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 11 

Abstract. Clouds play a key role in radiation and hence O3 photochemistry by modulating photolysis 12 

rates and light-dependent emissions of biogenic volatile organic compounds (BVOCs). It is not well 13 

known, however, how much error in O3 predictions can be directly attributed to that in cloud predictions. 14 

This study applies the Weather Research and Forecasting with Chemistry (WRF-Chem) at 12 km 15 

horizontal resolution with the Morrison microphysics and Grell 3D cumulus parameterization to 16 

quantify uncertainties in summertime surface O3 predictions associated with the cloudiness over 17 

contiguous United States (CONUS). To evaluate the model’s own clouds and to restrain the growth of 18 

model errors, the model is driven by reanalysis atmospheric data and reinitialized every 2 days. In 19 
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sensitivity simulations, cloud fields used for photochemistry are corrected based on satellite cloud 20 

retrievals. The results show that WRF-Chem predicts about 55% of clouds in the right locations and 21 

generally underpredicts cloud optical depths. These errors in cloud predictions can lead up to 60 ppb 22 

overestimation in hourly surface O3 concentrations on some days. The average difference in 23 

summertime surface O3 concentrations derived from the modeled clouds and satellite clouds ranges 24 

from 1 to 6 ppb for the 8-h average O3 over CONUS. This represents up to ~40% of the total 8-h 25 

average O3 bias under cloudy conditions in the tested model version, and the results are robust with 26 

respect to the choice of the microphysics scheme. Surface O3 concentrations are sensitive to cloud 27 

errors mainly through the calculation of photolysis rates (for ~80%), and to a lesser extent to light-28 

dependent BVOC emissions. The sensitivity of surface O3 to satellite-based cloud corrections is about 2 29 

times larger in VOC-limited than NOX-limited regimes. Our results suggest that the benefits of accurate 30 

predictions of cloudiness would be significant in VOC-limited regions which are typical of urban areas. 31 

 32 

1. Introduction 33 

Ozone (O3) is a secondary pollutant that is formed by chemical reactions involving nitrogen oxides 34 

(NOX = NO + NO2) and volatile organic compounds (VOCs) in the presence of ultraviolet radiation. 35 

Because O3 is a harmful pollutant and a greenhouse gas, there have been numerous efforts aimed at 36 

improving O3 predictions in air quality models, i.e. through a better characterization of the emissions of 37 

O3 precursors (Brioude et al., 2013), more detailed chemical mechanisms (Carter, 2010; Sarwar et al., 38 

2013), more realistic lateral boundary conditions (e.g., Tang et al., 2009), and improved representation 39 
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of meteorological fields with ensemble modeling techniques (Bei et al., 2010; Zhang et al., 2007). A 40 

comprehensive review of the current status and challenges of air quality forecasting is given by Zhang 41 

et al. (2012). A large O3 bias that still persists in most regional and global models is one of the 42 

challenges (Brown-Steiner et al., 2015; Fiore et al., 2009; Im et al., 2015; Lin et al., 2017; Travis et al., 43 

2016). The recent multi-model intercomparison study by Im et al. (2015) indicates that over North 44 

America models tend to overestimate surface O3 below 30 ppb by 15–25% and to underestimate O3 45 

levels above 60 ppb by up to ~80%. It is not quantitatively understood how much the individual 46 

processes contribute to O3 biases. Among meteorological parameters, clouds can be one of the key 47 

factors because they greatly modulate the ultraviolet radiation that is critical for O3 formation. However, 48 

they remain one of the largest sources of uncertainties in air quality modeling as Dabberdt et al. (2004) 49 

pointed out a decade ago. Accurate cloud predictions in numerical weather models are still challenging, 50 

and it has not yet been quantified how much errors in cloud prediction impact surface O3 predictions.  51 

As satellite cloud products have emerged, providing reasonably accurate data with wide coverage and 52 

high temporal resolutions in near-real time (e.g., Minnis et al., 2008), they have been employed in 53 

various studies to quantify the effects of clouds on actinic fluxes and/or photolysis rates (Mayer et al., 54 

1998; Ryu et al., 2017; Thiel et al., 2008). Clouds can greatly reduce or enhance actinic flux below, 55 

above, and inside clouds, and these effects depend mainly on the cloud optical properties. Ryu et al. 56 

(2017) used satellite cloud retrievals of cloud bottom and top heights and cloud optical depth (COD) in 57 

a radiative transfer model, and showed that one can obtain fairly good (within ±10%) vertical 58 

distributions of cloudy-sky actinic flux using satellite cloud properties. There are, however, only a 59 

limited number of studies that have examined the impact of satellite-constrained clouds and photolysis 60 
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rates on O3 formation. Pour-Biazar et al. (2007) and Tang et al. (2015) used satellite-observed clouds to 61 

correct photolysis rates in a three-dimensional chemistry transport model and reported considerable 62 

improvement in surface O3 simulations. Pour-Biazar et al. (2007) showed that the difference in O3 due 63 

to the errors in cloud predictions can be up to 60 ppb for a given pollution episode over the south US. 64 

Tang et al. (2015) showed that 1-month averages of 8-h surface O3 can differ by 2–3 ppb between the 65 

simulations using satellite-derived clouds and model-predicted clouds over the south US. These studies 66 

were performed for rather short time periods (a week or a month) over limited areas, and provide 67 

motivation for a more systematic/comprehensive quantification of the importance of cloud errors in O3 68 

predictions in summertime and for various chemical regimes. 69 

In the present study, we use satellite-derived COD and cloud boundaries to constrain radiation fields 70 

that impact photochemistry, i.e., photolysis rates and light-dependent BVOC emissions, in a three-71 

dimensional chemistry transport model (WRF-Chem). Our study targets the contiguous United States 72 

(CONUS) and numerical simulations are performed for June–September 2013. The WRF-simulated 73 

clouds are first evaluated against the Geostationary Operational Environmental Satellite (GOES) data 74 

(section 3). The vertical profiles of NO2 photolysis rates are evaluated against in-situ airborne 75 

measurements during two field campaigns (section 4). The O3 biases arising from inaccurate cloud 76 

predictions are quantified, and discussed in light of the sensitivity of O3 chemistry to COD (section 5). 77 

Unlike the previously mentioned studies, here we quantify separately the contributions of errors arising 78 

from changes in photolysis rates altered by clouds vs. those arising from light-dependent BVOC 79 

emissions to the O3 biases. Conclusions and discussion are given in section 6. 80 
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2. Methodology 81 

2.1. Satellite retrievals 82 

The GOES retrievals were performed using the Satellite ClOud and Radiation Property Retrieval 83 

System (SatCORPS), which is an adaptation of the Minnis et al. (2011) algorithms for application to 84 

imagers on all geostationary weather satellites (Minnis et al. 2008) and on NOAA and MetOp satellites 85 

(Minnis et al. 2016). For SatCORPS, the algorithms of Minnis et al. (2011) were altered as described by 86 

Minnis et al. (2010) using the low-cloud height estimation method of Sun-Mack et al. (2014) and the 87 

severely roughened hexagonal column optical model of Yang et al. (2008) for ice cloud COD retrievals. 88 

This study uses a subset of the hourly, 8-km  SatCORPS cloud retrievals from GOES 13 (GOES-East) 89 

and GOES 15 (GOES-West) for the North American domain. The 8-km resolution is achieved by 90 

analyzing only every other 4-km pixel and line. Each pixel is considered to be either 100% cloudy or 91 

100% clear. Of the variety of cloud properties available, this study only uses cloud bottom height, cloud 92 

top height, and COD. Uncertainties in the cloud products are summarized by Ryu et al. (2017).   93 

Images from coincident times were unavailable for the two satellites: the GOES 13 and GOES 15 data 94 

are offset by 15 min. The GOES 13 data taken at UTC + 45 min at every hour were matched with the 95 

GOES 15 data at UTC + 00 min. The pixel-level retrievals were re-gridded to a 12-km resolution to 96 

match the WRF-Chem domain (see section 2.2) using the Earth System Modeling Framework (ESMF) 97 

software and the nearest-neighbor interpolation. Because of the coverage difference between the two 98 

satellites, the data of the nearest time from the two satellites (e.g., 1845 UTC from GOES 13 and 1900 99 

UTC from GOES 15) are merged at 105°W, which is equidistant from the two sub-satellite longitudes. 100 

Only daytime hours (09–23 UTC and 00–04 UTC) are used here.  101 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-914
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 3 November 2017
c© Author(s) 2017. CC BY 4.0 License.



6 
 

 102 

2.2. WRF-Chem model simulations 103 

The present study employs the WRF-Chem model version 3.6.1. with the updated photolysis scheme. A 104 

single domain is used with a horizontal grid size of 12 km (Fig. 1). The meteorological initial and 105 

boundary conditions are provided by the NCEP FNL (Final) Operational Global Analysis data with a 106 

horizontal resolution of 1°, which are available every 6 hours. The model is initialized at 00 UTC 1 June 107 

2013 and spun-up for the first 10 days in the control simulation (CNTR simulation). The meteorological 108 

fields are re-initialized every 48 hours at 06 UTC of a given day to avoid the growth of model errors, 109 

and the model is run for 54 hours. Here, the first 6 hours are allowed for spin-up and discarded in each 110 

run. The model outputs for the period of 12 UTC 11 June 2013 through 12 UTC 1 October 2013 are 111 

used for the analysis. As the goal of the study is to use and evaluate the modeled clouds and their impact 112 

on O3 predictions, nudging is not used. This is different from many previous air quality studies that 113 

nudged the meteorology and evaluated modeled O3 with observations. The physics options used are the 114 

Morrison two-moment scheme (Morrison et al., 2009) for the microphysics, RRTMG scheme for 115 

longwave and shortwave radiation (Iacono et al., 2008), MYNN 2.5 level TKE scheme for the boundary 116 

layer parameterization (Nakanishi and Niino, 2006), MYNN surface layer scheme, Noah land surface 117 

model (Chen and Dudhia, 2001), and Grell 3D ensemble scheme (Grell and Devenyi, 2002) for cumulus 118 

parameterization with radiation feedback. The initial and boundary conditions for chemical species are 119 

obtained from the Model for OZone And Related chemical Tracers (MOZART) global simulation of 120 

trace gases and aerosols. For each 2-day simulation, the chemical state of the atmosphere at 06 UTC is 121 

obtained from that at 06 UTC of the previous simulation. The MOZART-4 mechanism is used for gas-122 
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phase chemistry as described in Knote et al. (2014), and the Model for Simulating Aerosol Interaction 123 

and Chemistry (MOSAIC) aerosol module with 4 bins is used for the aerosol chemistry. Anthropogenic 124 

gas and aerosol emissions are adopted from the AQMEII project in which the emissions were projected 125 

to 2010 from the NEI 2008 inventory (Campbell et al., 2015). Since Travis et al. (2016) reported that 126 

NEI NOX emissions are too high, we reduced NOX emission by 40% following their analysis. Note that 127 

the NOX and PAN from the lateral boundaries are also reduced by 40% in our study. Biomass burning 128 

emissions are taken from the Fire Inventory from NCAR (FINN) (Wiedinmyer et al., 2011). Model of 129 

Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006) version 2.04 is used 130 

for BVOC emissions. As done in Travis et al. (2016) to better match isoprene flux observations during 131 

the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional 132 

Surveys (SEAC
4
RS) field campaign (Toon et al., 2016), we reduced MEGAN isoprene emissions by 15% 133 

over the southeast US. The photolysis rate calculations utilize the newly implemented TUV option in 134 

the WRF-Chem model (Hodzic et al., 2017 in preparation). This new TUV option uses the updated 135 

cross section and quantum yield data based on the latest stand-alone TUV model version 5.3, and 136 

considers 156 wavelength bins with the resolutions of 1–5 nm. The COD is calculated based on the 137 

parameterization given in Chang et al. (1987), which uses cloud liquid water and/or ice water contents 138 

and effective droplet radius (assumed to be 10 μm both for liquid and ice droplets). To represent subgrid 139 

cloud overlaps, a simple equation of Briegleb (1992) is used, i.e., the effective COD = COD0 × (cloud 140 

fraction)
1.5

, where COD0 is the cloud optical depth that is calculated following Chang et al. (1987), and 141 

the cloud fraction is determined based on the relative humidity in a given grid box. According to 142 
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Briegleb (1992), applying a power of 1.5 to the cloud fraction is equivalent to the maximum random 143 

overlap.  144 

In the present study, we performed two sets of simulations that use WRF generated clouds in the CNTR 145 

simulation and the GOES clouds in the GOES simulation. The GOES simulations are conducted from 146 

06 UTC 11 June 2013 through 12 UTC 1 October 2013. The initial chemistry conditions in the GOES 147 

simulation are adopted from the outputs of the CNTR simulation at 06 UTC 11 June 2013. The satellite 148 

cloud retrievals are used only to correct photolysis rate and photosynthetically active radiation (PAR) 149 

calculations (i.e., only within the TUV model in WRF-Chem). That is, the satellite cloud information is 150 

not linked to dynamics, microphysics, and atmospheric radiation. The value of COD is linearly 151 

distributed through vertical grids from the cloud bottom to the cloud top within the TUV model as done 152 

in Ryu et al. (2017). This method is different from the one used in Pour-Biazar et al. (2007) and Tang et 153 

al. (2015) in which cloud bottom height used in their photolysis rate calculations is estimated from the 154 

meteorological model rather than retrieved from the satellite. The use of model estimates can lead to 155 

additional uncertainties in the case of misplaced model clouds compared to observations.  156 

In the present study, PAR calculated from the TUV model is used for the BVOC emissions in MEGAN 157 

for all simulations. This is different from the PAR conventionally used in MEGAN, which is simply 158 

converted/scaled from the downward shortwave radiation from the atmospheric radiation scheme. In the 159 

CNTR (GOES) simulation, the WRF generated clouds (GOES clouds) are used for the PAR calculation 160 

within the TUV model.  161 
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To examine the impact of changes in BVOC emissions on surface O3, another set of sensitivity 162 

simulation (EMIS_BVOC simulation) is performed for 10 days (3–12 July 2013), which uses WRF-163 

generated clouds for the PAR calculation and BVOC emissions as in the CNTR simulation but uses the 164 

GOES clouds for photolysis rate calculations as in the GOES simulation. The description of the control 165 

and sensitivity simulations is summarized in Table 1. 166 

  167 

2.3. Observational data 168 

2.3.1. Aircraft data from field campaigns 169 

We evaluate the model performance using airborne measurements made during two field campaigns in 170 

2013, i.e., the NOMADSS (Nitrogen, Oxidants, Mercury and Aerosol Distributions, Sources and Sinks) 171 

and the SEAC
4
RS campaigns. The detailed description of the instrument and measurement data is given 172 

in Ryu et al (2017). The NOMADSS campaign was conducted during 1 June–15 July 2013 mainly over 173 

the southeast US. We use 16 flight-day data at 1-min time intervals for the analysis. Data with solar 174 

zenith angles larger than 85° are not used. The fire plume data are filtered out by excluding the data 175 

showing NO2 (> 0.1 ppb) or CO (> 120 ppb) aloft at 4–7 km level. Based on the GOES cloud data, 68% 176 

of flight data are characterized by clear skies and the remaining data (32%) had clouds in the vertical 177 

column where the airplane was located. The SEAC
4
RS campaign also targeted the southeast US 178 

although the airplane sometimes flew over a larger region including California and Midwestern US. The 179 

period used for the analysis is from 6 August through 23 September 2013, which includes 21 flight days. 180 

The time intervals are also 1-min and the data with large solar zenith angles (> 85°) and with fire 181 
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plumes are filtered out. The fraction of data with clouds is 41% for SEAC
4
RS. It is noteworthy that 182 

SEAC
4
RS measurements include large and thick clouds in some cases as a few of the campaign goals 183 

are to identify the role of deep convection in redistributing pollutants and aerosol-clouds feedbacks, 184 

whereas the clouds during NOMADSS were mostly broken clouds.  185 

2.3.2. Ground ozone data 186 

The United States Environmental Protection Agency (EPA) hourly O3 measurements are used for the 187 

analysis. To examine the sensitivity of O3 to COD in different chemical regimes, the VOC- and NOX-188 

limited regimes are identified using the ratio of O3/NOy, following (Sillman and He (2002). They 189 

reported that the NOX-VOC transition occurs when O3/NOy = 4–6. Thus, an EPA site is denoted as a 190 

VOC-limited (NOX-limited) regime when the ratio is less than 4 (greater than 6). Among 1,299 EPA 191 

sites, 1,062 are used for the analysis: 24% of the sites are in the VOC-limited and 76% in NOX-limited 192 

regimes. The remaining 237 sites are not used in the present study because those sites fall into the 193 

transitional zone, i.e., O3/NOy = 4–6. 194 

3. Evaluation of WRF clouds with satellite measurements  195 

The model bias in the cloud spatial coverage is evaluated using a 2×2 contingency table (Table 2), 196 

where A and D correspond to hit and correct negative events, respectively, and B and C to false alarm 197 

and miss events, respectively. Here, a threshold of 0.3 in hourly COD is used to distinguish between 198 

clear and cloudy sky as the lowest detection limit of satellite retrieved COD over land is estimated to 199 

0.25 in Rossow and Schiffer (1999), and the use of 0.3 poses slightly stricter conditions for cloudiness. 200 

The agreement index, which is defined as A+D (WRF predicts correctly cloudy or clear skies), is 69.7% 201 
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and the probability of detection (POD) for clouds, A/(A+C), is 55.6%. It is found that the fraction of 202 

errors in missing clouds (C, 19.8%) is larger than that of predicting wrong clouds (that are not present in 203 

reality) (B, 10.4%). The WRF underestimates the frequency of cloudy skies as the ratio of (A+B)/(A+C), 204 

0.789, indicates smaller than 1. Figure 1 shows the spatial distribution of each contingency category 205 

over CONUS as averaged over the whole study period. In general, the eastern US shows higher cloud 206 

frequencies than the western US except for the mountain regions and northwestern US. The largest 207 

agreement index appears in the central California where the sky condition is mostly clear (Fig. 1d). In 208 

terms of errors, the missing clouds rate has its highest frequency (20−35%) in the Midwestern and 209 

northwestern US, while the highest frequency of false alarm (20–30%) occurs over the southeast US 210 

and the southeastern Texas. The sum of category B and C can be found in supplementary (Fig. S1). It 211 

should be noted that the contingency categories are based on binary results of cloud-free or cloudiness 212 

and so they do not provide quantitative comparison of cloud optical properties, e.g., COD. For example, 213 

even though the WRF model produces clouds in the right locations (category A), the WRF CODs can 214 

differ from those retrieved from satellite data. 215 

Figure 2 evaluates quantitatively COD and vertical extent of clouds between the model and satellite 216 

retrievals. The vertical extent of clouds is classified based on the International Satellite Cloud 217 

Climatology Project (ISCCP) definition (Rossow and Schiffer, 1999), which are as follows: i) low-level: 218 

cloud top height ≤ 3 km, ii) mid-level: 3 km < cloud top height ≤ 6 km, iii) high-level: cloud bottom 219 

height > 6 km, and iv) multi-layered or deep convection: cloud bottom height ≤ 6 km and cloud top 220 

height > 6 km. Even though multiple cloud layers can be resolved in the WRF model, these kinds of 221 

clouds are not resolved in the satellite retrievals used in this study. Thus, for a fair comparison, the 222 
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multi-layered clouds in the WRF model are not further resolved into cloud layers. Note that the 223 

liquid/ice water contents from cumulus clouds (parameterized clouds) are included in the model COD 224 

calculations.  225 

The frequency distribution of CODs does not have the same shape in the model and observations. The 226 

WRF model overpredicts by a factor of 2 very thin clouds with COD < 1, whereas the GOES retrievals 227 

show that the most abundant clouds have CODs of 2–5. The majority of optically very thin clouds from 228 

the WRF model correspond to high-level cirrus clouds. This is consistent with the result of Cintineo et 229 

al. (2013), showing that the Morrison microphysics scheme produces too many upper-level clouds by 230 

comparing GOES infrared brightness temperature with the WRF model. Note that the optically-thin 231 

multi-layered clouds very likely contain cirrus clouds because their top height is greater than 6 km. The 232 

WRF model produces fewer clouds with COD > 1 than observed, and the discrepancy is most apparent 233 

for optically very-thick clouds (COD > 50). As a result, the model COD mean and standard deviation 234 

are smaller than those for the retrievals, which are 8.3 and 12.7, respectively for the WRF model, and 235 

17.8 and 30.8, respectively for the GOES retrievals.  236 

4. Impact of cloud errors on photolysis rates 237 

Figure 3 compares the cloudy-sky averaged vertical profiles of NO2 photolysis rates (JNO2) predicted 238 

by WRF-Chem and measured during the NOMADSS (Fig. 3a) and SEAC
4
RS (Fig. 3d) campaigns. The 239 

histograms of ratio of JNO2 simulated to that observed under cloudy conditions are also shown for the 240 

CNTR and GOES simulations.  241 
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For both campaigns, the simulations with satellite clouds (GOES simulations) generally show better 242 

agreement with the observed JNO2 profiles than the control simulations, especially above the boundary 243 

layer (above ~2 km). The histograms of the ratio model-to-observation JNO2 also show a better 244 

performance generally in the GOES simulation than in the CNTR simulation: the mean of the ratio is 245 

closer to 1 in the GOES simulation than in the CNTR simulation for SEAC
4
RS, the standard deviations 246 

are reduced in the GOES simulation compared to those in the CNTR simulation for both campaigns, the 247 

root-mean-square-errors are lowered in the GOES simulation compared to those in the CNTR 248 

simulation, and the correlation coefficients are closer to 1 in the GOES simulation than in the CNTR 249 

simulation. For NOMADSS, the large bias in the highest ratio bin (> 2) is 24% less in the GOES 250 

simulation than in the CNTR simulation. The 47% reduction of the large bias (> 2) in the GOES 251 

simulation is more substantial for SEAC
4
RS. This is attributed to better representation of the below-252 

cloud and inside-cloud conditions (not shown). The larger mean model-to-observation JNO2 ratio and 253 

the greater frequency of ratios greater than 1 for NOMADSS are likely due to the overestimation of 254 

JNO2 above clouds as scattered clouds predominate in those measurements. In the TUV calculations, 255 

the clouds in a given grid box (e.g., here a 12 km × 12 km box) are assumed to be infinitely extended in 256 

the horizontal direction. However, the sensor can see a broader area (than a 12 km × 12 km area), and so 257 

in the presence of scattered clouds a cloud fraction within sensor view angles can be smaller than 1. 258 

Therefore, the modeled JNO2 can be larger in the presence of scattered clouds as compared to the 259 

measured JNO2.  260 
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5. Impact of cloud errors on ground level ozone 261 

5.1. An example on 8 July 2013 in Midwestern US  262 

Figure 4 shows an example of how model errors in cloud fields impact O3 predictions. This example 263 

includes thunderstorm systems over the Midwestern US. The CNTR simulation misses clouds or 264 

underpredicts CODs over metropolitan Chicago and the region south of Lake Michigan. This results in 265 

the overprediction of JNO2 by up to 0.54 min
–1

 (~90%) compared to that computed using GOES clouds. 266 

The resulting changes in O3 concentration are regional and the O3 overprediction in the plume 267 

originating from the Chicago area is up to 62 ppb (~60% of O3 in the CNTR simulation). As a result of 268 

the cloud corrections, O3 in the GOES simulation agrees better with observations in those regions 269 

(compare Fig. 4d with Fig. 4e and Figs. 4g,h,i). The time series of O3 at the three sites (marked in Fig. 270 

4f) near Lake Michigan show particularly improved agreement with observations when satellite clouds 271 

are used. The large O3 biases of 20.5 ppb at 11 LST at Chicago, IL, 19.2 ppb at 13 LST at La Porte, IN, 272 

and 23.5 ppb at 16 LST at Holland, MI in the CNTR simulation are reduced to 1.7 ppb, 3.2 ppb, and 273 

−0.11 ppb in the GOES simulation, respectively. It is also apparent that the bias reduction in O3 shifts 274 

eastward (from Chicago, IL to Holland, MI) as the thunderstorm moves eastward during the day. An 275 

important implication of this finding is that errors in cloud predictions can lead to wrong O3 alerts in 276 

areas where model does not predict clouds well. For example, the daily maximum 8-h O3 concentration 277 

is 75.3 ppb at Holland, MI in the CNTR simulation (Fig. 4i) and this value exceeds the O3 standard (70 278 

ppb for 8-h O3). However, the daily maximum 8-h O3 concentration at the same location is 63.0 ppb in 279 

the GOES simulation and 60.4 ppb in the observation. Therefore, an O3 action alert would have been 280 

issued if the CNTR simulation results are used, which results in a false alarm.  281 
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In general, the regions exhibiting O3 differences between the two simulations coincide with the regions 282 

where JNO2 values are different. More importantly, large O3 differences are found near urban areas (e.g., 283 

Chicago, IL; downwind area of Kansas City, MO; Omaha, NE and its downwind area). Even though the 284 

difference in COD or JNO2 is significant in central Indiana, for example, the difference in O3 in the 285 

region is relatively small compared to that near Lake Michigan. 286 

 287 

5.2. 8-h average O3  288 

The spatial distribution of 8-h average O3 (10–17 LST average, simply 8-h O3 hereafter) averaged over 289 

the whole study period in the GOES simulation is similar to that in the CNTR simulation, but the O3 290 

levels are considerably different. Figure 5 shows the maps of 8-h O3 for the CNTR simulation and the 291 

O3 difference between the CNTR and GOES simulations. In Fig. 5b, the Midwestern, eastern, and 292 

northwestern US regions show the largest O3 differences, up to 4.7 ppb, with lower O3 levels in the 293 

GOES simulation. These regions generally belong to the contingency category C (Midwestern and 294 

northwestern US) or category A (eastern US). On the other hand, the regions with negative differences, 295 

i.e., some places over the south/southeastern US, coincide with the contingency category B. These 296 

differences are expected and can be interpreted as follows: when the WRF model misses clouds (clear 297 

sky in the CNTR simulation, category C) or underestimates COD (as seen in Fig. 2), surface O3 is 298 

overestimated. When the WRF model generates clouds that are not present in reality (clear sky in the 299 

satellite retrievals, category B), surface O3 is underestimated. It should be noted that not all regions 300 

belonging to category B or C have significant O3 differences. Interestingly, the regions exhibiting 301 

significantly large O3 differences coincide with large urban areas, e.g., Seattle, WA; Los Angeles, CA; 302 
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Chicago, IL; Cleveland, OH; Houston, TX; New Orleans, LA; Atlanta, GA; and Miami, FL. The 303 

reasons for this result are explored in section 5.4 and 5.5. 304 

 305 

5.3. Relative contribution to O3 errors from photolysis rates and BVOC emissions  306 

It is expected that reduced BVOC emissions (especially isoprene) due to the presence of clouds can also 307 

decrease O3 formation. Figure 6 shows the spatial distributions of relative changes in PAR and isoprene 308 

emission between the EMIS_BVOC and GOES simulations averaged over a 10-day period. Because the 309 

WRF model tends to underestimate COD or is not able to reproduce clouds in Midwestern and western 310 

US, PAR and biogenic isoprene emissions are larger in the EMIS_BVOC simulation than in the GOES 311 

simulation. On the other hand, the model overestimates COD or produces clouds that are not present in 312 

reality over the southeast US, so PAR and biogenic isoprene emissions are lower in the EMIS_BVOC 313 

simulation than in the GOES simulation. The change in PAR (biogenic isoprene emissions) resulting 314 

from the difference in clouds fields between the WRF model and satellite retrievals is up to ±30–40% 315 

(±25%). The O3 difference between the EMIS_BVOC and GOES simulations (Fig. 6d) is relatively 316 

small in comparison to the difference in O3 between the CNTR and GOES simulations (Fig. 6c) that 317 

results from both photolysis rate and BVOC emission changes. In general, the contribution of changes 318 

in photolysis rates to changes in O3 is ~80%, on average, over CONUS and the remaining (~20%) is 319 

attributed to changes in BVOC emissions. The contribution of BVOC emissions is larger (up to ~40%) 320 

in urban areas over the southeast (specifically in Charlotte, NC). The difference in O3 in Charlotte, NC 321 

resulting from changes in BVOC emissions is about 1.5 ppb and that from changes in both photolysis 322 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-914
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 3 November 2017
c© Author(s) 2017. CC BY 4.0 License.



17 
 

rates and BVOC emissions is about 3.5 ppb. In some regions, such as Midwestern, western 323 

Pennsylvania, and central New York, the effect of BVOC emissions is negligible. 324 

 325 

5.4. Cloud effects on ozone bias in VOC- and NOX -limited regimes 326 

In this section, we examine the effects of clouds on O3 in VOC-limited and NOX-limited regimes in 327 

order to understand the reasons for a stronger O3 response to cloud corrections in urban areas than in the 328 

remote regions. Figure 7 shows how cloud corrections affect O3 errors in different regimes. Here, 8-h 329 

O3 is used to compute the model O3 bias (simulation minus observation). Figures 7a and 7b show the 330 

probability density functions of the model O3 bias for the CNTR and GOES simulations, respectively, at 331 

all ground sites experiencing considerably thick (COD > 20) clouds. In this example, an EPA site is 332 

considered under cloudy sky conditions when hourly COD greater than the chosen threshold (here, 20) 333 

is present at the site for at least 4 hours within the 8-h time window in a given day. The decrease in the 334 

O3 bias for VOC-limited regime is significant, and the difference in median values between the two 335 

simulations is 5.4 ppb. The decrease in O3 bias for NOX-limited regimes (2.75 ppb) is about 2 times 336 

smaller than that for VOC-limited regime. An important result is that the frequency of very large biases 337 

(e.g., greater than 20 ppb) is substantially reduced when cloud fields are corrected, especially for the 338 

VOC-limited regime. This implies that more accurate cloud predictions ultimately improve the accuracy 339 

of O3 alert predictions, especially in polluted urban areas.   340 

Figure 7c shows the change in median values of 8-h O3 bias for a range of COD thresholds. We find 341 

that the O3 bias increases with increasing cloudiness in the CNTR simulation. As previously mentioned, 342 
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the O3 bias is generally larger for VOC-limited regimes than for NOX-limited regimes. When the 343 

radiation fields are corrected with satellite clouds, the model O3 bias is considerably reduced (but not 344 

zero). In addition, the O3 bias in the GOES simulation does not increase as much as that in the CNTR 345 

simulation when cloudiness increases. This implies that there are other sources of O3 biases in the 346 

GOES simulation, which are not likely associated with cloudiness. The other errors sources can be 347 

precursor emissions, mixing/transport, and deposition. Fig. 7d compares the median values of 8-h O3 348 

bias between the two simulations (CNTR minus GOES), and shows that the difference in 8-h O3 349 

between the two simulations clearly increases as the COD threshold increases and that the effect of 350 

cloud correction is larger in VOC-limited than in NOX-limited regimes. The reduced O3 bias as a result 351 

of cloud corrections ranges from 1 to 6 ppb depending on CODs and chemistry regimes. This represents 352 

up to ~40% of the total O3 bias under cloudy conditions in the current model version (e.g., 5.4 ppb of 353 

13.37 ppb for COD threshold of 20 in VOC-limited regimes).  354 

We examine the O3 bias over the southeast US where large overpredictions at the surface have been 355 

reported (e.g., Travis et al. 2016) in a supplementary section. It is found that a considerable portion of 356 

O3 bias is attributable to inaccurate cloud predictions over the southeast US, but the degree of the 357 

effects of clouds is smaller than that over CONUS as a whole (Fig. S2). The maximum reduction in O3 358 

bias due to inaccurate cloud predictions is 4.6 ppb over the southeast US and 5.7 ppb over CONUS. Still, 359 

large O3 biases of ~11 ppb are present over the southeast US (compared to those of 8–9 ppb over 360 

CONUS) even though the cloud fields are corrected for photochemistry. This result implies that errors 361 

resulting from other processes exist and are responsible for the surface O3 overpredictions over the 362 
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southeast US. More in-depth studies that find and quantify errors are therefore required to better predict 363 

the O3 over the southeast US as well as CONUS.  364 

 365 

5.5. Ozone formation sensitivity to changes in photolysis rates 366 

The difference in O3 sensitivity to changes in photolysis rates (resulting from the presence of clouds) in 367 

different regimes is determined by calculating dln(O3)/dln(JNO2) ratios as in Kleinman (1991). Table 3 368 

lists those sensitivity coefficients of O3 to JNO2 and shows that O3 is more sensitive to JNO2 in VOC-369 

limited than in NOX-limited regimes, being 1.69 times larger under cloudy-sky conditions and by 1.65 370 

times greater under clear-sky conditions. Similar sensitivities were reported for OH by Berresheim et al. 371 

(2003) with the sensitivity of OH to JO
1
D, dln(OH)/dln(JO

1
D), of 0.8 at high NO2 levels (~10 ppb) and 372 

0.68 at low to moderate NO2 levels (~1 ppb). The corresponding sensitivities from our study are 1.1 for 373 

VOC-limited regimes and 0.66 for NOX-limited regimes under clear-sky conditions. Similar results are 374 

also found for the net chemical production of O3 and OH concentration, revealing stronger responses to 375 

changes in cloudiness in VOC-limited regimes than NOX-limited regimes (Fig. 8). It is interesting to 376 

note that OH and HO2 have local maxima at CODs between 2 and 5. As shown in Ryu et al. (2017), the 377 

enhancement of actinic flux at the surface due to optically thin clouds (CODs < 5) is considerable for 378 

high-level clouds, i.e., cirrus. The local maxima, therefore, likely result from the fact that the GOES 379 

clouds have the largest portion of cirrus for CODs of 2–5 as seen in Fig. 2b. Figure 8 also shows that the 380 

variation (defined by 25 and 75 percentiles) of net chemical production of O3 with respect to COD is 381 

much larger in VOC-limited conditions. This result suggests that predicting O3 under cloudy conditions 382 
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is likely more difficult in VOC-limited than in NOX-limited regimes. It is also noticeable that the HO2 383 

radical concentration remains relatively high in NOX-limited regimes even under cloudy conditions as 384 

compared to the VOC-limited regimes. Note that the results of WRF-Chem here include the effects of 385 

both photolysis rates and BVOC emissions. 386 

A simplified box model (BOXMOX, Knote et al. (2015)) simulation using the same chemical 387 

mechanism (MOZART-4) as WRF-Chem was performed to better understand O3 sensitivity to changing 388 

cloudiness in different chemistry regimes. The emission rates for VOC-limited (NOX-limited) regime 389 

are those of the Chicago urban (rural) area in the WRF-Chem simulation. The initial conditions are 390 

taken from the CNTR simulation at 09 LST 7 July 2013 in the Chicago suburban area for both regimes. 391 

Dry deposition is not considered. Photolysis rates for all species that are photodissociable are varied 392 

from clear-sky to cloudy conditions with up to 80% reduction. The 80% reduction roughly corresponds 393 

to COD of 35 (not shown). The box model is integrated for 12 hours and photolysis rates are kept 394 

constant during the simulation (i.e., no diurnal variations). The box model results are found to be 395 

consistent with the results from the WRF-Chem simulations: the variations of O3 and OH with respect 396 

to decreasing photolysis rates are larger in VOC-limited regime than in NOX-limited regime (Fig. S3, in 397 

supplementary). Figure 9 shows production and loss terms of ROX (= OH + HO2 + RO2) radicals with 398 

variations in photolysis rates for VOC-limited and NOX-limited regimes. In both regimes, the decreased 399 

sunlight due to clouds reduces OH formation by photodissociation of O3 (primary source of OH). The 400 

larger sensitivity of OH radicals to COD in VOC-limited regimes as seen in Fig. 8 is associated with the 401 

loss of OH by the radical termination reaction between OH and NO2 under NOX-rich conditions, which 402 

leads to the large decrease in OH (Fig. 9a). On the other hand, in NOX-limited regimes, the radical 403 
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termination reactions are the radical-radical reactions (Fig. 9b). In this regime, OH mainly reacts with 404 

VOCs and propagates through radical cycles by producing HO2/RO2 radicals, rather than being 405 

terminated by the reaction with NO2. Given that the reaction between NO and HO2 becomes the largest 406 

source of OH budget (secondary source of OH) at an NOX concentration of ~1 ppb (Ehhalt and Rohrer, 407 

2000; Eisele et al., 1997), OH can be relatively less sensitive to the changes in radiation. Note that the 408 

mean daytime NOX concentration over CONUS in NOX-limited regimes is 1.2 ppb and that in VOC-409 

limited regimes is 6.7 ppb for this study period. Another attribute is a relatively greater contribution of 410 

H2O2 photodissociation to the production of ROX in NOX-limited regimes than that of HNO3, which is 411 

negligible. Unlike the radical terminated in VOC-limited conditions, a non-negligible amount of 412 

terminated radicals can be recycled in the NOX-limited regime. 413 

 414 

6. Sensitivity of cloud optical depth and O3 to microphysics scheme 415 

It should be emphasized that our study was performed using a specific representation of the cloud 416 

microphysics by Morrison et al. (2009). To test the robustness of our results with regard to the 417 

representation of clouds, another microphysics scheme, Thompson scheme (Thompson et al., 2008), is 418 

employed for a 10-day (3 July–12 July 2013) sensitivity simulation. The COD comparison in Fig. S4 419 

shows that with the Thompson scheme the model predicts fewer clouds for all ranges of CODs as 420 

compared to GOES retrievals, except for the very thin ones (COD < 1) in which the number of those 421 

clouds is still overpredicted as seen in the simulation with Morrison scheme. Compared to the Morrison 422 

scheme, the Thompson scheme produces significantly less high-level (cirrus) clouds. This is also 423 
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consistent with the findings of Cintineo et al. (2013). Despite this difference, the shape of the COD 424 

distribution from the two microphysics schemes are rather similar to each other.   425 

The 8-h O3 bias with the Thompson scheme is evaluated (Fig. S5), and compared to that of the 426 

Morrison scheme for the same period. The baseline simulation with the Thompson scheme (that uses 427 

model generated clouds) shows that a median bias (14.09 ppb) is a bit smaller than that with the 428 

Morrison scheme (16.29 ppb) for that period in VOC-limited regimes. In the sensitivity simulation with 429 

the Thompson scheme that uses GOES satellite clouds for photochemistry, the median bias is reduced 430 

by 6.07 ppb (~43%, Fig. S5a) in VOC-limited regimes and by 1.45 ppb (~14%, Fig. S5c) in NOX-431 

limited regimes, which are consistent with the results of our base simulation. The degree of the effects 432 

of cloud correction in the sensitivity simulations with the Thompson scheme, ranging from 0.5 to 6 ppb, 433 

is similar to that found in the simulations with the Morrison scheme. Therefore, the general conclusions 434 

remain the same: i.e. errors in O3 predictions resulting from errors in cloud predictions are considerable 435 

(up to ~6 ppb on average) and the effects of cloud corrections are larger in VOC-limited regimes than in 436 

NOX-limited regimes. 437 

 438 

7. Conclusions and discussion 439 

We performed quantitative analyses with the WRF-Chem model meso-scale (12 km) simulations to 440 

determine how much errors in cloud predictions contribute to errors in surface O3 predictions during 441 

summertime over CONUS. Clouds were generated using the Morrison microphysics and Grell 3D 442 
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cumulus parameterization schemes. It is found that the WRF-Chem model is able to generate roughly 443 

55% of the clouds in the right locations by comparing to satellite clouds. A quantitative comparison of 444 

COD shows that the WRF-Chem model predicts too many thin cirrus clouds with CODs less than 1, and 445 

also considerably underpredicts the optical depths for a majority of cloud systems.  446 

The errors in cloud predictions can lead to large hourly O3 biases of up to 60 ppb, for example, for 447 

specific cases in which the model misses deep convective clouds that are present in reality. On average, 448 

the errors in 8-h O3 of 1–6 ppb are found to be attributable to errors in cloud predictions under cloudy 449 

sky conditions. We quantify separately the contribution of changes in photolysis rates and emissions of 450 

light-dependent BVOCs to cloud-related errors in surface O3. The contribution of photolysis rates to 451 

surface O3 is larger (~80% on average) than that of BVOC emissions. The contribution of BVOC 452 

emissions to O3 can become important (~40%) in the VOC-limited regimes where BVOC emissions are 453 

large (i.e., cities of the southeast US). 454 

The effects of cloud corrections are more impactful in VOC-limited (or high-NOX) than in NOX-limited 455 

(or low-NOX) regimes. The sensitivity of O3 with respect to COD is about 2 times larger in VOC-456 

limited than in NOX-limited regimes. This finding is consistent with the box modeling results that were 457 

performed for typical urban (rural) conditions under varying photolysis rates. The production of radicals 458 

(OH, HO2, and RO2) decreases with decreasing photolysis rates in the presence of clouds. The primary 459 

reason for the larger sensitivity of O3 formation to clouds in VOC-limited regimes is that the loss of OH 460 

is much stronger in VOC-limited regimes due to the reaction with NO2. Thus, OH cannot readily 461 

propagate through the radical cycles. In NOX-limited regimes, the radicals terminated from the radical 462 
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cycles are mostly HO2 and RO2 rather than OH. Thus, OH can remain in the cycles and continue to 463 

produce HO2 and RO2 by reacting with VOCs before termination. The interconversion of HO2 to OH is 464 

the dominant process in NOX-limited regimes, and therefore OH and O3 formations are less sensitive to 465 

changes in radiation.  466 

This study suggests that accurate cloud predictions through data assimilation or cloud mask corrections 467 

with near-real time satellite cloud data would benefit accurate O3 predictions and that the benefit is 468 

expected to be greater in VOC-limited than in NOX-limited regimes. Even though considerable 469 

reduction in O3 bias is achieved by correcting cloud-related radiation fields, O3 is still overpredicted by 470 

the WRF-Chem model. The remaining bias likely results from other processes involved in the O3 471 

lifecycle such as precursor emissions from both anthropogenic and biogenic sources, transport, 472 

turbulent mixing, and dry deposition, which quantitative assessment is beyond the scope of this study.  473 

One should keep in mind that the quantitative estimate of the O3 bias related to the cloud effects on 474 

radiation as reported in this study could be sensitive to several factors. In particular, this study is based 475 

on a particular configuration of the WRF-Chem model with regard to the radiation, microphysics, 476 

cumulus, boundary layer parameterization and the chemistry scheme. We have tested the sensitivity of 477 

our results to the choice of microphysics, and have shown that the 8-h O3 biases are reduced by up to ~6 478 

ppb with the satellite cloud corrections in the simulations with the Thompson microphysis scheme, 479 

which is consistent with the results found in our base simulations with the Morrison microphysis 480 

scheme. 481 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-914
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 3 November 2017
c© Author(s) 2017. CC BY 4.0 License.



25 
 

From the perspective of O3 forecast, it is expected that errors in O3 predictions are greater when the 482 

initial and boundary conditions for WRF-Chem simulations are provided by meteorological forecasts 483 

compared to those simulations in which the initial and boundary conditions are provided by 484 

meteorological reanalysis because the reanalysis data are an improved estimate of the meteorological 485 

state. Understanding the evolution of errors in O3 forecast associated with errors in cloud forecast and 486 

optimizing the use of meteorological forecasts for better O3 forecast skill are therefore necessary and 487 

will be addressed in a future study. 488 
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Table 1. Description of WRF-Chem simulations. 687 

 Photolysis rates PAR Analysis Period 

CNTR WRF clouds WRF clouds 06 UTC 11 June–12 UTC 1 October 

GOES GOES clouds GOES clouds 06 UTC 11 June–12 UTC 1 October 

EMIS_BVOC GOES clouds WRF clouds 06 UTC 3 July–12 UTC 13 July 
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Table 2. Contingency table for WRF simulation and GOES satellite clouds. The number of data for each 700 

category is normalized by the total number of data.  701 

 

GOES Satellite 

Cloudy Clear 

WRF 

simulation 

Cloudy 
A (hit) 

24.8% 

B (false alarm) 

10.4% 

Clear 
C (miss) 

19.8% 

D (correct negative) 

44.9% 

 702 
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Table 3. Sensitivity coefficient of O3 to JNO2, i.e., dln(O3)/dln(JNO2). The values of dln(O3)/dln(JNO2) 711 

for the period of 09–13 LST are averages over only CONUS EPA stations that have monotonically 712 

increasing O3 concentrations with time. 713 

 Cloudy sky (5 < COD < 20) Clear sky 

VOC-limited 0.59 1.27 

NOX-limited 0.35 0.77 
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 725 

Fig. 1. Spatial distribution of each contingency category (see Table 2) between the WRF-generated 726 

clouds (CNTR simulation) and SatCORPS GOES retrievals averaged over the whole study period.  727 
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 731 

Fig. 2. Histogram of hourly cloud optical depth (COD) during the daytime (16–23 UTC) over CONUS 732 

(land only) from the (a) WRF simulation (with the Morrison microphysics) and (b) GOES satellite 733 

retrievals. CODs on the x-axis represent the mean values of the bins that are 0.3–1, 1–2, 2–5, 5–10, 10–734 

20, 20–30, 30–40, 40–50, 50–100, and 100–150. For a fair comparison, the multi-layered WRF clouds 735 

are not resolved into cloud layers as this layering cannot be resolved by the satellite. 736 
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 738 

Fig. 3. Model evaluation with 16 NOMADSS flights (top row) and with 21 SEAC
4
RS flights (bottom 739 

row). Note that only cloudy skies are considered. The comparison is performed for the averaged vertical 740 

profiles of JNO2 for the (a) NOMADSS and (d) SEAC
4
RS. The gray horizontal lines indicate the 741 

standard deviations from the observations. Histogram of ratio of JNO2 simulated by the model to JNO2 742 

observed (b) in the CNTR simulation and (c) in the GOES simulation for the NOMADSS. (e and f) are 743 

the same as (b and c), respectively, but for the SEAC
4
RS. 744 

 745 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-914
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 3 November 2017
c© Author(s) 2017. CC BY 4.0 License.



42 
 

 746 

Fig. 4. Horizontal distributions of cloud optical depth at 13 LST (= 19 UTC) 8 July 2013 (a) in the 747 

control simulation and (b) in the GOES simulation. Horizontal distributions of O3 at 13 LST 8 July 748 

2013 at the lowest model level (shaded) (d) in the control simulation and (e) in the GOES simulation. 749 

The circles indicate EPA ozone measurements. (c and f) Difference in JNO2 and O3, respectively, 750 

between the simulations (i.e., control simulation minus GOES simulation). (g, h, and i) Time series of 751 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-914
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 3 November 2017
c© Author(s) 2017. CC BY 4.0 License.



43 
 

O3 at the square (Chicago, IL), circle (La Porte, IN), and star (Holland, MI) that are marked in (f), 752 

respectively.  753 
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 764 

Fig. 5. (a) Spatial distribution of 8-h average O3 at the lowest model level averaged over the whole 765 

analysis period in the CNTR simulation. (b) Difference in 8-h average O3 at the lowest model level 766 

between the control and GOES simulations (i.e., CNTR minus GOES). 767 
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 770 

 771 

Fig. 6. Spatial distributions of (a) PAR change and (b) isoprene emission from biogenic sources 772 

between EMIS_BVOC and GOES simulations, (EMIS_BVOC–GOES)/GOES, averaged over the 773 

period of 3–12 July 2013. Difference in O3 (c) between the CNTR and GOES simulations and (d) 774 

between EMIS_BVOC and GOES simulations.  775 
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 776 

Fig. 7. (a) Probability density function of 8-h O3 bias (model value minus observation value) for VOC-777 

limited regime under cloudy sky conditions defined with COD threshold of 20. (b) Same as (a), but for 778 

NOX-limited regime. (c) Median values of 8-h O3 bias with respect to COD threshold in the CNTR 779 

simulation (solid lines with cross marks) and in the GOES simulation (dashed line with triangles) for 780 

VOC-limited (purple color) and NOX-limited regimes (green color). (d) Difference in median values of 781 

8-h O3 bias between the two simulations with respect to COD threshold (i.e., CNTR minus GOES). 782 
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 784 

Fig. 8. (a) Net chemical production of O3, (b) OH concentration, and (c) HO2 concentration with 785 

variations of cloud optical depth for VOC-limited regime. The black line indicates the median and cyan 786 

shading indicates the 25 and 75 percentiles. Similar variables are shown for the NOX-limited regimes (d, 787 

e, and f). 788 
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 795 

Fig. 9. Results of box modeling for production and loss rates of ROx (= OH + HO2 + RO2) radicals. 796 

“Others” in the legend indicates the photolysis of VOCs and reactions between alkenes and O3. The 797 

value of 1 of normalized Jvals on x-axis indicates the photolysis rates for clear sky conditions. 798 
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