   
∆CH4(eq− Cnt)
∆CH4(b− a)   ×  ∆O3 b− a                                                                                       (4) 

where ∆O3 is the change in annual and global mean of tropospheric column ozone 

(Table S1). Assuming the relationships between changes in methane, ozone and 

radiative forcings are linear; the associated tropospheric ozone forcings to methane 

feedback are given by the product of ∆O3 and the NRF due to methane perturbation  10 

(39 mWm−2 DU−1; Fig. 5d) and are shown in Table 3. The overall long-term 

tropospheric ozone forcing related to the methane feedback in this set of simulations 

is a moderate increase of ~ 15 %. Climate change (Clm and Ltn simulations) enhances 

the oxidising capacity of the atmosphere, which results in a small negative forcing of 

−19 mWm−2 due to the methane feedback. In the Mth simulation, OH concentrations 15 

are strongly reduced and the associated forcing of 63 mWm−2 outweighs the climate 

forcing. This forcing is within the range of ~ 40–120 (mean value of 60) mWm−2 from 

the ACCMIP ensemble (Table 8 in Stevenson et al., 2013), when considering the 

same change in methane concentrations (note their values have been linearly 

extrapolated). 20 

 

3.5 Background conditions and forcing 

Since the ozone response to a given perturbation is dependent on the background 

conditions (e.g. temperature, radiative heating, trace gas levels), the resulting forcing 

associated to individual drivers may be sensitive to the experimental design. For 25 

example, lightning-induced ozone forcing due to climate change may differ 

significantly under present-day or doubled methane concentrations (i.e. year 2000 or 

year 2100-RCP8.5 abundances). In the present study, we imposed single perturbations 

successively. Therefore, the total ozone forcing calculated from this set of simulations 
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includes chemistry-climate feedbacks arising from the interactions between the 

various perturbations. Yet the attribution of indirect ozone forcings to individual 

drivers may be sensitive to the order considered (Table 1).  

We also completed an additional set of simulations (Table S2) to assess the 

robustness of the calculated RF to the order the perturbations were applied (Table 3). 5 

Lightning-induced net ozone forcing (104 ± 108 mWm−2 from Table 3) is not 

significantly different at the 95 % confidence interval (due to interannual variability 

only unless otherwise specified) compared to that calculated under approximately 

doubled methane concentrations (Ltn_Mth−Clm_Mth). Although the reported 

lightning net ozone forcing is 50 mWm−2 lower relative to the latter, both lie within 10 

the interannual uncertainty (~ 100 mWm−2). The forcing associated with ozone 

recovery (163 ± 109 mWm−2) is calculated under climate change (i.e. including 

lightning feedbacks) and present-day methane concentrations, though it also can be 

derived under present-day climate (O3r_Ods−Cnt) or doubled methane concentrations 

(Mth−Ltn_Mth). We find no significant differences between the forcings associated 15 

with these background conditions, although the reported mean forcing resulting from 

ozone recovery is greater by ~ 30 mWm−2. Finally, methane-induced net ozone 

forcing due to doubling its concentrations relative to present-day under ozone 

recovery conditions (238 ± 113 mWm−2), is not significantly different to that under 

present-day ODS concentrations (Ltn_Mth−Ltn) or without lightning feedbacks 20 

(Clm_Mth−Clm). The reported forcing associated with methane lies within the latter 

forcings (i.e. 50 mWm−2 range). Therefore, we conclude that future ozone forcings 

due to lightning, ozone recovery and methane concentrations – presented in Table 3 – 

are robust, with regard to background conditions. 

The fact that global and annual ozone forcings associated with single 25 

perturbations are not significantly different with regard to background conditions is 

perhaps somewhat surprising, given that, for instance, ozone production is sensitive to 

the relative abundances of volatile organic compounds and NOx (e.g. Sillman, 1999). 

However, while the globally averaged forcing is not significantly affected by the 

order in which the perturbations are considered, there are significant differences in 30 

budget terms (e.g. ozone burden differences due to lightning can be as large as        

4.5 ± 1.4 Tg), as well as ozone levels in particular regions of the atmosphere. 



 20 

Therefore, the non-linear additivity of the perturbations is important when considering 

their impacts on quantities such as ozone profiles and surface air quality (not shown). 

 

4 Uncertainties and outlook 

We calculate a net ozone radiative forcing of 435 ± 108 mWm−2 corresponding to the 5 

year 2100 under the RCP8.5 emissions scenario compared to present-day, with the 

one standard error uncertainty arising from variability in ozone between the years of 

the time slice simulations. This variability indicates a ±25 % uncertainty, which is 

slightly larger than the spread across the ACCMIP ensemble of approximately ±20 % 

(Stevenson et al., 2013). However, additional sources of uncertainty exist in the ozone 10 

forcing. Previously, uncertainties arising from the tropopause definition (±3 %), the 

radiation scheme or forcing calculation (±10 %), and the extent to which clouds and 

stratospheric temperature adjustment influence ozone forcing (±7 % and ±3 % 

respectively) have been estimated (Stevenson et al., 2013). Climate feedbacks, land-

use change, natural ozone precursor emissions, and future changes in the structure of 15 

the tropopause (Wilcox et al., 2012) may introduce at least an additional ±20 % 

uncertainty (Stevenson et al., 2013). Following Stevenson et al. (2013), we assume 

that the above individual uncertainties are independent and combine them to estimate 

an overall uncertainty of ±30 %, which represents the 95 % confidence interval. We 

note that Skeie et al. (2011) from an independent analysis estimated the same overall 20 

uncertainty.  

Figure 6 summarises the global and annual net ozone forcing as well as the 

forcings by driver and region. Overall, our annual global mean best estimate for the 

net ozone radiative forcing between 2000 and 2100 is 430 ± 130 mWm−2, with 

tropospheric and stratospheric forcings of 300 ± 90 mWm−2 and 130 ± 40 mWm−2, 25 

respectively. Current estimates for tropospheric and stratospheric ozone forcings from 

1750 to 2011 are 400 ± 20 mWm−2 and −50 ± 100 mWm−2, respectively (Myhre et al., 

2013). An increase of 0.5 DU in tropospheric ozone was estimated in Skeie et al. 

(2011) from 2000 to 2010, and a tropospheric ozone normalized radiative forcing of 

42 mWm−2 DU−1 calculated from the ACCMIP ensemble (Stevenson et al., 2013). 30 

Therefore, we estimate a net ozone forcing of 760 ± 230 mWm−2 from 1750 to 2100 

based on our simulations, which is the result of the forcings in the troposphere and the 
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stratosphere (690 ± 210 mWm−2 and 70 ± 20 mWm−2 respectively). Our tropospheric 

forcing is within the range estimated from the ACCMIP models of 600 ± 120 mWm−2 

(Table 12 in Stevenson et al., 2013). 

Previous work has shown that NRF is an appropriate tool for estimating 

annual and global tropospheric forcings derived from changes in tropospheric column 5 

ozone, which in turn reduces the multi-model uncertainty (Gauss et al., 2003). The 

NRF in our analysis of 43 mWm−2 DU−1 is similar to that from the ACCMIP models 

between the 1850s and 2000s, but larger compared to that in Gauss et al. (2003). This 

supports the future tropospheric ozone forcings and their uncertainties during the 21st 

century derived from the ACCMIP ensemble (calculated using the NRF), and may be 10 

used as a benchmark for individual studies.  

Although previous studies have examined key drivers of ozone during the 21st 

century and future changes are relatively well understood (e.g. Kawase et al., 2011; 

Banerjee et al., 2014; Banerjee et al., 2016), the resulting forcings have been explored 

in less detail (e.g. Gauss et al., 2003; Bekki et al., 2013; Stevenson et al., 2013). 15 

Following a process-based approach that includes chemistry-climate feedbacks, we 

calculate that climate-only, lightning, ozone recovery and methane emissions 

contribute respectively −16 ± 24 %, 24 ± 25 %, 38 ± 25 %, and 55 ± 26 % to the net 

ozone RF between 2000 and 2100 (Table 3 and Fig. 6). Further uncertainties arise 

from the long-term ozone response to methane changes, which could increase the 20 

overall tropospheric forcing by ~ 15 %. Climate change (including lightning 

feedbacks) alone produces a relatively small tropospheric ozone forcing of                

64 ± 44 mWm−2. A subset of eight models from the ACCMIP activity shows a small 

negative but not significant tropospheric forcing of −33 ± 42 mWm−2, with few 

models reporting positive forcings (Table 12 in Stevenson et al., 2013). The impact of 25 

climate change on ozone forcing is surrounded by large uncertainties, which are 

associated with chemistry-climate feedbacks and the lack of confidence in the LNOx 

sensitivity to global mean surface temperature, due to different parameterizations and 

the vertical distributions of the emissions (Banerjee et al., 2014; Finney et al., 2016), 

as well as changes in the BDC (Butchart, 2014). For example, the climate change-30 

induced net ozone forcing between 2000–2100 – following the future emission 

scenario RCP8.5 in an independent CCM – is of the same order of magnitude but 

different sign (−70 mWm−2) (Banerjee et al., 2018). While they found similar 
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tropospheric ozone forcing of 70 mWm−2, their negative stratospheric ozone forcing 

outweighs the latter (−150 mWm−2). Methane- and ODSs-induced ozone forcings 

have respectively a substantial contribution from the stratosphere (~ 14 %) and the 

troposphere (~ 34 %), recently shown in modelling studies (Søvde et al., 2011; 

Shindell et al., 2013; Banerjee et al., 2018). A striking result, however, is the 5 

contribution of the stratospheric-produced ozone to the net forcing of ~ 30 ± 20 % and 

~ 99 ± 50 % due to methane and ODS concentrations respectively, which is consistent 

with the findings from an independent chemistry-climate model (Banerjee et al., 2016, 

2018). This reflects the roles that methane plays in stratospheric ozone chemistry (i.e. 

particularly in the lower stratosphere), and that ozone recovery principally occurs in 10 

the stratosphere. 

 

5 Summary and conclusions 

This study has explored future changes in ozone by the end of the 21st century and the 

resulting radiative forcing following a process-based approach, imposing one forcing 15 

at a time. We have used the RCP8.5 emissions scenario to represent an upper limit on 

these responses. This is a different approach to previous studies, which typically have 

either explored future changes in ozone concentrations or ozone forcing. The methane 

feedbacks (due to the changing oxidising capacity of the atmosphere, and due to the 

long-term tropospheric ozone response) and its forcing have also been accounted for. 20 

In addition, non-linearities arising from chemistry-climate interactions have been 

investigated.  

The simulated present-day ozone radiative effect (RE) is in good agreement 

with estimates based on observed ozone from TES, particularly in terms of its spatial 

distribution. However, there are systematic biases: RE is overestimated in the NH and 25 

underestimated in the SH, with significant biases in the subtropics. These RE biases 

are mostly consistent with the biases in tropospheric ozone in current global 

chemistry-climate models (Young et al., 2018), although the simulated annual global 

present-day tropospheric column ozone (28.9 ± 1.5 DU) is within observed 

interannual variability of 28.1–34.1 DU (Young et al., 2013). The fact that similar 30 

spatial distribution biases are apparent in many climate models suggests a common 
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deficiency, and emissions data have been proposed as a likely candidate (Young et al., 

2013; Young et al., 2018). 

Our analysis shows that the net ozone radiative forcing arising from climate 

driven changes is relatively small and not significant (33 ± 104 mWm−2), which is 

largely the result of the interplay between lightning-produced ozone and enhanced 5 

ozone destruction (via increased temperatures and humidity). Higher methane 

concentrations and reduced ODS levels also have consequences for ozone forcing in 

the stratosphere (45 ± 39 mWm−2) and the troposphere (46 ± 47 mWm−2) 

respectively. We have demonstrated both the importance of stratospheric-tropospheric 

interactions and the stratosphere as a key region controlling a large fraction of the 10 

tropospheric ozone forcing (i.e. from the source point of view compared to the more 

common division by recipient-region). 

Future annual and global tropospheric and stratospheric column ozone 

changes from year 2000 to 2100 in this set of simulations (7.0 DU and 21.3 DU 

respectively) are mainly driven by methane and ODS emissions, respectively     15 

(Table S1). These changes lead to a net ozone radiative forcing of 430 ± 130 mWm−2 

compared to present-day, with an overall uncertainty of ±30 % (i.e. representing the 

95 % confidence interval). Relative to the pre-industrial period (year 1750), our best 

estimate for the year 2100 net ozone radiative forcing is 760 ± 230 mWm−2. 

This study highlights the key role of the stratosphere in determining future 20 

ozone radiative forcing in spite of the fact that the impacts largely take place in the 

troposphere. Increasing confidence in present-day observations of the Brewer-Dobson 

circulation and the stratospheric-tropospheric exchange will therefore play a crucial 

role in improving chemistry-climate models and better constraining ozone radiative 

forcing. A future study will address the importance of the stratosphere on future air 25 

quality commitments, which may better inform emission regulations. 
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Table 1. Summary of the model simulations 
Simulation Climate1 ODSs2 CH4

3  

Cnt 2000 2000 2000 

Clm 2100 (fLNOx)4 2000 2000 

Ltn 2100 2000 2000 

O3r 2100 2100 2000 

Mth 2100 2100 2100 

Cnt+fLNOx 2000 (fLNOx)4 2000 2000 
1Climate (SSTs, sea ice, CO2 and N2O, if not otherwise specified) follows the RCP8.5 emissions 
scenario. 
2Relative to Cnt, ODS boundary conditions of −63.2 % (2.156 ppb) total chlorine, −35.7 % (8.1 ppt) 
total bromine and −67.6 % (1.376 ppb) total fluorine follow the halogen scenario A1. 
3Relative to Cnt, CH4 boundary conditions of 214.2 % (3744 ppb) follow the RCP8.5 emissions 5 
scenario. 
4Offline lightning-induced NOx emissions are imposed by applying a monthly mean climatology of the 
Cnt simulation. 
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Table 3. Global and annual mean ozone RF and the standard errora (mWm−2) by 
driver and region for the 2000–2100 period. 
    Region Source CH4

b 

  Whole-
atmosphere Tropo. Strat. Tropo. Strat. Tropo. 

Climate 
(Clm−Cnt)c −70 ± 102 −40 ± 42 −30 ± 35 −20 ± 21 −50 ± 57 −8 

Lightning 
(Ltn−Clm)c 

104 ± 108 105 ± 45     1 ± 37   79 ± 34   24 ± 48 −11 

O3-recovery 
(O3r−Ltn)d 

163 ± 109 46 ± 47 117 ± 38   1 ± 1 163 ± 84 2 

Methane 
(Mth−O3r)c 

238 ± 113 193 ± 51 45 ± 39 160 ± 42   78 ± 48 63 

Total 435 ± 108 303 ± 48 132 ± 37 220 ± 13 214 ± 72 46 
a The annual global mean is given along with the (±) standard error (i.e. associated with 10-year 
interannual variability of ozone). 
b Long-term ozone forcing due to methane chemistry-climate feedback. 
c,d RCP8.5 and halogen A1 emission scenarios by 2100 compared to year 2000 (Cnt run) respectively. 5 
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Figure 1. Annual zonal mean whole-atmosphere ozone radiative kernel under all-sky 

conditions for (a) net (LW+SW), (b) LW, and (c) SW components. 
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Figure 2. Comparison of the annual mean ozone radiative effect between (a) the Cnt 

simulation and (b) the Tropospheric Emission Spectrometer (TES) from July 2005 

until June 2008 (05–08). The annual and global mean is shown on the top right corner    

(Wm−2). (c) Cnt simulation bias compared to the TES. Differences are masked for the 5 

±1.96 standard error within the three years observed range.  
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Figure 3. Changes in annual and zonal mean ozone due to (a) Climate, (b) Lightning, 

(c) O3-recovery, and (d) Methane. Contour colours are for statistically significant 

changes at the 95 % confidence interval using two-tailed Student’s t test. The black 

dashed line represents the chemical tropopause based on the Cnt 150 ppb ozone 5 

contour.  
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Figure 4. Annual mean maps of ozone radiative forcing (whole atmosphere) due to (a) 

Climate, (b) Lightning, (c) O3-recovery, and (d) Methane. Contour colours are for 

statistically significant changes at the 95 % confidence interval using two-tailed 

Student’s t test. The annual and global mean is shown on the top right corner    5 

(mWm−2). Right panels show zonal mean ozone forcings for the whole atmosphere 

(solid black), troposphere (dashed grey), and stratosphere (dotted grey). The zonal 

mean forcings are latitudinally-weighted, i.e. cosine(latitudes). 
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Figure 5. Annual mean maps of normalised tropospheric ozone radiative forcing (i.e. 

divided by the tropospheric column ozone change) due to (a) Climate, (b) Lightning, 

(c) O3-recovery, and (d) Methane. The annual and global mean is shown on the top 

right corner (mWm−2 DU−1). 5 
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Figure 6. Ozone radiative forcings by drivers (2000–2100; mWm−2). Tropospheric 

(brown), stratospheric (blue) and net (whole atmosphere, red) forcings are shown. 

Associated ozone forcings to methane feedback (square-hatched) are shown along 

with the net forcings. The overall ozone forcing (Total) is the sum of the individual 5 

forcings (Climate, Lightning, O3-recovery and Methane from Table 3) scaled to 1750 

(star-hatched). Dots and error bars indicate the mean and the 95 % confidence 

intervals of the forcings respectively. The information on pre-industrial ozone forcing 

(1750–2000) and sources of uncertainty are detailed in Sect. 4. 
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