Supplemental Information

Analysis of the distributions of hourly NO₂ concentrations contributing to annual average NO₂ concentrations across the European monitoring network between 2000 and 2014

C.S. Malley, E. von Schneidemesser, S. Moller, C.F. Braban, W.K. Hicks, M.R. Heal

This Supplemental Information contains 19 figures:

Figure S1: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 average annual NO₂ concentrations between 60 and 70 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

Figure S2: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 average annual NO₂ concentrations between 50 and 60 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

Figure S3: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 average annual NO_2 concentrations between 40 and 50 µg m⁻³. The red dot indicates the number of clusters into which sites were grouped.

Figure S4: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 annual NO₂ concentrations between 30 and 40 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

Figure S5: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 annual NO₂ concentrations between 20 and 30 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

Figure S6: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 annual NO₂ concentrations between 10 and 20 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

Figure S7: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 annual NO₂ concentrations between 0 and 10 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

Figure S8: Map of countries assigned to the European regions used in Figure 3.

Figure S9: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 60-70 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.

Figure S10: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 50-60 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.

Figure S11: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 40-50 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.

Figure S12: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 30-40 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.

Figure S13: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 20-30 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.

Figure S14: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 10-20 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.

Figure S15: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 0-10 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.

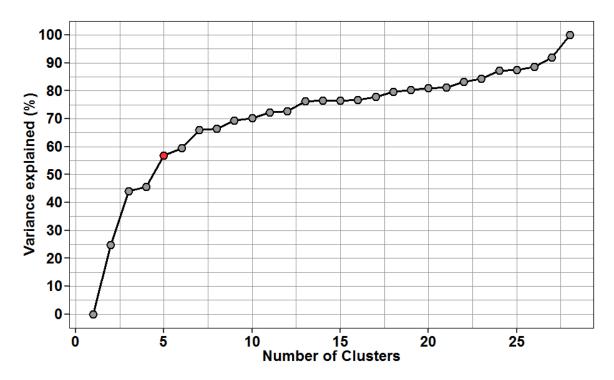

Figure S16: Comparison of the direction and magnitude of the trend in annual NO₂ concentrations between 2000 and 2014 at 259 sites across Europe using the Theil-Sen statistic and first order autoregressive (AR(1)) model.

Figure S17: Magnitude and significance of trend in annual average NO₂ concentrations between 2000 and 2014, with sites separated into panels based on 2010-2014 average annual NO₂ concentrations (NO_{2AA}). The fill colour in each point denotes the magnitude and direction of the Theil-Sen trend at a site, and the outer colour denotes whether the trend was statistically significant ($p \le 0.05$, green), or not statistically significant ($p \ge 0.05$, orange). Trend estimates were calculated using the Theil-Sen statistic and block bootstrapping.

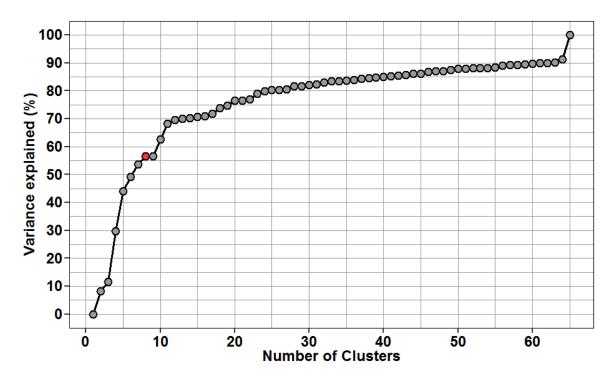
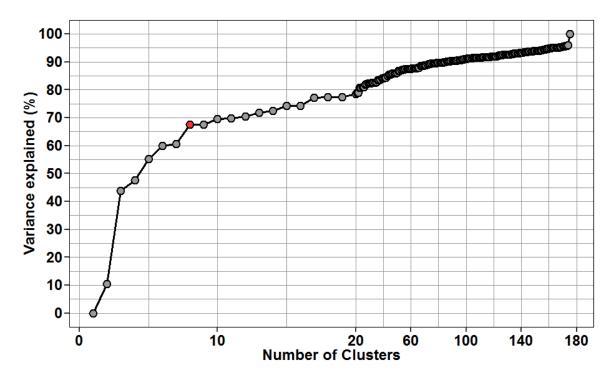
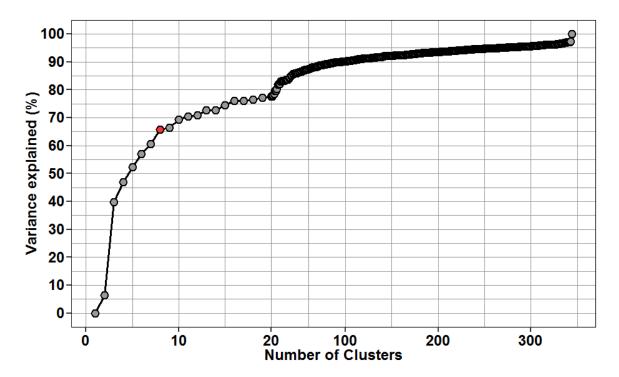
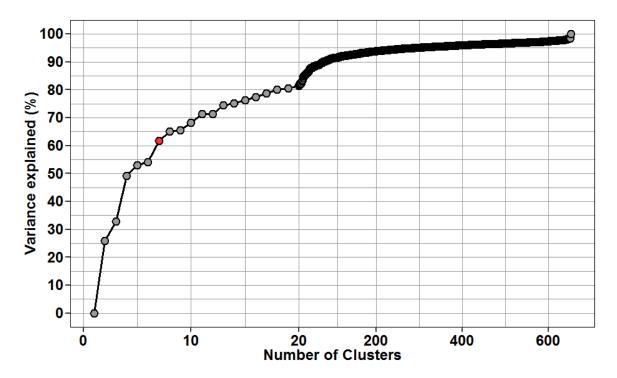
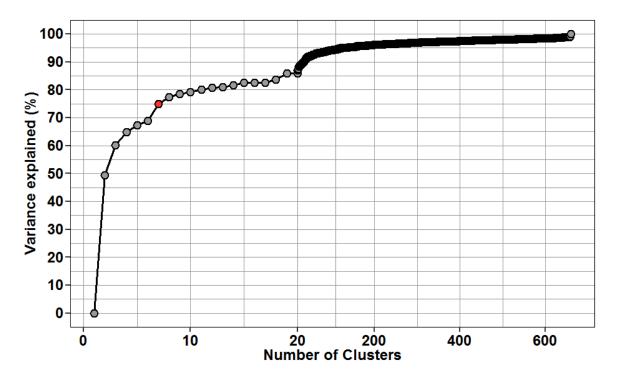

Figure S18: Proportion of sites with significant decreasing (blue), increasing (red) ($p \le 0.05$), and nonsignificant (grey) trends in the monthly percentage contribution to annual average NO₂ between 2000 and 2014, for sites with 2010-2014 average annual NO₂ concentrations (NO_{2AA}) of a) >80 µg m⁻³, b) 60-70 µg m⁻³, c) 50-60 µg m⁻³, d) 40-50 µg m⁻³, 30-40 µg m⁻³, 20-30 µg m⁻³, 10-20 µg m⁻³, 0-10 µg m⁻³. Trend estimates were calculated using the Theil-Sen statistic and block bootstrapping. The black line represents the division between decreasing and increasing trends within the non-significant bar.

Figure S19: Proportion of sites with significant decreasing (blue), increasing (red) ($p \le 0.05$), and nonsignificant (grey) trends in the percentage contribution of each hour of day to annual average NO₂ between 2000 and 2014, for sites with 2010-2014 average annual NO₂ concentrations (NO_{2AA}) of a) >80 µg m⁻³, b) 60-70 µg m⁻³, c) 50-60 µg m⁻³, d) 40-50 µg m⁻³, 30-40 µg m⁻³, 20-30 µg m⁻³, 10-20 µg m⁻³, 0-10 μ g m⁻³. Trend estimates were calculated using the Theil-Sen statistic and block bootstrapping. The black line represents the division between decreasing and increasing trends within the non-significant bar.


Figure S20: Proportion of sites with significant decreasing (blue), increasing (red) (p < 0.05), and nonsignificant (grey) trends in the percentage contribution from hourly NO₂ concentrations in 5 µg m⁻³ bins to annual average NO₂ between 2000 and 2014, for sites with 2010-2014 average annual NO₂ concentrations (NO_{2AA}) of a) >80 µg m⁻³, b) 60-70 µg m⁻³, c) 50-60 µg m⁻³, d) 40-50 µg m⁻³, 30-40 µg m⁻³ ³, 20-30 µg m⁻³, 10-20 µg m⁻³, 0-10 µg m⁻³. Trend estimates were calculated using the Theil-Sen statistic and block bootstrapping. The black line represents the division between decreasing and increasing trends within the non-significant bar.


Figure S1: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 average annual NO₂ concentrations between 60 and 70 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.


Figure S2: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 average annual NO₂ concentrations between 50 and 60 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.


Figure S3: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 average annual NO₂ concentrations between 40 and 50 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

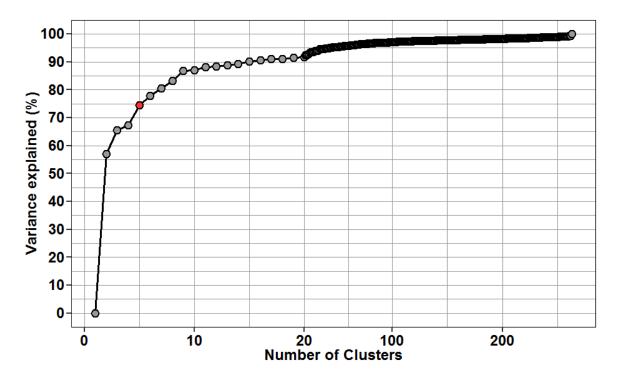
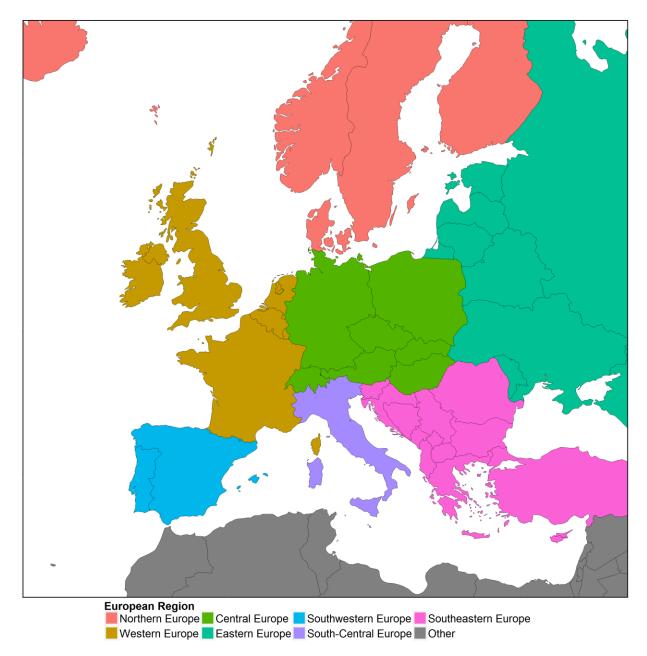
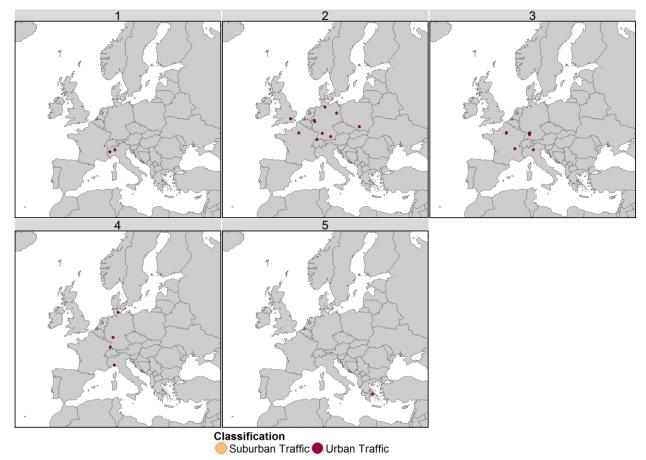
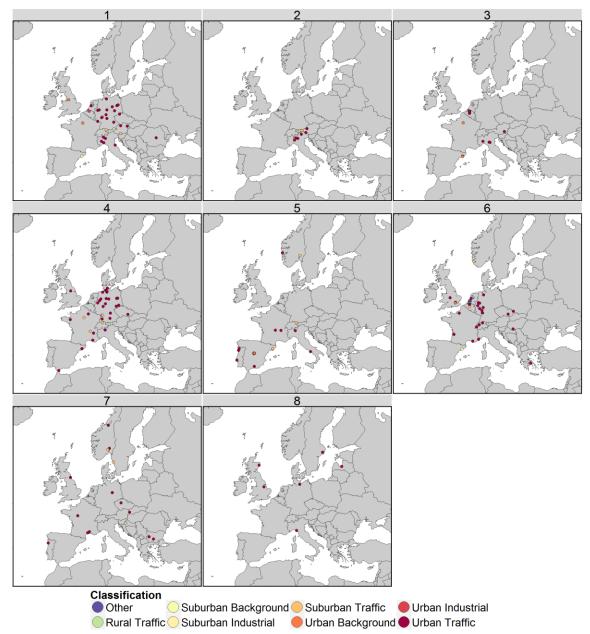

Figure S4: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 annual NO₂ concentrations between 30 and 40 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

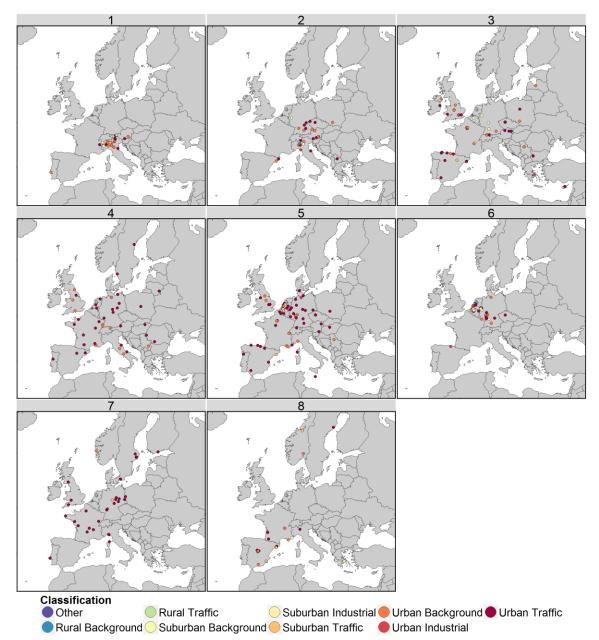
Figure S5: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 annual NO₂ concentrations between 20 and 30 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

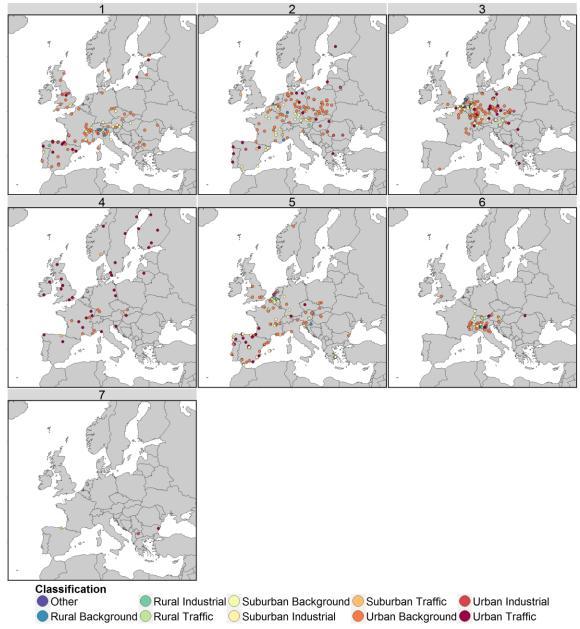
Figure S6: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 annual NO₂ concentrations between 10 and 20 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

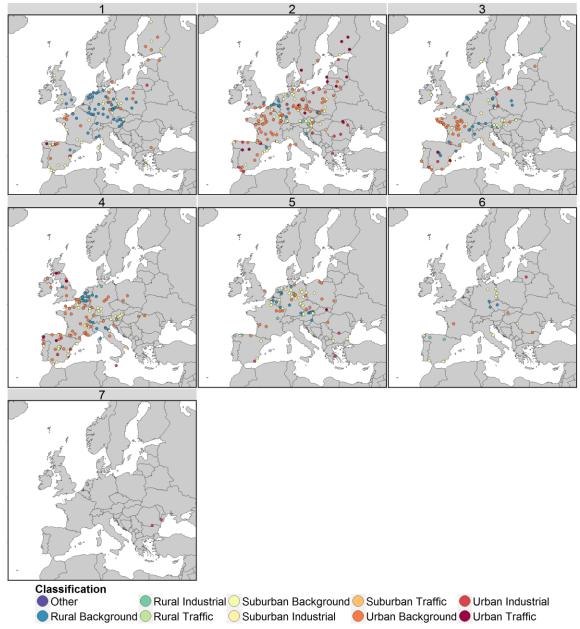
Figure S7: The proportion of within-cluster variance explained as a function of number of clusters for monitoring sites with 2010-2014 annual NO₂ concentrations between 0 and 10 μ g m⁻³. The red dot indicates the number of clusters into which sites were grouped.

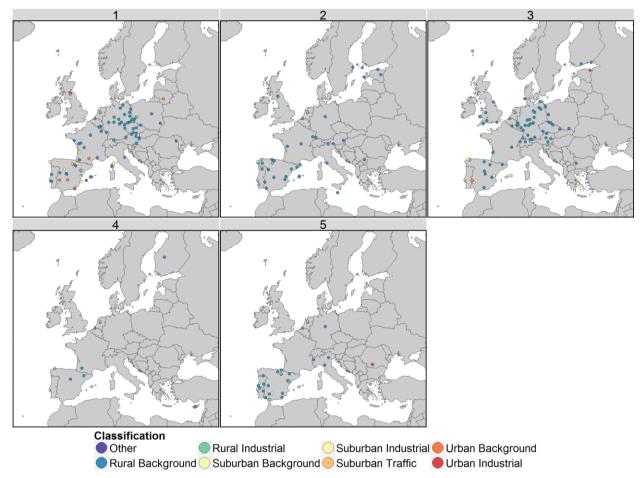



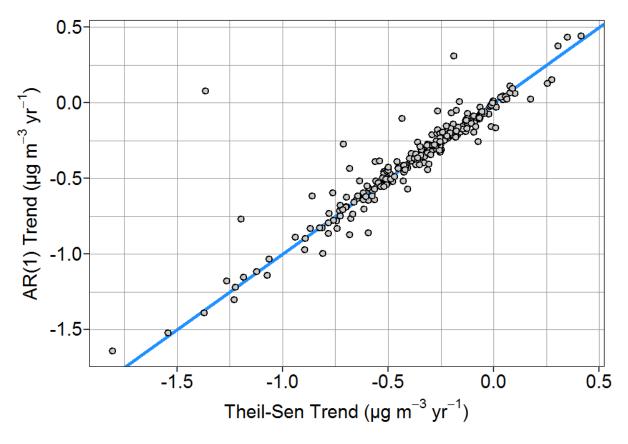

Figure S8: Map of countries assigned to the European regions used in Figure 3.

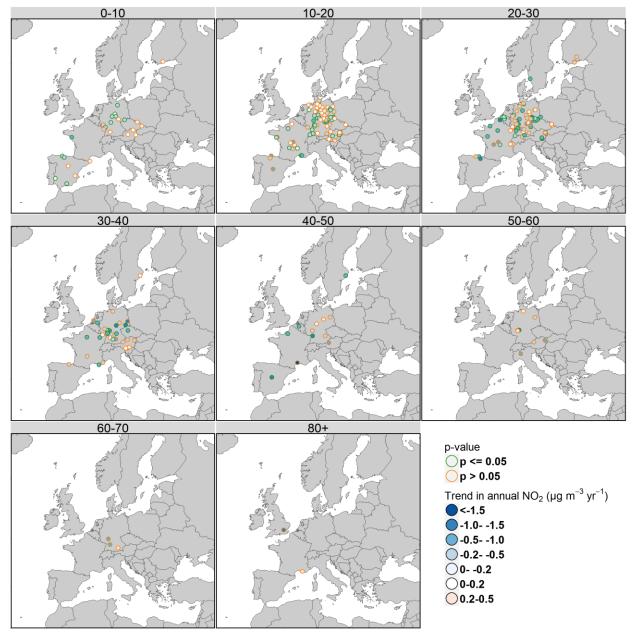

Figure S9: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 60-70 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.

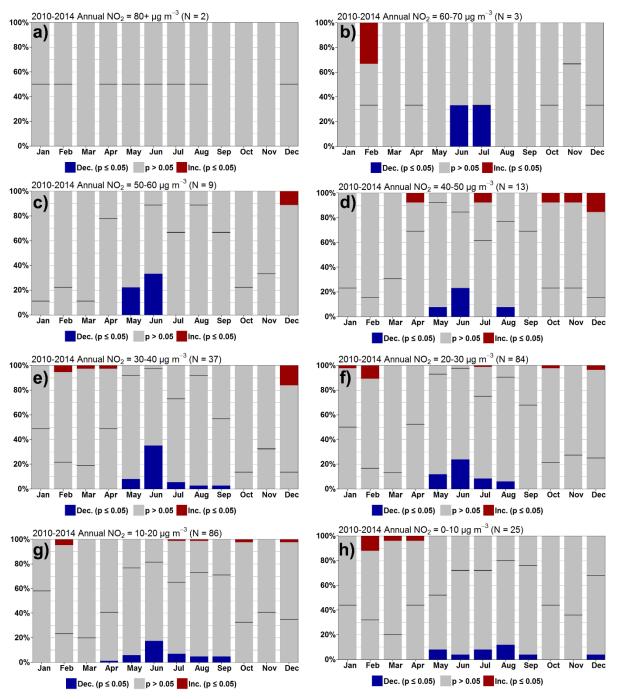

Figure S10: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 50-60 µg m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO2 concentration bin contributions to 2010-2014 NO_{2AA}.

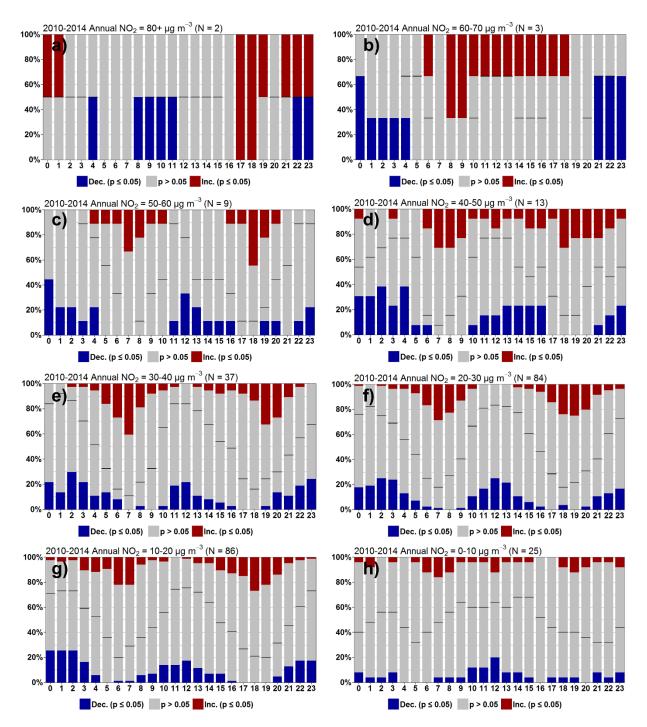

Figure S11: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 40-50 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.


Figure S12: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 30-40 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.


Figure S13: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 20-30 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.


Figure S14: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 10-20 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.


Figure S15: Map of sites with 2010-2014 annual NO₂ concentrations (NO_{2AA}) between 0-10 μ g m⁻³, grouped into clusters demarcating distinct variations in monthly, hour of day, and hourly NO₂ concentration bin contributions to 2010-2014 NO_{2AA}.


Figure S16: Comparison of the direction and magnitude of the trend in annual NO_2 concentrations between 2000 and 2014 at 259 sites across Europe using the Theil-Sen statistic and first order autoregressive (AR(1)) model.

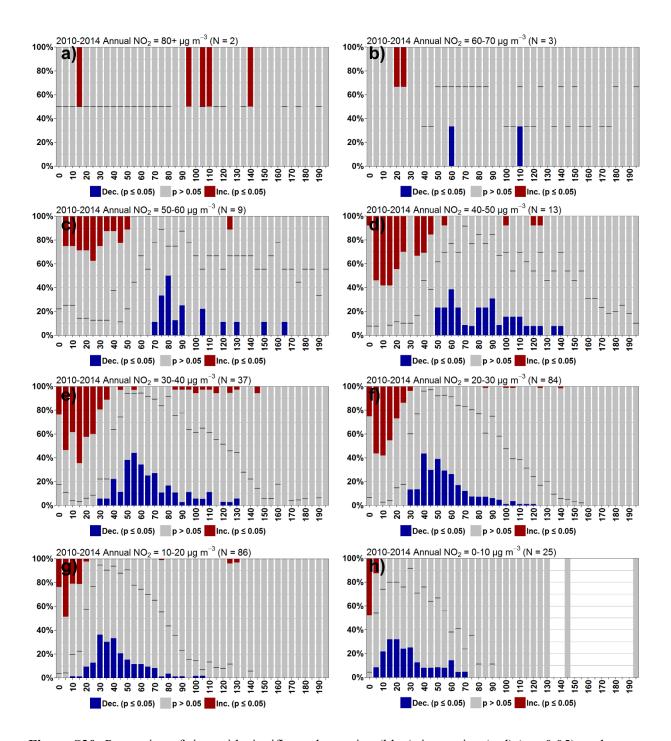

Figure S17: Magnitude and significance of trend in annual average NO₂ concentrations between 2000 and 2014, with sites separated into panels based on 2010-2014 average annual NO₂ concentrations (NO_{2AA}). The fill colour in each point denotes the magnitude and direction of the Theil-Sen trend at a site, and the outer colour denotes whether the trend was statistically significant ($p \le 0.05$, green), or not statistically significant ($p \ge 0.05$, orange). Trend estimates were calculated using the Theil-Sen statistic and block bootstrapping.

Figure S18: Proportion of sites with significant decreasing (blue), increasing (red) ($p \le 0.05$), and nonsignificant (grey) trends in the monthly percentage contribution to annual average NO₂ between 2000 and 2014, for sites with 2010-2014 average annual NO₂ concentrations (NO_{2AA}) of a) >80 µg m⁻³, b) 60-70 µg m⁻³, c) 50-60 µg m⁻³, d) 40-50 µg m⁻³, 30-40 µg m⁻³, 20-30 µg m⁻³, 10-20 µg m⁻³, 0-10 µg m⁻³. Trend estimates were calculated using the Theil-Sen statistic and block bootstrapping. The black line represents the division between decreasing and increasing trends within the non-significant bar.

Figure S19: Proportion of sites with significant decreasing (blue), increasing (red) ($p \le 0.05$), and nonsignificant (grey) trends in the percentage contribution of each hour of day to annual average NO₂ between 2000 and 2014, for sites with 2010-2014 average annual NO₂ concentrations (NO_{2AA}) of a) >80 µg m⁻³, b) 60-70 µg m⁻³, c) 50-60 µg m⁻³, d) 40-50 µg m⁻³, 30-40 µg m⁻³, 20-30 µg m⁻³, 10-20 µg m⁻³, 0-10 µg m⁻³. Trend estimates were calculated using the Theil-Sen statistic and block bootstrapping. The black line represents the division between decreasing and increasing trends within the non-significant bar.

Figure S20: Proportion of sites with significant decreasing (blue), increasing (red) (p < 0.05), and nonsignificant (grey) trends in the percentage contribution from hourly NO₂ concentrations in 5 µg m⁻³ bins to annual average NO₂ between 2000 and 2014, for sites with 2010-2014 average annual NO₂ concentrations (NO_{2AA}) of a) >80 µg m⁻³, b) 60-70 µg m⁻³, c) 50-60 µg m⁻³, d) 40-50 µg m⁻³, 30-40 µg m⁻³ ³, 20-30 µg m⁻³, 10-20 µg m⁻³, 0-10 µg m⁻³. Trend estimates were calculated using the Theil-Sen statistic and block bootstrapping. The black line represents the division between decreasing and increasing trends within the non-significant bar.