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Responses to Reviewer 1’s comments 

 

We thank the reviewer for providing valuable comments. We have improved our manuscript 

following his/her suggestions and comments. Please find our responses below. Reviewer’s 

comments are highlight in blue. 

 

Major comments: 

C1) Evaluate vertical profiles of O3, NOX, NOZ from field campaigns. 

Figure R1 shows the average vertical profiles of O3, NOX, HNO3 (top panels) and their root-

mean-square-error (RMSE) from SEAC
4
RS campaign. NOZ species except for HNO3 are not 

saved in the WRF outputs along the flight tracks (at 1-min time intervals), and thus only HNO3 is 

compared here. The modeled vertical profiles of O3, NOX, and HNO3 are in a reasonable 

agreement with observations. The large deviations in O3 near the surface were also reported in 

previous studies such as Travis et al. (2016). The campaign average differences in vertical 

profiles of O3 between CNTR and GOES simulations are small as the aircraft measurements are 

mostly made in rural environments or high altitudes where O3 precursor concentrations are low. 

As shown in the manuscript, the effects of cloud correction are larger under high-NOX 

environments than low-NOX environments. However, it is seen that the cloud corrections slightly 

reduce O3 RMSE in general particularly below ~1 km altitude. Some examples from SEAC
4
RS 

and NOMADSS flights show that the effects of cloud correction can be considerable if the 

aircraft flew over relatively high-NOX regions under cloudy conditions (please see Figs. P3 and 

P4 in the responses to Dr. Kasibhatla’s comments). Even though clouds were present during 

some flights, the cases allowing to estimate their effects are sparse as aircrafts usually avoid 

flying on heavily cloudy days. So, when all the data are averaged, the effects of cloud correction 

are expected to be small. The average profiles and RMSE of NOX and HNO3 from CNTR and 

GOES simulations are also very similar to each other.   
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Fig. R1. (Top, from left to right) Averaged vertical profiles of O3, NOX, and HNO3, respectively, 

for SEAC
4
RS measurements. The aircraft data over land within the southeast region (latitude: 

25–40°N, longitude: 95–70°W) are only used for the averages. (Bottom, from left to right) The 

corresponding root-mean-square-error (RMSE) of O3, NOX, and HNO3, respectively. 

    

C2) I have some reservations concerning the analyses involving NOx and VOC limited regimes 

in Sections 5.4 and 5.5 (although I like the last paragraph in Section 5.5). This manuscript has 

specific conclusions for VOC and NOx limited regimes. There are urban areas that are NOx 

limited. I suspect the NOx limited conclusions are heavily weighted toward rural areas and don’t 

accurately represent polluted urban and suburban areas. I suggest binning sites based on ozone 

concentrations and then performing the analyses described in Sections 5.4 and 5.5 so the reader 

can compare VOC and NOx limited sites with similar ozone concentrations as well as VOC 

limited sites over a range of ozone concentrations and NOx limited sites over a range of ozone 

concentrations. Perhaps this can be done by binning the sites based on the peak maximum 8 hour 

average ozone concentration throughout the year (i.e., bin 1: peak MDA8>75, bin 2: peak 

MDAO3 between 70-75, …). It may be interesting to include the sites that fall into the 

transitional zone in your analysis. Include a figure showing delta O3 / delta NOy to identify NOx 

and VOC limited regimes.  
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Thanks for providing these valuable suggestions. We agree that analyses for the VOC- and NOX-

limited sites that have similar ranges of O3 concentration would provide more fair comparisons. 

Therefore, we performed additional analyses of the sensitivity of maximum daily 8-h average 

(MDA8) O3 bias to cloud correction in VOC- and NOX-limited regimes that have similar peak 

MDA8 O3 values. As O3 concentration is high in summertime, we only consider the period of 

June through September 2013. All the EPA sites are sorted into several bins based on peak 

(maximum) MDA8 O3 concentration during the period of June–September 2013. Figure R2 

shows the same analysis as done in Fig. 7 but for various MDA8 bins. Please note that the COD 

threshold of 30 is not shown here because the number of data with this threshold is too small 

(generally less than ~50) when the sites are grouped into bins. It is clearly seen that the effects of 

cloud correction on reducing O3 bias are greater in VOC-limited regimes than NOX-limited 

regimes for all the bins although the degree is somewhat different among the bins. For the NOX-

limited sites that have peak MDA8 O3 > 75 ppb, the maximum decrease in O3 bias due to cloud 

correction is ~3.5 ppb and this value is similar to that (~3 ppb) found in the analysis for all the 

sites (Fig. 7d in the manuscript). The NOX-limited sites with peak MDA8 O3 > 75 ppb are mostly 

located near the major US cities or the state of California (Fig. R3). Those sites are likely 

characterized by polluted urban or suburban areas. For the NOX-limited sites with peak MDA8 

O3 of 60–65 ppb that are mostly located in rural environments, for example, the effects of cloud 

correction on reducing O3 bias (maximum value of ~2 ppb) are smaller than those seen for the 

sites with peak MDA8 O3 > 70 ppb (maximum value of ~4 ppb). So, even for NOX-limited 

regimes it can be said that the effects of cloud correction are larger in more polluted areas. Still, 

however, the effects of cloud correction are larger in VOC-limited regimes than NOX-limited 

regimes. Therefore, our conclusions originally drawn in the manuscript remain unchanged. We 

mentioned the results of this analysis in the manuscript as follows.  

 

“We performed additional analysis by dividing VOC- and NOX-limited sites into groups that 

have similar ranges of peak MDA8 O3 concentration during the period of June–September 2013 

(Fig. S3). All sites are grouped into bins with peak value of MDA8 O3 ranging from larger than 

75 ppb, 70–75 ppb, 65–70 ppb, 60–65 ppb, to smaller than 60 ppb. The maximum reduction in 

O3 bias due to cloud corrections is obtained for the VOC-limited sites with peak MDA8 O3 of 

65–70 ppb and reaches ~8 ppb. The maximum reduction for NOX-limited sites, on the other hand, 

is ~4 ppb and is found for the sites with peak MDA8 O3 of 70–75 ppb. Although the degree of the 

O3 bias reduction varies somewhat among the bins for a given ozone regime, the effects of cloud 

correction on O3 bias reduction remain larger in VOC-limited regimes than NOX-limited 

regimes.” 
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Fig. R2. Similar to Fig. 7 in the revised manuscript but for several bins with different peak 

MDA8 O3 ranges.  
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Fig. R3. Maps showing the sites that belong to each peak MDA8 O3 bin. The number in 

parenthesis indicate the number of sites in each ozone range. For example, the number of VOC-

limited sites with peak MDA8 O3 > 75 ppb is 119. 

 

 

In addition, the sites that fall into the transitional zone are added in the analysis (Fig. R4). The 

effects of cloud correction on O3 bias reduction for the transition sites are in-between those for 

the VOC-limited regimes and NOX-limited regimes. This is now explained in the revised 

manuscript. 
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“Note that the results for the sites in transitional zone (the slope of O3/NOy is 4–6) showed 

that the effects of cloud in the transitional zone are intermediate; that is, larger than those for 

NOX-limited regimes but smaller than those for VOC-limited regimes (not shown).” 

 

 

 
Fig. R4. Same as in Fig. 7 but with the results for transitional zone.  

 

 

Examples of scatter plots of O3 and NOy, which are used to identify VOC- or NOX-limited sites, 

are shown in Fig. R5 and following the reviewer’s comment we included this in the 

supplementary material (Fig. S1).  
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Fig. R5. Scatter plots of O3 and NOy. The thick black line indicates the linear regression 

coefficient. The modeled O3 and NOy concentrations at 15–16 local time under clear sky 

conditions (hourly COD < 1) in the CNTR simulation are used for analysis. On the title heading, 

the first and second words indicate the state and the county of the site. The third one indicates the 

type of the site defined by EPA.   

 

 

Minor comments: 

C3) Abstract, line26: Remove mention of “robust with respect to the choice of the microphysics 

scheme.” Only 2 microphysics schemes were tested. 

We have removed that part following the reviewer’s comment. 

 

C4) Page 5, lines 89-91: Why skip pixels to create an 8km product? Why not leave the product at 

4 km? 
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The 8-km products are sampled every other pixel (4-km pixel) to save processing time. It does 

not affect the statistics of the analysis. 

 

C5) Page 9, line 181: Change “and with fire” to “and fire” 

It is changed. 

 

C6) Page 10, line 189: Change “(Sillman and He (2002)” to “Sillman and He (2002)” 

It is corrected. 

 

C7) Page 11, lines 203-204: Change “wrong clouds (that are not present in reality)” to “clouds 

that are not present in reality” 

It is changed. 

 

C8) Page 11, lines 204-205: Re-word this sentence. 

It is revised as follows. 

“The overall bias, (A+B)/(A+C), is 0.789 and this means that the WRF underestimates the 

frequency of cloudy skies.” 

 

C9) Page 11, line 207: change “except for the mountain regions and northwestern US” to “except 

for parts of the Rocky Mountains and the Pacific Northwest.” 

It is changed. 

 

C10) Page 11, line 208: Change “in the central” to “in central” 

It is changed. 

 

C11) Page 13, lines 252-253: Change “This is” to “These reductions are”. Provide a further 

explanation of this claim. 

It is changed following the reviewer’s suggestion. This claim was based on the histograms 

separating the cloud conditions into below, above, and inside cloud conditions (Fig. R6), which 

are not shown in the manuscript. The reductions of larger errors with model-to-observation ratio 

of greater than 2 are due to the reductions under below- and inside-cloud conditions. We 

elaborate the reasons in the revised manuscript as follows. 

“This is because the number of data influenced by considerably thick clouds is larger in 

SEAC
4
RS than in NOMADSS and the measurements in the presence of those thick clouds were 

mostly made under below-cloud or inside-cloud conditions.”  
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Fig. R6. Histogram of model-to-observation JNO2 ratio for SEAC4RS under (top) below, 

(middle) above, and (bottom) inside cloud conditions.  

 

 

C12) Page 13, lines 254-260: This text states that NOMADSS has a larger mean model-to-

observation ratio than SEAC4RS. This is not the case based on Figure 3. 

The text was intended to indicate the above cloud conditions. As Fig. R7 shows, the performance 

in the GOES simulation is not greatly improved even though the satellite clouds are used. The 

effects of cloud correction for above-cloud conditions for NOMADSS are different from those 

for SEAC
4
RS (Fig. R6 middle row). Given that the histograms of Fig. R7 are not included in the 

manuscript, we have deleted this part in the revised manuscript to avoid confusion. 
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Fig. R7. Histogram of model-to-observation JNO2 ratio for NOMADSS under (top) below, 

(middle) above, and (bottom) inside cloud conditions.  

 

 

C13) Section 5.2: Calculate and discuss model-observations comparison statistics. Use maximum 

daily 8 hour average O3 (MDAO3) instead of 8hr average ozone between 10-17 LST. 

We have added a discussion of the statistics in the manuscript as requested by the reviewer. 

Indeed, the root-mean-square-error (RMSE) and correlation coefficient are compared. Both the 

RMSE and correlation coefficient show a better performance when satellite clouds are used 

(GOES simulation) than when model clouds are used (CNTR simulation). The RMSE of MDA8 

O3 in the GOES (CNTR) simulation is 13.2 ppb (16.9 ppb) and the correlation coefficient of 

MDA8 O3 in the GOES (CNTR) simulation is 0.5 (0.4). This is now explained in the manuscript: 

“The performance of the GOES simulation is found to be better than that of the CNTR simulation 

as compared to observations: for example, under cloudy conditions (COD > 20, see section 5.4 

for the criterion), the root-mean-square error of MDA8 O3 in the GOES (CNTR) simulation is 

13.2 ppb (16.9 ppb) and the correlation coefficient of MDA8 O3 in the GOES (CNTR) simulation 

is 0.5 (0.4).” 
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The spatial ozone distribution map averaged over the study period (Fig. 5) is replaced with 

MDA8 O3 in the revised manuscript. The result with MDA8 O3 is very similar to that shown 

with daytime 8-h average (10–17 LST) O3.  

 

 

C14) Section 5.3: If you have a simulation with “photolysis with WRF clouds and PAR with 

GOES clouds”, this would be interesting to include in this section. 

We agree with that. Unfortunately, the current model does not have capability to simulate the 

setup proposed by the reviewer. 

 

C15) Page 16, lines 316-318 and Figure 6: Difficult to see the relative differences between 

Figure 6c and 6d. A figure of the absolute value of 6d divided by the absolute value of 6c may be 

helpful. 

Following the reviewer’s suggestion, we replaced Fig. 6d with a plot showing the ratio of 

difference in O3 between EMIS_BVOC and GOES (previously Fig. 6d) to difference in O3 

between CNTR and GOES (Fig. 6c).  The description of this figure is as follows. 

“Figure 6d shows the relative O3 difference between EMIS_BVOC and GOES simulations to O3 

difference between CNTR and GOES simulations (Fig. 6c).” 

 

C16) Page 16, lines 318-320: Ozone difference of a simulation with photolysis with WRF clouds 

and PAR with GOES clouds minus GOES may or may not be 80% of CNTR-GOES. I suggest 

rewording this sentence to “The contribution of changes in BVOC emissions is ~20% compared 

to changes of BVOC emissions and photolysis rates using GOES observations.” 

It is revised based on the reviewer’s suggestion: 

“The average contribution of changes in BVOC emissions over land is ~20% compared to 

changes of BVOC emissions plus photolysis rates using GOES satellite clouds.” 

 

C17) Figure 4: Use EST or CST, not LST. Map shows areas in the eastern and central time zone.  

LST is changed to CST.  

 

C18) Figure 5: Show 3 panels with a CNTR, GOES, and difference plot (CNTR-GOES). Include 

observations overlayed on-top of the CNTR and GOES plots. 

The reason why we show only the result of CNTR simulation is that the spatial distribution of 

average O3 in GOES simulation is similar to that in CNTR simulation although the ozone levels 

are different (Fig. R8). We mentioned the reason why the result of GOES simulation is not 

shown here in the revised manuscript. In addition, adding observations on the map makes the 

plot very complicated as the number of sites is ~1300. Lots of sites are closely located to each 

other as shown in Fig. R3. When all the sites in the bins in Fig. R3 are plotted and overlayed on a 

map, readers will not be able to see the values of observations.  
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Fig. R8. Spatial distribution of MDA8 O3 at the lowest model level averaged over the study 

period (top, left) in the CNTR simulation and (top, right) in the GOES simulation. (Bottom, left) 

Difference in MDA8 O3 between CNTR and GOES simulations. 
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Responses to Reviewer 2’s comments 

 

Authors thank the reviewer for providing valuable comments. We have improved our manuscript 

to address his/her suggestions. Reviewer’s comments are highlight in blue, and our responses are 

in black. 

 

General comments: 

C1) The authors mention several times in the manuscript the useful of this technique to improve 

ozone forecasts. I find this odd, since the technique described uses satellite observed clouds to 

correct model errors. How would this benefit forecasts? Is the assumption that these satellite data 

could be assimilated in near real-time, improving the near-term forecast of ozone? Some 

clarification seems necessary here to explain exactly what the authors have in mind for 

improving forecasts. 

The goal of our study is to quantify the potential benefit of improved cloud fields in air quality 

modeling. We did not estimate by how much the near real-time ozone forecast could be 

improved using the observed clouds through data assimilation. This will be done in a future 

study. The conclusion has been modified to avoid any confusion: 

“From the perspective of O3 forecast, our study indicates that there is a need for an enhanced 

understanding of the evolution of errors in O3 forecasts associated with errors in cloud forecasts, 

and for optimizing the use of meteorological forecasts to allow more accurate near-term O3 

predictions.”  

 

 

C2) I’m also curious about the meteorological performance, although I realize that the cloud 

assimilation technique only applies to clouds as they affect photolysis. Since WRF tends to 

underpredict clouds in some regions and overpredict clouds in other regions, does that 

underprediction/overprediction manifest itself in the meteorological performance (e.g. surface 

temperature)? If so, this would imply to me that while assimilating clouds to improve photolysis 

is clearly important, improving clouds in WRF itself, and thereby hopefully improving the 

overall WRF performance, would be the ultimate goal, since surface temperature (and other 

meteorological variables), play an important role in not just ozone chemistry but in aerosol 

chemistry as well. More of thought than something that needs to be addressed in this article. 

 

We thank the reviewer for bringing up these important points. Currently, we corrected cloud 

fields in WRF using satellite clouds only for radiation that is relevant to photochemistry. So, 

those cloud corrections do not affect other meteorological variables such as surface temperature, 

wind, boundary layer height, and so on. The cloud assimilation (cloud analysis more precisely) 

that has been used in the Rapid Refresh by NOAA (Benjamin et al., 2016), for example, uses 

satellite cloud products, and in the Rapid Refresh the thermodynamic balance between 

temperature and humidity due to the presence of clouds is considered, thus affecting temperature 
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and humidity vertical profiles after cloud assimilation is applied. In addition, the addition or 

removal of clouds as a result of cloud assimilation affects surface radiation fields (such as 

downwelling solar radiation) and ultimately surface temperature and wind fields (and others). So, 

from the perspective of cloud data assimilation, the meteorological variables are all affected by 

cloud assimilation. We are planning to use the Rapid Refresh forecasts to conduct WRF-Chem 

simulations in the future and will report how cloud assimilation affects ozone forecasts.  

The brief discussion regarding cloud assimilation is added in the last paragraph of conclusions 

and discussion section as follows. 

“The present study corrects cloud fields in WRF using satellite clouds only for radiation that is 

relevant to photochemistry, and those cloud corrections do not affect other meteorological 

variables such as surface temperature, wind, humidity, boundary layer height, etc. In a future 

study, we plan to examine the effects of satellite cloud assimilation on near-term O3 forecasts 

using enhanced forecasts such as the Rapid Refresh products from NOAA (Benjamin et al., 2016) 

that take into account cloud data assimilation to derive meteorology for O3 forecasts. The Rapid 

Refresh uses satellite cloud products as well as cloud observations from the ground and 

considers the thermodynamic balance between temperature and humidity due to the presence of 

clouds. Thus, this will allow investigating the effects of cloud assimilation on O3 forecasts not 

only through changes in radiation for photochemistry but also through changes in 

meteorological variables.”  

 

 

Specific comments: 

C3) Line 14: What is meant by "attributed to that in cloud predictions"? 

This was intended to mean “attributed to error in cloud prediction”, and we revised it. So, the 

sentence is as follows. 

“It is not well known, however, how much error in O3 predictions can be directly attributed to 

error in cloud predictions.” 

 

C4) Line 45: Is surface ozone hourly? Perhaps specify if it is. 

Yes. It is hourly ozone and we specified this in the revised manuscript. 

 

C5) Line 206: Change "over CONUS" to "over the CONUS". 

It is changed. 

 

C6) Line 208: Remove "the" before central California. 

It is removed. 

 

C7) Line 211: Change "in supplementary" to "in the supplementary material". 

It is changed. 
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C8) Line 288: I would be a little careful calling this 8-h average O3, since commonly 8-h 

average O3 refers to calculation of finding the maximum O3 across a number of 8-h averages 

throughout the day, whereas it appears the authors are simply using an afternoon average 

consisting of 8 hours. This might cause some confusion to some readers. 

Following reviewers’ comments, we have all replaced the daytime 8-h O3 to maximum daily 8-h 

average (MDA8) O3 in the revised manuscript.  

 

C9) Line 361: This should be changed to say "partially corrected". It would be presumptions to 

assume that the cloud fields have been fully corrected. It is a big step in the right direction 

though. 

We here intend to confine the correction to radiation fields relevant to photochemistry.  So, the 

full sentence is revised as follows. 

“Still, large O3 biases of ~11 ppb are present over the southeast US (compared to those of 6–9 

ppb over CONUS) even though the clouds and radiation fields that are relevant to 

photochemistry are corrected.” 

 

C10) Line 410: Remove "relatively" before greater. 

It is removed. 

 

C11) Fig 5. What is the cause of the very large reduction in O3 over the great lakes in the GOES 

simulation? Is that due to an improvement in clouds over the lakes themselves, or is it the result 

of improved clouds over the land and advection of O3 over the lakes? High O3 over the great 

lakes is a persistent problem in many air quality models, so the resulting improvement warrants 

some additional discussion in my opinion. 

We thank the reviewer for bringing up this point. The correction of clouds both over the lakes 

and also in the upstream regions (mostly large cities located to the west/southwest of the lakes) 

can contribute to the reduction in O3 bias. The precursors are emitted from the upstream cities 

and both the precursors and O3 from the cities are advected toward the lakes where O3 is not 

readily deposited over the water surface. We found that polluted air masses can be advected over 

the lakes. In this case in which precursor levels can be high over the lakes, the presence of clouds 

over the lakes can greatly affect O3 formation over the lakes.  

We added additional discussion in the revised manuscript: 

“The example shown here emphasizes the important roles of clouds in the Great Lakes region 

where large O3 biases have been reported previously in air quality forecasts (e.g., Cleary et al., 

2015). The correction of clouds both over the lakes and in the upstream regions (mostly large 

cities located to the west/southwest of the lakes) significantly reduces the O3 bias. It is also 

shown that polluted air masses from the source regions can be advected over the lakes (not 

shown). In this case in which precursor levels can be high over the lakes, the presence of clouds 

over the lakes can greatly affect O3 formation over the lakes.”  
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Responses to Reviewer 3’s comments 

 

Thank you so much for providing valuable comments. We have improved our manuscript 

following your suggestions and comments. Please find our responses below. Your comments are 

highlight in blue. 

 

C1) The analysis is based primarily on one set of model physics (Morrison microphysics and 

Grell 3-D convection). The authors do test the sensitivity of the results to a second microphysics 

scheme (Thompson) and found little difference. However, the simulation is for summer 

conditions (June to September), when a significant amount of cloudiness is due to convection. 

Therefore, there should be a sensitivity test also run with a second convective scheme. I would 

suggest running the relatively new Grell-Freitas scheme. From what I have seen, this scheme will 

produce more clouds. 

Following reviewer’s suggestion, we have performed sensitivity tests with Grell-Freitas scheme. 

As done for microphysics scheme, a period of 10 days (3–12 July 2013) was considered. An 

example showing spatial distribution of cloud optical depth from the two cumulus 

parameterization schemes are presented in Fig. T1. In general, the spatial patterns and the 

location of large systems are similar to each other. The Grell-Freitas scheme produces more 

and/or thicker clouds in some regions such as the north Michigan and the south Ohio than the 

Grell-3D scheme. However, the Grell-Freitas scheme produces fewer and/or thinner clouds in 

other regions such as the east Texas and North Carolina. In Fig. T2, the histograms of cloud 

optical depth obtained for the 10-day period from Grell-Freitas scheme (left) and from Grell-3D 

scheme (right) show that the distributions of cloud optical depth are in general similar to each 

other. The Grell-Freitas scheme tends to produce fewer clouds with small or moderate cloud 

optical depth. Figure T3 shows that the degree of cloud correction in reducing O3 bias is larger in 

VOC-limited regimes than in NOX-limited regimes in the simulation with Grell-Freitas scheme, 

and thus the conclusions originally drawn remain unchanged. 

We included the summary of this discussion above in the revised manuscript and figures (Figs. 

T2 and T3) in the supplementary materials. 

 



17 

 

 
Fig. T1. Cloud optical depth (COD) at 19 UTC 8 July 2013 using the (left) Grell-Freitas scheme 

and (right) Grell-3D scheme. Both simulations use the Morrison microphysics scheme. 

 

 

 
Fig. T2. Histogram of hourly cloud optical depths during the daytime (16–23 UTC) over 

CONUS (land only) for the period of 3–12 July 2013 from simulations with the (left) Grell-

Freitas scheme and (right) Grell-3D scheme. 

 

WRF (G3D) simulation 
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Fig. T3. (Left column) The results of 3–12 July 2013 WRF-Chem simulations with Grell-Freitas 

scheme. (a/c) Probability density function of MDA8 O3 bias (model value minus observation 

value) for VOC/NOX-limited regime under cloudy sky conditions defined with COD threshold of 

20 in the simulations with the Grell-Freitas scheme. (b/d) Same as (a/c), but for the simulations 

with the Grell-3D scheme. (e and f) Difference in median values of MDA8 O3 bias between the 

two simulations with respect to COD threshold (i.e., CNTR minus GOES) for the simulations 

with the Grell-Freitas and with the Grell-3D schemes, respectively. 

 

C2) In Section 2.3 the authors use the delta O3 to delta NOy ratio to determine VOC-limited and 

NOx-limited conditions. How is delta NOy determined at EPA monitoring sites? NOy is not 
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routinely measured at these sites. Even true NOx is measured at only some small fraction of the 

O3 monitoring sites. This issue needs explanation or substantive revision. 

NOy used in this study is the modeled NOy and O3 is also modeled O3. As you indicated, NOy is 

not routinely measured, so the sites having NOy measurements are very limited. Therefore, we 

could not rely on NOy observations. We included the following sentence in the revised 

manuscript.  

“Note that modeled O3 and NOy in the CNTR simulation are used to determine whether an EPA 

site is in VOC-limited or NOX-limited regime because NOy measurements are available for 

limited sites.” 

In addition, we included examples showing how to determine VOC-limited or NOX-limited sites 

in the supplementary materials (Fig. S1).  

 

Minor comments: 

C3) line 127: Which year NEI NOx was too high? Did Travis et al. indicate all NOx emission 

types were overestimated, or was it primarily mobile sources? 

Travis et al. (2016) used 2011 NEI emissions and adjusted to 2013. They reduced NOx 

emissions from mobile and industrial sources (all sources except for power plants). Based on the 

references mentioned in Travis et al. (2016), several local studies reported that NEI NOx 

emissions for mobile sources are high by a factor of 2 or more (Castellanos et al, 2011; Fujita et 

al., 2012; Brioude et al., 2013; Anderson et al., 2014). 

In our present study, we reduced NOX emission from all anthropogenic sources by 40% based on 

the analysis of Travis et al. (2016), and this is mentioned in the revised manuscript. 
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Frost, G. J., Neuman, J. A., Pollack, I. B., Peischl, J., Ryerson, T. B., Holloway, J., Brown, S. S., 
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Anderson, D. C., Loughner, C. P., Diskin, G., Weinheimer, A., Canty, T., P., Salawitch, R. J., 

Worden, H. M., Fried, A., Mikoviny, T., Wisthaler, A., and Dickerson, R. R.: Measured and 
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C4) lines 255 to 260: I don’t follow this description of cloud fraction. Please clarify. 

This part originally explained the results without showing figures that are relevant to the cloud 

fraction, but without showing figures we concluded that this part was too confusing to reader, 

and we decided to remove it. Please see the comment 12 of the first reviewer and our responses. 

 

C5) Section 5.5 describes in detail how the box model calculations show that OH is less sensitive 

to changes in radiation in the NOx-limited regime. Some statements also need to be made about 

the effect on P(O3) in the box model. 

Figure T4 shows the net chemical production of O3 in the box model, and the result is consistent 

with that is found in the WRF-Chem simulations: larger sensitivity of P(O3) to cloudiness in 

VOC-limited regimes than NOX-limited regimes. We briefly included this result in the revised 

manuscript as follows. 

“Note that the net chemical production of O3 obtained from the box model results also shows a 

larger sensitivity to cloudiness in VOC-limited regimes than in NOX-limited regimes (not shown).” 

 

 
Fig. T4. The net chemical production of O3 from the box model simulations.   

 

 

 

 

 

 

 

 

 

 



21 

 

Responses to the comments by Dr. P. Kasibhatla 

 

Thank you for providing valuable comments. Please find our responses (in black) to your 

comments (in blue) below. 

 

This is an interesting paper that suggests a possible explanation for typical model over-prediction 

of surface ozone over CONUS (Figure 7). It is not clear however if model simulations are 

improved both in terms of surface O3 predictions, as well as O3 vertical profiles (especially in the 

boundary layer and just above the boundary layer). While comparisons with measured vertical 

profiles of JNO2 are shown in Figure 3, no corresponding comparisons of vertical profiles are 

shown for O3. It would be useful to show these comparisons (and provide histograms as is done 

for JNO2) with simultaneous aircraft O3 measurements, especially given the overprediction of 

JNO2 in the boundary layer in the GOES simulation compared to the CNTR simulation for the 

NOMADSS flights (Figure 3). 

In terms of model evaluation, it would be also useful to show comparisons of the modeled Ox vs 

NOz relationship against observations (as is done in Travis et al., 2016) as a check on modeled 

ozone production efficiency. 

 

1. O3 vertical profile comparison 

 

The influence of satellite cloud corrections on vertical profile of O3 is shown in Figs. P1 

(SEAC
4
RS) and P2 (NOMADSS). Only aircraft data over land within the southeast region 

(latitude: 25–40N, longitude: 95–70W) are used for the averages. Unlike the vertical profiles of 

JNO2, which shows considerable improvements when satellite cloud corrections are applied, the 

vertical profiles of O3 do not show significant differences between CNTR and GOES simulations 

even though the histograms of model-to-observation O3 ratio show slight improvements in the 

GOES simulation than in the CNTR simulation. This is likely because the aircraft measurements 

are mostly made in rural environments or high altitudes where O3 precursor concentrations are 

low. As shown in the manuscript, the effects of cloud correction are larger under high-NOX 

environments than low-NOX environments. An example on 21 September 2013 shows that 

GOES simulation better captures the attenuation of JNO2 under below cloud conditions (~1830–

1940 UTC) (Fig. P3). As the aircraft flew over relatively high-NOX regions during this time 

period, O3 concentration shows a better agreement with observations in GOES simulation than 

CNTR simulation although both the simulations considerably overpredict O3 in general. The 

largest difference in O3 between the two simulations is 5.6 ppb at 1946 UTC. One of the reasons 

for the overprediction of O3 could be the overprediction of NO2 or misplacement of urban 

plumes. Other example for NOMADSS, on 7 July 2013 when the aircraft flew mostly over the 

state of Indiana and Lake Michigan shows similar results (Fig. P4). The sky conditions on that 

day were characterized by broken clouds, and the coarse resolution of satellite data (the original 

resolution is 8 km at hourly intervals) is another limitation for capturing the exact locations of 
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small clouds. However, O3 concentrations along the flight tracks in the two simulations show 

differences under cloudy conditions and the differences are noticeable only at high NO2 (e.g., 

~1635–1900 UTC). The largest difference in O3 between the two simulations is 4.4 ppb at 1837 

UTC. It should be noted that O3 concentration in the two simulations is almost the same when 

NO2 concentration is low even if JNO2 values are significantly different (1920–1940 UTC). 

Thus, even though some cases show that clouds have significant influences on O3 formation and 

concentrations above the ground (e.g., within the boundary layer), when all the data points are 

averaged the effects are hardly noticeable. We anticipate that if airborne measurements of O3 

under cloudy sky conditions are available over cities and/or urban plumes, then we would clearly 

see the effects of clouds on vertical profiles of O3. Unfortunately, neither of the campaigns were 

designed for this purpose, so there are no good airborne observation data to examine the effects 

of clouds on vertical profiles of O3.   

 

 

 

 
Fig. P1. (Top) (Left) Cloudy-sky averaged vertical profiles of O3 for SEAC

4
RS observations, 

CNTR and GOES simulations. (Middle and Right) Histogram of ratio of O3 simulated by the 

model to O3 observed for CNTR simulation and GOES simulation, respectively. 
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Fig. P2. Same as Fig. P1, but for NOMADSS campaign.  

 

 

 
Fig. P3. An example for SEAC

4
RS campaign (21 September 2013). (Top, left) Timeseries of 

aircraft altitude. Shading indicates cloud boundaries from GOES retrievals. (Top, right) 

Timeseries of NO2 concentration. (Bottom, left) Timeseries of JNO2. (Bottom, right) Timeseries 

of O3 concentration. Note that the shorter time period than the whole flight-day time period is 

shown here to highlight the effects of clouds. 
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Fig. P4. Same as Fig. P3, but for a NOMADSS example (7 July 2013). 

 

 

2. Ozone production efficiency evaluation 

 

The ozone production efficiency (OPE) is evaluated against SEAC
4
RS observations over the 

southeast US (Fig. P5). The OPE from the model (14.3) is similar to that from the observations 

(14.0), showing a good performance of our model. Both OPE values are smaller than the values 

shown in Travis et al. (2016); 16.7 for their model and 17.4 for SEAC
4
RS observations. Even 

though we use the same criteria as in Travis et al. (2016) such as altitudes lower than 1.5 km and 

NOZ = HNO3 + PAN + aerosol nitrate + alkyl nitrates, we do not exclude urban plumes and open 

fire plumes because 1) we are interested in urban areas and urban plumes and 2) the condition of 

filtering out open fire plumes (using CH3CN) may not be appropriate to apply to our relatively 

high resolution simulations. When urban plumes and open file plumes are excluded in the 

SEAC
4
RS observations (not shown), we find a very similar value of observed OPE (17.46) as in 

Travis et al.’s value (17.4).  
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Fig. P5. Ozone production efficiency (OPE) below 1.5 km over the southeast US for SEAC

4
RS 

campaign. OX is O3 + NO2, and NOZ is HNO3 + PAN + aerosol nitrate + alkyl nitrates. 
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Abstract 18 

Clouds play a key role in radiation and hence O3 photochemistry by modulating photolysis rates 19 

and light-dependent emissions of biogenic volatile organic compounds (BVOCs). It is not well 20 

known, however, how much error in O3 predictions can be directly attributed to thaterror in 21 

cloud predictions. This study applies the Weather Research and Forecasting with Chemistry 22 

(WRF-Chem) at 12 km horizontal resolution with the Morrison microphysics and Grell 3D 23 

cumulus parameterization to quantify uncertainties in summertime surface O3 predictions 24 

associated with the cloudiness over contiguous United States (CONUS). To evaluate the model’s 25 

own clouds and to restrain the growth ofAll model errors, the model is simulations are driven by 26 

reanalysis of atmospheric data and reinitialized every 2 days. In sensitivity simulations, cloud 27 

fields used for photochemistry are corrected based on satellite cloud retrievals. The results show 28 

that WRF-Chem predicts about 55% of clouds in the right locations and generally underpredicts 29 

cloud optical depths. These errors in cloud predictions can lead up to 60 ppb overestimation in 30 

hourly surface O3 concentrations on some days. The average difference in summertime surface 31 

O3 concentrations derived from the modeled clouds and satellite clouds ranges from 1 to 65 ppb 32 

for themaximum daily 8-h average O3 (MDA8 O3) over CONUS. This represents up to ~40% of 33 

the total 8-h averageMDA8 O3 bias under cloudy conditions in the tested model version, and the 34 

results are robust with respect to the choice of the microphysics scheme.. Surface O3 35 

concentrations are sensitive to cloud errors mainly through the calculation of photolysis rates (for 36 

~80%), and to a lesser extent to light-dependent BVOC emissions. The sensitivity of surface O3 37 

concentrations to satellite-based cloud corrections is about 2 times larger in VOC-limited than 38 

NOX-limited regimes. Our results suggest that the benefits of accurate predictions of cloudiness 39 

would be significant in VOC-limited regions which are typical of urban areas. 40 
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 41 

1. Introduction 42 

Ozone (O3) is a secondary pollutant that is formed by chemical reactions involving nitrogen 43 

oxides (NOX = NO + NO2) and volatile organic compounds (VOCs) in the presence of ultraviolet 44 

radiation. Because O3 is a harmful pollutant and a greenhouse gas, there have been numerous 45 

efforts aimed at improving O3 predictions in air quality models, i.e. through a better 46 

characterization of the emissions of O3 precursors (Brioude et al., 2013), more detailed chemical 47 

mechanisms (Carter, 2010; Sarwar et al., 2013), more realistic lateral boundary conditions (e.g., 48 

Tang et al., 2009), and improved representation of meteorological fields with ensemble modeling 49 

techniques (Bei et al., 2010; Zhang et al., 2007). A comprehensive review of the current status 50 

and challenges of air quality forecasting is given by Zhang et al. (2012). A large O3 bias that still 51 

persists in most regional and global models is one of the challenges (Brown-Steiner et al., 2015; 52 

Fiore et al., 2009; Im et al., 2015; Lin et al., 2017; Travis et al., 2016). The recent multi-model 53 

intercomparison study by Im et al. (2015) indicates that over North America models tend to 54 

overestimate hourly surface O3 below 30 ppb by 15–25% and to underestimate O3 levels above 55 

60 ppb by up to ~80%. It is not quantitatively understood how much the individual processes 56 

contribute to O3 biases. Among meteorological parameters, clouds can be one of the key factors 57 

because they greatly modulate the ultraviolet radiation that is critical for O3 formation. However, 58 

they remain one of the largest sources of uncertainties in air quality modeling as Dabberdt et al. 59 

(2004) pointed out a decade ago. Accurate cloud predictions in numerical weather models are 60 

still challenging, and it has not yet been quantified how much errors in cloud prediction impact 61 

surface O3 predictions.  62 
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As satellite cloud products have emerged, providing reasonably accurate data with wide 63 

coverage and high temporal resolutions in near-real time (e.g., Minnis et al., 2008), they have 64 

been employed in various studies to quantify the effects of clouds on actinic fluxes and/or 65 

photolysis rates (Mayer et al., 1998; Ryu et al., 2017; Thiel et al., 2008). Clouds can greatly 66 

reduce or enhance actinic flux below, above, and inside clouds, and these effects depend mainly 67 

on the cloud optical properties. Ryu et al. (2017) used satellite cloud retrievals of cloud bottom 68 

and top heights and cloud optical depth (COD) in a radiative transfer model, and showed that one 69 

can obtain fairly good (within ±10%) vertical distributions of cloudy-sky actinic flux using 70 

satellite cloud properties. There are, however, only a limited number of studies that have 71 

examined the impact of satellite-constrained clouds and photolysis rates on O3 formation. Pour-72 

Biazar et al. (2007) and Tang et al. (2015) used satellite-observed clouds to correct photolysis 73 

rates in a three-dimensional chemistry transport model and reported considerable improvement 74 

in surface O3 simulations. Pour-Biazar et al. (2007) showed that the difference in O3 due to the 75 

errors in cloud predictions can be up to 60 ppb for a given pollution episode over the south US. 76 

Tang et al. (2015) showed that 1-month averages of 8-h surface O3 can differ by 2–3 ppb 77 

between the simulations using satellite-derived clouds and model-predicted clouds over the south 78 

US. These studies were performed for rather short time periods (a week or a month) over limited 79 

areas, and provide motivation for a more systematic/comprehensive quantification of the 80 

importance of cloud errors in O3 predictions in summertime and for various chemical regimes. 81 

In the present study, we use satellite-derived COD and cloud boundaries to constrain radiation 82 

fields that impact photochemistry, i.e., photolysis rates and light-dependent BVOC emissions, in 83 

a three-dimensional chemistry transport model (WRF-Chem). Our study targets the contiguous 84 

United States (CONUS) and numerical simulations are performed for June–September 2013. The 85 
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WRF-simulated clouds are first evaluated against the Geostationary Operational Environmental 86 

Satellite (GOES) data (section 3). The vertical profiles of NO2 photolysis rates are evaluated 87 

against in-situ airborne measurements during two field campaigns (section 4). The O3 biases 88 

arising from inaccurate cloud predictions are quantified, and discussed in light of the sensitivity 89 

of O3 chemistry to COD (section 5). Unlike the previously mentioned studies, here we quantify 90 

separately the contributions of errors arising from changes in photolysis rates altered by clouds 91 

vs. those arising from light-dependent BVOC emissions to the O3 biases. Conclusions and 92 

discussion are given in section 6. 93 

2. Methodology 94 

2.1. Satellite retrievals 95 

The GOES retrievals were performed using the Satellite ClOud and Radiation Property Retrieval 96 

System (SatCORPS), which is an adaptation of the Minnis et al. (2011) algorithms for 97 

application to imagers on all geostationary weather satellites (Minnis et al. 2008) and on NOAA 98 

and MetOp satellites (Minnis et al. 2016). For SatCORPS, the algorithms of Minnis et al. (2011) 99 

were altered as described by Minnis et al. (2010) using the low-cloud height estimation method 100 

of Sun-Mack et al. (2014) and the severely roughened hexagonal column optical model of Yang 101 

et al. (2008) for ice cloud COD retrievals. This study uses a subset of the hourly, 8-km  102 

SatCORPS cloud retrievals from GOES 13 (GOES-East) and GOES 15 (GOES-West) for the 103 

North American domain. The 8-km resolution is achieved by analyzing only every other 4-km 104 

pixel and line. Each pixel is considered to be either 100% cloudy or 100% clear. Of the variety of 105 

cloud properties available, this study only uses cloud bottom height, cloud top height, and COD. 106 

Uncertainties in the cloud products are summarized by Ryu et al. (2017).   107 
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Images from coincident times were unavailable for the two satellites: the GOES 13 and GOES 108 

15 data are offset by 15 min. The GOES 13 data taken at UTC + 45 min at every hour were 109 

matched with the GOES 15 data at UTC + 00 min. The pixel-level retrievals were re-gridded to a 110 

12-km resolution to match the WRF-Chem domain (see section 2.2) using the Earth System 111 

Modeling Framework (ESMF) software and the nearest-neighbor interpolation. Because of the 112 

coverage difference between the two satellites, the data of the nearest time from the two satellites 113 

(e.g., 1845 UTC from GOES 13 and 1900 UTC from GOES 15) are merged at 105°W, which is 114 

equidistant from the two sub-satellite longitudes. Only daytime hours (09–23 UTC and 00–04 115 

UTC) are used here.  116 

 117 

2.2. WRF-Chem model simulations 118 

The present study employs the WRF-Chem model version 3.6.1. with the updated photolysis 119 

scheme. A single domain is used with a horizontal grid size of 12 km (Fig. 1). The 120 

meteorological initial and boundary conditions are provided by the NCEP FNL (Final) 121 

Operational Global Analysis data with a horizontal resolution of 1°, which are available every 6 122 

hours. The model is initialized at 00 UTC 1 June 2013 and spun-up for the first 10 days in the 123 

control simulation (CNTR simulation). The meteorological fields are re-initialized every 48 124 

hours at 06 UTC of a given day to avoid the growth of model errors, and the model is run for 54 125 

hours. Here, the first 6 hours are allowed for spin-up and discarded in each run. The model 126 

outputs for the period of 12 UTC 11 June 2013 through 12 UTC 1 October 2013 are used for the 127 

analysis. As the goal of the study is to use and evaluate the modeled clouds and their impact on 128 

O3 predictions, nudging is not used. This is different from many previous air quality studies that 129 

nudged the meteorology and evaluated modeled O3 with observations. The physics options used 130 
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are the Morrison two-moment scheme (Morrison et al., 2009) for the microphysics, RRTMG 131 

scheme for longwave and shortwave radiation (Iacono et al., 2008), MYNN 2.5 level TKE 132 

scheme for the boundary layer parameterization (Nakanishi and Niino, 2006), MYNN surface 133 

layer scheme, Noah land surface model (Chen and Dudhia, 2001), and Grell 3D ensemble 134 

scheme (Grell and Devenyi, 2002) for cumulus parameterization with radiation feedback. The 135 

initial and boundary conditions for chemical species are obtained from the Model for OZone And 136 

Related chemical Tracers (MOZART) global simulation of trace gases and aerosols. For each 2-137 

day simulation, the chemical state of the atmosphere at 06 UTC is obtained from that at 06 UTC 138 

of the previous simulation. The MOZART-4 mechanism is used for gas-phase chemistry as 139 

described in Knote et al. (2014), and the Model for Simulating Aerosol Interaction and 140 

Chemistry (MOSAIC) aerosol module with 4 bins is used for the aerosol chemistry. 141 

Anthropogenic gas and aerosol emissions are adopted from the AQMEII project in which the 142 

emissions were projected to 2010 from the NEI 2008 inventory (Campbell et al., 2015). Since 143 

Travis et al. (2016) reported that NEI NOX emissions are too high, we reduced NOX emission 144 

from all anthropogenic sources by 40% followingbased on their analysis. Note that the NOX and 145 

PAN from the lateral boundaries are also reduced by 40% in our study. Biomass burning 146 

emissions are taken from the Fire Inventory from NCAR (FINN) (Wiedinmyer et al., 2011). 147 

Model of Emissions of Gases and Aerosols from Nature (MEGAN) (Guenther et al., 2006) 148 

version 2.04 is used for BVOC emissions. As done in Travis et al. (2016) to better match 149 

isoprene flux observations during the Studies of Emissions and Atmospheric Composition, 150 

Clouds and Climate Coupling by Regional Surveys (SEAC
4
RS) field campaign (Toon et al., 151 

2016), we reduced MEGAN isoprene emissions by 15% over the southeast US. The photolysis 152 

rate calculations utilize the newly implemented TUV option in the WRF-Chem model (Hodzic et 153 
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al., 2017 in preparation). This new TUV option uses the updated cross section and quantum yield 154 

data based on the latest stand-alone TUV model version 5.3, and considers 156 wavelength bins 155 

with the resolutions of 1–5 nm. The COD is calculated based on the parameterization given in 156 

Chang et al. (1987), which uses cloud liquid water and/or ice water contents and effective droplet 157 

radius (assumed to be 10 μm both for liquid and ice droplets). To represent subgrid cloud 158 

overlaps, a simple equation of Briegleb (1992) is used, i.e., the effective COD = COD0 × (cloud 159 

fraction)
1.5

, where COD0 is the cloud optical depth that is calculated following Chang et al. 160 

(1987), and the cloud fraction is determined based on the relative humidity in a given grid box. 161 

According to Briegleb (1992), applying a power of 1.5 to the cloud fraction is equivalent to the 162 

maximum random overlap.  163 

In the present study, we performed two sets of simulations that use WRF generated clouds in the 164 

CNTR simulation and the GOES clouds in the GOES simulation. The GOES simulations are 165 

conducted from 06 UTC 11 June 2013 through 12 UTC 1 October 2013. The initial chemistry 166 

conditions in the GOES simulation are adopted from the outputs of the CNTR simulation at 06 167 

UTC 11 June 2013. The satellite cloud retrievals are used only to correct photolysis rate and 168 

photosynthetically active radiation (PAR) calculations (i.e., only within the TUV model in WRF-169 

Chem). That is, the satellite cloud information is not linked to dynamics, microphysics, and 170 

atmospheric radiation. The value of COD is linearly distributed through vertical grids from the 171 

cloud bottom to the cloud top within the TUV model as done in Ryu et al. (2017). This method is 172 

different from the one used in Pour-Biazar et al. (2007) and Tang et al. (2015) in which cloud 173 

bottom height used in their photolysis rate calculations is estimated from the meteorological 174 

model rather than retrieved from the satellite. The use of model estimates can lead to additional 175 

uncertainties in the case of misplaced model clouds compared to observations.  176 
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In the present study, PAR calculated from the TUV model is used for the BVOC emissions in 177 

MEGAN for all simulations. This is different from the PAR conventionally used in MEGAN, 178 

which is simply converted/scaled from the downward shortwave radiation from the atmospheric 179 

radiation scheme. In the CNTR (GOES) simulation, the WRF generated clouds (GOES clouds) 180 

are used for the PAR calculation within the TUV model.  181 

To examine the impact of changes in BVOC emissions on surface O3, another set of sensitivity 182 

simulation (EMIS_BVOC simulation) is performed for 10 days (3–12 July 2013), which uses 183 

WRF-generated clouds for the PAR calculation and BVOC emissions as in the CNTR simulation 184 

but uses the GOES clouds for photolysis rate calculations as in the GOES simulation. The 185 

description of the control and sensitivity simulations is summarized in Table 1. 186 

  187 

2.3. Observational data 188 

2.3.1. Aircraft data from field campaigns 189 

We evaluate the model performance using airborne measurements made during two field 190 

campaigns in 2013, i.e., the NOMADSS (Nitrogen, Oxidants, Mercury and Aerosol Distributions, 191 

Sources and Sinks) and the SEAC
4
RS campaigns. The detailed description of the instrument and 192 

measurement data is given in Ryu et al (2017). The NOMADSS campaign was conducted during 193 

1 June–15 July 2013 mainly over the southeast US. We use 16 flight-day data at 1-min time 194 

intervals for the analysis. Data with solar zenith angles larger than 85° are not used. The fire 195 

plume data are filtered out by excluding the data showing NO2 (> 0.1 ppb) or CO (> 120 ppb) 196 

aloft at 4–7 km level. Based on the GOES cloud data, 68% of flight data are characterized by 197 

clear skies and the remaining data (32%) had clouds in the vertical column where the airplane 198 
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was located. The SEAC
4
RS campaign also targeted the southeast US although the airplane 199 

sometimes flew over a larger region including California and Midwestern US. The period used 200 

for the analysis is from 6 August through 23 September 2013, which includes 21 flight days. The 201 

time intervals are also 1-min and the data with large solar zenith angles (> 85°) and with fire 202 

plumes are filtered out. The fraction of data with clouds is 41% for SEAC
4
RS. It is noteworthy 203 

that SEAC
4
RS measurements include large and thick clouds in some cases as a few of the 204 

campaign goals are to identify the role of deep convection in redistributing pollutants and 205 

aerosol-clouds feedbacks, whereas the clouds during NOMADSS were mostly broken clouds.  206 

2.3.2. Ground ozone data 207 

The United States Environmental Protection Agency (EPA) hourly O3 measurements are used for 208 

the analysis. To examine the sensitivity of O3 to COD in different chemical regimes, the VOC- 209 

and NOX-limited regimes are identified using the ratio of O3/NOy, following Sillman and He 210 

(2002). They reported that the NOX-VOC transition occurs when O3/NOy = 4–6. Thus, an 211 

EPA site is denoted as a VOC-limited (NOX-limited) regime when the ratio is less than 4 (greater 212 

than 6). Examples showing the ratio of O3/NOy for several sites are given in the 213 

supplementary materials (Fig. S1). Among 1,299 EPA sites, 1,062 are used for the analysis: 24% 214 

of the sites are in the VOC-limited and 76% in NOX-limited regimes. The remaining 237 sites are 215 

not used in the present study because those sites fall into the transitional zone, i.e., O3/NOy = 216 

4–6. Note that modeled O3 and NOy in the CNTR simulation are used to determine whether an 217 

EPA site is in VOC-limited or NOX-limited regime because NOy measurements are available for 218 

limited sites.   219 
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3. Evaluation of WRF clouds with satellite measurements  220 

The model bias in the cloud spatial coverage is evaluated using a 2×2 contingency table (Table 221 

2), where A and D correspond to hit and correct negative events, respectively, and B and C to 222 

false alarm and miss events, respectively. Here, a threshold of 0.3 in hourly COD is used to 223 

distinguish between clear and cloudy sky as the lowest detection limit of satellite retrieved COD 224 

over land is estimated to 0.25 in Rossow and Schiffer (1999), and the use of 0.3 poses slightly 225 

stricter conditions for cloudiness. The agreement index, which is defined as A+D (WRF predicts 226 

correctly cloudy or clear skies), is 69.7% and the probability of detection (POD) for clouds, 227 

A/(A+C), is 55.6%. It is found that the fraction of errors in missing clouds (C, 19.8%) is larger 228 

than that of predicting wrong clouds (that are not present in reality) (B, 10.4%). The overall bias, 229 

(A+B)/(A+C), is 0.789 and this means that the WRF underestimates the frequency of cloudy 230 

skies as the ratio of (A+B)/(A+C), 0.789, indicates smaller than 1.. Figure 1 shows the spatial 231 

distribution of each contingency category over the CONUS as averaged over the whole study 232 

period. In general, the eastern US shows higher cloud frequencies than the western US except for 233 

parts of the mountain regionsRocky Mountains and northwestern US.the Pacific Northwest. The 234 

largest agreement index appears in the central California where the sky condition is mostly clear 235 

(Fig. 1d). In terms of errors, the missing clouds rate has its highest frequency (20−35%) in the 236 

Midwestern and northwestern US, while the highest frequency of false alarm (20–30%) occurs 237 

over the southeast US and the southeastern Texas. The sum of category B and C can be found in 238 

the supplementary material (Fig. S1S2). It should be noted that the contingency categories are 239 

based on binary results of cloud-free or cloudiness and so they do not provide quantitative 240 

comparison of cloud optical properties, e.g., COD. For example, even though the WRF model 241 
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produces clouds in the right locations (category A), the WRF CODs can differ from those 242 

retrieved from satellite data. 243 

Figure 2 evaluates quantitatively COD and vertical extent of clouds between the model and 244 

satellite retrievals. The vertical extent of clouds is classified based on the International Satellite 245 

Cloud Climatology Project (ISCCP) definition (Rossow and Schiffer, 1999), which are as 246 

follows: i) low-level: cloud top height ≤ 3 km, ii) mid-level: 3 km < cloud top height ≤ 6 km, iii) 247 

high-level: cloud bottom height > 6 km, and iv) multi-layered or deep convection: cloud bottom 248 

height ≤ 6 km and cloud top height > 6 km. Even though multiple cloud layers can be resolved in 249 

the WRF model, these kinds of clouds are not resolved in the satellite retrievals used in this study. 250 

Thus, for a fair comparison, the multi-layered clouds in the WRF model are not further resolved 251 

into cloud layers. Note that the liquid/ice water contents from cumulus clouds (parameterized 252 

clouds) are included in the model COD calculations.  253 

The frequency distribution of CODs does not have the same shape in the model and observations. 254 

The WRF model overpredicts by a factor of 2 very thin clouds with COD < 1, whereas the 255 

GOES retrievals show that the most abundant clouds have CODs of 2–5. The majority of 256 

optically very thin clouds from the WRF model correspond to high-level cirrus clouds. This is 257 

consistent with the result of Cintineo et al. (2013), showing that the Morrison microphysics 258 

scheme produces too many upper-level clouds by comparing GOES infrared brightness 259 

temperature with the WRF model. Note that the optically-thin multi-layered clouds very likely 260 

contain cirrus clouds because their top height is greater than 6 km. The WRF model produces 261 

fewer clouds with COD > 1 than observed, and the discrepancy is most apparent for optically 262 

very-thick clouds (COD > 50). As a result, the model COD mean and standard deviation are 263 
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smaller than those for the retrievals, which are 8.3 and 12.7, respectively for the WRF model, 264 

and 17.8 and 30.8, respectively for the GOES retrievals.  265 

4. Impact of cloud errors on photolysis rates 266 

Figure 3 compares the cloudy-sky averaged vertical profiles of NO2 photolysis rates (JNO2) 267 

predicted by WRF-Chem and measured during the NOMADSS (Fig. 3a) and SEAC
4
RS (Fig. 3d) 268 

campaigns. The histograms of ratio of JNO2 simulated to that observed under cloudy conditions 269 

are also shown for the CNTR and GOES simulations.  270 

For both campaigns, the simulations with satellite clouds (GOES simulations) generally show 271 

better agreement with the observed JNO2 profiles than the controlCNTR simulations, especially 272 

above the boundary layer (above ~2 km). The histograms of the ratio model-to-observation JNO2 273 

also show a better performance generally in the GOES simulation than in the CNTR simulation: 274 

the mean of the ratio is closer to 1 in the GOES simulation than in the CNTR simulation for 275 

SEAC
4
RS, the standard deviations are reduced in the GOES simulation compared to those in the 276 

CNTR simulation for both campaigns, the root-mean-square-errors are lowered in the GOES 277 

simulation compared to those in the CNTR simulation, and the correlation coefficients are closer 278 

to 1 in the GOES simulation than in the CNTR simulation. For NOMADSS, the large bias in the 279 

highest ratio bin (> 2) is 24% less in the GOES simulation than in the CNTR simulation. The 47% 280 

reduction of the large bias (>(bin > 2) in the GOES simulation is more substantial for SEAC
4
RS. 281 

This is  and reaches 47%. These reductions are attributed to a better representation of the below-282 

cloud and inside-cloud conditions when satellite clouds are used (not shown). TheThis is because 283 

the number of data influenced by thick clouds is larger mean model-to-observation JNO2 ratio 284 

and the greater frequency of ratios greaterin SEAC
4
RS than 1 for in NOMADSS are likely due to 285 
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the overestimation of JNO2 above clouds as scattered clouds predominate in those and the 286 

measurements. In the TUV calculations, the clouds in a given grid box (e.g., here a 12 km × 12 287 

km box) are assumed to be infinitely extended in the horizontal direction. However, the sensor 288 

can see a broader area (than a 12 km × 12 km area), and so in the presence of scatteredthose 289 

thick clouds a were mostly made under below-cloud fraction within sensor view angles can be 290 

smaller than 1. Therefore, the modeled JNO2 can be larger in the presence of scattered clouds as 291 

compared to the measured JNO2or inside-cloud conditions.  292 

5. Impact of cloud errors on ground level ozone 293 

5.1. An example on 8 July 2013 in Midwestern US  294 

Figure 4 shows an example of how model errors in cloud fields impact O3 predictions. This 295 

example includes thunderstorm systems over the Midwestern US. The CNTR simulation misses 296 

clouds or underpredicts CODs over metropolitan Chicago and the region south of Lake Michigan. 297 

This results in the overprediction of JNO2 by up to 0.54 min
–1

 (~90%) compared to that 298 

computed using GOES clouds. The resulting changes in O3 concentration are regional and the O3 299 

overprediction in the plume originating from the Chicago area is up to 62 ppb (~60% of O3 in the 300 

CNTR simulation). As a result of the cloud corrections, O3 in the GOES simulation agrees better 301 

with observations in those regions (compare Fig. 4d with Fig. 4e and Figs. 4g,h,i). The time 302 

series of O3 at the three sites (marked in Fig. 4f) near Lake Michigan show particularly improved 303 

agreement with observations when satellite clouds are used. The large O3 biases of 20.5 ppb at 304 

11 LSTCST at Chicago, IL, 19.2 ppb at 13 LSTCST at La Porte, IN, and 23.5 ppb at 16 LSTCST 305 

at Holland, MI in the CNTR simulation are reduced to 1.7 ppb, 3.2 ppb, and −0.11 ppb in the 306 

GOES simulation, respectively. It is also apparent that the bias reduction in O3 shifts eastward 307 
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(from Chicago, IL to Holland, MI) as the thunderstorm moves eastward during the day. An 308 

important implication of this finding is that errors in cloud predictions can lead to wrong O3 309 

alerts in areas where model does not predict clouds well. For example, the daily maximum daily 310 

8-h O3average O3 (MDA8 O3) concentration is 75.3 ppb at Holland, MI in the CNTR simulation 311 

(Fig. 4i) and this value exceeds the O3 standard (70 ppb for 8-hMDA8 O3). However, the daily 312 

maximum 8-hMDA8 O3 concentration at the same location is 63.0 ppb in the GOES simulation 313 

and 60.4 ppb in the observation. Therefore, an O3 action alert would have been issued if the 314 

CNTR simulation results are used, which results in a false alarm. The example shown here 315 

emphasizes the important roles of clouds in the Great Lakes region where large O3 biases have 316 

been reported previously in air quality forecasts (e.g., Cleary et al., 2015). The correction of 317 

clouds both over the lakes and in the upstream regions (mostly large cities located to the 318 

west/southwest of the lakes) significantly reduces the O3 bias. It is also shown that polluted air 319 

masses from the source regions can be advected over the lakes (not shown). In this case in which 320 

precursor levels can be high over the lakes, the presence of clouds over the lakes can greatly 321 

affect O3 formation over the lakes.   322 

In general, the regions exhibiting O3 differences between the two simulations coincide with the 323 

regions where JNO2 values are different. More importantly, large O3 differences are found near 324 

urban areas (e.g., Chicago, IL; downwind area of Kansas City, MO; Omaha, NE and its 325 

downwind area). Even though the difference in COD or JNO2 is significant in central Indiana, 326 

for example, the difference in O3 in the region is relatively small compared to that near Lake 327 

Michigan. 328 

 329 
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5.2. Maximum daily 8-h average O3  330 

Figure 5 shows the maps of MDA8 O3 averaged over the study period for the CNTR simulation 331 

and the difference in MDA8 O3 between the CNTR and GOES simulations. The spatial 332 

distribution of 8-h average O3 (10–17 LST average, simply 8-h O3 hereafter) averaged over the 333 

whole study period MDA8 O3 in the GOES simulation is similar to that in the CNTR simulation, 334 

(thus the GOES spatial average is not shown here), but the O3 levels are considerably different. 335 

Figure 5 shows the maps of 8-h O3 for the CNTR simulation and the O3 difference between the 336 

CNTR and GOES simulations. In Fig. 5b, the Midwestern, eastern, and northwestern US regions 337 

show the largest O3 differences, up to 4.75.8 ppb, with lower O3 levels in the GOES simulation. 338 

These regions generally belong to the contingency category C (Midwestern and northwestern US) 339 

or category A (eastern US). On the other hand, the regions with negative differences, i.e., some 340 

places over the south/southeastern US, coincide with the contingency category B. These 341 

differences are expected and can be interpreted as follows: when the WRF model misses clouds 342 

(clear sky in the CNTR simulation, category C) or underestimates COD (as seen in Fig. 2), 343 

surface O3 is overestimated. When the WRF model generates clouds that are not present in 344 

reality (clear sky in the satellite retrievals, category B), surface O3 is underestimated. It should be 345 

noted that not all regions belonging to category B or C have significant O3 differences. 346 

Interestingly, the regions exhibiting significantly large O3 differences coincide with large urban 347 

areas, e.g., Seattle, WA; Los Angeles, CA; Chicago, IL; Cleveland, OH; Houston, TX; New 348 

Orleans, LA; Atlanta, GA; and Miami, FL. The reasons for this result are explored in section 5.4 349 

and 5.5. 350 

The performance of the GOES simulation is found to be better than that of the CNTR simulation 351 

as compared to observations: for example, under cloudy conditions (COD > 20, see section 5.4 352 
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for the criterion), the root-mean-square error of MDA8 O3 in the GOES (CNTR) simulation is 353 

13.2 ppb (16.9 ppb) and the correlation coefficient of MDA8 O3 in the GOES (CNTR) 354 

simulation is 0.5 (0.4). 355 

5.3. Relative contribution to O3 errors from photolysis rates and BVOC emissions  356 

It is expected that reduced BVOC emissions (especially isoprene) due to the presence of clouds 357 

can also decrease O3 formation. Figure 6 shows the spatial distributions of relative changes in 358 

PAR and isoprene emission between the EMIS_BVOC and GOES simulations averaged over a 359 

10-day period. Because the WRF model tends to underestimate COD or is not able to reproduce 360 

clouds in Midwestern and western US, PAR and biogenic isoprene emissions are larger in the 361 

EMIS_BVOC simulation than in the GOES simulation. On the other hand, the model 362 

overestimates COD or produces clouds that are not present in reality over the southeast US, so 363 

PAR and biogenic isoprene emissions are lower in the EMIS_BVOC simulation than in the 364 

GOES simulation. The change in PAR (biogenic isoprene emissions) resulting from the 365 

difference in clouds fields between the WRF model and satellite retrievals is up to ±30–40% 366 

(±25%). TheFigure 6d shows the relative O3 difference between the EMIS_BVOC and GOES 367 

simulations (Fig. 6d) is relatively small in comparison to the O3 difference in O3 between the 368 

CNTR and GOES simulations (Fig. 6c)). It is seen that results from both photolysis rate and 369 

BVOC emission changes. In general, the contribution of changes in BVOC emissions is 370 

considerable only for some regions and it ranges from ~10–40%. The average contribution of 371 

changes in BVOC emissions over land is ~20% compared to changes of BVOC emissions plus 372 

photolysis rates to changes in O3 is ~80%, on average, over CONUS and the remaining (~20%) 373 

is attributed to changes in BVOC emissions.using GOES satellite clouds. The contribution of 374 

BVOC emissions is larger (up to ~(~40%) in urban areas over the southeast (specifically in 375 
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Charlotte, NC). The difference in O3 in Charlotte, NC resulting from changes in BVOC 376 

emissions is about 1.5 ppb and that from changes in both photolysis rates and BVOC emissions 377 

is about 3.5 ppb. In some regions, such as Midwestern, western Pennsylvania, and central New 378 

York, the effect of BVOC emissions is negligible. 379 

 380 

5.4. Cloud effects on ozone bias in VOC- and NOX -limited regimes 381 

In this section, we examine the effects of clouds on O3 in VOC-limited and NOX-limited regimes 382 

in order to understand the reasons for a stronger O3 response to cloud corrections in urban areas 383 

than in the remote regions. Figure 7 shows how cloud corrections affect O3 errors in different 384 

regimes. Here, 8-hMDA8  O3 is used to compute the model O3 bias (simulation minus 385 

observation). Figures 7a and 7b show the probability density functions of the model O3 bias for 386 

the CNTR and GOES simulations, respectively, at all ground sites experiencing considerably 387 

thick (COD > 20) clouds. In this example, an EPA site is considered under cloudy sky conditions 388 

when hourly COD greater than the chosen threshold (here, 20) is present at the site for at least 4 389 

hours within the 8-h time window in a given day. The decrease in the O3 bias for VOC-limited 390 

regime is significant, and the difference in median values between the two simulations is 5.42 391 

ppb. The decrease in O3 bias for NOX-limited regimes (2.757 ppb) is about 2 times smaller than 392 

that for VOC-limited regime. An important result is that the frequency of very large biases (e.g., 393 

greater than 20 ppb) is substantially reduced when cloud fields are corrected, especially for the 394 

VOC-limited regime. This implies that more accurate cloud predictions ultimately improve the 395 

accuracy of O3 alert predictions, especially in polluted urban areas.   396 
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Figure 7c shows the change in median values of 8-hMDA8 O3 bias for a range of COD 397 

thresholds. We find that the O3 bias increases with increasing cloudiness in the CNTR simulation. 398 

As previously mentioned, the O3 bias is generally larger for VOC-limited regimes than for NOX-399 

limited regimes. When the radiation fields are corrected with satellite clouds, the model O3 bias 400 

is considerably reduced (but not zero). In addition, the O3 bias in the GOES simulation does not 401 

increase as much as that in the CNTR simulation when cloudiness increases. This implies that 402 

there are other sources of O3 biases in the GOES simulation, which are not likely associated with 403 

cloudiness. The other errors sources can be precursor emissions, mixing/transport, and deposition. 404 

Fig. 7d compares the median values of 8-hMDA8 O3 bias between the two simulations (CNTR 405 

minus GOES), and shows that the difference in 8-hMDA8 O3 between the two simulations 406 

clearly increases as the COD threshold increases and that the effect of cloud correction is larger 407 

in VOC-limited than in NOX-limited regimes. The reduced O3 bias as a result of cloud 408 

corrections ranges from 1 to 65 ppb depending on CODs and chemistry regimes. This represents 409 

up to ~40% of the total O3 bias under cloudy conditions in the current model version (e.g., 5.42 410 

ppb of 13.3712.6 ppb for COD threshold of 20 in VOC-limited regimes). Note that the results for 411 

the sites in transitional zone (the slope of O3/NOy is 4–6) showed that the effects of cloud in 412 

the transitional zone are intermediate; that is, larger than those for NOX-limited regimes but 413 

smaller than those for VOC-limited regimes (not shown). 414 

We performed additional analysis by dividing VOC- and NOX-limited sites into groups that have 415 

similar ranges of peak MDA8 O3 concentration during the period of June–September 2013 (Fig. 416 

S3). All sites are grouped into bins with peak value of MDA8 O3 ranging from larger than 75 417 

ppb, 70–75 ppb, 65–70 ppb, 60–65 ppb, to smaller than 60 ppb.  The maximum reduction in O3 418 

bias due to cloud corrections is obtained for the VOC-limited sites with peak MDA8 O3 of 65–70 419 
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ppb and reaches ~8 ppb. The maximum reduction for NOX-limited sites, on the other hand, is ~4 420 

ppb and found for the sites with peak MDA8 O3 of 70–75 ppb. Although the degree of the O3 421 

bias reduction varies somewhat among the bins for a given ozone regime, the effects of cloud 422 

correction on O3 bias reduction remain larger in VOC-limited regimes than NOX-limited regimes. 423 

We examine the O3 bias over the southeast US where large overpredictions at the surface have 424 

been reported (e.g., Travis et al. 2016) in a the supplementary section.material. It is found that a 425 

considerable portion of O3 bias is attributable to inaccurate cloud predictions over the southeast 426 

US, but the degree of the effects of clouds is smaller than that over CONUS as a whole (Fig. 427 

S2S4). The maximum reduction in O3 bias due to inaccurate cloud predictions is 4.65 ppb over 428 

the southeast US and 5.73 ppb over CONUS. Still, large O3 biases of ~11 ppb are present over 429 

the southeast US (compared to those of 86–9 ppb over CONUS) even though the cloud clouds 430 

and radiation fields that are corrected for relevant to photochemistry. are corrected. This result 431 

implies that errors resulting from other processes exist and are responsible for the surface O3 432 

overpredictions over the southeast US. More in-depth studies that find and quantify errors are 433 

therefore required to better predict the O3 over the southeast US as well as CONUS.  434 

 435 

5.5. Ozone formation sensitivity to changes in photolysis rates 436 

The difference in O3 sensitivity to changes in photolysis rates (resulting from the presence of 437 

clouds) in different regimes is determined by calculating dln(O3)/dln(JNO2) ratios as in 438 

Kleinman (1991). Table 3 lists those sensitivity coefficients of O3 to JNO2 and shows that O3 is 439 

more sensitive to JNO2 in VOC-limited than in NOX-limited regimes, being 1.69 times larger 440 

under cloudy-sky conditions and by 1.65 times greater under clear-sky conditions. Similar 441 
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sensitivities were reported for OH by Berresheim et al. (2003) with the sensitivity of OH to JO
1
D, 442 

dln(OH)/dln(JO
1
D), of 0.8 at high NO2 levels (~10 ppb) and 0.68 at low to moderate NO2 levels 443 

(~1 ppb). The corresponding sensitivities from our study are 1.1 for VOC-limited regimes and 444 

0.66 for NOX-limited regimes under clear-sky conditions. Similar results are also found for the 445 

net chemical production of O3 and OH concentration, revealing stronger responses to changes in 446 

cloudiness in VOC-limited regimes than NOX-limited regimes (Fig. 8). It is interesting to note 447 

that OH and HO2 have local maxima at CODs between 2 and 5. As shown in Ryu et al. (2017), 448 

the enhancement of actinic flux at the surface due to optically thin clouds (CODs < 5) is 449 

considerable for high-level clouds, i.e., cirrus. The local maxima, therefore, likely result from the 450 

fact that the GOES clouds have the largest portion of cirrus for CODs of 2–5 as seen in Fig. 2b. 451 

Figure 8 also shows that the variation (defined by 25 and 75 percentiles) of net chemical 452 

production of O3 with respect to COD is much larger in VOC-limited conditions. This result 453 

suggests that predicting O3 under cloudy conditions is likely more difficult in VOC-limited than 454 

in NOX-limited regimes. It is also noticeable that the HO2 radical concentration remains 455 

relatively high in NOX-limited regimes even under cloudy conditions as compared to the VOC-456 

limited regimes. Note that the results of WRF-Chem here include the effects of both photolysis 457 

rates and BVOC emissions. 458 

A simplified box model (BOXMOX, Knote et al. (2015)) simulation using the same chemical 459 

mechanism (MOZART-4) as WRF-Chem was performed to better understand O3 sensitivity to 460 

changing cloudiness in different chemistry regimes. The emission rates for VOC-limited (NOX-461 

limited) regime are those of the Chicago urban (rural) area in the WRF-Chem simulation. The 462 

initial conditions are taken from the CNTR simulation at 09 LSTCST 7 July 2013 in the Chicago 463 

suburban area for both regimes. Dry deposition is not considered. Photolysis rates for all species 464 
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that are photodissociable are varied from clear-sky to cloudy conditions with up to 80% 465 

reduction. The 80% reduction roughly corresponds to COD of 35 (not shown). The box model is 466 

integrated for 123 hours and photolysis rates are kept constant during the simulation (i.e., no 467 

diurnal variations). The box model results are found to be consistent with the results from the 468 

WRF-Chem simulations: the variations of O3 and OH with respect to decreasing photolysis rates 469 

are larger in VOC-limited regime than in NOX-limited regime (Fig. S3S5, in the supplementary). 470 

material). Note that the net chemical production of O3 obtained from the box model results also 471 

shows a larger sensitivity to cloudiness in VOC-limited regimes than in NOX-limited regimes, 472 

which is similar to Figs. 8a and 8d (not shown). Figure 9 shows production and loss terms of 473 

ROX (= OH + HO2 + RO2) radicals with variations in photolysis rates for VOC-limited and NOX-474 

limited regimes. In both regimes, the decreased sunlight due to clouds reduces OH formation by 475 

photodissociation of O3 (primary source of OH). The larger sensitivity of OH radicals to COD in 476 

VOC-limited regimes as seen in Fig. 8 is associated with the loss of OH by the radical 477 

termination reaction between OH and NO2 under NOX-rich conditions, which leads to the large 478 

decrease in OH (Fig. 9a). On the other hand, in NOX-limited regimes, the radical termination 479 

reactions are the radical-radical reactions (Fig. 9b). In this regime, OH mainly reacts with VOCs 480 

and propagates through radical cycles by producing HO2/RO2 radicals, rather than being 481 

terminated by the reaction with NO2. Given that the reaction between NO and HO2 becomes the 482 

largest source of OH budget (secondary source of OH) at an NOX concentration of ~1 ppb 483 

(Ehhalt and Rohrer, 2000; Eisele et al., 1997), OH can be relatively less sensitive to the changes 484 

in radiation. Note that the mean daytime NOX concentration over CONUS in NOX-limited 485 

regimes is 1.2 ppb and that in VOC-limited regimes is 6.7 ppb for this study period. Another 486 

attribute is a relatively greater contribution of H2O2 photodissociation to the production of ROX 487 
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in NOX-limited regimes than that of HNO3, which is negligible. Unlike the radical terminated in 488 

VOC-limited conditions, a non-negligible amount of terminated radicals can be recycled in the 489 

NOX-limited regime. 490 

 491 

6. Sensitivity of cloud optical depth and O3 to microphysics schemeand 492 

convective schemes 493 

It should be emphasized that our study was performed using a specific representation of the 494 

cloud microphysics by Morrison et al. (2009).(2009) and cumulus parameterization (Grell and 495 

Devenyi, 2002). To test the robustness of our results with regard to the representation of clouds, 496 

another microphysics scheme, Thompson scheme (Thompson et al., 2008), is employed for a 10-497 

day (3 July–12 July 2013) sensitivity simulation. The COD comparison in Fig. S4S6 shows that 498 

with the Thompson scheme the model predicts fewer clouds for all ranges of CODs as compared 499 

to GOES retrievals, except for the very thin ones (COD < 1) in which the number of those clouds 500 

is still overpredicted as seen in the simulation with Morrison scheme. Compared to the Morrison 501 

scheme, the Thompson scheme produces significantly less high-level (cirrus) clouds. This is also 502 

consistent with the findings of Cintineo et al. (2013). Despite this difference, the shape of the 503 

COD distribution from the two microphysics schemes are rather similar to each other.   504 

The 8-hMDA8 O3 bias with the Thompson scheme is evaluated (Fig. S5S7), and compared to 505 

that of the Morrison scheme for the same period. TheUnder the conditions of COD greater than 506 

20, for example, the baseline simulation with the Thompson scheme (that uses model generated 507 

clouds) shows that a median bias (14.0979 ppb) is a bit smaller than that with the Morrison 508 

scheme (16.2922 ppb) for that period in VOC-limited regimes. In the sensitivity simulation with 509 
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the Thompson scheme that uses GOES satellite clouds for photochemistry, the median bias is 510 

reduced by 6.075.45 ppb (~4337%, Fig. S5aS7a) in VOC-limited regimes and by 1.452.06 ppb 511 

(~1420%, Fig. S5cS7c) in NOX-limited regimes, which are consistent with the results of our base 512 

simulation. The degree of the effects of cloud correction in the sensitivity simulations with the 513 

Thompson scheme, ranging from 0.5 to 65.5 ppb, is similar to that found in the simulationsour 514 

base simulation with the Morrison scheme. Therefore, the general conclusions remain the same: 515 

i.e.., errors in O3 predictions resulting from errors in cloud predictions are considerable (up to 516 

~65 ppb on average) and the effects of cloud corrections are larger in VOC-limited regimes than 517 

in NOX-limited regimes.  518 

To estimate the sensitivity of our results to cumulus parameterization schemes, sensitivity 519 

simulations with the Grell-Freitas scheme (Grell and Freitas, 2014) are performed. As done for 520 

microphysics scheme, a period of 10 days (3–12 July 2013) was considered. In Fig. S8, the 521 

histograms of cloud optical depths obtained for the 10-day period from Grell-Freitas scheme and 522 

from Grell-3D scheme show that the distributions of cloud optical depths are in general similar 523 

to each other. The Grell-Freitas scheme tends to produce fewer clouds with small or moderate 524 

cloud optical depths (Fig. S8). As shown in Fig. S9, the degree of cloud correction in reducing 525 

O3 bias is larger in VOC-limited regimes than in NOX-limited regimes in the simulation with 526 

Grell-Freitas scheme, and thus the conclusions originally drawn remain unchanged. 527 

 528 

7. Conclusions and discussion 529 

We performed quantitative analyses withof the WRF-Chem model meso-scale (12 km) 530 

simulations to determine how much errors in cloud predictions contribute to errors in surface O3 531 
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predictions during summertime over CONUS. Clouds were generated using the Morrison 532 

microphysics and Grell 3D cumulus parameterization schemes. It is found that the WRF-Chem 533 

model is able to generate roughly 55% of the clouds in the right locations by comparing to 534 

satellite clouds. A quantitative comparison of COD shows that the WRF-Chem model predicts 535 

too many thin cirrus clouds with CODs less than 1, and also considerably underpredicts the 536 

optical depths for a majority of cloud systems.  537 

The errors in cloud predictions can lead to large hourly O3 biases of up to 60 ppb, for example, 538 

for specific cases in which the model misses deep convective clouds that are present in reality. 539 

On average, the errors in 8-hMDA8 O3 of 1–65 ppb are found to be attributable to errors in cloud 540 

predictions under cloudy sky conditions. We quantify separately the contribution of changes in 541 

photolysis rates and emissions of light-dependent BVOCs to cloud-related errors in surface O3. 542 

The contribution of photolysis rates to surface O3 is larger (~80% on average) than that of BVOC 543 

emissions. The contribution of BVOC emissions to O3 can become important (~40%) in the 544 

VOC-limited regimes where BVOC emissions are large (i.e., cities of the southeast US). 545 

The effects of cloud corrections are more impactful in VOC-limited (or high-NOX) than in NOX-546 

limited (or low-NOX) regimes. The sensitivity of O3 with respect to COD is about 2 times larger 547 

in VOC-limited than in NOX-limited regimes. This finding is consistent with the box modeling 548 

results that were performed for typical urban (/rural) conditions under varying photolysis rates. 549 

The production of radicals (OH, HO2, and RO2) decreases with decreasing photolysis rates in the 550 

presence of clouds. The primary reason for the larger sensitivity of O3 formation to clouds in 551 

VOC-limited regimes is that the loss of OH is much stronger in VOC-limited regimes due to the 552 

reaction with NO2. Thus, OH cannot readily propagate through the radical cycles. In NOX-553 

limited regimes, the radicals terminated from the radical cycles are mostly HO2 and RO2 rather 554 
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than OH. Thus, OH can remain in the cycles and continue to produce HO2 and RO2 by reacting 555 

with VOCs before termination. The interconversion of HO2 to OH is the dominant process in 556 

NOX-limited regimes, and therefore OH and O3 formations are less sensitive to changes in 557 

radiation.  558 

This study suggests that accurate cloud predictions through data assimilation or cloud mask 559 

corrections with near-real time satellite cloud data would benefit accurate O3 predictions and that 560 

the benefit is expected to be greater in VOC-limited than in NOX-limited regimes. Even 561 

thoughWe showed that considerable reduction in O3 bias is achieved by correcting cloud-related 562 

radiation fields; however, O3 is still overpredicted by the WRF-Chem model. The remaining bias 563 

likely results from other processes involved in the O3 lifecycle such as precursor emissions from 564 

both anthropogenic and biogenic sources, transport, turbulent mixing, and dry deposition, which 565 

quantitative assessment is beyond the scope of this study.  566 

One should keep in mind that the quantitative estimate of the O3 bias related to the cloud effects 567 

on radiation as reported in this study could be sensitive to several factors. In particular, this study 568 

is based on a particular configuration of the WRF-Chem model with regard to the radiation, 569 

microphysics, cumulus, boundary layer parameterization and the chemistry scheme. We have 570 

tested the sensitivity of our results to the choice of microphysics and cumulus parameterization 571 

schemes, and have shown that the 8-hMDA8 O3 biases are reduced by up to ~65 ppb with the 572 

satellite cloud corrections in the simulations with the Thompson microphysis schemedifferent 573 

microphysics and cumulus parameterization schemes, which is consistent with the results found 574 

in our base simulations with the Morrison microphysis scheme.. 575 
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From the perspective of O3 forecast, it is expected that errors in O3 predictions are greater when 576 

the initial and boundary conditions for WRF-Chem simulations are provided by meteorological 577 

forecasts compared to those simulations in which the initial and boundary conditions are 578 

provided by meteorological reanalysis because the reanalysis data are an improved estimate of 579 

the meteorological state. Understanding the evolution of errors in O3 forecast associated with 580 

errors in cloud forecast and optimizing the use of meteorological forecasts for better O3 forecast 581 

skill are therefore necessary and will be addressed in a future study.This study suggests that 582 

accurate cloud predictions through data assimilation or cloud mask corrections with near-real 583 

time satellite cloud data would improve the accuracy of O3 predictions and that the benefit is 584 

expected to be greater in VOC-limited than in NOX-limited regimes. It should be noted that our 585 

estimates are based on WRF-Chem simulations that use initial and boundary conditions from 586 

meteorological analysis data, which is an improved estimate of the meteorological state 587 

compared to forecast data, and thus the reduction of errors in O3 predictions could be even 588 

greater in a forecasting setting. From the perspective of O3 forecast, our study indicates that there 589 

is a need for an enhanced understanding of the evolution of errors in O3 forecasts associated with 590 

errors in cloud forecasts, and for optimizing the use of meteorological forecasts to allow more 591 

accurate near-term O3 predictions. The present study corrects cloud fields in WRF using satellite 592 

clouds only for radiation that is relevant to photochemistry, and those cloud corrections do not 593 

affect other meteorological variables such as surface temperature, wind, humidity, boundary 594 

layer height, etc. In a future study, we plan to examine the effects of satellite cloud assimilation 595 

on near-term O3 forecasts using enhanced forecasts such as the Rapid Refresh products from 596 

NOAA (Benjamin et al., 2016) that take into account cloud data assimilation to derive 597 

meteorology. The Rapid Refresh uses satellite cloud products as well as cloud observations from 598 
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the ground and considers the thermodynamic balance between temperature and humidity due to 599 

the presence of clouds. Thus, this will allow investigating the effects of cloud assimilation on O3 600 

forecasts not only through changes in radiation for photochemistry but also through changes in 601 

meteorological variables.  602 
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Table 1. Description of WRF-Chem simulations. 859 

 Photolysis rates PAR Analysis Period 

CNTR WRF clouds WRF clouds 06 UTC 11 June–12 UTC 1 October 

GOES GOES clouds GOES clouds 06 UTC 11 June–12 UTC 1 October 

EMIS_BVOC GOES clouds WRF clouds 06 UTC 3 July–12 UTC 13 July 

 860 

 861 
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 864 

 865 

 866 

 867 

 868 

 869 

 870 

 871 

 872 

 873 
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Table 2. Contingency table for WRF simulation and GOES satellite clouds. The number of data 874 

for each category is normalized by the total number of data.  875 

 

GOES Satellite 

Cloudy Clear 

WRF 

simulation 

Cloudy 
A (hit) 

24.8% 

B (false alarm) 

10.4% 

Clear 
C (miss) 

19.8% 

D (correct negative) 

44.9% 

 876 

 877 

 878 

 879 

 880 

 881 

 882 

 883 

 884 

 885 

 886 
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Table 3. Sensitivity coefficient of O3 to JNO2, i.e., dln(O3)/dln(JNO2). The values of 887 

dln(O3)/dln(JNO2) for the period of 09–13 LST are averages over only CONUS EPA stations 888 

that have monotonically increasing O3 concentrations with time. 889 

 Cloudy sky (5 < COD < 20) Clear sky 

VOC-limited 0.59 1.27 

NOX-limited 0.35 0.77 

 890 

 891 

 892 

 893 

 894 

 895 

 896 

 897 

 898 

 899 

 900 

 901 

 902 
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 903 

Fig. 1. Spatial distribution of each contingency category (see Table 2) between the WRF-904 

generated clouds (CNTR simulation) and SatCORPS GOES retrievals averaged over the whole 905 

study period.  906 

 907 

 908 

 909 
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 910 

Fig. 2. Histogram of hourly cloud optical depth (COD) during the daytime (16–23 UTC) over 911 

CONUS (land only) from the (a) WRF simulation (with the Morrison microphysics and the Grell 912 

3-D schemes) and (b) GOES satellite retrievals. CODs on the x-axis represent the mean values of 913 

the bins that are 0.3–1, 1–2, 2–5, 5–10, 10–20, 20–30, 30–40, 40–50, 50–100, and 100–150. For 914 

a fair comparison, the multi-layered WRF clouds are not resolved into cloud layers as this 915 

layering cannot be resolved by the satellite. 916 
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 919 

Fig. 3. Model evaluation with 16 NOMADSS flights (top row) and with 21 SEAC
4
RS flights 920 

(bottom row). Note that only cloudy skies are considered. The comparison is performed for the 921 

averaged vertical profiles of JNO2 for the (a) NOMADSS and (d) SEAC
4
RS. The gray horizontal 922 

lines indicate the standard deviations from the observations. Histogram of ratio of JNO2 923 

simulated by the model to JNO2 observed (b) in the CNTR simulation and (c) in the GOES 924 

simulation for the NOMADSS. (e and f) are the same as (b and c), respectively, but for the 925 

SEAC
4
RS. 926 
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 928 
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 929 

Fig. 4. Horizontal distributions of cloud optical depth at 13 LSTCST (= 19 UTC) 8 July 2013 (a) 930 

in the controlCNTR simulation and (b) in the GOES simulation. Horizontal distributions of O3 at 931 

13 LSTCST 8 July 2013 at the lowest model level (shaded) (d) in the controlCNTR simulation 932 

and (e) in the GOES simulation. The circles indicate EPA ozone measurements. (c and f) 933 

Difference in JNO2 and O3, respectively, between the simulations (i.e., controlCNTR simulation 934 

minus GOES simulation). (g, h, and i) Time series of O3 at the square (Chicago, IL), circle (La 935 

Porte, IN), and star (Holland, MI) that are marked in (f), respectively.  936 
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 948 

Fig. 5. (a) Spatial distribution of maximum daily 8-h average O3 (MDA8 O3) at the lowest model 949 

level averaged over the whole analysis period in the CNTR simulation. (b) Difference in 8-h 950 

averageMDA8 O3 at the lowest model level between the control and GOES simulations (i.e., 951 

CNTR minus GOES). 952 
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 957 

Fig. 6. Spatial distributions of (a) PAR change and (b) isoprene emission change from biogenic 958 

sources between EMIS_BVOC and GOES simulations, (EMIS_BVOC–GOES)/GOES, averaged 959 

over the period of 3–12 July 2013. (c) Difference in O3 (c) between the CNTR and GOES 960 

simulations and. (d) Ratio of O3 difference between EMIS_BVOC and GOES simulations.  to O3 961 

difference between CNTR and GOES simulations, i.e., O3(EMIS_BVOC–GOES)/O3 (CNTR–962 

GOES). Note that the grids that have considerable O3 difference between CNTR and GOES 963 

simulations (> 1 ppb) are depicted in (d). 964 
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 968 

Fig. 7. (a) Probability density function of 8-hmaximum daily 8-h average (MDA8) O3 bias 969 

(model value minus observation value) for VOC-limited regime under cloudy sky conditions 970 

defined with COD threshold of 20. (b) Same as (a), but for NOX-limited regime. (c) Median 971 

values of 8-hMDA8 O3 bias with respect to COD threshold in the CNTR simulation (solid lines 972 

with cross marks) and in the GOES simulation (dashed line with triangles) for VOC-limited 973 

(purple color) and NOX-limited regimes (green color). (d) Difference in median values of 8-974 

hMDA8 O3 bias between the two simulations with respect to COD threshold (i.e., CNTR minus 975 

GOES). 976 
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 978 

 979 

Fig. 8. (a) Net chemical production of O3, (b) OH concentration, and (c) HO2 concentration with 980 

variations of cloud optical depth for VOC-limited regime. The black line indicates the median 981 

and cyan shading indicates the 25 and 75 percentiles. Similar variables are shown for the NOX-982 

limited regimes (d, e, and f). 983 
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 990 

 991 

Fig. 9. Results of box modeling for production and loss rates of ROx (= OH + HO2 + RO2) 992 

radicals. “Others” in the legend indicates the photolysis of VOCs and reactions between alkenes 993 

and O3. The value of 1 of normalized Jvals on x-axis indicates the photolysis rates for clear sky 994 

conditions. 995 
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