O 00 NO UL WN -

DD D WWWWWWWWWWNNNNNNNNNNRRRRRRRPR PR R
N PO OVOEENOODTUDNWNROOVONNOODUDWNRPRPOWOVOONOODURNWNIERO

Response to Referee #2:
Responses to individual comments are given hebel

[Overall the authors have done a goodly amounhahge to the paper as the marked revision shoves. Th
paper is well written and with current figures tha¢ both legible and concise for the paper. Thisian
now includes discussion in various places of thepldrift with 1ASI that was not in the original dta
They have also re-done their trend analyses inrdaoce to this jump/drift in IASI.]

We thank the referee for her/his appreciationtierdhanges made in the manuscript in order to asldie
the two referees’ comments.

[In the revision the authors have added discussiom alownward “jump” in tropospheric ozone
measurements around September 2010 for IASI whieh ihention causes an artificial overall downward
trend or drift of about -2.8 DU/decade in the NHisTis new to the revision which mentions this jump
several times including the Conclusions sectiopassibly affecting the calculated trends. In aoreffo
account for this jump the authors have modifiedrthegression trend model by including two differen
constants in the regression for the two sepanate periods, before and after September 2010. Amaegt

is made that the jump-related drift of -2.8 DU doesexplain the larger negative trends in sumner®
DU/decade measured by IASI.

The authors state that the reason for the downjuangd in tropospheric ozone from IASI is not cleBine
reference list includes Keppens et al. and Boyeaed. papers that discuss a detected negativerdiSI
tropospheric ozone. Both are related papers ugigy &nd are in preparation/under review for thisiea
issue; the two papers are mentioned specificalthé@revision in regards to the drift/jump in 1A&one.
The revision states that Boynard et al. (this isslescribes the IASI drift as being caused lardslya
downward discontinuity “jump” in the IASI data aml September 2010. An earlier paper published by
Boynard et al. (2016) shows in their Figure 15 ewitk of this jump and a persistent downward chefu

in IASI tropospheric ozone relative to ozonesonideisoth the NH and SH extra-tropics. The downward
drift (including jump) for IASI tropospheric ozomelative to the ozonesondes indicated by Boynadd. et
(2016) was never discussed in their 2016 paperclilent revision references the Boynard and Keppen
papers that are under review for this same spissiaé regarding the IASI jump/drift.

A discontinuity was not clearly enough demonstrakethe paper of Boynard et al. (2016). Furthermore
that paper reports the validation of the previoOREI-Os product (FORLI-v20140922), while Boynard et
al. (under review, this issue) validates the |&3REI-Os product (FORLI-v20151009) which is the one
used in this manuscript and his companion papespé&et al., 2017). As a consequence, only thédsesu
reported in Boynard et al (under review, this i3sl®uld be considered for the preseptr®nd analysis.

[The authors state that tropospheric ozone for &Sl one piece of information that correspondsdar-
t0-300 hPa. The authors define this as middle-toywdsphere (MLT) ozone. They mention that the upper
level 300 hPa tends to minimize influence fromtsgpheric ozone in the retrievals. The revisidhstttes
that the significant negative trends in the SH taaed to explain, and mention that stratospherimezo
influence may be a large reason for this band strecf negative MLT trends throughout the SH year-
round. There will be questions from readers regartle very nature of IASI nadir retrievals in reftg
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tropospheric ozone, especially how much tailingueice from ozone above 300 hPa (including
stratosphere) there is in the MLT measurement&ogsfy in the extra-tropics.]

In a previous paper (Wespes et al., 2016), we bpeeifically quantified the stratospheric contribns
into the ground-300 hPasz@olumns as function of the latitudes and the pistid/alues from that study
have already been referenced here precisely tastismitically the possible impact of the strat@sphn
the tropospheric &trends. We don’'t see how to improve on this witidwplicating this earlier paper.

[Papers listed in my first review describing zergositive trends measured in extra-tropical trgbesic
ozone are not included in the revision. There aremal reasons stated for not referencing thenhen t
revision such as issues of MLT versus UT or diffiees in the vertical resolution of the measurements
The author’s response is that including refereocthése is beyond the scope of the present paper. T
Petetin et al. (2016) paper (the diurnal cycle papgbat | mentioned in my first review used
MOZAIC+IAGOS aircraft measurements over Frankfurtd @howed statistically significant increases in
ozone throughout the troposphere from ground tol#20(i.e., MLT). Regarding the TOAR, another basic
issue for the satellite measurements including li&Sheir short records for doing trend analysed that
their time periods are generally quite different.]

We have indeed carefully looked at the paper oétiteet al. (2016) which is of high relevance. Huer
considering the recent decline observed in theraptigenic Q precursors in the N.H. (since 2010-2011),
the results presented in their Figures 5 and S69nat comparable with ours. They show ‘“relative
differences of @mixing ratio between two periods” (1994—-2003 afd42-2012) over Frankfurt only and,
hence, they are not representative of the periadyaed here on global scale. For this reason, we ha
preferred to reference the TOAR-climate report thees an overview of £trends in the troposphere that
have been reported from independent existing datasguding MOZAIC and IAGOS.

Moreover, we would like to stress that significafforts have been devoted in order to disentamgledt
from other dynamical effects by applying a dedida#_R model to the IASI data and that it has been
shown achievable even from a relatively short mpeabmeasurements (Wespes et al., 2016). While othe
methods are also valuable, we feel that a propepasison can only be made against studies that have
used similar MLR. In that respect, we now providehie revised manuscript additional discussion dase
on the results of Leventidou et al., (under revigdgue et al. (2016) and Ebojie et al. (2016) wihiake
applied MLR to the data from UV sounders. From ¢hespers, one can easily see the challenge in
homogenizing independent datasets and reachingegsus in determining tropospheric; @ends.
Nevertheless, significant negative trends are éstergly found at the global scale (~-4 to -8 DW/{de
Ebojie et al., 2016) and in the tropics over thee&c regions (~ -1 to -2.5 DU/dec; Leventidoulet a
under review) while significant positive trends ateserved over Africa (Leventidou et al., undeiige).
These results are comparable with those reportediinmanuscript, despite the different studiedqusi
(1995-2015 in Leventidou et al. and 2003-2011 injieket al., 2016). These papers have been addéd in
revised manuscript.

In order not to oversell the results, we have atsale clearer in the revised manuscript (abstractia

4.3 and conclusion) that, at this stage, no conseimsterms of @trends can be easily reached in the
troposphere from the available measurements (UVRosatellites, @ sondes, aircrafts, ground-based
measurements,...) for the reasons already mentiontatkimanuscript (time-varying instrumental biases,

2
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differences in the methodology used for calculatirepds, in the measurement period, in the upper
boundary of the ©columns, in the retrieval algorithm, in the spagmporal sampling, in the vertical
sensitivity of the instrument,...).

[There appears to be some questions regardingABé MLT ozone measurements themselves for
evaluating trends. The drift for IASI troposphegzone is a bit disturbing as it is rather large aod
explainable from either the current study or thokKeppens et al. or Boynard et al. that are rdldeI
papers also in review in this same issue. The negends throughout much of the NH and SH forlIAS
MLT ozone appear to be in contradiction to zerpasitive trends measured from other independet dat
sources (aircraft, 0ozonesonde, satellite), alfadliffering (usually longer) time records and npesifically
calculated for ground-to-300hPa as IASI. The atladtribute negative trends in the NH as possibky d
to reductions in emissions in recent years, pdditpuover N. America and Europe. The authors dtadé
the negative trends in the SH are hard to exptaihpossibly of stratospheric origin.]

See our responses to the two previous commentd aboenciling trend with previous studies and the
stratospheric contribution into the S.H. trends.

We acknowledge that the origin of the artificialfidis still unclear and under investigation at gegt.
However, we feel that the inclusion of a secondstammt in the MLR model is a pretty robust way talde
with this issue and, hence, that the jump shoutdmerfere with the trends. The fact that thisreotion
did not change the broad results gives somewhag omrfidence in the retrieved @end.

[Given over 9 years of measurements from IASI fetedting decadal changes in global tropospherin@zo
(main theme of the paper), it would seem importantompare decadal changes in IASI MLT ozone
directly with decadal changes in other independatd products in the paper such as station o0zodeson
or IAGOS aircraft ozone. This paper is going teeasome doubts with readers as to the IASI tresultee
given the current unknowns with the data. Themeadly not enough 1-1 comparison evidence presented
from other independent measurements to test walddithe IASI trend results.]

We certainly agree that such a 1-1 comparison wbaldf great interest. However it is definitivelgtn
straightforward as it would deserve setting careftiteria on co-locations and involve a detailed
investigation of the respective vertical sensiiddt Moreover, differences in spatio-temporal samggsl
should be also investigated. Attempts have beerriaapply a MLR model on the samgsondes dataset
(smoothed by the IASI averaging kernels) as theuseel for the validation in Boynard et al. (thisus).
Unfortunately, the regression residual errors vieued too large to retrieve significant trend ondgnical
covariates because of the weak temporal samplitigeoflataset. We feel and we would like the reviewe
and the editor to agree that such a 1-1 compaissoutside the scope of this paper, which agaiploits

the global coverage of IASI to extract relevanht®

We also would like to stress that the validatiod=@RLI-O; in Boynard et al. (this issue) withs@ondes
highlights a jump but not a persistent downwardt,das it has been confirmed by calculating thét dri
separately over the periods before or after thej(afr our responses to previous comments to regetd
and #2).
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Finally, we would like to notify the reviewer onettiact that such an evaluation of the differentIh®g
products against{ondes and daily IAGOS commercial aircraft prafilebeing initiated by the IASI data
providers (ULB/LATMOS, LA and LISA) in collaboratiowith the IAGOS data providers and the TOAR-
climate leaders (A. Gaudel and O. Cooper).
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List of relevant changes made in the manuscript:

Abstract:

L. 23-26: “Despite that no consensus in terms of troposph@sitrends is currently
reached from the available independent datasetsofUR satellites, @sondes, aircrafts,
ground-based measurements...) for the reasons #halisamussed in the text, this finding
is consistent with..”

Section 4.1;

L. 236-272: “On the contrary, the tropical Pacific region extslsignificant negative
trends that are similar to those reported from WJrglers in Ebojie et al. (2016) and in
Leventidou et al. (in review) over previous perioghile Heue et al. (2016) mainly reports
significant positive trend over that region.

L. 285-286:“Significant positive trends over South-East Assare also been reported from
UV sounders over previous periods (e.g. Ebojid.e2816).”

L. 303-304:“Significant negative change in troposphericd@er these regions were also
reported in Ebojie et al. (2016).”

Section 4.3:

L. 425 - 428:"If reconciling the trend biases between the dasalsg applying the vertical
sensitivity of each measurement type to a commatfgos, as proposed in the TOAR-
climate assessment report is beyond the scopesodtiidy and if, at this stage, there is no
consensus in determining tropospheridi@nds, the improvement in using a MLR instead
of a SLR model ...”

Conclusions:

L. 589-594 : ‘Currently, no consensus in terms of t@nds in the troposphere is reached
from the available measurements (UV or IR satsl|i® sondes, aircrafts, ground-based
measurements,...) for several reasons (time-varyisigimental biases, differences in the
methodology used for calculating trends, in thesoeament period, in the upper boundary
of the @Q columns, in the retrieval algorithm, in the spdagmporal sampling, in the
vertical sensitivity of the instrument,...) (Sectiér8; the TOAR-climate report — Gaudel
et al., in review). However, determination, withSA...”

References:

Ebojie, F., Burrows, J. P., Gebhardt, C., LadstatfeiRenmayer, A., von Savigny, C.,
Rozanov, A., Weber, M., and Bovensmann, H.: Glttmgdospheric ozone variations from
2003 to 2011 as seen by SCIAMACHY, Atmos. Chem. sPhyl6, 417-436,
doi:10.5194/acp-16-417-2016, 2016.
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Decrease in tropospheric @levels of the Northern Hemisphere observed by IASI

Catherine WespésDaniel Hurtmans Cathy ClerbauX?, Anne Boynard and Pierre-Francois
Coheut

1Spectroscopie de I'Atmosphére, Service de Chimiarfigue et Photophysique, Faculté des
Sciences, Université Libre de Bruxelles (ULB), Bellgs, Belgique
2LATMOS/IPSL, UPMC Univ. Paris 06 Sorbonne UnivegsitUVSQ, CNRS, Paris, France

Abstract

In this study, we describe the recent changesanrdpospheric ozone gDcolumns measured by
the Infrared Atmospheric Sounding Interferometé&S(l) onboard the Metop satellite during the
first 9 years of the IASI operation (January 2008vtay 2017). Using appropriate multivariate
regression methods, we discriminate significargdimtrends from other sources of V@riations
captured by IASI. The geographical patterns ofatieisted @trends are provided and discussed
on the global scale. Given the large contributibthe natural variability in comparison with that
of the trend (25-85%s 15- 50%, respectively) to the totak @ariations, we estimate that
additional years of IASI measurements are generaljyired to detect the estimated @nds
with a high precision. Globally, additional 6 mositio 6 years of measurements, depending on the
regions and the seasons, are needed to detentlafrd| DU/decade. An exception is interestingly
found during summer at mid-high latitudes of thetNdiemisphere (N.H.; ~ 40°N-75°N) where
the large absolute fitted trend values (~|0.5| DWfy average) combined with the small model
residuals (~10%) allow the detection of a band-pk&ern of significant negative trendgspite

that no consensus in terms of tropospherict®nds is currently reached from the available
independent datasets (UV or IR satellites,sOndes, aircrafts, ground-based measurements,...)
for the reasons that are discussed in the tehisfinding is consistent with the reported deceeas
in O3 precursor emissions in recent years, especiallfeunope and US. The influence of
continental pollution on that latitudinal band isther investigated and supported by the analysis
of the Q-CO relationship (in terms of correlation coeffiwigregression slope and covariance)
that we found to be the strongest at northern mtiidaides in summer.

1 Introduction

Oz plays a key role throughout the whole troposphérere it is produced by the photochemical
oxidation of carbon monoxide (CO), non-methane Melarganic compounds (NMVOCSs) and
methane (Ch) in the presence of nitrogen oxides ()l@e.g. Logan et al., 1981).3@ources in

the troposphere are the in situ photochemical prialu from anthropogenic and natural
precursors, and the downwards transport of stratygp Q. Being a strong pollutant, a major

reactive species and an important greenhouse glas upper tropospherez @ of highest interest
7
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for air quality, atmospheric chemistry and radiatiercing studies. Thanks to its long lifetime
(several weeks) relatively to transport timescalgbe free troposphere (Fusco and Logan, 2003),
Oz also contributes to large-scale transport of pioiufar from source regions with further
impacts on global air quality (e.g. Stohl et aQ002; Parrish et al., 2012) and climate. Monitoring
and understanding the time evolution of troposgh@kiat a global scale is, therefore, crucial to
apprehend future climate changes. Neverthelessiesof limitations make Qrends particularly
challenging to retrieve and to interpret.

Since the 1980s, while thes@recursors anthropogenic emissions have increasddshifted
equatorward in the developing countries (Zhand.e2@16), extensive campaigns and routine in
situ and remote measurements at specific urbamusalsites have provided long-term but sparse
datasets of tropospherig(®.g. Cooper et al., 2014 and references thefdltraviolet and Visible
(UV/VIS) atmospheric sounders onboard satellitewiole tropospheric ©measurements with a
much wider coverage, but they result either frodirgct methods (e.g. Fishman et al., 2005) or
from direct retrievals which are limited by coaksstical resolution (Liu et al., 2010). All these
datasets also suffer from a lack of homogeneitgims of measurement methods (instrument and
algorithm) and spatio-temporal samplings (e.g. Dygt al., 2011Heue et al., 2016; Leventidou
et al., in revie\y. Those limitations, in addition to the large matunter-annual variability (IAV)
and decadal variations in tropospherig Bvels (due to large-scale dynamical modes ef O
variations and to changes in stratosphesci®stratosphere-troposphere exchanges, in pracurs
emissions and in their geographical patterns)pthice strong biases in trends determined from
independent studies and datasets (e.g. Zbindeh, &086; Thouret et al., 2006; Logan et al.,
2012 ; Parrish et al., 2012 and references ther&@ga consequence, determining accurate trends
requires a long period of high density and homogaseneasurements (e.g. Payne et al., 2017).

Such long-term datasets are now becoming obtainaitihethe new generation of nadir-looking
and polar-orbiting instruments measuring in therttad infrared region. In particular, about one
decade of @profile measurements, with a good sensitivityhi@ troposphere independently from
the layers above, is now available from the IA&frred Atmospheric Sounding Interferometer)
sounder aboard the European Metop platforms, aligwo monitor regional and global variations
in tropospheric @levels (e.g. Dufour et al., 2012; Safieddine et2013; Wespes et al., 2016).

In this study, we examine the troposphericddanges behind the natural IAV as measured by
IASI over January 2008-May 2017. To that end, we the approach described in Wespes et al.
(2017), which relies on a multi-linear regressiMLR) procedure, for accurately differentiating
trends from other sources og @ariations; the latter being robustly identifiegdaquantified in
that companion study. In Section 2, we briefly esvithe IASI mission and the tropospheri¢ O
product, and we shortly describe the multivariatelels (annual or seasonal) that we use for fitting
the daily Q time series. In Section 3, after verifying thefpenance of the MLR models over the

available IASI dataset, we evaluate the feasibititycapture and retrieve significant trend
8
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parameters, apart from natural @pendencies, by performing trend sensitivityissidn Section

4, we present and discuss the global distributminthe Q trends estimated from IASI in the
troposphere. The focus is given in summer overdowinwind anthropogenic polluted areas of
the N.H. where the possibility to infer significantnds from the first ~9 years of available IASI
measurements is demonstrated. Finally, theCO correlations, enhancement ratios and
covariance are examined for characterizing tharo§the air masses in regions of positive and
negative trends.

2 IASI O3 measurements and multivariate regression

The IASI instrument is a nadir-viewing Fourier tséorm spectrometer that records the thermal
infrared emission of the Earth-atmosphere systeme®n 645 and 2760 cifrom the polar Sun-
synchronous orbiting meteorological Metop seriessafellites. Metop-A and —B have been
successively launched in October 2006 and SepteBild&t. The third and last launch is planned
in 2018 with Metop-C to ensure homogeneous longHi&SI measurements. The measurements
are taken every 50 km along the track of the stgelt nadir and over a swath of 2200 km across
track, with a field of view of four simultaneousotprints of 12 km at nadir, which provides global
coverage of the Earth twice a day (at 9:30 AM aMirRean local solar time). The instrument
presents a good spectral resolution and a low maeliac noise, which allows the retrieval of
numerous gas-phase species in the troposphere{ergaux et al., 2009, and references therein;
Hilton et al., 2012; Clarisse et al., 2011).

In this paper, we use the FORLk®rofiles (Fast Optimal Retrievals on Layers forSIA
processing chain set up at ULB; v20151001) retdduem the IASI-A (aboard Metop-A) daytime
measurements (defined with a solar zenith angtad¢csun < 80°) which are characterized by a
good spectral fit (determined here by quality flagsiased or sloped residuals, suspect averaging
kernels, maximum number of iteration exceeded,. d)vanich correspond to clear or almost-clear
scenes (a filter based on a fractional cloud coetow 13% has been applied; cfr Clerbaux et al.,
2009; Hurtmans et al., 2012). These profiles aegatierized by a good vertical sensitivity in the
troposphere and the stratosphere (e.g. Wespes 204a¥). The FORLI algorithm relies on a fast
radiative transfer and retrieval methodology basedhe Optimal Estimation Method (Rodgers,
2000) and is fully described in Hurtmans et al 120 The FORLI-Q profiles, which are retrieved

at 40 constant vertical layers from surface up@Qokeh and an additional 40-60 km one, have
already undergone thorough characterization andiatadn exercises (e.g. Anton et al., 2011,
Dufour et al., 2012; Gazeaux et al., 2012; Hurtmegred., 2012; Parrington et al., 2012; Pommier
et al., 2012; Scannell et al., 2012; Oetjen et28114; Boynard et al., 2016; Wespes et al., 2016;
Keppens et al. 2017; Boynard et al., 2017). Theyatestrated a good degree of accuracy, of
precision and of vertical sensitivity with no ingtmental drift, to capture the large-scale dynamical
modes of @ variability in the troposphere independently frtime layers above (Wespes et al.,

2017), with the possibility to further differenteeiong-term @changes in the troposphere (Wespes
9
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etal., 2016). Note, however, that a driftin theINVILT Oz over the whole IASI dataset is reported
in Keppens et al. (this issue) and Boynard etlails {ssue) from comparison withe®@ondes. This
drift (~2.8DU/dec in the N.H.) is shown in Boynaetal. (this issue) to result from a discontinuity
(“jump” as called in Boynard et al., this issue)3aptember 2010 in the IASk@me series, for
reasons that are unclear at present. Furthermioeedrift strongly decreases (<|1| DU/dec on
average) after the “jump” and it becomes even ngnigcant for most of the stations (significant
positive drift is also found for some stations) iothee periods before or after the jump, separately.

For the purpose of this work, we focus on a tropesic column ranging from ground to 300 hPa
(called MLT — Middle-Low Troposphere — in this syydhat includes the altitude of maximum
sensitivity of IASI in the troposphere (usuallyween 4 and 8 km altitude), which limits as much
as possible the influences of the stratosphegiar@ that was shown in Wespes et al. (2017) to
exhibit independent deseasonalized anomalies/dy@priocesses from those in the stratospheric
layers. The stratospheric contribution into theptspheric @ columns have been previously
estimated in Wespes et al. (2016) as ranging bet®@& and 65% depending on the region and
the season with the smallest contribution as welthe largest sensitivity in the northern mid-
latitudes in spring-summer where thev@riations, hence, mainly originate from the trgploere.
We use almost the same MLR model (in its annuaitiseasonal formulation) as the one
developed in the companion paper (see Eq.1 an@@jo8 2.2 in Wespes et al., 2017), which
includes a series of geophysical variables in &udio a linear trend (LT) term. In order to take
account of the observed “jump” properly, we modiftee previously used MLR model so that the
constant term is split into two components covetimg periods before and after the September
2010 “jump”, separately. The MLR which is performasing an iterative stepwise backward
elimination approach to retain the most relevaplaxatory variables (called “proxies”) at the end
of the iterations (e.g. Mader et al., 2007) is sgpbn the daily IASI @time series. The main
selected proxies used to account for the natumahtians in Q are namely the QBO (Quasi-
Biennial Oscillation), the NAO (North Atlantic Odeition) and the ENSO (El Nifio—Southern
Oscillation) (cfr Table 1 in Wespes et al. (20191 the exhaustive list of the used proxies). Their
associated standard errors are estimated fronotregiance matrix of the regression coefficients
and are corrected to take into account the uncgytalue to the autocorrelation of the noise
residual (see Eq. 3 in Wespes et al. (2016)). Dimencon rule that the regression coefficients are
significant if they are greater in magnitude thatini2es their standard errors is applied (95%
confidence limits defined bys2evel). The MLR model was found to give a goodresgntation

of the IASI Q records in the troposphere over 2008-2016, allgwis to identify/quantify the
main Q drivers with marked regional differences in thgression coefficients. Time-lags of 2
and 4 months for ENSO are also included hereaiténe MLR model to account for a large but
delayed impact of ENSO on mid- and high latitudes/&iations far from the Equatorial Pacific
where the ENSO signal originates (Wespes et al.7R0

3 Regression performance and sensitivity to trend
10



406
407
408
409
410
411
412
413
414
415

416

417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

In this section, we first verify the performancetloé MLR models (annual and seasonal; in terms
of residual errors and variation explained by thexlet) to globally reproduce the time evolution
of Os records over the entire studied period (Januaf820May 2017). Based on this, we then
investigate the statistical relevance for a tretud\s from IASI in the troposphere by examining
the sensitivity of the pair IASI-MLR to the retried LT term.

Figure 1 presents the seasonal distributions giospheric @ measured by IASI averaged over
January 2008 — May 2017 (left panels), along wli toot-mean-squared error of the seasonal
regression fitRMSE in DU; middle panels) and the contribution of fitted seasonal model into

the IASI G time series (in %; right panels), calculatedqa(g,) e (t))

a(0,®)
deviation relative to the regression models anthéIlASI G time series. These two statistical
parameters help to evaluate how well the fitted ehakplains the variability in the 1ASI
observations. The seasonal patterns pim@asurements are close to those reported in Wespes
al. (2017) for a shorter period (see Section 2d a1 in Wespes et al. (2017) for a detailed
description of the distributions) and they cleatiypw, for instance, high{alues over the highly
populated areas of Asia in summer. The distribgtivom Fig.1 show that the model reproduces
between 35% and 90% of the daily\@riation captured by IASI and that the residusdis varies
between 0.01 DU and 5 DU (i.e. tRMSErelative to the IASI @time series are of ~15% on
global average and vary between 10% in the N.Hummer and 30% in specific tropical regions).
On an annual basis (data not shown), the modehmph large fraction of the variation in the
IASI O3 dataset (from ~45% to ~85%) and RKISEare lower than 4.5 DU everywhere (~3 DU
on the global average). The relatR&SEis less than 1% in almost all situations indiogtihe
absence of bias.

whereo is the standard

The seasonal distributions of the contributionh® tiotal variation in the MLT from the adjusted
harmonic terms and explanatory variables, whicloaetfor the “natural” variability, and from
the LT term are shown in Fig. 2 (left and right elsn respectively). The grey areas in the LT
panels refer to the LT terms rejected by the stepwiackward elimination process. The crosses
indicate that the trend estimate in the grid cehén-significant in the 95% confidence limits (2
level) when accounting for the autocorrelationha hoise residual at the end of the elimination
procedure. While the large influence of the seadseaaations and of the main drivers - namely
ENSO, NAO and QBO - on the IASIz®@ecords has been clearly attested in Wespes @04l7),

we demonstrate in Fig.2 that the LT also contributensiderably to thegrariations detected by
IASI in the troposphere. The LT contribution getigreanges from 15% to 50%, with the largest
values (~30-50%) being observed at mid-high lagtuoh the S.H. (30°S-70°S) and in the N.H.
(~45°N-70°N) in summer. In the S.H., they are agged with the smallest tropospherie O
columns (Fig.1; left panels) and the smallest retontributions (<25%; left panels), while in the
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N.H. summer, they interestingly correspond to laviid Oz columns, large natural contributions
(~50-60%) and the smalleRMSE (<12 % or <3 DU). From the annual regression motihel
natural variation and the trend contribute respedbti for 30-85% and up to 40% to the total
variation in the MLT.

In Fig.3, we further investigate the robustnesshefestimated trends by performing sensitivity
tests in regions of significant trend contributiqesy. in the N.H. mid-latitudes in summer; cfr
Fig.2). The ~9-year time series of IASt @aily averages (dark blue) along with the resiutim

the seasonal regression model with and withouLTh&erm included in the model (light blue and
orange lines, respectively) are represented indpheow panel for one specific location (Fig.3a
and b; highlighted by a blue circle in the JJA pand-ig.4). The second row panel provides the
deseasonalised IASI (dark blue line) and fittecetseries (calculated by subtracting the adjusted
seasonal cycle from the time series) resulting ftbenadjustment with and without the LT term
included in the MLR model (light blue and orangees, respectively). The differences between
the fitted models with and without LT are showrthe third rows (pink lines). They match fairly
well the adjusted trend over the IASI period (8w panel, grey lines; the trend and REISE
values are also indicated) and the adjustment witHol' leads to larger residuals (e.g.
RMSE.Jia wio 1=3.37 DUvs RMSE j3a_with_.7=3.21 DU in summer). This result demonstrates the
possibility to capture trend information from ~%ye of IASI-MLR with only some compensation
effects by the other explanatory variables, cogttarwhat was observed when considering a
shorter period of measurements or a lesser tempanapling (i.e. monthly dataset; e.g. Wespes
et al., 2016). It is also worth to mention that @schanges calculated over the whole IASI dataset
in summer are larger than tRMSEof the model residuals (increase of 5.39+1.86 \BBMSE

of 3.21 DU), underlying the statistical relevanéérend estimates.

The robustness of the adjusted trend is verifiethatglobal scale in Fig.4 which represents the
seasonal distributions of the relative differencethe RMSEwith and without the LT included in
the MLR model, calculated asRMSEwio .1 — RMSEuith L7)/RMSEuwih LT X100] (in %). An
increase in thRMSEwhen excluding LT from the MLR is observed almegtrywhere in regions
of significant trend contributions (Fig.2), espdlgian mid-high latitudes of the S.H. and of the
N.H. in summer where it reaches 10%. This resudicates that adjusting LT improves the
performance of the model and, hence, that a tregralsis well captured by IASI at a regional
scale in the troposphere. From the annual modeljnitrease in th&MSEonly reaches 5% at
mid-high latitudes of the S.H. (data not shown).régions of weak or non-significant trend
contribution (see crosses in Fig.2), no improveneeidgically found.

4 Oz trend over 2008-2017
4.1 Annual and seasonal trends
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The annual and the seasonal distributions of thedfL T terms which are retained in the annual
and the seasonal MLR models by the stepwise eltimarocedure are respectively represented
in Fig. 5 (a) and (b) (in DUl/yr). Generally, thedhigh latitudes of both hemispheres and, more
particularly, the N.H. mid-latitudes in summer ralsignificant negative trends, while the tropics
are mainly characterized by non-significant or wegkificant trends. Even if trends in emissions
have already been able to qualitatively explain suead tropospheric £trends over specific
regions, the magnitude and the trend estimatesidsmably vary between independent
measurement datasets (e.qg. Cooper et al., 2014T@®wR repor{‘#repesphengg%ene

coordlnated by the Internatlonal Global Atmosphe@bemlstry Project and avallable on
http://www.igacproject.org/activities/ TOAR Gaudel et al., in review-and-submitted-to-Elei@men

and references therein) for the reasons discussedSection 1 and they are not
reproduced/explained by model simulations (e.gsdoret al., 2006; Cooper et al., 2010; Logan
et al.,, 2012; Wilson et al.,, 2012; Hess et al., 20and references therein). As a result,
comparing/reconciling the adjusted trends with petelent measurements, even on a qualitative
basis, remains difficult. Nevertheless, severahef statistically significant features observed in
Fig.5 show, interestingly, qualitative consistemgth respect to recent published findings:

- __The S.H. tropical region extending from the Amazortropical eastern Indian Ocean
seems to indicate a general increase with, for el@na DJF trend of ~0.23+0.18 DU/yr
(i.e. 2.09+1.70 DU over the IASI measurement pgriddspite the large IAV in the MLT
which characterizes the tropics and which likelylains the high frequency of non-
significant trends. Enhanced: @vels over that region have already been analjsed
previous periods (e.g. Logan et al., 1985, 198ghifran et al., 1991; Moxim et al., 2000;
Thompson et al., 2000, 2007; Sauvage et al., 220®/;Heue et al., 2016; Ebojie et al.,
2016; Archibald et al., 20L7Leventidou et al., in review For instance, the largesO
enhancement of ~0.36+0.25 DU/yr (i.e. 3.3£2.3 Dl@rahe whole IASI period) stretching
from southern Africa to Australia over the norttseaf Madagascar during the austral
winter-spring likely originates from large 1AV imé¢ subtropical jet-related stratosphere—
troposphere exchanges which have been found taphntontribute to the tropospheric
Os trends over that region (Liu et al., 2016; 20IN@vertheless, this finding should be
mitigated by the fact that the trend value in thié. $ropics is of the same magnitude as the
RMSEof the regression residuals (~2-4.5 DU; see Fig.1)

On the contrary, the tropical Pacific region extsitgignificant negative trends that are
similar to those reported from UV sounders in Edeji al. (2016) and in Leventidou et al.
(in_review) over previous periods, while Heue et (@016) mainly reports significant

positive trend over that region
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The trends over the South-East Asia are mostlysigmficant and vary by season. In
spring-summer, some grid cells in India, in maidlahina and eastwards downwind
China exhibit significant positive trends reacht#@®45 DU/yr (i.e. ~4.2 DU over the IASI
measurement period). This tends to indicate thatrtfpospheric ®increases which have
been shown to mainly result from a strong positread in the Asian emissions over the
past decades (e.g. Zhao et al., 2013; Cooper,&(dl4; Zhang et al., 2016; Cohen et al.,
2017, Tarasick et al., 2017; and references thehkeihalso from a substantial change in
the stratospheric contribution (Verstraeten et2dl1,5) persists through 2008-2017 despite
the recent decrease in @recursor emissions recorded in China after 281d. Duncan et
al., 2016; Krotkov et al., 2016; Miyazaki et alQ1Z; Van der A et al. 2017). This would
indicate that this decrease is probably too reaeatk to recover the 2008&@vels over
the entire regionSignificant positive trends over South-East Asigehalso been reported
from UV soundersver previous periodé&.q. Ebojie et al., 2016Note, however, that this
finding has to be taken carefully given the largedel residualsRMSEof ~2-4 DU; cfr
Section 3, Fig.1) over that region. Finally, theguncertainty in trend estimates over the
South-East Asia might reflect the large IAV in théomass-burning emissions and
lightning NQ sources, in addition to the recent changes insams.

The mid- and high latitudes of the S.H. show clegtterns of negative trends, all over the
year and in a more pronounced manner during wspdng, with larger amplitudes than
those of th(RMSEvalues (~-0.33+0.14 DU/yr on average in the 358%s6band; i.e. a
trend amplitude of ~|3.1|£1.3 DU over the studiedqu vs a RMSEvalue of ~2.5 DU).
These significant negative trends in the S.H. aml o explain but, considering the
stratospheric contribution into the tropospherituoms (natural and artificial due to the
limited IASI vertical sensitivity) in the mid-highatitudes of the S.H. (~40-60%; see
supplementary materials in Wespes et al.,, 2016) tardnegative significant trends
previously reported from IASI in the UTLS/low stoaphere in the 30°S-50°S band, they
could be in line with those derived by Zeng e{(2017) in the UTLS for a clean rural site
of the S.H. (Lauder, New Zealand),which mainly or&ge from increasing tropopause
height and @ depleting substanceSignificant negative change in troposphericder
these regions were also reported in Ebojie eRall §).

In the N.H., a band-like pattern of negative trersdgbserved in the 40°N-75°N latitudes
covering Europe and North America, especially dysammer. Averaged annual trend of
—0.31+£0.17 DU/yr and summer trend of —0.47+0.22 yUi.e. —2.87+1.57 DU and -
4.36£2.02 DU, respectively, from January 2008 toyM:®17) are estimated in that
latitudinal band. These trend values are signifigaiarger than theRMSEof the MLR
model (<3.5 DU in JJA; cfr Section 3, Fig.1). Irgstingly, both the annual and summer
trends are amplified relative to the ones calcdlatehe mid-latitudes of the N.H. over the
2008-2013 period of IASI measurements (-0.19+0.08yDand -0.30+0.10 DU/yr for the
14
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annual and the summer trends, respectively, catdila the 30°N-50°N band; see Wespes
et al. (2016)). This finding is line with previoagidies which point out a possible leveling
off of tropospheric ® in summer due to the decline of anthropogenicp@cursor
emissions observed since 2010-2011 in North AmeiicdVestern Europe and also in
some regions of China (e.g. Cooper et al., 201@2200gan et al., 2012; Parrish et al.,
2012; Oltmans et al., 2013; Simon et al., 2@EAgjie et al., 2016Archibald et al., 2017;
Miyazaki et al., 2017). It even goes a step furthesuggesting a possible decrease in the
tropospheric ®levels. Archibald et al. (2017) recently reportedet decrease of ~5% in
the global anthropogenic NCemissions in the 30°N-90°N latitude band, which is
consistent with the annual significant negativadref -0.27+0.15 DU/yr for @estimated
from 1ASI in that band. We should also note thagreif these latitudes are characterized
by the lowest stratospheric contribution (~30-45%e supplementary materials in Wespes
et al., 2016), it might partly mask/attenuate thaability in the tropospheric Qevels.

4.2 Expected year for trend detection

In this section, we further verify that it is indepossible to infer, from the studied IASI period,
the significant negative trend derived in the 40°3N band in summer (~|0.5] DU/yr on average,
see Section 4.1) by determining the expected yean fvhich such a trend amplitude would be
detectable at a global scale. This is achievedhsnating the minimum duration (with probability
0.90) of the IASI @ measurements that would be required to deteceradtof a specified
magnitude, and its 95% confidence level, followihg formalism developed in Tiao et al. (1990)
and in Weatherhead et al. (1998):
2/3

« | 33y, /1+ P

N ~{ r 1- d)] Ea (D)

yr

CL,. =|N" &N &*® Eq (2)

Where N is the number of the required yeats, is the standard deviation of the autoregressive
noise residuak,, r  is the magnitude of the trend per yedr,is the lag-1 autocorrelation of the

noise. The magnitude of the variation and of thie@arrelation in the noise residuals are taken
into account for a better precision on the trertthede. Given that large variance {) and large

positive autocorrelatior® of the noise induce small signal-to-noise ratia &ng trend-like
segments in the dataset, respectively, these tveoeers increase the number of years that would
be required for detecting a specified trer@l .is the 95% confidence limits which is not

symmetric aroundN and depends onB, an estimated uncertainty factor calculated as
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+
_4_ e , with D the number of days in the IASI datasets, whicloants for the uncertainty
3D V1-®

in @ (the uncertainty ing, being negligible given that only a few years ofadare needed to

estimate it; cfr Weatherhead et al. (1998)). Assult, based on the available IASI-A and proxies
datasets and assuming that the MLR model usedsistiidy is accurate, we estimate, in Fig. 6 (a)
and (b), the expected year when asti®nd amplitude of |5| DU per decade (r.g= [0.5] DU/yr

which corresponds to the averaged absolute valtieditted negative trends in the N.H. summer;
see Fig.5b) is detectable, and its associated nadvdomfidence limit, respectively. The results in
Fig. 6 clearly demonstrates the possibility to infeom the available IASI dataset, such significan
trends in the mid- and high latitudes of the Nidsummer and fall (trend detectable from ~2016-
2017 with an uncertainty of ~6-9 months; cfr Fig.8Dn the contrary, the tropical regions and the
N.H. in winter-spring would require additional ~m@nths to 6 years of measurements to detect
an amplitude of |0.5]| DU/yr (trend significant ofdgm ~ 2017 — 2023 or after depending on the
location and the season). Note also that the séstngegative trends (up to -0.85 DU/yr, g.=

|0.85| DU/yr, see Fig.5b) observed in specificorgiof the N.H. mid-latitudes would only require
~6 years of IASI measurements for being detectlbd.niid- and high latitudes of the S.H. would
require the shortest period of IASI measurementi&becting a specified trend, with only ~7 years
+ 6 months of IASI measurements to detect a |0ByCtrend (trend detectable from ~2015). That
band-like pattern in the S.H. corresponds to thh@rewith the weakest IAV and contribution from

large-scale dynamical modes of variability in tA&1 MLT columns (see Section 3, Fig.1 and 2),
which translates into smadt> and ®. Note however that an additional few months of ll4&ta

are required to confirm the smaller negative trehe-0.35 DU/yr measured on average in the
S.H. (see Fig.5; a period ~9 years + 6 months begugssary to detect a trend amplitude of |3.5|

DU/dec). Given that large, means large noise residual in the IASI data, ¢iggons of short or

long required measurement period coincide, as ¢éggewell with the small or higRMSEvalues
of the regression residuals (see Section 3, Fig. 1)

The regions of the longest measurement periodsrezhjun the tropics for a trend detection (up to
~16 years of IASI data) correspond to known pasteiwidespread high £D(a) above intense
biomass burnings in Amazonia and eastwards aaassal Atlantic (Logan et al., 1986; Fishman
et al., 1991; Moxim et al., 2000; Thompson et2000, 2007; Sauvage et al., 2007), (b) eastwards
Africa across the South Indian Ocean which is stibje large variations in the stratospheric
influences during the winter-spring austral peri@ddA-SON) (Liu et al., 2016; 2017), (c)
Eastwards Africa across the North Indian Oceannttial likely due to large lightning NO
emissions above central Africa during the wet seasssociated with the northeastward jet
conducting a so-called “Qiver” (Tocquer et al., 2015) and (d) above regiof positive ENSO
“chemical” effect in Equatorial Asia/Australia apdstwards above northern and southern tropical
regions (Wespes et al., 2016) explained by reduaedalls and biomass fires during El Nifio
16



630 conditions (e.g. Worden et al., 2013). In fact, tnofsthese patterns (a, b and d) are closely
631  connected with strong El- Nifio events which extémel duration of the dry season and cause
632  severe droughts, producing intense biomass buemmgsions, for instance, over South America
633 (e.g. Chenetal., 2011; Lewis et al., 2011) anatiSdsia/Australia (e.g. Oman et al., 2013; Valks
634 et al., 2014; Ziemke et al., 2015), and which dlter tropospheric circulation by increasing the
635 transport of stratosphericz@nto the troposphere (e.g. Voulgarakis et al.,1220eu et al., 2014)
636 and the transport of biomass burning air massdbdadndian Ocean (Zhang et al., 2012). In
637 summary, these large-scale indirect ENSO-relate@tians in tropospheric £and the lightning
638  NOy impact on @, which are not accounted for in the MLR by speaiipresentative proxies, are
639  misrepresented in the regression models. They starge noise residuals, i.e. large, and,

640 hence, extends the time period needed to deteehd of any given magnitude.

641

642  Figure 6, finally, suggests that a long duratioals required, especially in summer, above and
643  east of China to quantify the anthropogenic immacthe local changes in the MLT: additional
644  3x1.5 years or 5t1.5 years for a given |5| or BlB{dec trend are respectively calculated. This
645  result could be explained by large perturbationh@&MLT columns induced by recent decreases
646  after decades of almost constant increases incgudmissions in China (e.g. Cohen et al., 2017,
647  Miyazaki et al., 2017).

648

649 4.3 Multi-linear vs single linear model

650

651 Even if MLR have already been used for extractiegds in stratospheric and totad &lumns

652 (e.g. M&der et al., 2007; Frossard et al., 2018¢&iet al., 2013; Knibbe et al., 2014), singledin
653  regressions (SLR) without discriminating the natgchemical and dynamical) factors describing
654 the G varlablllty are st|II commonly used (e.g. Coopelmak, 2014; the TOAR:Irmate report —

655 Gaudel et al., A SIRE

656
657
658 therern) They are, however suspected to contﬂtmtrend biases retrieved between independent
659  measurements. In addition to the time-varying uregntal biases, trend biases can also be related
660 to differences in the spatial and the temporal dzavgp (e.g. Doughty et al., 2011; Saunois et al.,
661 2012; Lin et al., 2015), in the measurement periodhe upper boundary of thes@olumns, in

662  the algorithm and in the vertical sensitivity oétmeasurements. The latter artificially alters the
663  characteristics of the sounded layer by contanonatfrom the above and the below layers leading
664  to a mixing of the trend but also of the naturareteteristics originating from these different liesye
665 (e.g. troposphere and stratosphere). The diffeeemtahe studied period, in the tropopause
666  definition and in the spatio-temporal sampling nbigiso imply differences in the natural influence
667 on the measuredsQariations. While the impact of the natural cdmiition is taken into account
668  inthe MLR model, it might introduce an additio#s in the trend determined from SLR, making
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further challenging to compare trends estimatedhfeo series of inhomogeneous independent
measurements. Substantial effort in homogenizidgpendent troposphericz@olumn (TOCS)
datasets have been performed in the TOAR-climatesament report (Gaudel et ah,
reviewsubmitted-to-Elemer)idbut large SLR trend biases remain between thaR @atasets, in
particular, between the satellite datasets whezdabk of homogeneity in terms of tropopause
calculation (same tropopause definition but diffétemperature profiles are used), of instrument
vertical sensitivities and of spatial sampling baen specifically pointed as possible causes for
the trend divergence.

If Rreconciling the trend biases between the dataseépplying the vertical sensitivity of each
measurement type to a common platform, as propiosite TOAR-climate assessment report is
beyond the scope of this stydgnd if, at this stage, there is no consensus ierchiing
tropospheric @ trends;butthe improvement in using a MLR instead of a SLRdeiofor
determining more accurate/realistic trends is enguitnere by comparing the seasonal distributions
of the trends estimated from MLR (see Fig. 5 (bpaction 4.1.) and from SLR (presented in
Fig.7). Note that the constant term in the SLRpig ;nto two components (covering the periods
before and after the September 2010 “jump”) to @t@unt of the observed “jump” (see Section
2). The highest differences in the fitted trendswéel from the two methods are found in the
tropics and in some regions of the mid-latitudegshaf N.H. They likely result from overlaps
between the LT term and other covariates. For m&tathe regions with high significant SLR
trends (~0.3-0.6 DU/yr over the tropical westerd amiddle Pacific) during the period extending
from September to May match the regions with stiehi§ifio/Southern Oscillation influence (cfr
Fig. 8 and 12 in Wespes et al., 2016). On the aoptthe MLR model lends generally weak
significant negative or non-significant trends lire tPacific Nifio region during that period and it
would even need additional ~3 to 4 years of IASasmEements for detecting the fitted SLR trends
(see Section above). The effect of ENSO in overeding the fitted SLR trend is further illustrated
on Fig. 8 which represents the time series pbliserved by IASI and adjusted by the annual MLR
model (top row) along with the deseasonalized tiseges (middle row) and the fitted SLR and
MLR trends (bottom row). The fitted signal of the&N&O proxy from the MLR regression
(calculated asx; X following Wespes et al. (2017)) is also represgrfb®ttom row). That

norm, j
example clearly shows that the ENSO influence rsierably compensated by the adjustment of
the linear trend in the SLR regression (annualdm@n0.48+0.06 DU/yr from SLR vs -0.231£0.16
DUl/yr from MLR for that example). Finally, differeas between the SLR and the MLR models
are also observed in the region with strong pasifAO influence over the Icelandic/Arctic region
during MAM (see Wespes et al. (2016) for a desmnipbf the NAO-related ©changes). On the
contrary, the sub-tropical S.H. exhibit similar se@al patterns of negative trends from both the
SLR and the MLR. It results from the weak natufdl land contributions in tropospheriaz@bove
that region (see Section 3, Fig. 1 and 2), whieimde, limits the compensation effects.
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In summary, despite the fact that considering aglg@eriod of measurements is usually
recommended in SLR study to overcome the dynamigsales and, hence, to help in
discriminating their influences from trends, we whibat considering that some dynamics have
irregular or no particular periodicity (e.g. NAONEO), it is not accurate enough. Furthermore,
accurate satellite measurements of tropospheyiat@ global scale are quite recent, limiting the
period of available and comparable datasets (eynéet al., 2017). As a consequence, we support
here that using a reliable multivariate regressimdel based on geophysical parameters and
adapted for each specific sounded layer is a rabegtod for differentiating a “true” trend from
any other sources of variability and, hence, thathould help in resolving trend differences
between independent datasets.

4 .4 Continental influence

In this section, we use the capabilities of IASkimultaneously measures@nd CO in order (1)

to differentiate tropospheric and stratospherigrasses, (2) to identify the regions influenced by
the continental export/intercontinental transpd®egpollution and (3) to evaluate that continental
influence on tropospheric:@rends as observed by IASI. Similar tracer cotrefs between CO
and Q have already been used to give insight into thetqihemical @ enhancement in air
pollution transport (e.g. Parrish et al., 1993;tBehmi et al., 2005). However, there are only a few
studies using global satellite data for this puegp(@hang et al., 2006; Voulgarakis et al., 2010;
Kim et al., 2013) and the analysis of the @D relationship for better understanding the origfi

Os trends in the troposphere has, to the best okimonwledge, never been explored.

Fig.9a and 9b show the seasonal patterns of theé@correlations (referred askco) and of the
dOs/dCO regression slopes calculated in the troposptfiere the surface to 300 hPa) over the
studied IASI period (January 2008 — May 2017). @®e/dCO regression slopes, which represent
the so-called @CO enhancement ratio, is used to evaluate theophetical @ production in
continental outflow regions. TheoRco and thedOz/dCO distributions are similar and clearly
show regional and seasonal differences in the giinesf the @-CO relationships. The patterns of
positive and negative correlations allows to disanate the outflow regions characterized by
photochemical @production from precursors (including CO) or CQtdection (both identified
by positive Rz.co) from the regions characterized by [@ss (chemical destruction or surface
deposition) or by strong stratospheric contamimatigboth identified by negative oRco).
Negative R3.coanddOs/dCO are measured at high latitudes of both hemiggtadl over the year,
but more specifically at high latitudes of the SiiHsummer-fall (with Rs.co<-0.25 on averages
in DJF and MMA). Given that high latitudes expedemore @destruction than the low latitudes
due to a lack of sunlight, the negative correlaitor the high latitude regions might also reflect
air masses originating from/characterizing theteghere due to natural intrusion or to artificial
mixing with the troposphere introduced by the legditvertical sensitivity of 1ASI in the highest
latitudes (stratospheric contribution varying bedawe-40% and 65%; see supplementary materials
19



748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786

in Wespes et al., 2016). These processes are Bkéhe origin of the band-like pattern of negative
trends in the S.H. discussed in Sections 3 andNegative Rs.coanddOs/dCO are also found
above the Caribbean, the Arabic Peninsula and gnthNhdian Ocean in JJA/SON and the South
Atlantic in DJF. They are in line with Kim et aR@13) and they likely reflect the influence of
lightning NO, which produce @but also OH oxidizing CO (e.g. Sauvage et al.,72Q@brador

et al., 2004).

Strong positive correlations are identified in b&s-co anddOs/dCO patterns over the tropical
regions and for mid-latitudes of both Hemisphenasnd) the peak of photochemistry in summer.
Maxima (Roz-co>0.8 anddOs/dC0O>0.5) are detected in continental pollution awflregions in
the N.H., especially downwind South-East Asia amgrothe South Africa/Amazonia/South
Atlantic region. These £©CO correlation patterns from IASI are fully conesigt with those
measured by TES (Zhang et al., 2006; 2008; Voukime al., 2010) and by OMI/AIRS (Kim et
al., 2013), which have been interpreted with gldb&M'’s as originating from Asian pollution
influence and from combustion sources includingrass burning, respectively. The high positive
Ros.cofound in JJA at mid-latitudes of the N.H. are d&td in a lesser extent in DJF reflecting
the decreasing photochemistry. It is also wortmpog out in Fig. 9 the clear hemispheric
differences in the &.coanddOs/dCO values at mid-high latitudes and, more partityl#he shift

of positive Ryz-coanddOs/dCO towards higher latitudes of the N.H. during suenife.g. Rs-co=
0.24 in summevs0.038 in spring in the 35°N-55°N band). As a causace, these results suggest
that the band-like pattern of negative trends meakby IASI in summer might substantially
reflect the continental pollution influence andnbe, that it could result from the decline of
anthropogenic ©precursor emissions. Nevertheless, interpretigO correlations in the free
troposphere, especially in photochemically agedupoh plumes far from the emission sources
towards the highest latitudes, remains complicatethe mixing of the continental combustion
outflow with stratospheric air masses, in additiothe background dynamic and photochemistry
(e.g. Liang et al., 2007).

Finally, we also provide in Fig.9c the seasonatgras of @Q-CO covariances (CQ34-co). They
confirm the band-like pattern of the weak natueaiation captured in the S.H. mid-latitudes (see
Sections 3 and 4.1) and help identifying the regiomwnwind East China, the northern mid-
latitudes outflow region and the South tropicalisagas the ones with the highest pollution
variability, in addition to the strongest@O correlations. To conclude, the particularlysty
positive Q-CO relationship in terms of d3.co dOs/dCO and COMs.co measured over and
downwind North-East India/East China in summer omparison with the ones measured
downwind East US and over Europe indicate that Is&atst Asia experiences the most of the
intense pollution episodes of the N.H. with thegmt Q-CO variability (CO\ba.co> 40x16°3
mol.cn4) and the largest £enhancementdQs/dCO > 0.5) over the last decade. The strosg O
CO relationship in that region is associated withgignificant increase that is detected in thel IAS
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O3 levels downwind East of Asia (see Section 4.1)pdesthe net decrease ins Qrecursor
emissions recorded in China after 2011 (e.g. Cehah, 2017; Miyazaki et al., 2017).

5 Conclusions

In this study, we have explored, for the first tiniee possibility to infer significant trends in
tropospheric @from the first ~10 years (January 2008 — May 2@if4ASI daily measurements
at a global scale. To this end, MLR analyses haanlperformed by applying a multivariate
regression model (annual and seasonal formulatiordyding a linear trend term in addition to
chemical and dynamical proxies, on gridded meapospheric ozone time series. This work
follows on the analysis of the main dynamical drsvef & variations measured by IASI, which
was recently published in Wespes et al. (2017)hhee first verified the performance of the MLR
models in explaining the variations in daily tinggies over the whole studied period. In particular,
we have shown that the model reproduces a largeopdine Q variations (>70%) with small
residuals errorsRMSEof ~10%) at northern latitudes in summer. We hidnem performed ©
trend sensitivity tests to verify the possibility¢apture trend characteristics independently from
natural variations. Despite the weak contributiérirends to the total variation in the MLT30
columns at a global scale, the results demongtiatpossibility to discriminate significant trends
from the explanatory variables, especially in sumatemid-high latitudes of the N.H. (~45°N-
70°N) where the contribution and the sensitivityrehds are the largest (contribution of ~30-50%
and a ~10% increase in tRMSEexcluding the LT in the model). We then focusedtioa
interpretation of the global trend estimates. WgehBound an interesting significant positive
trends in the S.H. tropical region extending frédva Amazon to the tropical eastern Indian Ocean
and over South-East Asia in spring-summer whiclukhbowever be carefully considered given
the highRMSEof the regression residuals in these regions.Mhie analysis reveals a band-like
pattern of high significant negative trends in bhél. mid-high latitudes in summer (—0.47+0.16
DUl/yr on average in the 45°N-70°N band). The dtiati$ significance of such trend estimates is
further verified by estimatingpased on the autocorrelation and on the variancéheofnoise
residuals, the minimum number of years of IASI nueasients that are required to detect a trend
of a |5] DU/dec magnitude. The results clearly destrate the possibility to determine such a trend
amplitude from the available IASI dataset and tbeduMLR model at northern mid-high latitudes
in summer, while much larger measurement periodshacessary elsewhere. In particular, the
regions with the longest required period, in tlapics, highlight a series of known processes that
are closely related to the EI-Nifio dynamic, whicimderlies the lack of associated
parameterizations in the MLR model. The importamdeusing reliable MLR models in
understanding large-scale @ariations and in determining trends is furthgslexed by comparing
the trends inferred from MLR and from SLR, the datbeing still commonly used by the
international community. The comparison has clehitjlighted the gain of MLR in attributing
the trend-like segments in natural variations, salENSO, to the right processes and, hence, in

avoiding misinterpretation of “apparent” trendstire measurement datasets. Nevertheless, it is
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worth noting that there could be a possible impétite sampling (because of the cloud and quality
filters applied) and of the jump in September 2014 has been identified in the IASI dataset (see
Section 2), in both MLR and SLR trends. Finally, é¥ploiting the simultaneous and vertically-
resolved @ and CO measurements from IASI, we have providelduaed the @CO correlations

in the troposphere to help determining the originaracteristics of patterns of negative or positive
trends. The distributions have allowed us to idgntin particular, strong positive $CO
correlations, regression slopes and covariancéenN.H. mid-latitudes and northward during
summer, which suggests a continental pollutiorugriice in the N.H. band-like pattern of high
significant negative trends recorded by IASI anelde, a direct effect of the policy measures
taken to reduce emissions of frecursor species.

This study supports overall the importance of ugibtighigh density and long terhomogenized
satellite records, such as those provided by 1a&d, (2) complex models with predictor functions
that describe the £regressors dependencies for a more accurate de&tion of trends in
tropospheric ®@- as required by the scientific community, e.gtha Intergovernmental Panel on
Climate Change (IPCC, 2013) - and for further résgl trend biases between independent
datasets (Payne et al., 2017; the TO&dRate assessmeneport —Gaudelet al., in reviewy.
Currently, no consensus in terms of €@nds in the troposphere is reached from thelablai
measurements (UV or IR satellitesg €ondes, aircrafts, ground-based measurements,r..) fo
several reasons (time-varying instrumental biaskféerences in the methodology used for
calculating trends, in the measurement periodhéupper boundary of thes@olumns, in the
retrieval algorithm, in the spatio-temporal samglim the vertical sensitivity of the instrument,...)
(Section 4.3; the TOAR-climate report — Gaudell gimreview). However-Determination, with
IASI, of robust trends in tropospheric @t the global scale will be achievable in the rature

by merging the homogeneous @ofiles from the three successive instrumentoard Metop-A
(2006); -B (2012) and —C (2018) platforms and ftbmlASI-Next Generation instrument onboard
the Metop Second Generation series of satellitesi§@ux and Crevoisier, 2013; Crevoisier et al.,
2014). A long record of tropospheria @easurements will be also assured by the Crosk-tra
Infrared Sounder (CrIS) onboard the Joint PolaelfiE System series of satellites.
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Figure captions

1ASI MLT O, columns [DU] RMSE of the regression residuals [DU]

Fig.1. Seasonal distribution of{@ropospheric columns (in DU, integrated from grdtm300hPa)
measured by IASI and averaged over January 2008y-2017 (left panel), of thRMSEof the
regression fits (in DU, middle panel) and of thection of the variation in IASI data explained by

the regression model, calculated [Hsox (a(03F fted _model (t))/a(os(t)))J (in %, right panel). Data
are averaged over a 2.5°x2.5° grid box.
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881  Fig.2. Seasonal distributions of the contribution frora ffeasonal and explanatory variables into
882 the IASI G variations estimated as

883 100><a( Z[an;bn;xj][cosqml);sin(nax);Xno,m'j]J/a(O3(t)) (in %, left panels) and of the

n=1;j=2
884  contribution from the linear trend calculated80x o(x, , [trend)/a (O, (t))] (in %, right panels).

885 The grey areas and crosses refer to the non-signtfgrid cells in the 95% confidence limits (2
886 level). Note that the scales are different.
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Fig.3.Examples of daily time series of IASk@easurements (dark blue) and of the fitted sedsona
regression models with (light blue) and withoutafuge) the linear term in the tropospher@ (1
row). Daily time series of the deseasonaliseddbservations and regression modelspiv) and

of the difference of the fitted models with andheitit the linear trend term as well as the adjusted
annual trend (pink and grey lines, respectiveyrddv) (given in DU). TheRMSE(annual and for
the JJA period in DU) and the trend values (anmuna for the JJA period in DU/yr) are also

indicated.
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from the single and the multivariate linear regi@ss (SLR and MLR) and of the fitted signal of
ENSO proxy (one of the main retained proxies inrthdtivariate regression model) calculated as
[ X; X,om,;] (bottom row) over the equatorial central Pac{fiegative ENSO “dynamical” effect)

(given in DU). TheRMSEof the multivariate regression fit and the fitt8dR and MLR trend
values are also indicated.

30



936

937
938
939
940
941

942
943
944
945
946
947
948
949
950
951
952
953

-08 -0.6 -O. 02 0 02 04 06 0804
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