
Responses to Reviewers on “Synoptic meteorological modes of variability for fine particulate 
matter (PM2.5) air quality in major metropolitan regions of China” by Danny M. Leung et al. 
(MS No: acp-2017-916) 
 
We thank the reviewers for their careful examinations and thoughtful comments. Our point-
by-point responses are provided below. The reviewers’ comments are italicized, our 
new/modified text is highlighted in bold. 
 
Response to Referee #1 
 
Major comments: 1. The need for different data sets is explained (surface observed PM2.5 is 
limited in terms of how long it has been collected, satellite PM2.5 is available for a longer 
time period, but only on an annual average basis, etc), but it’s not clear to what degree using 
the different data sets leads to the same or differing conclusions. For example, how well do 
the meteorological principle components explain surface PM2.5 (if annually aggregated) vs 
satellite PM2.5?  
 

For now we only have site data from June 2014 to May 2017, so that we can only 
aggregate two years of annual mean site PM2.5 and could not yield a statistical 
relationship with the annual frequency of meteorological principal components. We 
plot below the gridded annual mean site PM2.5 vs satellite PM2.5 for year 2015, which 
shows that site data and satellite data correspond very well with each other with a 
correlation coefficient of 0.79, although satellite estimates systematically show 
slightly smaller values than site observations. This plot is now added as a panel to Fig. 
S1. Therefore, it is likely that when a longer (e.g., decadal) record of nationwide site 
observations of PM2.5 are available in the future, annually aggregated site PM2.5 
should in general yield relationships with annual meteorological data that are similar 
to satellite-derived PM2.5, but such an expectation can only be justified when a 
decadal, nationwide high-coverage site data record is available for China. 
 

 
Fig. S1b. Annual mean satellite-derived PM2.5 concentrations (µg m-3) from van 
Donkelaar et al. (2016) versus gridded annual mean site PM2.5 concentrations (µg m-3) 
from the Chinese Ministry of Environmental Protection (MEP, http://pm25.in), for 
year 2015. The blue line indicates the fitted line using reduced major axis (RMA) 
regression with an R2 value of 0.63, and the dashed line indicates the 1:1 line. 



 
2. Can the ability to project the effects of future conditions be strengthened? The r-squared of 
the PM2.5-meteorological model is 0.31 indicating it explains 31% of the interannual 
variability in PM2.5. The factor explaining the most variability is the Siberian High followed 
by RH. Could the r-squared be meaningfully increased by using all available meteorological 
variables? While the authors point out that meteorological variables co-vary, does that 
matter when trying to determine changes over a period of decades? 
 

We use adjusted R2 value instead of multiple R2 value for the MLR model, which 
gives penalty when adding more predictors into the MLR model to avoid overfitting. 
Even when the meteorological variables are not correlated on an interannual 
timescale, adding more of them in the MLR will not necessarily lead to higher 
adjusted R2 values. In general, we are cautious about multicollinearity arising from  
co-varying meteorological variables, which generally enhances the standard errors of 
regression statistics and is thus deemed not desirable for prediction purposes. For 
BTH case, adding precipitation helps increase the adjusted R2 value to 47%, but 
precipitation has a strong correlation of r = 0.84 with RH and thus was banned by the 
selection algorithm. In this case, RH is believed to be the true driver of PM2.5, while 
precipitation is correlated with high RH only. Therefore, adding co-varying 
meteorological fields in projecting future PM2.5 may not only double-count the same 
practical effect, but also increase the risk of introducing more projection errors due to 
multicollinearity itself and due to CMIP5 intermodel differences, leading to even 
higher PM2.5 projection uncertainty. We also lengthen our discussion there: 
 
p.12 line 7: “… Variables that lead to a large variance inflation factor (>2) are also 
excluded to avoid the issue of multicollinearity, which often leads to higher 
imprecision of regression estimates. Typically the forward selection algorithm…” 
 
 

General comments: 1. Page 4, line 21: How were the relevant meteorological variables 
determined? Was there data on other variables that was not used or was this all that was 
available?  
 

We follow Tai et al. (2012a, b) to select meteorological variables for PCA/PCR. 
There are more meteorological variables available in NCEP/NCAR Reanalysis 1, but 
we have chosen all variables that are directly related to synoptic circulation patterns 
as shown in previous studies. For clarity, we now add in the main text Sect. 2: 
 
“… Following Tai et al. (2012a, b), eight meteorological variables are considered 
here (Table 1), …” 
 

 
2. Can you clarify the relationship between the meteorological drivers and PM2.5 and 
whether information about one influences the determination of the other. Specifically:  
2a. Near page 8: Meteorological principle components are determined without information 
on PM2.5 and then a regression is performed to determine how the meteorological PCs are 
related to PM2.5. Did the authors consider performing the principle component analysis with 
PM2.5 information (such as using PM2.5 as a variable in the PCA)?  
 



Yes, we performed PCA with daily mean PM2.5 included as one variable as well, and 
the result was similar to that of the PCR stated in this paper. We included the PCR 
result in order to follow the approach of Tai et al. (2012a, b), which is preferable to 
including PM2.5 in the PCA directly because it also gives the relevant diagnostic 
statistics such as R2 values, p-values, and most importantly, regression sums of 
squares that help quantify specifically the variability of PM2.5 explained by 
meteorology (instead of the variability of the entire meteorology-PM2.5 
multidimensional space). We now say so at the end of Sect. 3: 
 
p.7 line 34: “… We follow Tai et al. (2012a), and regress daily PM2.5 on the resulting 
principal component (PC) time series to identify the dominant synoptic drivers of 
PM2.5 variability. Their approach is particularly useful in that it enables the 
quantification of the fraction of PM2.5 variability that can be explained by 
synoptic meteorological regimes.” 
 

 
2b. Near page 10: Can you comment on whether the synoptic modes represent purely 
meteorological features vs. any emission driven influences? For example, is there a mode 
that might cause increased emissions due to cold temperatures and increased home heating 
requirements thus increasing PM2.5 for reasons not driven by meteorology?  
 

We agree with the reviewer that covariation of emissions with meteorology may in 
part contribute to the observed PM2.5 variability. Since this paper focuses on 
meteorological effects on PM2.5 variability, we did not incorporate any emission data 
in the analysis. Daily emissions may partly co-vary with temperature because of 
indoor warming, as the reviewer has well noted, but our PCA results also show that 
cold fronts from the Siberian high (dominant PC of BTH case) are the main drivers of 
temperature and PM2.5 variability. It is possible that during the arrivals of cold fronts, 
an increase in indoor warming might increase PM2.5 that partly counteracts the cold-
frontal ventilation effect and reduces the overall sensitivity of PM2.5 to the dominant 
PC. However, we cannot infer how much it would have contributed to the overall 
sensitivity unless we have daily emission data for PCA altogether with meteorological 
variables so that the meteorology-induced emission variability can be incorporated in 
some other independent PC(s). This issue is now discussed in Sect. 4: 
 
p.9 line 16: “… as well as information on the values of SSR/SST and β, is included in 
the supplementary materials. We also note that in our interpretation, we focus only 
on the physical effects of meteorological phenomena. Non-physical drivers such 
as anthropogenic emissions can be correlated with meteorology to some extents 
(e.g., cold weather leading to higher emissions from heating); such effects, if any, 
would be encapsulated in the statistical model, but are difficult to diagnose 
explicitly due to a lack of corresponding data.” 
 

 
3. Page 13, line 10: Returning to your earlier objective regarding separating synoptic 
features vs individual meteorological drivers, what remaining variability can be explained by 
meteorological variables that are not related to synoptic patterns?  
 



Here we take BTH as an example. Regressing PM2.5 on only the annually dominant 
PC can yield an R2 value of 0.36. Regressing PM2.5 on the dominant PC and all local 
meteorological variables yields an R2 value of 0.43.  
 
We add this result into the paper for all four regions. For instance, p.9 line 35: 
“… PM2.5 concentration decreases by nearly 240 µg m-3 over 29 to 31 Dec (Fig. 3a). 
Regressing PM2.5 on all eight individual meteorological variables yields an R2 
value of 43%, indicating that local meteorology only contributes to an extra 7% 
of the PM2.5 variability in addition to that already explained by synoptic 
circulation. In addition to cold fronts from the Siberian high, …”, and likewise for all 
four regions. 
 

 
4. Figure 2: Explain more how correlation with wind direction was determined. There were 
separate indicators for east/west and north/south (X7, X8) but panel (g) indicates one metric 
for direction. 
 

To get the vector plot for wind-direction correlation, we compute the correlation maps 
for X7 and X8 as with the other meteorological variables, and then convert them into 
vector plots with positive values pointing toward east and north, respectively. Adding 
up the two vector plots gives the final plot in Fig. 2g, which we find the most helpful 
way to visualize the effect of wind directions. We now add the detailed description in 
Fig. 2: 
 
“… Fig. 2g is plotted by finding the vector sums of the correlation coefficients for 
X7 and X8, with positive correlations pointing eastward and northward, 
respectively. The direction of the vector sum indicates the prevalent wind 
direction when PM2.5 has a positive anomaly.” 
 

 
Technical corrections: 1. Page 4, line 27: Add equation for deseasonalization and 
normalization.  
 

We add in the main text near p.4, line 28: 
 
“…meteorological data except X5, X7 and X8 are deseasonalized and detrended by 
subtracting the corresponding centered 30-day moving averages from the original data 
to focus on day-to-day, synoptic-scale variability. Specifically, for a meteorological 
variable 𝑿𝒌 in any grid, the deseasonalized meteorology 𝑿⏞𝒌 is calculated as 
follows: 
𝑿⏞𝒌 (𝒕) = 𝑿𝒌(𝒕) −

𝟏
𝟑𝟏
∑ 𝑿𝒌(𝒏)𝒕-𝟏𝟓
𝒏/𝒕0𝟏𝟓       (1) 

The deseasonalized and detrended data are also normalized to their standard 
deviations to yield zero means and unit variances: 

𝑿1𝒌(𝒕) =
𝑿⏞𝒌(𝒕)0𝑿⏞𝒌
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𝒔𝑿⏞𝒌
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where 𝑿1𝒌(𝒕) represents the normalized meteorological time series, 𝑿⏞𝒌
2222 and 𝒔𝑿⏞𝒌  

are the mean and standard deviation of the deseasonalized time series, 
respectively.” 



 
For clarity, we also change the text in Sect. 4, first paragraph: 
 
“… The resulting time series for each region are then decomposed to produce the PC 
time series (Uj = U1, …, U8): 

𝑼𝒋(𝒕) = 	∑ 𝜶𝒌𝒋𝑿1𝒌(𝒕)𝟖
𝒌/𝟏 = ∑ 𝜶𝒌𝒋

9𝑿1𝒌(𝒕)0𝑿1𝒌2222:
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where 𝑿⏞𝒌 represents the deseasonalized regionally averaged meteorological fields 

in Table 1, 𝑿⏞𝒌	and 𝒔𝑿⏞𝒌 are the temporal mean and standard deviation of 𝑿⏞𝒌, 𝑿1𝒌 is 

the normalized value of 𝑿⏞𝒌, and αkj are the elements of the transformation matrix (i.e., 
eigenvector or empirical orthogonal function, EOF) of PCA. …” 
 

 
2. Page 6, line 1, is subscript "k" needed on x bar?  
 

Subscript “k” is needed because it represents the kth meteorological variable, and it is 
particularly useful to distinguish from the index j used in PCA. 
 
 

3. Page 12, line 6: Figure 8a seems to have more than 3 models with negative changes in 
frequency in contrast to the text.  
 

Upon further checking, there are five out of 15 models with negative changes in 
frequency. We change the text in p.15 line 29, as follows: 
 
“… under the RCP8.5 scenario. Ten out of 15 models show an increase in the 
frequency of strength fluctuation of the Siberian high with an ensemble mean of 
1.46 yr-1. Nine out of 15 models show a statistically insignificant change in future 
RH. Intermodel differences in the projected changes…” 
 

 
4. Page 12, line 19: What baseline PM2.5 values are the changes referenced to?  
 

The PM2.5 changes according to our statistical model is with reference to the baseline 
value for the decade of 2000s, namely, 57.2 µg m-3. We now add in the main text near 
p.16 line 7: 
 
“Figure 8c and 8d shows the corresponding future PM2.5 changes from the baseline 
value of 57.2 µg m-3 in the 2000s. Across model results, …” 
 

 
5. Figure 4: color bar indicates mm/day, not temperature.  
 

Figure 4 is revised as suggested. 
 

 
6. Table 2: indicate observed PM2.5 or satellite-derived PM2.5. 
 

We now change the description of Table 2 as: 



 
“Regression model that explains interannual variability of satellite-derived PM2.5 
in Beijing-Tianjin-Hebei (BTH).” 

 
 
 
 
Response to Referee #2 
 
- The study mainly consists of 3 analyses: Correlations between PM2.5 and meteorological 
variables; (2) PCA/PCR for dominant modes for PM2.5 variability; (3) a regression model 
for climate change impact on PM2.5. The three analyses could be better connected between 
them. While conclusions are drawn from each, I see do not see shared findings and limited 
connections among them. For example, the correlation analysis shows the strongest 
correlations between PM2.5 and temperature. However, temperature is not one of the 
predictors considered in the regression model used in Section 5. I assume this may be due to 
the correlation between temperature and relative humidity, and the presence of temperature 
in the PC used, however this is not discussed. I believe an improved description of the 
motivation for each approach, as well as what unique and shared information can be drawn 
from them would be beneficial. 
 

We mentioned in the text (paragraph 3 of Sect. 6) that we did not see significant 
correlation between annual mean temperature and PM2.5 (r = 0.18), indicating 
temperature is not the main driver of interannual PM2.5 variability. To improve the 
connection between analysis (1) and (3) and in response to the reviewer’s concern, we 
now extend the discussion in paragraph 3 of Sect. 5: 
 
“… Annual mean RH has a positive correlation with PM2.5 (r = 0.49), which is 
consistent with Sect. 3 where we found higher RH coinciding with higher PM2.5 on 
the daily timescale. Adding RH helps explain an additional 9% interannual PM2.5 
variability, and the two predictors in total give an adjusted R2 value of 31%. … 
Although temperature has a strong daily correlation of r = 0.6 with PM2.5 in the 
correlation analysis in Sect. 3, annual mean temperature does not appear to 
correlate significantly with annual mean PM2.5 (r = 0.18) and was not selected by 
the forward selection algorithm. Annual mean temperature also has a weak 
correlation with springtime Siberian high fluctuation frequency (r = –0.25), 
which indicates that more frequent synoptic fluctuations have only little bearing 
on annual mean temperature, and that the strong daily PM2.5-temperature 
covariation is mostly a manifestation of synoptic influence. Other annual mean 
local meteorological variables all have insignificant correlations with annual 
mean PM2.5.” 
 
Moreover, to better connect between analysis (1) and (2), we show that the percentage 
of PM2.5 variability explained by local meteorology that is independent of synoptic 
meteorological modes can be inferred from the PCR model. This answers the question 
of how much PM2.5 variability explained by local meteorological variables in Sect. 3 
is from synoptic effects. In p.9, line 4: 
 

“… Any PC which has an SSR/SST more than half of that of the dominant PC in a 
given season is also recognized as an important PC for that region. The total 



percentage of PM2.5 variability explained by the K dominant synoptic modes in a 
region can be written as: 
𝑹synoptic𝟐 = ∑ 𝑹synoptic,𝒋𝟐𝑲

𝒋        (6b) 
The PCR model also allows us to separate between synoptically driven and locally 
driven PM2.5 variability from the total meteorologically driven PM2.5 variability. 
Regressing PM2.5 using all eight individual meteorological variables yields a total 
R2 value, which entails both synoptically and locally driven PM2.5 variability, as 
discussed in Sect. 3. Using R2 and R2synoptic from the PCR model, we can infer the 
variability explained by local meteorology alone unrelated to synoptic modes, 
using: 
𝑹local𝟐 = 𝑹𝟐 − 𝑹synoptic𝟐       (6c) 
where R2local indicates the overall locally driven PM2.5 variability.” 
 
The corresponding results are also included for all four regions, as explained above in 
our response to point 3 of the first reviewer. 
 

 
- The authors’ analysis of climate change impacts on PM2.5 is unconvincing. The multimodel 
ensemble reflects a very high uncertainty in projections of relative humidity and frequency of 
springtime among the CMIP5 simulations. A regression model based only 2 predictors with a 
R2=0.31, which projects a very small change in PM2.5 (-0.13±2.10) for which even the sign 
of change is highly uncertain, is used to draw the conclusion that there will be a more likely 
than not decrease in PM2.5 pollution due to climate change in the region. I also found the 
description and results interpretation of the Monte Carlo analysis to be incomplete. Given 
the limitations of the modeling approach and the high uncertainties encountered, I felt the 
analysis described in section 5 does not truly suggest a climate benefit for PM2.5 in the BTH 
region, but rather demonstrates that the evidence of a climate-induced impact is 
inconclusive. This would agree with other global and US studies that have shown how 
challenging it may be to robustly project a climate-induce change on regional air quality by 
midcentury under natural variability and the large uncertainties in climate projections. 
 

We agree with the reviewer’s opinion that our PM2.5 prediction is small, with large 
uncertainty that comes more from the intermodal differences among climate 
projections than the statistical model. We found an adjusted R2 value of 0.31 using 
two meteorological predictors, which we believe is moderately high, given that 
emission-driven interannual variability was also not considered in the model, and the 
robustness is on par with previous work on PM2.5-meteorology relationships. The 
main source of uncertainty comes from the CMIP5 intermodel differences especially 
for future RH change, leading to high uncertainty of the RH-induced PM2.5 projection. 
However, PM2.5 change due to future change in Siberian high fluctuation alone is 
statistically significant (p-value = 0.046). To further improve the statistical 
robustness, we now introduce a weighting algorithm by Tebaldi et al. (2005) that 
compare the climatological means of present-day simulations from each of the CMIP5 
models to those of reanalysis data, so that the ensemble mean is now a weighted mean 
that discounts underperforming models with respect to RH or cold frontal frequency, 
instead of a simple mean over all 15 models. The Monte-Carlo simulation of PM2.5 
changes before (left) and after (right) using the weighting algorithm is plotted below: 
 



              
 
The frequency-induced PM2.5 change increases in magnitude from –0.34±0.63 µg m-3 
to –0.46±0.28 µg m-3, and the RH-induced PM2.5 change goes from +0.21±1.78 µg m-

3 to –0.21±1.44 µg m-3. The weighting algorithm does not significantly reduce the 
uncertainty of RH projection since the CMIP5 models have more or less equally poor 
performance on present-day simulations. In response to the reviewer’s concern, we 
would maintain the conclusion of frequency-induced PM2.5 change while 
deemphasizing the RH-induced change, and state that the RH-induced result is 
inconclusive due to the high uncertainty of CMIP5 RH projections. We now replace 
the original figures in Fig. 8 with the new results, and modify the statements in the 
last two paragraphs of Sect. 5 accordingly: 
 
“We find that 10 of the 15 models project an increase in this synoptic frequency 
(Fig. 8a).  Based on the weighting algorithm to discount poorly performing 
models, we project an overall very likely (i.e., 90–100% likelihood according to 
Box TS.1 in Stocker et al., 2013), statistically significant increase (p-value = 
0.0008) in the frequency of synoptic-scale fluctuation of the Siberian high by 
1.46±0.39 yr-1 by the 2050s (Fig. 8b). …” 
 
“Figure 8c and 8d show the corresponding future PM2.5 changes from the 
baseline value of 57.2 µg m-3 in the 2000s. Across the model results, we find an 
overall PM2.5 change by –2.10 to +3.19 µg m-3 due to changing RH, and by –1.45 
to 0.92 µg m-3 due to changing synoptic frequency. From the Monte-Carlo 
sampling of the performance-weighted distribution of meteorological changes 
and uncertainties of statistical parameters, the RH-induced PM2.5 change is –
0.21±1.44 µg m-3 (p-value = 0.58), and the frequency-induced PM2.5 change is –
0.46±0.28 µg m-3 (p-value = 0.028, 97% likelihood) (Fig. 8d). While the RH-
induced PM2.5 change is statistically insignificant and its sign inconclusive, we 
show that the higher frequency of fluctuation in the Siberian high alone, through 
enhancing cold-frontal frequency, could lead to a very likely reduction in annual 
mean PM2.5 and thus constitute a slight climate “benefit” for PM2.5 air quality 
over BTH of China. We find that the greatest uncertainty stems from large 
intermodel differences in the future projections of RH, which are much larger than 
those in the synoptic frequency projections. The regression coefficients have 
relatively moderate standard errors (Table 2) and contribute only little to the 
overall projection uncertainty.” 
 
We also modify the relevant discussion parts in paragraph 3, Sect. 6: 



 
“… Intermodel differences in the projected changes in RH are much larger than that 
in synoptic frequency of fluctuation in the Siberian High, owing to the high 
inconsistency in future projections of atmospheric humidity, especially on a regional 
scale (IPCC, 2013). We combine the ensemble projection of RH and synoptic 
frequency with the PM2.5-to-climate sensitivity from our statistical model to 
project future PM2.5 changes, with uncertainties quantified using a Monte Carlo 
approach. While the RH-induced PM2.5 change is insignificant and inconclusive, 
we project for the 2050s a statistically significant and very likely (~97% 
likelihood) decrease in PM2.5 of –0.46±0.28 µg m-3 due to increasing frequency in 
the fluctuation of the Siberian high. The overall projection is inconclusive mostly 
due to the highly uncertain RH projections. Our prediction is comparable in 
magnitude with other studies (e.g., Jiang et al., 2013), as well as future predictions 
done for the US (Shen et al., 2017; Tai et al., 2012b; Pye et al., 2009; Avise et al., 
2009) and Europe (Juda-Rezler et al., 2012), but much smaller in magnitude than 
the baseline value of 57.2 µg m-3 in the 2000s, suggesting that the “climate 
benefit” from higher synoptic frequency is rather small especially in comparison 
with what emission control effort could do to curb PM2.5 concentrations in 
China. Jiang et al. (2013) projected changes of PM2.5 over China due to climate 
change alone under IPCC A1B scenario, and the resulting change over BTH is about 
+1 µg m-3 averaged annually. They attributed their predictions to: 1) changing 
precipitation that leads to a change in wet deposition; and 2) increasing temperature 
that results in more volatilization of nitrate and ammonium, which differs from our 
conclusion that cold-frontal ventilation dominates the PM2.5-temperature 
correlation and total PM2.5 response. Our statistical results…” 
 
The abstract is also modified: 
 
“…We apply the resulting PM2.5-to-climate sensitivities to IPCC Coupled Model 
Intercomparison Project Phase 5 (CMIP5) climate projections to predict future PM2.5 
by 2050s due to climate change, and find a modest decrease of ~0.5 µg m-3 in annual 
mean PM2.5 in the BTH region due to more frequent cold-frontal ventilation under 
the RCP8.5 future, representing a small “climate benefit”, but the RH-induced 
PM2.5 change is inconclusive due to the large intermodel differences in RH 
projections.” 
 
On the other hand, we now include a more detailed description of the weighting 
algorithm as well as the Monte-Carlo method in paragraph 4, Sect. 5: 
 
“…We diagnose the 2000–2050 changes in the decadal averages of these variables 
and the median frequencies of the constructed PCs (Fig. 8a). To obtain an ensemble 
mean and distribution of the meteorological changes (Fig. 8b), we apply the 
weighting algorithm of Tebaldi et al. (2005) to the CMIP5 model outputs, which 
can discount any poorly performing models yielding meteorology that diverges 
from the present-day observations (using NCEP/NCAR reanalysis data in this 
study), and that diverges too much from the weighted ensemble mean, by giving 
those models a lower weight in the calculation of the ensemble mean and 
distribution.” 
 



“We combine the meteorological changes with the PM2.5-to-climate sensitivities 
(i.e., regression coefficients in Table 2) to obtain an estimate for the 2000–2050 
change in annual mean PM2.5 due to climate change alone (Fig. 8c), according to 
the following formula: 
𝚫PM2.5 = ∑ 𝝏PM2.5

𝝏𝒙𝒊
𝚫𝒙𝒊𝑵

𝒊       (7) 
where ΔPM2.5 is the total PM2.5 change due to climate change, N is the total 
number of predictors selected by the forward selection algorithm, and Δxi is the 
change of the ith predictor selected by the algorithm. Here we make the 
“stationarity” assumption that the PM2.5-to-climate sensitivities, ∂PM2.5/∂xi, 
remain unchanged in the near future. We then use a Monte-Carlo approach to 
characterize the probability distribution and statistical significance of the changes in 
PM2.5 concentration arising from the uncertainties of the regression coefficients in the 
MLR model, as well as from the differences in model physics among CMIP5 models. 
Our approach involves repeated (>5000 times) sampling of regression 
coefficients of the MLR model from their distributions as parameterized by the 
means and standard errors in Table 2, along with the sampling of the 
performance-weighted ensemble distributions of meteorological changes from 
the Tebaldi et al. (2005) algorithm. The sampling distributions are aggregated in 
accordance with Eq. (7) to obtain the final distributions of PM2.5 changes for 
each predictor and the sum of the two (Fig. 8d).” 
 

 
- Although the manuscript is well-written, the introduction includes some odd wording and 
grammatical mistakes. I recommend a careful review of this section by a native English 
speaker. 
- Page 2, line 3-4: “attributed” is used incorrectly 
- Page 2, line 3-4: “attribute” is used incorrectly 
- The 2nd paragraph in the introduction should probably be combined with the first. As is, 
the second paragraph seems repetitive and oddly placed. 
 

It is now revised as suggested. To avoid overly long paragraphs, part of the second 
paragraph is moved to the first. Now the first paragraph of the introduction reads: 
 
“Air pollution caused by high surface concentrations of particulate matter (PM) and 
ozone in megacities are of utmost public health concern in China nowadays (Xu et al., 
2013). China has experienced deteriorating air quality since the 1990s due to 
rapid industrial and economic development. Episodes of haze and smog pollution 
with dangerous levels of fine particulate matter (PM2.5, particles with an 
aerodynamic diameter of or less than 2.5 µm) are becoming more common in the 
most developed and highly populated city clusters in China (Chan et al., 2008; 
Zhang et al., 2007; Zhang et al., 2014). For example, annual mean PM2.5 
concentration in Beijing increased dramatically from 12 µg m-3 in 1973 to 66 µg 
m-3 in 2013 (Han et al., 2016), with an average growth rate of +0.7 µg m-3 yr-1 for 
the past four decades. Outdoor air pollution in China alone has been shown to cause 
over one million premature deaths every year (Cohen et al., 2017). Many 
epidemiological studies have documented the harmful effects of PM2.5 on 
cardiovascular and respiratory health (Cao et al., 2012; Krewski et al., 2009; 
Madaniyazi et al., 2015; Pope and Dockery, 2006). Urban PM2.5 originates from 
many sources including power plant, industry, vehicular emissions, road and soil 



dust, biomass burning, and agricultural activities (Zhang et al., 2015), but the 
regional concentrations are also strongly dependent on pan-regional transport 
(e.g., Jiang et al., 2013) and ventilation by atmospheric circulation (e.g., Chen et 
al., 2008; Zhang et al., 2012; Zhang et al., 2016).” 

 
- Page 5, line 2: 1497 monitors seems like a large number of monitors; are all plotted in 
figure 1? 
 

Yes, all monitors are plotted in Fig. 1. Many of them are concentrated over the 
metropolitan regions and are stacked on top of each other in the plot. 
 

 
- Page 5, line 19-22: The description of how the AOD-based PM2.5 concentration fields are 
derived is unclear (e.g. what model simulation?). Improve this description. 
 

We now extend the discussion in p.5, line 29: 
 
“… Total column aerosol optical depth (AOD) retrievals from multiple satellite 
instruments and model simulations, such as the MODerate resolution Imaging 
Spectroradiometer (MODIS), the Multiangle Imaging SpectroRadiometer 
(MISR), and the GEOS-Chem chemical transport model, were weighted by the 
ground-based AOD observations from the Aerosol Robotic Network 
(AERONET) sun photometers. The daily AOD and near-surface PM2.5 were 
simulated by GEOS-Chem to obtain the AOD-PM2.5 relationship, which were 
applied to the satellite AOD retrievals to yield weighted PM2.5 concentrations. 
Annual mean values of PM2.5 were computed and then calibrated to ground-based 
PM2.5 observations using the Global Geographically Weighted Regression (GWR) 
method (Brunsdon et al., 1996). Figure S1 shows…” 
 

 
- Section 3 and figure 2. The authors mention that PM2.5 sites in much of southwestern 
China are relatively sparse and these regions are excluded from the analysis. However, it 
seems that in correlation analysis in section 3, the entire country is considered. Figure 2 does 
not indicate a difference between grid cells that were excluded or those that are included but 
have correlation coefficients near 0. I would recommend clearing indicating cells in excluded 
regions (e.g. coloring them gray) and not drawing any conclusions from those locations. 
 

We understand the reviewer’s concern, but we think it is still worth keeping those 
remote gridboxes colored for the readers’ reference. Although we did not draw any 
conclusions from most of western China, colored gridboxes mean that the results are 
still statistically significant and credible. The method of interpolation assumes that the 
PM2.5 level and temporal variability in a gridbox can be inferred from any sites within 
some search distance (dmax = 500 km in this paper). If a gridbox contains no PM2.5 
sites but its gridded PM2.5 still yields significant correlations, it should have captured 
the PM2.5-meteorology relationships at least some sites in its neighboring gridbox, but 
interpretation would be more difficult. To be consistent, we prefer to keep these 
statistically significant correlation values in the maps. 
 

 



- Section 3 and figure 2: Some of the correlations between PM2.5 and meteorological 
variables reported and mapped are very small, yet the authors still draw conclusions above 
how some of these may drive PM2.5 concentrations. For example, the correlation coefficients 
for precipitation, pressure tendency and windspeed tend to be below 0.2. Is it still 
appropriate to draw about the interactions between these variables and PM2.5 
concentrations if they explain <5% of the variance? 
 

We think it is appropriate to gain some meaningful physical insights from the 
correlation plots even when the correlation is below |r| = 0.2, since we define the term 
“statistical significant” to be correlation with p-value ≤ 0.05 which correspond to 95% 
confidence level (equivalent to |r| ³ 0.06). In consideration of using 3 years (1096 
days) of data to compute the correlations, we believe a correlation of 0.2 is enough to 
warrant physical interpretation.  
 

 
- Following the previous comment, for example, why would the correlation between 
precipitation and PM2.5 be positive over parts of central and western China? 
 

It is because precipitation is strongly correlated with RH; even a small amount of 
rainfall in central and western China can be enough to increase water content and 
encourage aerosol formation while having minimal effect on wet deposition. Since the 
true driver of aerosol is RH, the correlation map of precipitation is similar but weaker 
in magnitude than that of RH. We now extend the text in paragraph 3 of Sect. 3: 
 
“… As can be seen in Fig. 2c, negative correlation of precipitation with PM2.5 in 
southern China is very similar to that of RH in Fig. 2b, likely reflecting the 
association of high RH with precipitation (Fig. 2c) and onshore wind (Fig. 2f) which 
can facilitate PM2.5 deposition or ventilation (Zhu et al., 2012). Such a strong 
association between RH and precipitation may also explain the apparently 
positive correlation between precipitation and PM2.5 in northern China, where 
RH-promoted aerosol formation is likely more important than wet deposition in 
the overall relationship.” 
 

 
- Figure 2: Remove the statistically insignificant vectors from panel (g). 
 

We have now removed the statistically insignificant vectors with p-value > 0.05 
(equivalent to vector length |r| < 0.06), and Fig. 2g now looks like this: 
 

 



 
 
- Page 6, line 35: I am not sure I clearly see the 2 divergent wind patterns on the map, and I 
am not sure the author’s conclusion that “wind transports pollutant from source regions to 
the peripheries” is substantiated. Which are the sources in these 2 locations? 
 

Here we plot the mass divergence map according to the vector plot above, using the 
continuity equation in Eulerian form: 

−
∂𝜌
∂𝑡 = ∇ ∙ (𝜌𝑉Y⃗ ) = [

𝜌\-],^𝑢\-],^ − 𝜌\0],^𝑢\0],^
2∆𝑥 +

𝜌\,^-]𝑣\,^-] − 𝜌\,^0]𝑣\,^0]
2∆𝑦 e 

where 𝜌 is the average mass concentration of PM2.5, and 𝑉Y⃗ = (𝑢, 𝑣) is the correlation 
vector in the above plot. For simplicity, we assume Δx = Δy = constant everywhere. 
The map is shown below: 

 
The map has a unit of µg m-3 day-1, indicating the mass flux (divergence is red). We 
can compare this map with the above vector plot, and see that the two strongest 
divergent patterns are over BTH and Xinjiang, where PM2.5 is advected out of the grid 
cells. The two regions are surrounded by the light blue colors, indicating the 
peripheries are affected by pollution from the source regions. As we pointed out in the 
paper, anthropogenic emission is the main source of pollution over BTH, whereas 
dust emission is the main source over Taklimakan desert in Xinjiang. We now include 
these results in the supplement, which are referred to in paragraph 5 of Sect. 3: 
 
“Figure 2g shows the correlation of wind direction with PM2.5, in which arrow 
directions indicate wind directions associated with increasing PM2.5. The 
corresponding mass divergence map together with its calculation is shown in the 
supplement (Fig. S3). For instance, PM2.5 increases with southeasterly wind for the 
whole eastern and northeastern China with a correlation of r = 0.3 on average. … 

 
- Section 5: The regression model explains about 30% of the variance in annual PM2.5 in the 
BTH region. Is this correlation strong enough to draw conclusions about the climate 
“benefit” under the RCP scenario? I recommend discussing how this meteorology-driven 
climate impact is expected to compare with other drivers of PM2.5 change along this 
emissions pathway. 
 



This concern has mostly been addressed above (see our response to point (2) above). 
We now further add to paragraph 3 of Sect. 5: 
 
“… Adding RH helps explain an additional 9% interannual PM2.5 variability, and the 
two predictors in total give an adjusted R2 value of 31%, which represents a 
reasonably high value for a linear model, given that nonlinear PM2.5-meteorology 
interactions and emission-driven PM2.5 variability are not included in the 
model. …” 

 
 
- Page 11, line 33: If the correlation with RH is statistically insignificant, do not report the 
value. 
 

We removed the numbers in the conclusion section, but kept the numbers in Sect. 5 
for the readers’ own comprehension. 
 

 
- Page 12, line 24: Change Monta to Monte 
 

(Page 12, line 24) Revised as suggested. 


