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Abstract. In this study, we use a combination of multivariate statistical methods to understand the 

relationships of PM2.5 with local meteorology and synoptic weather patterns in different regions of 

China across various timescales. Using June 2014 to May 2017 daily total PM2.5 observations from 15 

~1500 monitors, all deseasonalized and detrended to focus on synoptic-scale variations, we find strong 

correlations of daily PM2.5 with all selected meteorological variables (e.g., positive correlation with 

temperature but negative correlation with sea-level pressure throughout China; positive and negative 

correlation with relative humidity in northern and southern China, respectively). The spatial patterns 

suggest that the apparent correlations with individual meteorological variables may arise from common 20 

association with synoptic systems. Based on a principal component analysis on 1998–2017 

meteorological data to diagnose distinct meteorological modes that dominate synoptic weather in four 

major regions of China, we find strong correlations of PM2.5 with several synoptic modes that explain 

10% to 40% of daily PM2.5 variability. These modes include monsoonal flows and cold frontal passages 

in northern and central China associated with the Siberian high, onshore flows in eastern China, and 25 

frontal rainstorms in southern China. Using the Beijing-Tianjin-Hebei (BTH) region as a case study, we 

further find strong interannual correlations of regionally averaged satellite-derived annual mean PM2.5 

with annual mean relative humidity (RH) (positive) and springtime fluctuation frequency of the Siberian 

high (negative). We apply the resulting PM2.5-to-climate sensitivities to the Intergovernmental Panel on 

Climate Change (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections 30 

to predict future PM2.5 by the 2050s due to climate change, and find a modest decrease of ~0.5 μg m-3 in 

annual mean PM2.5 in the BTH region due to more frequent cold-frontal ventilation under the RCP8.5 

future, representing a small “climate benefit”, but the RH-induced PM2.5 change is inconclusive due to 

the large intermodel differences in RH projections. 
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1. Introduction 

Air pollution caused by high surface concentrations of particulate matter (PM) and ozone in 

megacities are of utmost public health concern in China currently (Xu et al., 2013). China has 

experienced deteriorating air quality since the 1990s due to rapid industrial and economic development. 

Episodes of haze and smog pollution with dangerous levels of fine particulate matter (PM2.5, particles 5 

with an aerodynamic diameter of or less than 2.5 μm) are becoming more common in the most 

developed and highly populated city clusters in China (Chan et al., 2008; Zhang et al., 2007; Zhang et 

al., 2014). For example, annual mean PM2.5 concentration in Beijing increased dramatically from 12 μg 

m-3 in 1973 to 66 μg m-3 in 2013 (Han et al., 2016), with an average growth rate of +0.7 μg m-3 yr-1 for 

the past four decades. Outdoor air pollution in China alone has been shown to cause over one million 10 

premature deaths every year (Cohen et al., 2017). Many epidemiological studies have documented the 

harmful effects of PM2.5 on cardiovascular and respiratory health (Cao et al., 2012; Krewski et al., 2009; 

Madaniyazi et al., 2015; Pope and Dockery, 2006). Urban PM2.5 originates from many sources 

including power plants, industry, vehicular emissions, road and soil dust, biomass burning, and 

agricultural activities (Zhang et al., 2015), but the regional concentrations are also strongly dependent 15 

on pan-regional transport (e.g., Jiang et al., 2013) and ventilation by atmospheric circulation (e.g., Chen 

et al., 2008; Zhang et al., 2012; Zhang et al., 2016). 

The severity of PM2.5 pollution is known to be strongly dependent not only on emissions but 

also on weather conditions. For example, Zhang et al. (2016) showed using GEOS-Chem that cold 

surge occurrences over northern China explain about half of the variability of total PM2.5. Several 20 

modeling studies have examined the effects of historical (Fu et al., 2016) and future (Jiang et al., 2013) 

changes in emissions and climate (i.e., long-term changes in weather statistics) on PM2.5 air quality in 

East Asia, but large uncertainty remains due to the complexity of PM2.5-meteorology interactions (Jiang 

et al., 2013; Shen et al., 2017; Tai et al., 2012b). Such poor understanding stems mainly from the 

diverse sensitivities of different PM2.5 chemical components to meteorological changes, and from the 25 

strong coupling of PM2.5 with synoptic circulation and the hydrological cycle. In this study, we apply a 

combination of multivariate statistical techniques to identify important local-scale meteorological 

variables and synoptic-scale meteorological modes that dominantly control the daily and interannual 

variability of PM2.5 in China, and illustrate how these modes enable effective diagnosis of the effects of 

future synoptic circulation changes on China PM2.5 air quality. 30 

Local meteorological conditions are known to strongly influence the levels of all air pollutants 

including PM2.5. PM2.5-meteorology interactions are complex due to the varying responses of PM2.5 

species to different meteorological variables. Higher temperature favors the formation of sulfate and 

secondary organic aerosols due to the faster oxidation of sulfur dioxide (SO2) and volatile organic 

compounds (VOCs) (Jacob and Winner, 2009). Higher temperature also increases the emissions of 35 
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biogenic VOCs from vegetation, especially in southern China where high-emitting broadleaf evergreen 

trees are prevalent (Ding et al., 2012; Zhang and Cao., 2015). Higher temperature favors the 

volatilization of nitrate, ammonium and semivolatile organics by shifting the gas-aerosol phase 

equilibria toward the gas phase (Jiang et al., 2013; Shen et al., 2017), thereby decreasing these 

components. Depending on the region, an increase in relative humidity (RH) may enhance the 5 

production of hydroxyl (OH) radical and hydrogen peroxide (H2O2), which promotes SO2 oxidization, 

and increases the uptake of semivolatile components including nitrate and organics (Seinfeld and Pandis, 

2016). Precipitation, via its direct scavenging effect, is a principal sink for all PM2.5 components (Koch 

et al., 2003; Tai et al., 2010). Meanwhile, both strong wind and boundary layer mixing also tend to 

ventilate or dilute PM2.5 (Chen et al., 2008; Jacob and Winner, 2009; Wang et al., 2012; Zhang and Cao, 10 

2015). For instance, Han et al. (2016) found that annual mean PM2.5 and wind speed in Beijing on stable 

meteorological days were negatively correlated over 1973–2013, illustrating the importance of 

ventilation on interannual PM2.5 variability. 

In addition to local meteorological conditions, synoptic-scale circulation patterns also play 

important roles in driving PM2.5 variability. Different classification schemes for a wide range of 15 

synoptic circulation patterns have been researched extensively (Huth et al., 2008), and used worldwide 

to evaluate pollution-meteorology interactions (e.g., McGregor and Bamzelis, 1995; Shahgedanva et al., 

1998; Shen et al., 2017; Tai et al., 2012a; Zhang et al., 2012). Tai et al. (2012a) showed that cold fronts 

associated with midlatitude cyclone passages and maritime inflows were the major ventilation 

mechanisms of PM2.5 in the US. Shen et al. (2017) further showed that the variability of PM2.5 over the 20 

US explained by both local meteorology and synoptic factors (43%) are on average about 10% higher 

than solely using local meteorology (34%). In Asia, Chen et al. (2008) demonstrated that synoptic high-

pressure systems in northern Mongolia associated with cold fronts facilitate the dispersion of air 

pollutants over northern China, whereas a surface high centered on BTH favors accumulation. Zhang et 

al. (2013) showed similar results by extracting nine distinct synoptic pressure patterns over the North 25 

China Plain (NCP), and discovered that weak pressure tendency in NCP favors pollutant accumulation. 

Zhang et al. (2016) found that a cold surge associated with the East Asian winter monsoon significantly 

reduced PM2.5 concentration in Beijing by 110 μg m-3 within a few days. Moreover, the effects of local 

meteorology and synoptic circulation are not independent of each other. For instance, Tai et al. (2012a) 

found that much of the apparent observed correlation of PM2.5 with temperature and pressure in the 30 

eastern US are attributable to common association with cold frontal passages. To understand how 

meteorological changes may affect future PM2.5 air quality, therefore, requires keen consideration of the 

covariation of meteorological variables with synoptic-scale phenomena in an integrated framework 

(Jiang et al., 2005). 

In this study, we perform correlation analysis to estimate the sensitivities of observed daily 35 

total PM2.5 to a suite of meteorological variables from June 2014 to May 2017. As discussed in Sect. 3, 
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however, correlations between local meteorology and PM2.5 are complicated by covariations among 

individual meteorological variables, which are at least partially driven by synoptic systems. We 

therefore apply principal component analysis to construct different meteorological modes that 

distinguish between unique synoptic-scale meteorological regimes, and principal component regression 

of daily PM2.5 on these modes to not only interpret the observed correlations of daily PM2.5 with 5 

individual meteorological variables, but also determine the dominant meteorological modes of daily 

PM2.5 variability, in four major city clusters of China: the Beijing-Tianjin-Hebei (BTH), the Yangtze 

River Delta (YRD), the Pearl River Delta (PRD), and the Sichuan Basin (SCB) (Fig. 1). Furthermore, 

using BTH as a case study, we apply a spectral analysis on the time series of dominant meteorological 

modes over the past decade to examine the interannual correlations between synoptic frequencies and 10 

annual mean PM2.5. We finally construct a statistical model using annual median synoptic frequency 

and annual mean local meteorology to project 2000–2050 PM2.5 changes given present-day and future 

climate simulations by an ensemble of climate models. This study represents an advancement over that 

of Tai et al. (2012a, b) in terms of methodology by considering the joint effects of synoptic frequency 

and local meteorology, on a par with Shen et al. (2017) that however focused only on the US. Our work 15 

represents the first attempt to apply these methods to China air quality in an effort to derive a statistical 

projection of future PM2.5 concentrations based on historical PM2.5-meteorology relationships. These 

historical relationships can also be used to compare results from process-based models (e.g., Jiang et al., 

2013). 

2. Data and methods 20 

Daily assimilated meteorological fields for 1998–2017 over China are obtained from National 

Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) 

Reanalysis 1 provided by the National Oceanic and Atmospheric Administration (NOAA) of the US 

(Kalney et al., 1996). The dataset has a horizontal resolution of 2.5°×2.5°. Following Tai et al. (2012a, 

b), eight meteorological variables are considered here (Table 1), including surface air temperature (X1), 25 

relative humidity (X2), precipitation rate (X3), sea-level pressure (X4), pressure tendency (X5), wind 

speed (X6), and two wind direction indicators (X7, X8). To conduct correlation analysis and PC 

regression, meteorological data except X5, X7 and X8 are deseasonalized and detrended by subtracting 

the corresponding centered 31-day moving averages from the original data to focus on day-to-day, 

synoptic-scale variability. Specifically, for a meteorological variable 𝑋𝑘 in any grid, the deseasonalized 30 

meteorology 𝑋⏞𝑘 is calculated as follows: 

𝑋⏞𝑘 (𝑡) = 𝑋𝑘(𝑡) −
1

31
∑ 𝑋𝑘(𝑛)𝑡+15

𝑛=𝑡−15          (1) 

The deseasonalized and detrended data are also normalized to their standard deviations to yield zero 

means and unit variances: 
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�̂�𝑘(𝑡) =
𝑋⏞𝑘(𝑡)−𝑋⏞𝑘

̅̅ ̅̅

𝑠
𝑋⏞𝑘

             (2) 

where �̂�𝑘(𝑡)  represents the normalized meteorological time series, 𝑋⏞𝑘
̅̅̅̅

 and 𝑠𝑋⏞𝑘
 are the mean and 

standard deviation of the deseasonalized time series, respectively. 

PM2.5 monitoring has been introduced in the national air quality monitoring network in China 

since 2012 with the published third revision of the “National Ambient Air Quality Standards” (NAAQS) 5 

(Zhang and Cao, 2015). Before that, observational spatial distribution of PM2.5 was mostly estimated by 

satellite retrievals (Ma et al., 2015; van Donkelaar et al., 2010; Xue et al., 2017; Zheng et al., 2016). 

One of the disadvantages of PM2.5 monitoring at present is that there are very few sites with detailed 

speciation data in China, although short-period studies of PM2.5 speciation have been conducted (Cao et 

al., 2012; Huang et al., 2014; Yang et al., 2005, 2011; Zhang et al., 2014). In this study, hourly mean 10 

data of total PM2.5 from 1 Jun 2014 to 30 May 2017 are obtained from the Chinese Ministry of 

Environmental Protection (MEP). Data are archived from 1497 monitors across China (Fig. 1a), most of 

which are concentrated in the eastern, northeastern, and southern China, and are made available through 

one repository website (http://pm25.in). We cross-check and correct the locations of the different 

monitoring sites, removing unrealistic values and instrumental errors. PM2.5 data are then 15 

deseasonalized and detrended in the same way as for the meteorological variables. 

To conduct the statistical analysis, MEP observations are interpolated using inverse distance 

weighting onto the same 2.5°×2.5° resolution as that for the NCEP/NCAR data to produce daily mean 

PM2.5 fields for 2014–2017. Sampled values (zj) from sites within a search distance (dmax) are weighted 

inversely by their distances (di) from the cell centroid to produce an average (zj) for each grid cell j: 20 

𝑧𝑗 =
∑ (1/𝑑𝑖)𝑘𝑧𝑖

𝑛𝑗
𝑖=1

∑ (1/𝑑𝑖)𝑘
𝑛𝑗
𝑖=1

                                                                                                                               (3) 

where nj is the number of sampled sites for grid cell j and k is the power parameter. We choose k = 2 

and dmax = 500 km as recommended by Tai et al. (2010). Figure 1 shows the averaged site and 

interpolated PM2.5 values for 2015 and 2016. As shown in Fig. 1, sites in much of southwestern China 

(e.g., in the provinces of Tibet and Qinghai) are relatively sparse, leading to likely unrepresentative 25 

interpolated values in the corresponding grid cells. These regions are excluded from our analysis. 

For the purpose of examining long-term interannual PM2.5 variability, we also make use of the 

annual mean concentrations of surface total PM2.5 for 1998–2015 derived from satellite measurements 

(van Donkelaar et al., 2016). Total column aerosol optical depth (AOD) retrievals from multiple 

satellite instruments and model simulations, such as the MODerate resolution Imaging 30 

Spectroradiometer (MODIS), the Multiangle Imaging SpectroRadiometer (MISR), and the GEOS-Chem 

chemical transport model, were weighted by the ground-based AOD observations from the Aerosol 

Robotic Network (AERONET) sun photometers. The daily AOD and near-surface PM2.5 were simulated 

by GEOS-Chem to obtain the AOD-PM2.5 relationship, which were applied to the satellite AOD 

http://pm25.in/
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retrievals to yield weighted PM2.5 concentrations. Annual mean values of PM2.5 were computed and 

then calibrated to ground-based PM2.5 observations using the Global Geographically Weighted 

Regression (GWR) method (Brunsdon et al., 1996). Figure S1 shows the spatial variation of the 

satellite-derived PM2.5 over China from van Donkelaar et al. (2016), which has a spatial correlation of r 

= 0.79 with MEP total PM2.5 for year 2015. 5 

To project the 2000–2050 effect of climate change on future PM2.5, we use the meteorological 

variables in Table 1 archived from an ensemble of 15 climate models participating in the Coupled 

Model Intercomparison Project Phase 5 (CMIP5) under the representative concentration pathway 8.5 

(RCP8.5). We regrid the data from different models into the same 2.5°×2.5° resolution. The details of 

the models can be found in Table S1. 10 

3. Correlations between daily PM2.5 and meteorological variables  

                Here we first discuss the general correlation patterns between PM2.5 and individual 

meteorological variables in China, and highlight what we can and cannot conclude from them. The 

Pearson’s correlation coefficients between each meteorological variable in Table 1 and interpolated 

daily total PM2.5 are computed for each grid cell from June 2014 to May 2017.   15 

 Figure 2 shows the correlation maps for the whole period. Temperature is found to have an 

overall significant positive correlation with deseasonalized PM2.5 in most regions of China (Fig. 2a), 

with the highest values appearing in BTH and SCB (r = 0.6). The correlation map of SLP (Fig. 2d), 

which is often an indicator of the passages of synoptic systems, has a similar spatial pattern to that with 

temperature but with an opposite sign and smaller magnitudes, suggesting that PM2.5 tends to be low 20 

when SLP is high. The anticorrelation pattern is relatively weaker in southern China. Temperature and 

SLP are themselves found to be significantly negatively correlated throughout most of China (Fig. S2), 

and thus it is difficult to conclude whether they are the direct physical drivers of PM2.5 variability, or the 

correlations simply reflect common association with larger meteorological regimes that control PM2.5 

variability. 25 

Correlation between RH and PM2.5 shows different patterns in northern vs. southern China 

(Fig. 2b). A positive correlation (r = 0.4) is seen in BTH, likely reflecting higher PM water content in 

ambient air which can enhance the uptake of semivolatile components (Dawson et al., 2007b), 

consistent with previous findings (Wang et al., 2014). In southern China, however, RH is negatively 

correlated with PM2.5, with larger correlations in SCB and PRD (r = –0.4) than in YRD (r = –0.2). As 30 

can be seen in Fig. 2c, negative correlation of precipitation with PM2.5 in southern China is very similar 

to that of RH in Fig. 2b, likely reflecting the association of high RH with precipitation (Fig. 2c) and 

onshore wind (Fig. 2f) which can facilitate PM2.5 deposition or ventilation (Zhu et al., 2012). Such a 

strong association between RH and precipitation may also explain the apparently positive correlation 
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between precipitation and PM2.5 in northern China, where RH-promoted aerosol formation is likely 

more important than wet deposition in the overall relationship. 

Pressure tendency and wind speed exhibit similar correlation patterns (Fig. 2e-f). Pressure 

tendency, another indicator of synoptic-scale motions, is negatively correlated with PM2.5 in southern 

China, including PRD (r = –0.3) and in northeastern China, suggesting that PM2.5 tends to be low when 5 

SLP is increasing. Wind speed is also negatively correlated with PM2.5 in similar regions. These patterns 

are consistent with advecting cold fronts with strong winds helping to ventilate PM2.5 in heavily polluted 

regions (Tai et al., 2012a). Pressure tendency and wind speed have a positive correlation with PM2.5 in 

northern China and some parts of western China, which may be due to the covarying strong winds and 

frontal passages promoting the mobilization of mineral dust from the semiarid regions and deserts there. 10 

Figure 2g shows the correlation of wind direction with PM2.5, in which arrow directions 

indicate wind directions associated with increasing PM2.5. The corresponding mass divergence map 

together with its calculation is shown in the supplement (Fig. S3). For instance, PM2.5 increases with 

southeasterly wind for the whole eastern and northeastern China with a correlation of r = 0.3 on average. 

This relationship suggests that northwesterly wind tends to ventilate PM2.5 in most of China. Two 15 

divergent wind patterns are seen, one in central China and one in Teklimakan desert, and their positions 

mirror regions with the highest PM2.5 concentrations in Fig 1b. This result implies that wind transports 

pollutants from source regions to the peripheries.      

A generally consistent correlation among neighbouring grid cells may be associated with 

synoptic effects because the correlation pattern extends to a synoptic regional length scale. The 20 

correlation maps for most of the meteorological variables in Fig. 2 show such an effect. The 

commonality among the correlation patterns of PM2.5 with different meteorological variables, which 

among themselves have various degrees of correlation, renders the interpretation of individual PM2.5-

meteorology relationships more difficult because the true driver of PM2.5 variability may be masked by 

the collinearity among meteorological variables (as is pointed out above for the case of temperature and 25 

SLP). Whenever a strong correlation between PM2.5 and a given meteorological variable (e.g., 

temperature, RH, precipitation, wind speed) is found, there can be three interpretations: (1) this variable 

is truly the physical driver for PM2.5 variability; (2) at least part of the correlation may arise from the 

correlation of this variable with another local variable that is the true physical driver; and (3) at least 

part of the correlation may reflect common association with a larger, synoptic-scale phenomenon that 30 

drives PM2.5 variability. To quantitatively differentiate between these possibilities and to ascertain the 

roles of local meteorology vs. synoptic-scale circulation on PM2.5 variability, we conduct a principal 

component analysis (PCA) on the eight meteorological variables to capture their common covariations 

in an ensemble of independent meteorological modes. We follow Tai et al. (2012a), and regress daily 

PM2.5 on the resulting principal component (PC) time series to identify the dominant synoptic drivers of 35 



8 

 

PM2.5 variability. Their approach is particularly useful in that it enables the quantification of the fraction 

of PM2.5 variability that can be explained by synoptic meteorological regimes. 

4. Dominant meteorological modes for daily PM2.5 variability based on principal component 

regression 

We perform PCA on the eight meteorological variables for 1998–2017 in Table 1 to extract 5 

synoptic circulation patterns, focusing on the four major metropolitan regions in China (BTH, YRD, 

PRD and SCB). We use this longer period of meteorological data for the PCA despite the relatively 

short time history of PM2.5 data from MEP (2014–2017) because we aim to characterize the 

climatologically important synoptic systems in China. The longer period also overlaps with the annual 

mean PM2.5 data available for quantifying interannual variability (see Sect. 5), so that a unified set of 10 

meteorological modes can be used to explain both daily and interannual PM2.5 variability. We conduct 

PCA for individual seasons and for the whole period. All gridded daily meteorological data are spatially 

averaged over the grid cells covering each of the four regions, deseasonalized, and normalized to yield 

zero means and unit variances, as described above. The resulting time series for each region are then 

decomposed to produce the PC time series (Uj = U1, …, U8): 15 

𝑈𝑗(𝑡) =  ∑ 𝛼𝑘𝑗�̂�𝑘(𝑡)8
𝑘=1 = ∑ 𝛼𝑘𝑗

[�̂�𝑘(𝑡)−�̂�𝑘
̅̅ ̅̅ ]

𝑠�̂�𝑘

8
𝑘=1       (4) 

where 𝑋⏞𝑘 represents the deseasonalized regionally averaged meteorological fields in Table 1, 𝑋⏞𝑘  and 

𝑠𝑋⏞𝑘
 are the temporal mean and standard deviation of 𝑋⏞𝑘, �̂�𝑘 is the normalized value of 𝑋⏞𝑘, and αkj are 

the elements of the transformation matrix (i.e., eigenvector or empirical orthogonal function, EOF) of 

PCA. The PC time series are ranked by their variances λ, with the leading three to four PCs capturing 20 

most of the meteorological variability (Wilks, 2011). For example, the first four PCs for the BTH region 

explain 76% of the total meteorological variability. The last few PCs with variances λ < 1 are truncated 

using the Kaiser’s rule since they likely represent noises (Wilks, 2011). Each PC represents a distinct 

meteorological mode, the physical meaning of which is reflected by the values of αkj in Eq. (2) and 

verified by cross-examination of synoptic weather maps. 25 

For each region, we then extract the PCs for 2014–2017 only, and construct a principal 

component regression (PCR) model for deseasonalized, regionally averaged daily PM2.5 (�̂�, μg m-3) on 

the daily PC values (Uj) for 2014–2017, both for the whole period and for individual seasons: 

�̂�(𝑡) = ∑ 𝛽𝑗𝑈𝑗(𝑡)𝑁
𝑗=1         (5) 

where βj is the regression coefficient (μg m-3), and N the number of PCs retained after truncation 30 

(mostly 3 to 4). 

We define a dominant meteorological mode seasonally or annually by computing the ratio of 

the resulting regression sum of squares (SSRj) to total sum of squares (SST) for each PC: 
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𝑅synoptic,𝑗
2 =

SSR𝑗

SST
=

∑ [𝛽𝑗𝑈𝑗(𝑡)]2
𝑡

∑ {𝑦(𝑡)}2
𝑡

       (6a) 

This ratio characterizes the fraction of variance of daily PM2.5 that can be explained by the jth 

PC in the PCR model. The PC having the largest SSR/SST is deemed the dominant meteorological 

mode for that region. Any PC which has an SSR/SST more than half of that of the dominant PC in a 

given season is also recognized as an important PC for that region. The total percentage of PM2.5 5 

variability explained by the K dominant synoptic modes in a region can be written as: 

𝑅synoptic
2 = ∑ 𝑅synoptic,𝑗

2𝐾
𝑗         (6b) 

The PCR model also allows us to separate between synoptically driven and locally driven PM2.5 

variability from the total meteorologically driven PM2.5 variability. Regressing PM2.5 using all eight 

individual meteorological variables yields a total R2 value, which entails both synoptically and locally 10 

driven PM2.5 variability, as discussed in Sect. 3. Using R2 and R2
synoptic from the PCR model, we can 

infer the variability explained by local meteorology alone unrelated to synoptic modes, using: 

𝑅local
2 = 𝑅2 − 𝑅synoptic

2         (6c) 

where R2
local indicates the overall locally driven PM2.5 variability. 

Here we discuss the synoptic meteorological systems that dominate PM2.5 variability on 15 

annual timescales for each region. Discussion of regimes that control PM2.5 on seasonal timescales, as 

well as information on the values of SSR/SST and β, is included in the supplementary materials. We 

also note that in our interpretation, we focus only on the physical effects of meteorological phenomena. 

Non-physical drivers such as anthropogenic emissions can be correlated with meteorology to some 

extents (e.g., cold weather leading to higher emissions from heating); such effects, if any, would be 20 

encapsulated in the statistical model, but are difficult to diagnose explicitly due to a lack of 

corresponding data. 

Figure 3 shows the dominant meteorological mode in BTH, which explains nearly 36% of 

PM2.5 variability throughout the year. Figure 3a shows a strong anticorrelation between the time series 

of this mode and deseasonalized observed total PM2.5 for the sample month of December 2014. Figure 25 

3b shows the meteorological composition of the EOF of this annually dominant mode, with a positive 

phase consisting of low temperature, high SLP, and strong northwesterly winds. The error bars 

represent two standard errors of the meteorological composition, computed by the formula shown in 

Sect. S1. Similar loadings are seen for winter, spring, and fall. We choose 30 Dec 2014 as a 

representative day with PC changing from negative to positive phase to explain the physical meaning of 30 

this PC. As seen in the weather map (Fig. 3c), the positive phase of the PC represents a high-pressure 

system associated with the Siberian high with dry cold fronts sweeping across BTH from northwest to 

southeast. The Siberian high is the driver of the winter monsoon in East Asia, and such northwesterly 

flow efficiently advects PM2.5 across BTH. Figure 3c shows a strongly decreasing temperature gradient 

and increasing pressure tendency originating from the Siberian high. PM2.5 concentration decreases by 35 
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nearly 240 μg m-3 over 29 to 31 Dec (Fig. 3a). Regressing PM2.5 on all eight individual meteorological 

variables yields an R2 value of 43%, indicating that local meteorology only contributes to an extra 7% 

of the PM2.5 variability in addition to that already explained by synoptic circulation. In addition to cold 

fronts from the Siberian high, easterly onshore flow with high humidity and southerly monsoon also 

control daily PM2.5 variability in spring and summer, with 18% and 17% springtime and summertime 5 

variability of PM2.5 explained, respectively (see Sect. S2).  

Figure 4 shows the dominant mode in YRD. This mode is important in spring, fall and winter, 

and contributes up to 14% of the PM2.5 variability for the whole year. The two time series of the PC and 

PM2.5 demonstrate anticorrelation with each other in March 2015 (Fig. 4a). The positive phase of this 

mode consists of low temperature, high RH and rainfall, high and decreasing pressure, and strong 10 

easterly winds (Fig. 4b). This set of meteorological phenomena is characteristic of onshore flow with 

rainfall, as demonstrated by the weather map on 25 Mar 2015, which shows cold and moist easterly 

winds originated from the high pressure centered over the East Sea. Such winds sweep away pollutants 

and decrease PM2.5 concentration by 30 μg m-3 (Fig. 4c), and the associated rainfall also wash out PM2.5. 

The negative phase of this mode, as represented on 18 Mar 2015, shows anticyclonic flow leading to 15 

accumulation of PM2.5 (Fig. 4d). Local meteorology is found to contribute to an additional 11% of the 

PM2.5 variability on top of that explained by synoptic effects. In addition to onshore flow, PCA for 

summer alone indicates that summertime low-pressure systems also deplete PM2.5, likely due to the 

associated precipitation, explaining 24% summertime PM2.5 variability. This PC is also sometimes 

characterized by northward-propagating tropical cyclones, with strong wind and rainfall (see Sect. S3).  20 

Figure 5 shows the dominant mode for explaining PM2.5 variability in PRD. This mode is 

dominant in spring, fall and winter, and in total contributes to 22% variability of PM2.5 throughout the 

year. Fig. 5a reveals a negative correlation between the PC for this mode and PM2.5 in October 2014. 

The positive phase of this mode consists of high RH, precipitation, increasing pressure and strong 

northerly winds (Fig. 5b). This set of meteorological phenomena represents a cold-frontal rainstorm, as 25 

demonstrated by the weather map in Fig. 5c, which shows a frontal rain belt coinciding with the positive 

phase of the PC on 21 Oct 2014. Pressure contours were advected southward by northerly winds, and a 

regional rain belt brought maximum rainfall of up to 15 mm d-1 to southern China. In general for this 

mode, advancing cold air sweeps from north to south and lifts the warmer and moister air, leading to 

precipitation and sometimes thunderstorms. Annually, regressing PM2.5 on individual meteorological 30 

variables yields an R2 value of 33%, thus local meteorology contributes to an extra 11% of PM2.5 

variability unexplained by synoptic circulation. In addition to cold-frontal rainstorms, summertime PCA 

also shows that the air quality in summer PRD is also influenced by rainfall from low-pressure troughs 

as well as by landfalls of tropical cyclones (see Fig. S11 & S12). These two modes explain 18% and 

15% of summertime PM2.5 variability, respectively. The troughs cause rainfall that scavenges pollutants; 35 
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tropical cyclones having landfalls to the east of PRD cause inversion layers that trap pollutants and 

degradate air quality (see Sect. S4).  

Figure 6 shows the dominant mode in SCB in winter, which has a negative correlation with 

PM2.5, as shown for the sample month of January 2015 (Fig. 6a). This mode dominates PM2.5 variability 

all year round, explaining 25% of its day-to-day variability. PCA shows that its positive phase is 5 

characterized by low temperature, high SLP and weak northwesterly winds (Fig. 6b), which resembles 

the dominant EOF in BTH. This mode is characterized by a northwesterly flow also associated with the 

Siberian high. On 29 Jan 2015, the Siberian High was situated southeast to Lake Baikal (Fig. 6c), 

advecting a clean, northwesterly cold front toward SCB and ventilating PM2.5 by 150 μg m-3 over 25 to 

29 Jan. On 24 Jan, this mode was in its negative phase and SCB was under a relatively mild weather 10 

(Fig. 6d), while PM2.5 was at a local maximum (Fig. 6a). Annually, local meteorology contributes to 

another 20% of the total PM2.5 variability. In addition to cold-frontal passages, rainfall also drives PM2.5 

variability especially in winter and spring, explaining 18% and 16% of wintertime and springtime PM2.5 

variability, respectively. This mode represents a cold-frontal rain system that promotes wet deposition 

of pollutants (see Sect. S5). 15 

5. Synoptic frequency and local meteorology as metrics for climate change impact on PM2.5 

Future climate change can significantly affect synoptic-scale circulation patterns and local 

meteorology, modifying the transport and deposition of PM2.5 (Fiore et al., 2015; Jiang et al., 2013; 

Mickley et al., 2004). Based on the demonstrated strong relationships of synoptic circulation and local 

meteorology on daily PM2.5, we build a regression model to infer how interannual variations of local 20 

and synoptic meteorology affect interannual PM2.5 variability, which we then apply to future climate 

projections. This approach allows us to evaluate the potential impacts of climate change on PM2.5 air 

quality. Here we adopt the PCA-spectral analysis approach, namely, to apply a Fast Fourier Transform 

(FFT) to the daily time series of the dominant PCs for all seasons to extract the median frequencies 

from the resulting spectra. We use the same PCs generated from 1998–2017 NCEP/NCAR 25 

meteorological data (Sect. 4), and smooth the resulting FFT spectra with a second-order autoregressive 

filter (Wilks, 2011). We focus on BTH as a case study. For example, spectral analysis shows that the 

Siberian high fluctuates between 58 and 67 times per year on average, and has a climatological 

frequency of 63 yr-1 averaged over 1998–2015. 

Satellite-retrieved PM2.5 has large uncertainties in seasonal mean values, and thus we make 30 

use of only the annual mean PM2.5 values for building our regression model. We construct a multiple 

linear regression (MLR) model for the 1998–2015 satellite-retrieved annual mean PM2.5 over BTH by 

spatially averaging the gridboxes covering the region. In selecting predictor variables, we consider the 

annual mean local meteorological variables in Table 1 (except SLP tendency (X5) and the two wind 
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direction indicators (X7, X8), whose averages are often nearly zero), as well as the annual median 

frequencies of synoptic circulation patterns from all individual seasons diagnosed from spectral analysis. 

The predictand (annual mean PM2.5) and potential predictors are detrended by subtracting from them the 

respective 7-year moving averages in order to remove long-term trends driven by emission changes. We 

adopt a forward selection approach (Wilks, 2011) to identify which climatic variables explain the 5 

greatest amount of interannual PM2.5 variability, starting from the one explaining the largest percentage 

of PM2.5 variability (having the largest adjusted R2 value), and adding predictor variables until the 

enhancement in adjusted R2 given by an additional predictor is less than 0.05. Variables that lead to a 

large variance inflation factor (>2) are also excluded to avoid the issue of multicollinearity, which often 

leads to higher imprecision of regression estimates. Typically the forward selection algorithm does not 10 

yield more than three predictor variables for interannual PM2.5 variability. 

Table 2 shows the interannual PM2.5 variability explained by the predictors, the corresponding 

regression coefficients and the p-values for the BTH region. The two predictors selected by the forward 

selection algorithm are the frequency of the first PC in spring (i.e., the springtime Siberian high, Figure 

S5) and annual mean RH. Figure 7 shows the correlation of detrended annual mean PM2.5 with 15 

detrended annual mean RH and the frequency of fluctuation of the springtime Siberian high. The 

negative correlation (r = –0.51) between springtime PC frequency and annual PM2.5 indicates that more 

frequent occurrences of cold advections from the high-pressure systems further north especially during 

spring help ventilate PM2.5 in BTH and influence annual mean PM2.5 here. This is consistent with the 

relationship we found between PM2.5 and Siberian high on the daily timescale (Sect. 4). Annual mean 20 

RH has a positive correlation with PM2.5 (r = 0.49), which is consistent with Sect. 3 where we found 

higher RH coinciding with higher PM2.5 on the daily timescale. Adding RH helps explain an additional 

9% interannual PM2.5 variability, and the two predictors in total give an adjusted R2 value of 31%, 

which represents a reasonably high value for a linear model, given that nonlinear PM2.5-meteorology 

interactions and emission-driven PM2.5 variability are not included in the model. Although temperature 25 

has a strong daily correlation of r = 0.6 with PM2.5 in the correlation analysis in Sect. 3, annual mean 

temperature does not appear to correlate significantly with annual mean PM2.5 (r = 0.18) and was not 

selected by the forward selection algorithm. Annual mean temperature also has a weak correlation with 

springtime Siberian high fluctuation frequency (r = –0.25), which indicates that more frequent synoptic 

fluctuations have only little bearing on annual mean temperature, and that the strong daily PM2.5-30 

temperature covariation is mostly a manifestation of synoptic influence. Other annual mean local 

meteorological variables all have insignificant correlations with annual mean PM2.5. 

Our findings show that meteorological effects on daily PM2.5 at least in part contribute to 

interannual variability PM2.5, a finding which we can exploit to estimate future changes in PM2.5. To 

this end, we extract the meteorological variables in Table 1 from the results from 15 models in the 35 

Climate Model Intercomparison Project Phase 5 (CMIP5) for 1996–2005 and 2046–2055 under the 
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RCP8.5 scenario (Table S1). This scenario represents a business-as-usual future. We diagnose the 

2000–2050 changes in the decadal averages of these variables and the median frequencies of the 

constructed PCs (Fig. 8a). To obtain an ensemble mean and distribution of the meteorological changes 

(Fig. 8b), we apply the weighting algorithm of Tebaldi et al. (2005) to the CMIP5 model outputs, which 

can discount any poorly performing models yielding meteorology that diverges from the present-day 5 

observations (using NCEP/NCAR reanalysis data in this study), and that diverges too much from the 

weighted ensemble mean, by giving those models a lower weight in the calculation of the ensemble 

mean and distribution. 

We combine the meteorological changes with the PM2.5-to-climate sensitivities (i.e., 

regression coefficients in Table 2) to obtain an estimate for the 2000–2050 change in annual mean PM-10 

2.5 due to climate change alone (Fig. 8c), according to the following formula:  

ΔPM2.5 = ∑
𝜕PM2.5

𝜕𝑥𝑖
Δ𝑥𝑖

𝑁
𝑖           (7) 

where ΔPM2.5 is the total PM2.5 change due to climate change, N is the total number of predictors 

selected by the forward selection algorithm, and Δxi is the change of the ith predictor selected by the 

algorithm. Here we make the “stationarity” assumption that the PM2.5-to-climate sensitivities, 15 

∂PM2.5/∂xi,  remain unchanged in the near future, such that ΔPM2.5 is totally due to changes in future 

meteorology. We then use a Monte-Carlo approach to characterize the probability distribution and 

statistical significance of the changes in PM2.5 concentration arising from the uncertainties of the 

regression coefficients in the MLR model, as well as from the differences in model physics among 

CMIP5 models. Our approach involves repeated (>5000 times) sampling of regression coefficients of 20 

the MLR model from their distributions as parameterized by the means and standard errors in Table 2, 

along with the sampling of the performance-weighted ensemble distributions of meteorological changes 

from the Tebaldi et al. (2005) algorithm. The sampling distributions are aggregated in accordance with 

Eq. (7) to obtain the final distributions of PM2.5 changes for each predictor and the sum of the two (Fig. 

8d). 25 

Figure 8 shows the future changes of PM2.5 concentrations with the corresponding changes in 

future meteorology. Changes in RH among CMIP5 models show high inconsistency, with values 

ranging from –2.01% to +3.19% (Fig. 8a). The ensemble mean of CMIP5 models shows a statistically 

insignificant increase (p-value = 0.32) of RH of 0.231.24 percentage point by 2050s in BTH (Fig. 8b), 

consistent with a future prediction of a change within < 1% over BTH in the Fifth Assessment Report of 30 

Intergovernmental Panel on Climate Change (IPCC AR5) (Fig. 12.21 in Collins et al., 2013). Past 

modeling studies show that RH remains nearly constant on climatological timescales and continental 

spatial scales (Randall et al., 2007), while recent investigation shows that near-surface RH decreases 

over most land areas globally (O’Gorman and Muller, 2010). IPCC AR5 (2013) shows that the regional 
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mean RH in BTH changes by less than one standard deviation of interannual variability by year 2065, 

and the variability is dominated more by naturally occurring processes than by human activities. 

We find that 10 of the 15 models project an increase in this synoptic frequency (Fig. 8a).  

Based on the weighting algorithm to discount poorly performing models, we project an overall very 

likely (i.e., 90–100% likelihood according to IPCC guideline in Stocker et al., 2013), statistically 5 

significant increase (p-value = 0.0008) in the frequency of synoptic-scale fluctuation of the Siberian 

high by 1.460.39 yr-1 by the 2050s (Fig. 8b). The generally increasing frequency is possibly driven by 

the future reduction in meridional temperature gradient, which decreases the intensity of the midlatitude 

jets and favors the amplification and persistence of surface anticyclones (e.g., Francis and Vavrus, 2012; 

Zhang et al., 2012). Francis and Vavrus (2012) showed that the upper tropospheric midlatitude jet (in 10 

the form of Rossby wave) exhibited reduced zonal velocity and augmented wave amplitude under 

warming over 1979–2010, which may have led to an increase in atmospheric blocking events 

(Barriopedro et al., 2006) and an enhancement in the likelihood of cold surges from the Siberian high. 

In another multi-model study, Park et al. (2011), however, found no significant correlation between cold 

surge occurrences and surface air temperature over East Asia, and thereby concluded that cold surge 15 

occurrences would remain constant in frequency under a warming climate. Our results based on PCA-

spectral analysis show a modest increase instead of unchanging frequency in synoptic-scale fluctuation 

of the Siberian High in the future. 

Figure 8c and 8d show the corresponding future PM2.5 changes from the baseline value of 57.2 

μg m-3 in the 2000s. Across the model results, we find an overall PM2.5 change by 0.21 to +1.79 μg m-3 20 

due to changing RH, and by –0.29 to 0.63 μg m-3 due to changing synoptic frequency (Fig. 8c). From 

the Monte-Carlo sampling of the performance-weighted distribution of meteorological changes and 

uncertainties of statistical parameters, the RH-induced PM2.5 change is 0.211.44 μg m-3 (p-value = 

0.58), and the frequency-induced PM2.5 change is –0.460.28 μg m-3 (p-value = 0.028, 97% likelihood) 

(Fig. 8d). While the RH-induced PM2.5 change is statistically insignificant and its sign inconclusive, we 25 

show that the higher frequency of fluctuation in the Siberian high alone, through enhancing cold-frontal 

frequency, could lead to a very likely reduction in annual mean PM2.5 and thus constitute a slight climate 

“benefit” for PM2.5 air quality over BTH of China. We find that the greatest uncertainty stems from 

large intermodel differences in the future projections of RH and, which are much larger than those in 

the synoptic frequency projections. The regression coefficients have relatively moderate standard errors 30 

(Table 2) and contribute only little to the overall projection uncertainty. 

6. Conclusions and discussion 

In this study we use a combination of multivariate statistical methods to investigate the local 

and synoptic meteorological effects on daily and interannual variability of PM2.5 in China. Based on the 
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resulting statistical relationships between PM2.5 with annual mean meteorological variables and synoptic 

frequencies, we also project future PM2.5 changes in the Beijing-Tianjin-Hebei (BTH) region. First, we 

find strong correlations between daily observed PM2.5 and individual meteorological variables in China 

over 2014–2017, and the spatial patterns of correlations suggest common association of these variables 

with synoptic circulation and transport. We therefore apply PCA on spatially averaged meteorological 5 

variables for four major metropolitan regions (BTH, YRD, PRD, SCB) for 1998–2017 (for all seasons 

and for the whole period) to diagnose the dominant synoptic meteorological modes, and the time series 

of these modes are used as predictor variables in a MLR model to explain day-to-day PM2.5 variability 

for each region. We find that, in BTH, the presence of the Siberian high strongly controls PM2.5 levels. 

Northerly monsoonal flows and advecting cold fronts from the Siberian high play key roles in 10 

ventilating PM2.5 in BTH for all seasons except JJA. In YRD, onshore wind with precipitation from the 

East Sea is the dominant meteorological mode, effectively scavenging PM2.5 for all seasons except JJA. 

In PRD, frontal rain is a key driver reducing PM2.5 by wet deposition for all seasons except JJA. In SCB, 

the Siberian high plays a key role in bringing clean air from the north that effectively dilutes pollution 

for all seasons. Different synoptic meteorological regimes in different seasons explain about 16–37% of 15 

PM2.5 variability in 2014–2017. 

We further show that the long-term fluctuations in the frequencies of the dominant synoptic 

modes also shape interannual variability of PM2.5. Using the BTH region as a case study, we use 

regionally averaged annual mean local meteorological variables and annual median frequencies of the 

dominant synoptic modes of all individual seasons as potential predictors in a forward-selection MLR 20 

model to explain the interannual variability of satellite-derived annual mean PM2.5 over 1998–2015. The 

forward selection model finds two significant predictors, namely, the frequency of springtime frontal 

passages (which indicates the interannual fluctuation in the strength of the Siberian high) and annual 

mean RH, with observed PM2.5-to-climate sensitivities of –0.310.16 μg m-3 yr and 1.000.57 μg m-3 

%-1, which together explain 31% of the variability of annual mean PM2.5. The signs of correlations 25 

between PM2.5 and the two predictors are also consistent with that from the daily PC regression analysis, 

showing a broad consistency in PM2.5-meteorology relationships across different timescales. 

We further address the effect of 1996–2055 climate change on future PM2.5 air quality, using 

an ensemble of 15 CMIP5 climate model outputs under the RCP8.5 scenario. Ten out of 15 models 

show an increase in the frequency of strength fluctuation of the Siberian high with an ensemble mean of 30 

1.46 yr-1. Nine out of 15 models show a statistically insignificant change in future RH. Intermodel 

differences in the projected changes in RH are much larger than that in synoptic frequency of 

fluctuation in the Siberian high, owing to the high inconsistency in future projections of atmospheric 

humidity, especially on a regional scale (IPCC, 2013). We combine the ensemble projection of RH and 

synoptic frequency with the PM2.5-to-climate sensitivity from our statistical model to project future 35 

PM2.5 changes, with uncertainties quantified using a Monte Carlo approach. While the RH-induced 
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PM2.5 change is insignificant and inconclusive, we project for the 2050s a statistically significant and 

very likely (~97% likelihood) decrease in PM2.5 of –0.460.28 μg m-3 due to increasing frequency in the 

fluctuation of the Siberian high. The overall projection is inconclusive mostly due to the highly 

uncertain RH projections. Our prediction is comparable in magnitude with other studies (e.g., Jiang et 

al., 2013), as well as future predictions done for the US (Shen et al., 2017; Tai et al., 2012b; Pye et al., 5 

2009; Avise et al., 2009) and Europe (Juda-Rezler et al., 2012), but much smaller in magnitude 

compared with the baseline value of 57.2 μg m-3 in the 2000s, suggesting that the “climate benefit” from 

higher synoptic frequency is rather small especially in comparison with what emission control effort 

could do to curb PM2.5 concentrations in China. Jiang et al. (2013) projected changes of PM2.5 over 

China due to climate change alone under IPCC A1B scenario, and the resulting change over BTH is 10 

about +1 μg m-3 averaged annually. They attributed their predictions to: 1) changing precipitation that 

leads to a change in wet deposition; and 2) increasing temperature that results in more volatilization of 

nitrate and ammonium, which differs from our conclusion that cold-frontal ventilation dominates the 

PM2.5-temperature correlation and total PM2.5 response. Our statistical results (for BTH only) do not see 

significant relationships between temperature and PM2.5 (r = 0.18) nor between rainfall and PM2.5 (r = 15 

0.20) on an interannual timescale, despite strong correlations on a daily timescale. This discrepancy 

between empirical results and process-based model results may stem from the inadequacy of satellite-

derived PM2.5 in capturing the variability caused by volatilization effect, an inadequate process-based 

model representation of the PM2.5-temperature relationship (Shen et al., 2017), and the uncertainty in 

emissions of PM precursors in the process-based model. 20 

There are two major limitations of the statistical approach developed in this study. First, due to 

accuracy constraints of the satellite-derived PM2.5 concentrations, we could only use annual mean 

instead of seasonal mean PM2.5 as the basis for interannual regression and future projections. Shen et al. 

(2017) showed that PM2.5 responds to meteorological conditions differently in different seasons in the 

US. Due to the short period of surface monitoring data (see Sect. 2), we rely on the annual mean 25 

satellite-derived PM2.5 with no seasonality in this study, and thus no seasonal predictions of PM2.5 are 

possible. Another limitation is that the statistical projections rely on the stationarity assumption that the 

PM2.5-to-climate sensitivities will be more or less constant in the future (see Eq. 7). This assumption 

may be acceptable for near-future projections (Fiore et al., 2012; IPCC, 2013), but is more vulnerable 

for multidecadal projections especially as significant changes in emission levels may alter the chemical 30 

nature of total PM2.5 and thus the interactions with meteorology. While the process-based modeling 

studies of the future evolution of PM2.5-meteorology relationships under varying levels of emissions in 

China are much warranted, the empirical relationships as diagnosed from investigation of historical data 

in this study are valuable in providing a basis for testing and validating the process-based model 

sensitivities of PM2.5 air quality to climate change. 35 
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Table 1. Meteorological variables considered in this studya. 

 

Variable Meteorological parameter (abbreviation, unit) 

X1 Surface air temperature (T or SAT, K)b 

X2 Surface air relative humidity (RH, %)b 

X3 Surface precipitation rate (Prec, mm d-1)b 

X4 Sea level pressure (SLP, hPa) 

X5 Sea level pressure tendency (dP/dt, hPa d-1) 

X6 Surface wind speed (Wind, m s-1)b, c 

X7 West-east direction indicator (cosθ, dimensionless) 

X8 South-north direction indicator (sinθ, dimensionless) 

a From the National Center for Environmental Prediction/National Center for Atmospheric Research 

(NCEP/NCAR) Reanalysis 1 for 1998–2017. All data are 24-h averages and are deseasonalized as 5 

described in the text. 
b Surface data are from 0.995 sigma level. 
c Calculated from the horizontal wind vectors (u, v). 
d θ is the angle of the horizontal wind vector counterclockwise from the east. Positive values of X7 and 

X8 indicate westerly and southerly winds, respectively. 10 
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Fig. 1. Average (a) site and (b) gridded 2.5°×2.5° total PM2.5 concentrations (μg m-3) of China during 

the years 2015–2016 obtained from the Chinese Ministry of Environmental Protection (MEP, 

http://pm25.in). Gridded data are obtained by spatially interpolating site data using an inverse weighting 

method as in Tai et al. (2010). The four main regions of our study are indicated in panel (b): the 5 

Beijing-Tianjin-Hebei (BTH), the Yangtze River Delta (YRD), the Pearl River Delta (PRD), and the 

Sichuan Basin (SCB).  
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Fig. 2. Correlation coefficients of daily PM2.5 with different meteorological variables in Table 1, 

including (a) surface air temperature (X1, K), (b) relative humidity (X2, %), (c) precipitation (X3, mm d-1), 

(d) sea level pressure (X4, hPa), (e) pressure tendency (X5, hPa d-1), (f) wind speed (X6, m s-1), and (g) 5 

wind direction (X7 and X8, unitless), for China from Jun 2014 to May 2017. PM2.5 data are from MEP. 

Meteorological data are deseasonalized by subtracting 31-day moving averages and normalized, and 

daily total PM2.5 are also deseasonalized the same way to focus on day-to-day variability. Only values 

with significant correlations at p-value ≤ 0.05 are shown. Fig. 2g is plotted by finding the vector sums 

of the correlation coefficients for X7 and X8, with positive correlations pointing eastward and northward, 10 

respectively. The direction of the vector sum indicates the prevalent wind direction when PM2.5 has a 

positive anomaly. 

 



26 

 

 

Fig. 3. Annually dominant meteorological mode for observed PM2.5 variability in the Beijing-Tianjin-

Hebei (BTH). (a) Timeseries of deseasonalized observed total PM2.5 concentrations and the principal 

component (PC) time series in the sample month of December 2014. (b) Composition of this mode as 

determined by the coefficients αkj, with error bars showing two standard deviations of the eigenvector 5 

coefficients. Meteorological variables are listed in Table 1. (c) Synoptic weather map on 30 Dec 2014 

with temperature (K) as shaded colors, wind speed (m s-1) as vectors and sea level pressure (hPa) as 

contours. The rectangle indicates BTH. The weather map, which shows an example of positive 

influence of the mode, is plotted using NCEP/NCAR reanalysis I data. 
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Fig. 4. Same as Fig. 3 but for the Yangtze River Delta (YRD). (a) Deseasonalized total PM2.5 

concentrations and the PC time series in the sample month of March 2015. (b) Composition of this 

dominant mode as determined by the coefficients αkj. (c-d) Synoptic weather charts on 25 and 18 Mar 

2015, with precipitation (mm d-1) shown as shaded colors, wind speed (m s-1) as vectors and sea level 5 

pressure (hPa) as contours.  Panel (c) shows the positive influence characterized by onshore wind with 

rainfall that corresponds to decreasing PM2.5, while panel (d) shows the negative influence with little 

wind on YRD. The rectangles indicate YRD. 
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Fig. 5. Same as Fig. 3 but for fall in the Pearl River Delta (PRD). (a) Deseasonalized total PM2.5 

concentrations and the PC time series in the sample month of October 2014. (b) Composition of this 

dominant mode as measured by the coefficients αkj. (c) Synoptic weather map on 21 Oct 2014, 

corresponding to the positive influence from the mode, with precipitation (mm d-1) as shaded colors, 5 

wind speed (m s-1) as vectors and sea level pressure (hPa) as contours. The rectangle indicates PRD. 
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Fig. 6. Same as Fig. 3 but for winter in the Sichuan Basin (SCB). (a) Deseasonalized total PM2.5 

concentrations and the PC time series in the sample month of January 2015. (b) Composition of this 

dominant mode as measured by the coefficients αkj. (c-d) Synoptic weather maps on 29 and 24 Jan 2015. 5 

Panel (c) shows the positive influence characterized by a cold front from the Siberian high that advects 

PM2.5 away, while panel (d) shows the negative influence characterized by stagnation over SCB. 

Temperature (K) is shown as shaded colors, wind speed (m s-1) as vectors and sea level pressure (hPa) 

as contours. The rectangles indicate SCB. 
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Table 2. Regression model that explains interannual variability of satellite-derived PM2.5 in Beijing-

Tianjin-Hebei (BTH). 

 

 Frequency of springtime 

Siberian High 

Relative humidity 

PM2.5 sensitivity –0.31 μg m-3 yr 1.00 μg m-3 %-1 

Standard error ±0.16 μg m-3 yr ±0.57 μg m-3 %-1 

p-value for each 

predictor 

0.0776 0.0977 

Adjusted R2 value 0.309 

F-statistic 4.81 

Total p-value 0.0244 

 5 
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Fig. 7. Detrended annual mean total PM2.5 concentration and climate variables chosen by the forward 5 

selection model from 1998–2015, including (a) annual mean frequency of springtime Siberian High (r = 

–0.51) and (b) relative humidity (r = 0.49). Annual mean surface PM2.5 concentrations are derived from 

satellite aerosol optical depth by van Donkelaar et al. (2016). All variables are detrended by subtracting 

the 7-year moving averages from the annual mean values. 
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Fig. 8. Projected changes in PM2.5 from 2000–2050, as calculated from meteorological outputs from the 

CMIP5 model ensemble. (a) Future projections of mean relative humidity (RH, %) and median synoptic 5 

frequency of springtime Siberian high (yr-1) as computed by 15 CMIP5 models. (b) Statistical 

distributions of CMIP5-projected RH and synoptic frequency as computed by model weighting 

algorithm of Tebaldi et al. (2005). (c) Changes in PM2.5 (μg m-3) from 2000–2050 based on climate 

projections from 15 models and statistical sensitivities from our multiple linear regression model. (d) 

Statistical distributions of projected PM2.5 based on Monte-Carlo sampling of all possible uncertainty 10 

spaces. Dashed lines indicates the simple ensemble mean of the changes, red dots indicate positive 

changes, and blue dots indicate negative changes. The label “RH” indicates changes associated with 

relative humidity, “freq” indicates changes associated with frequency of cold fronts from the Siberian 

high, and “total” denotes the sum of the two. 
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