

Interactive comment on “Quantifying errors in surface ozone predictions associated with clouds over CONUS: A WRF-Chem modeling study using satellite cloud retrievals” by Young-Hee Ryu et al.

Anonymous Referee #1

Received and published: 22 November 2017

This is a very good manuscript that demonstrates how the inclusion of satellite derived cloud properties can be used to improve atmospheric chemistry model simulations. I concur with Prasad Kasibhatla's comment that vertical profiles of O₃, as well as NO_x and NO_z, should be evaluated with the field campaign observations. In addition, I wonder if the conclusions from the analyses involving NO_x limited regimes are biased toward rural sites and therefore don't accurately represent NO_x limited urban and suburban sites. A further analysis as discussed below could answer this question.

Major comments:

C1

[Printer-friendly version](#)

[Discussion paper](#)

1) Evaluate vertical profiles of O₃, NO_x, NO_z from field campaigns.

2) I have some reservations concerning the analyses involving NO_x and VOC limited regimes in Sections 5.4 and 5.5 (although I like the last paragraph in Section 5.5). This manuscript has specific conclusions for VOC and NO_x limited regimes. There are urban areas that are NO_x limited. I suspect the NO_x limited conclusions are heavily weighted toward rural areas and don't accurately represent polluted urban and suburban areas. I suggest binning sites based on ozone concentrations and then performing the analyses described in Sections 5.4 and 5.5 so the reader can compare VOC and NO_x limited sites with similar ozone concentrations as well as VOC limited sites over a range of ozone concentrations and NO_x limited sites over a range of ozone concentrations. Perhaps this can be done by binning the sites based on the peak maximum 8 hour average ozone concentration throughout the year (i.e., bin 1: peak MDA8>75, bin 2: peak MDAO3 between 70-75, . . .). It may be interesting to include the sites that fall into the transitional zone in your analysis. Include a figure showing delta O₃ / delta NO_y to identify NO_x and VOC limited regimes.

Minor comments:

Abstract, line26: Remove mention of "robust with respect to the choice of the micro-physics scheme." Only 2 microphysics schemes were tested.

Page 5, lines 89-91: Why skip pixels to create an 8km product? Why not leave the product at 4 km?

Page 9, line 181: Change "and with fire" to "and fire"

Page 10, line 189: Change "(Sillman and He (2002)" to "Sillman and He (2002)"

Page 11, lines 203-204: Change "wrong clouds (that are not present in reality)" to "clouds that are not present in reality"

Page 11, lines 204-205: Re-word this sentence.

Page 11, line 207: change “except for the mountain regions and northwestern US” to “except for parts of the Rocky Mountains and the Pacific Northwest.”

Page 11, line 208: Change “in the central” to “in central”

Page 13, lines 252-253: Change “This is” to “These reductions are”. Provide a further explanation of this claim.

Page 13, lines 254-260: This text states that NOMADSS has a larger mean model-to-observation ratio than SEAC4RS. This is not the case based on Figure 3.

Section 5.2: Calculate and discuss model-observations comparison statistics. Use maximum daily 8 hour average O₃ (MDAO₃) instead of 8hr average ozone between 10-17 LST.

Section 5.3: If you have a simulation with “photolysis with WRF clouds and PAR with GOES clouds”, this would be interesting to include in this section.

Page 16, lines 316-318 and Figure 6: Difficult to see the relative differences between Figure 6c and 6d. A figure of the absolute value of 6d divided by the absolute value of 6c may be helpful.

Page 16, lines 318-320: Ozone difference of a simulation with photolysis with WRF clouds and PAR with GOES clouds minus GOES may or may not be 80% of CNTR-GOES. I suggest rewording this sentence to “The contribution of changes in BVOC emissions is ~20% compared to changes of BVOC emissions and photolysis rates using GOES observations.”

Figure 4: Use EST or CST, not LST. Map shows areas in the eastern and central time zone.

Figure 5: Show 3 panels with a CNTR, GOES, and difference plot (CNTR-GOES). Include observations overlayed on-top of the CNTR and GOES plots.

[Printer-friendly version](#)

[Discussion paper](#)

Interactive
comment

