Response to reviewer #1

We thank the reviewer for carefully reviewing our manuscript; the comments are greatly appreciated. We have addressed all the comments and made major changes to the manuscript. In particular, we have substantially revised the section of "Introduction", "Experimental", and "Reaction mechanism". We believe that the revisions based on these comments have substantially improved our manuscript. In the following please find our responses to the comments one by one, and the corresponding changes made to the manuscript. The original comments are shown in italics. The changes made in the revised manuscript are highlighted.

General comments

In this manuscript, the results on multiphase reaction of SO_2 on individual $CaCO_3$ particles in the presence of NO_2 and O_2 at RH 72% using Micro-Raman spectrometer with a flow reaction system are presented. The main conclusion is that $CaCO_3$ converts first to $Ca(NO_3)_2$ droplet (by the reaction with NO_2), where actually further aqueous SO_2 oxidation by O_2 takes place. The reactive uptake coefficient γ of SO_2 determined on the basis of SO_4^{2-} formation rate was ca. three orders of magnitude higher than that determined in the absence of O_2 . On the basis of their results and mainly on literature data, they suggested that NO2 first initiates a free-radical chain mechanism via reaction of NO_2 with HSO_3^-/SO_3^{2-} , where SO_3^+ radical is formed, which reacts quickly with O_2 to form SO_5^+ , etc...The presented mechanism is well known and confirmed by many authors, and as expected the reaction under O_2 conditions is relatively fast and can be important source of sulfate.

As I have already pointed out in the previous review (Zhao et al., ACPD), I support the topic, mainly due still unresolved questions concerning high sulfate formation shown during heavily polluted episodes under haze conditions in China. And also, I like the approach used for studying processes on the micro level.

However, I found many mistakes (not only English language, but in general); the article is not well readable and many times confusing, many sentences are repeated with no need through the manuscript; thus, I cannot recommend it in the present form for publication in ACP.

Further, I again strongly suggest presenting the results for both systems $SO_2/NO_2/H_2O/N_2$ and $SO_2/NO_2/H_2O/O_2$ together in one article, although the authors of the first manuscript gave their reasons (in the responses) why to present separately. I think it is reasonable to show both together, first due to easier comparison, further due to easier discussion on differences in the mechanisms, etc. Anyway, the authors compare the results with the previous one during the whole manuscript. In addition, the experimental part is practically the same.

I highlight some of the main comments, questions and mistakes below. I will not expose the language mistakes, they are too many. Many parts of the manuscript should be rewritten.

Response:

In the revised manuscript, we have made major changes to the manuscript in order to make the text more clearly written with improved readability. Moreover, we have made a thorough language check of the text of this manuscript and corrected the errors in language.

Regarding the arrangement of the two manuscripts, although they have some parts in common, the scientific questions under investigation and the chemistry in these two studies are substantially different. We have decided to arrange the two manuscripts as independent papers instead of companion papers to highlight their distinct features. The reasons for this arrangement are as follows:

1. The question whether the multiphase reaction of SO_2 directly with NO_2 is an important pathway for sulfate formation in the real atmosphere, e.g., during haze episodes in China, requires investigating the "pure" reaction of SO_2 with NO_2 without confounding effects of other oxidants. In another manuscript (Zhao et al., 2017), we address this question. And in this manuscript, we address a different question, i.e., whether the multiphase reaction of SO_2 with O_2 in the presence of NO_2 is an important reaction pathway of SO_2 oxidation; obviously, this reaction is more relevant to real atmospheric conditions.

2. We found that the multiphase reaction of SO_2 with NO_2 and the reaction of SO_2 with O_2 in the presence of NO_2 have significantly different chemistry, with different reaction mechanisms, products, and atmospheric implications.

i. The multiphase reaction of SO₂ directly with NO₂ involves two reactants whereas the reaction of SO₂ with O_2/NO_2 involves three reactants. In the former reaction NO₂ is the main oxidant of SO₂ while in the latter reaction O₂ is the main oxidant of SO₂ and NO₂ only acts as an initiator of chain reactions.

ii. According to the reaction mechanism, the main products in the multiphase reaction of SO_2 with NO_2 are sulfate and nitrite with a stoichiometry of 1:1. In contrast, the main product in the multiphase reaction of SO_2 with O_2 in the presence of NO_2 is sulfate and the ratio of sulfate to nitrite is expected to be much higher than 1:1 according to the free-radical chain mechanism in the present study because nitrite is only formed in the chain initiation step.

iii. Due to the different reaction mechanism, the atmospheric implication of the reaction of SO_2 with O_2 in the presence of NO_2 is significantly different from the direct reaction of SO_2

with NO₂ because the former leads to much faster sulfate formation.

Based on these reasons, we have changed the title of this manuscript to "NO₂-initiated Multiphase Oxidation of SO₂ by O₂ on CaCO₃ Particles" in the revised manuscript. Accordingly, in the revised manuscript we have deleted the parts where we stated about the companionship of these two papers (lines 63-64, 80 in the manuscript). We have also adjusted the wording in the abstract and introduction to reflect this change.

Specific comments

Introduction: It needs to be rewritten.

1. The authors should say something on well known and published mechanisms in the introduction. Discussion on the p.6/7 should partly be included here. Especially, the mechanism (R1-R6) does not fit on p.6, because it seems that is not important for their results.

Response:

Agree. In the revised manuscript, we have made major changes to the introduction and added the published mechanism to the introduction.

As the reviewer suggested, in the introduction we have also included part of the discussion regarding the mechanism on the p.6-7. It now reads:

"Despite such a reaction mechanism for SO_2 oxidation being proposed, its role in SO_2 oxidation in the ambient atmosphere is not well established. Most previous studies have focused on the direct reaction of SO_2 with NO_2 , including the determination of its rate constant (Lee and Schwartz, 1983; Clifton et al., 1988; Shen and Rochelle, 1998; Spindler et al., 2003; Nash, 1979; Huie and Neta, 1986). According to the reaction products and their reported yields (Lee and Schwartz, 1983; Clifton et al., 1988), the overall reaction equations of the direct reaction of SO_2 with NO_2 are as follows:

$$2NO_2(aq) + HSO_3^-(aq) + H_2O \to 2NO_2^-(aq) + SO_4^{2-}(aq) + 3H^+(aq),$$
(R1)

$$NO_2(aq) + SO_3^{2-}(aq) + H_2O \to 2NO_2^{-}(aq) + SO_4^{2-}(aq) + 2H^+(aq),$$
(R2)

and the reactions are proposed to proceed via NO₂–S(IV) adduct complexes (Clifton et al., 1988).

$$NO_{2}(aq) + SO_{3}^{2-}(aq) \rightarrow [NO_{2} - SO_{3}]^{2-}(aq).$$
(R3)

$$NO_{2}(aq) + [NO_{2} - SO_{3}]^{2-}(aq) \rightarrow [NO_{2} - SO_{3} - NO_{2}]^{2-}(aq).$$
(R4)

$$[NO_{2} - SO_{3} - NO_{2}]^{2-}(aq) + OH^{-}(aq) \rightarrow [NO_{2} - SO_{4}H - NO_{2}]^{3-}(aq).$$
(R5)

$[NO_2 - SO_4H - NO_2]^{3-}(aq) \rightarrow 2NO_2^{-}(aq) + SO_4^{2-}(aq) + H^+(aq).$ (R6)"

2. P. 2, line 39 and p. 8, line 243: Dissolution/absorption of SO_2 in aqueous solution results in total dissolved S(IV), i.e. three species $SO_2 \cdot H_2O$, HSO_3^- and SO_3^{-2} , which are in equilibrium; which species will prevail depends on pH! So, H_2SO_3 ($2H^+ + SO_3^{-2}$) are the same species as you have already written. In addition, it is not "rapid interconversion" between the species.

Response:

Agree. In the revised manuscript, we have changed " H_2SO_3 " to " $SO_2 \cdot H_2O$ ". And we have changed "rapid interconversion" to "fast dissociations of $SO_2 \cdot H_2O$ and HSO_3 ". *Experimental:*

3. RH is not mentioned in the experimental part, only in figure captions (RH 72%) and Table 1 (RH 82%). Is this fine or wrong?

Response:

The values for RH in figures and Table 1 are correct. The experiments were carried out at two RH, 72% and 82%. The experiments with varied concentrations of O_2 were done at 82 % RH. For the experiments at 72% RH, the reactive uptake coefficients were not quantified. Therefore, only the reactive uptake coefficients at 82% RH are shown in Table 1. In the revised manuscript, we have elaborated the experimental part and clarified this point as follows.

"The experiments were conducted under two RHs (72% and 82%) at 75 ppm SO₂ and 75 ppm NO_2 ."

4. Can you say something on pH of the formed aqueous layer of $Ca(NO_3)_2$? If you know the pH you can say something more on mechanism; i.e. if it is above 6, than SO_3^{2-} species are the main species which are involved.

Response:

The pH of the aqueous layer of $Ca(NO_3)_2$ may not be completely homogeneous within the aqueous layer and may change dynamically with time during the reaction. In the surface of the aqueous layer pH was supposed to be lower, which was mainly determined by the gas-aqueous equilibrium of SO₂, and estimated to be ~3. In the vicinity of the CaCO₃ core, pH was supposed to be higher due to carbonate hydrolysis, and was estimated to be ~7.6.

Additionally, in the beginning of the reaction the overall pH of the aqueous layer should be higher due to the larger CaCO₃ core and thinner aqueous layer while in the end of the reaction overall pH should be lower, which was mainly determined by the gas-aqueous equilibrium of SO₂. Therefore, it is likely that both HSO_3^- and SO_3^{2-} were present, and the dominant species depended on the reaction time and location within the aqueous droplet. In the revised manuscript, we have added short discussion on this point.

"The dominant S(IV) species depends on pH. Due to the fast dissociations of SO₂•H₂O and HSO₃⁻, reactions consuming one of these S(IV) species will result in instantaneous re-establishment of the equilibria between them (Seinfeld and Pandis, 2006). In this study, the pH of the aqueous layer of Ca(NO₃)₂ may change dynamically with time during the reaction and may not be completely homogeneous within the aqueous droplet. The pH values could vary between ~3 and ~7.6. In the surface of the aqueous layer, pH was mainly determined by the gas–aqueous equilibrium of SO₂, and was estimated to be ~3. In the vicinity of the CaCO₃ core, pH was mainly determined by the hydrolysis of carbonate and was estimated to be ~7.6. It is likely that both HSO₃⁻ and SO₃²⁻ were present, and the dominant species depended on the reaction time and location within the aqueous droplet. Nevertheless, to make the reaction mechanism clearer, HSO₃⁻ was used in the reaction equations. Similar reaction equations are also applicable to SO₃²⁻ because of the fast dissociations of SO₂•H₂O and HSO₃⁻." *Results and discussion:*

5. If you once define that you have a system $NO_2/H_2O/O_2$, where O_2 is from synthetic air, there is no need to repeat "in synthetic air" throughout the manuscript.

Response:

Agree. In the revised manuscript, we do not use "in synthetic air" throughout the manuscript where it is not necessary.

6. Paragraph 3.2 An explanation on increasing concentration of NO_3^- during the reaction is needed.

Response:

Agree. The concentration of NO_3^- increased during the reaction because NO_3^- was continuously formed by the reaction of CaCO₃ with NO₂ and H₂O. In the revised manuscript, we have briefly discussed this point.

"The decrease in the amount of carbonate and the increase in the amount of nitrate was because carbonate reacted continuously with NO₂ and H₂O, forming Ca(NO₃)₂. The detailed

mechanism of the multiphase reaction of carbonate with NO_2 and H_2O were discussed in our previous studies (Li et al., 2010; Zhao et al., 2017)."

7. P.5, line 146: The reactive uptake coefficient γ of SO₂ was determined at three different O₂ concentrations, and not in the range 5-86%.

Response:

Agree. In the revised manuscript, we have changed "with NO₂ in presence of O₂ (5%-86%)" to "with O_2/NO_2 at three O₂ concentrations (5, 20, and 86%)".

8. *P*. 5, line 147: I can see that the increase in the reactive uptake coefficient γ of SO₂ is ca. three orders (and not two to three) of magnitude higher than that determined in the absence of O₂.

Response:

The reactive uptake coefficient γ of SO₂ for the reaction with O₂/NO₂ in synthetic air (1.2×10⁻⁵) was around 370 times higher than that determined for the direct oxidation of SO₂ by NO₂ (3.22×10⁻⁸). Therefore, we described this difference as "two to three orders of magnitude".

9. In the second paragraph of 3.3 you compare your results with the literature. Of course, that your results are different than that from Lee and Swartz (1983), due to many reasons, but probably the most important is their different approach. You can probably make some comparisons of your reaction rates with the rates got for the gas mixture $SO_2/NO_2/air$ introduced into aqueous solution (Turšič et al., 2001).

Response:

We thank the reviewer for the suggestion. Regarding the experimental approach, Turšič et al. (2001) studied the absorption of the SO₂/NO₂/air mixture into aqueous solution, which is indeed more similar to our study. However, due to the mass transfer limitations, it is difficult to directly compare the reaction rates in that study with ours and the rate constants in other studies. A rate constant of 2.4×10^3 mol⁻¹ L s⁻¹ (at pH 3) can be derived from the study of Turšič et al. (2001), which is much lower than the values from the study of Lee and Schwartz (1983) and of Clifton et al. (1988). This is likely attributed to the limiting step by the aqueous phase mass transfer. The characteristic mixing time in the aqueous phase in the study of Turšič et al. (2001) is likely much longer than that of Lee and Schwartz (1983) (1.7-5.3 s) according to the time series of HSO₃⁻ concentration in the study of Turšič et al. (2001),

although it was not explicitly reported. Nevertheless, in the revised manuscript, we have added this comparison as follows.

"Only few studies have reported the S(IV) oxidation rate in the reaction of S(IV) with O_2/NO_2 mixtures (Turšič et al., 2001; Littlejohn et al., 1993). However, due to the limiting step by the aqueous phase mass transfer, it is difficult to quantitatively compare the reaction rates in those studies with the uptake coefficient in our study and the rate constants determined by Lee and Schwartz (1983) and Clifton et al. (1988). For example, a rate constant of 2.4×10^3 mol⁻¹ L s⁻¹ (at pH 3) can be derived from the results of Turšič et al. (2001), which is much lower than the values reported by Lee and Schwartz (1983) and Clifton et al. (1988). This can be attributed to the limiting step by the aqueous-phase mass transfer because the characteristic mixing time in the aqueous phase in Turšič et al. (2001) was likely much longer than that of Lee and Schwartz (1983) (1.7–5.3 s), according to the HSO₃⁻ concentration time series reported by Turšič et al. (2001)."

10. The mechanism shown on p.6 (from line 172 to 189) should be deleted here and just mentioned in the introduction. It is not important for the discussion, but can be written in one sentence why this mechanism is not possible.

Response:

Agree. In the revised manuscript, we have deleted the mechanism from line 172 to 189 and only mentioned them in the introduction, as the reviewer suggested. Instead, we have briefly discussed why this mechanism is not possible as follows.

"According to the NO₂–S(IV) adduct mechanism, the presence of O₂ should not affect the SO₂ oxidation rate; however, in this study, a substantial enhancement in the SO₂ oxidation rate was observed in the presence of O₂ compared with that in the absence of O₂. Therefore, the NO₂–S(IV) adduct mechanism was not considered to have been important in this study."

11. Check the reactions in the text and in the Table 2 (see R7-R8 in the text and those in the Table, R8–R10, R8a, R8b)! Anyway, it is no need to repeat; all important reactions in the Table are enough.

If you know the pH, you can write the reaction with only one species, HSO_3^- or SO_3^{-2-} .

Response:

Agree. In the revised manuscript, we have changed R8 to R7. We have deleted R7-17 in the text and only shown them in the table. Moreover, as discussed above (the response to comment 4) we have only shown the reaction equations for HSO_3^- for clarity, although these reaction equations are also applicable to SO_3^{2-} because of the fast dissociations of $SO_2 \cdot H_2O$

and HSO₃⁻.

12. P.7, line 209-213: Nice study on $S_2O_6^{2-}$ species formation, although in a different system, can be found in Podkrajšek et al, Chemosphere 49 (2002). Whatever, the mechanism (and the reason) of its formation should be the same.

Response:

We thank the reviewer for raising this study on $S_2O_6^{2-}$ formation. In the revised manuscript, we have added this paper in our citation and briefly discussed it as follows.

"In addition to $SO_4^{2^-}$ and NO_2^- , $S_2O_6^{2^-}$ was detected with an appreciable yield using Raman spectroscopy, following the reaction of NO_2 with aqueous sulfite (Littlejohn et al., 1993). $S_2O_6^{2^-}$ was also observed in the aqueous oxidation of bisulfite in an N₂-saturated solution in the presence of Fe(III) using ion-interaction chromatography (Podkrajšek et al., 2002)."

13. Better than "radical mechanism" is "a free-radical chain mechanism".

Response:

Agree. In the revised manuscript, we have changed the "radical mechanism" to "a free-radical chain mechanism".

14. P. 8, Line 239: I do not agree that there is a synergy between NO_2 and O_2 (definition of synergy!); NO_2 only initiates the free-radical chain mechanism, and after the induction period, the reaction is relatively fast; and according to the proposed mechanism does not have other role, except in the first step when $Ca(NO_3)_2$ is formed in the reaction between $CaCO_3$ and NO_2 . This part is now explained well in the first manuscript (Zhao et al., ACPD).

Response:

By synergy, we meant that the overall effect on the SO_2 oxidation rate when both NO_2 and O_2 were present was higher than the sum of the effect of NO_2 and of O_2 , although the reactions of SO_2 with O_2 and with NO_2 were not always simultaneous. As we have shown, the SO_2 oxidation rates in the direct reaction of SO_2 with NO_2 and with O_2 were both very low.

In the revised manuscript, we have further elaborated this discussion as follows.

" In the experiment without NO₂, but with other reaction conditions the same, we found that no sulfate was formed after 5 h of reaction. This indicates that O_2 by itself cannot initiate the chain reactions (although it favors chain propagation), and that the oxidation of SO₂ by O₂ was slow. The effect on the SO₂ oxidation rate when both NO₂ and O₂ were present was much higher than the sum of the effect of NO₂ and O₂. We refer to this effect as the synergy of NO₂ and O₂, which resulted in the fast oxidation of SO₂ to form sulfate in this study. This effect is similar to a "ternary" reaction found with the reaction of NO₂–particles–H₂O or SO₂–particles–O₃ (Zhu et al., 2011), where the reaction rate can be much faster than the sum of the reaction rates for the reaction of the second and third reactant with the first reactant."

15. I also suggest excluding older references, and rather including only those after 1990.

Response:

We thank the reviewer for the suggestion. However, some of the references earlier than 1990 are also important for the discussion of this study such as Lee and Schwartz (1983). Since ACP does not limit the number of references, we think it may be more reasonable to keep these references.

16. The radicals throughout the manuscript are written incorrectly.

Response:

Agree. In the revised manuscript, we have checked and corrected the writing of radicals throughout the manuscript wherever there were mistakes.

References

Clifton, C. L., Altstein, N., and Huie, R. E.: Rate-constant for the reaction of NO₂ with sulfur(IV) over the pH range 5.3-13, Environ. Sci. Technol., 22, 586-589, 10.1021/es00170a018, 1988.

Huie, R. E., and Neta, P.: Kinetics of one-electron transfer-reactions involving ClO2 and NO2, J. Phys. Chem. , 90, 1193-1198, 10.1021/j100278a046, 1986.

Lee, Y.-N., and Schwartz, S. E.: Kinetics of oxidation of aqueous sulfur (IV) by nitrogen dioxide, in: Precipitation Scavenging, Dry Deposition and Resuspension, edited by: Pruppacher, H. R., Semonin, R. G., and Slinn, W. G. N., Elsevier, New York, 453-466, 1983.

Li, H. J., Zhu, T., Zhao, D. F., Zhang, Z. F., and Chen, Z. M.: Kinetics and mechanisms of heterogeneous reaction of NO₂ on CaCO₃ surfaces under dry and wet conditions, Atmos. Chem. Phys., 10, 463-474, 2010.

Littlejohn, D., Wang, Y. Z., and Chang, S. G.: Oxidation of aqueous sulfite ion by nitrogen-dioxide, Environ. Sci. Technol., 27, 2162-2167, 10.1021/es00047a024, 1993.

Nash, T.: Effect of nitrogen-dioxide and of some transition-metals on the oxidation of dilute bisulfite solutions, Atmos. Environ., 13, 1149-1154, 10.1016/0004-6981(79)90038-6, 1979.

Podkrajšek, B., Grgić, I., and Turšič, J.: Determination of sulfur oxides formed during the S(IV) oxidation in the presence of iron, Chemosphere, 49, 271-277, https://doi.org/10.1016/S0045-6535(02)00324-7, 2002.

Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, 2nd ed., John Wiley &Sons. Inc., 2006.

Shen, C. H., and Rochelle, G. T.: Nitrogen Dioxide Absorption and Sulfite Oxidation in Aqueous Sulfite, Environ. Sci. Technol., 32, 1994-2003, 10.1021/es970466q, 1998.

Spindler, G., Hesper, J., Bruggemann, E., Dubois, R., Muller, T., and Herrmann, H.: Wet annular denuder measurements of nitrous acid: laboratory study of the artefact reaction of NO2 with S(IV) in aqueous solution and comparison with field measurements, Atmos. Environ., 37, 2643-2662, 10.1016/s1352-2310(03)00209-7, 2003.

Turšič, J., Grgić, I., and Bizjak, M.: Influence of NO2 and dissolved iron on the S(IV) oxidation in synthetic aqueous solution, Atmos. Environ., 35, 97-104, https://doi.org/10.1016/S1352-2310(00)00283-1, 2001.

Zhao, D., Song, X., Zhu, T., Zhang, Z., and Liu, Y.: Multiphase Reaction of SO2 with NO2 on CaCO3 Particles. 1. Oxidation of SO2 by NO2, Atmos. Chem. Phys. Discuss., 2017, 1-23, 10.5194/acp-2017-610, 2017.

Clifton, C. L., Altstein, N., and Huie, R. E.: Rate-constant for the reaction of NO₂ with sulfur(IV) over the pH range 5.3-13, Environ. Sci. Technol., 22, 586-589,

10.1021/es00170a018, 1988.

Huie, R. E., and Neta, P.: Kinetics of one-electron transfer-reactions involving ClO2 and NO2, J. Phys. Chem. , 90, 1193-1198, 10.1021/j100278a046, 1986.

Lee, Y.-N., and Schwartz, S. E.: Kinetics of oxidation of aqueous sulfur (IV) by nitrogen dioxide, in: Precipitation Scavenging, Dry Deposition and Resuspension, edited by: Pruppacher, H. R., Semonin, R. G., and Slinn, W. G. N., Elsevier, New York, 453-466, 1983.

Li, H. J., Zhu, T., Zhao, D. F., Zhang, Z. F., and Chen, Z. M.: Kinetics and mechanisms of heterogeneous reaction of NO₂ on CaCO₃ surfaces under dry and wet conditions, Atmos. Chem. Phys., 10, 463-474, 2010.

Littlejohn, D., Wang, Y. Z., and Chang, S. G.: Oxidation of aqueous sulfite ion by nitrogen-dioxide, Environ. Sci. Technol., 27, 2162-2167, 10.1021/es00047a024, 1993.

Nash, T.: Effect of nitrogen-dioxide and of some transition-metals on the oxidation of dilute bisulfite solutions, Atmos. Environ., 13, 1149-1154, 10.1016/0004-6981(79)90038-6, 1979.

Podkrajšek, B., Grgić, I., and Turšič, J.: Determination of sulfur oxides formed during the S(IV) oxidation in the presence of iron, Chemosphere, 49, 271-277, https://doi.org/10.1016/S0045-6535(02)00324-7, 2002.

Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, 2nd ed., John Wiley &Sons. Inc., 2006.

Shen, C. H., and Rochelle, G. T.: Nitrogen Dioxide Absorption and Sulfite Oxidation in Aqueous Sulfite, Environ. Sci. Technol., 32, 1994-2003, 10.1021/es970466q, 1998.

Spindler, G., Hesper, J., Bruggemann, E., Dubois, R., Muller, T., and Herrmann, H.: Wet annular denuder measurements of nitrous acid: laboratory study of the artefact reaction of NO2 with S(IV) in aqueous solution and comparison with field measurements, Atmos. Environ., 37, 2643-2662, 10.1016/s1352-2310(03)00209-7, 2003.

Turšič, J., Grgić, I., and Bizjak, M.: Influence of NO2 and dissolved iron on the S(IV) oxidation in synthetic aqueous solution, Atmos. Environ., 35, 97-104, https://doi.org/10.1016/S1352-2310(00)00283-1, 2001.

Zhao, D., Song, X., Zhu, T., Zhang, Z., and Liu, Y.: Multiphase Reaction of SO2 with NO2 on CaCO3 Particles. 1. Oxidation of SO2 by NO2, Atmos. Chem. Phys. Discuss., 2017, 1-23, 10.5194/acp-2017-610, 2017.

Response to reviewer #2

We thank the reviewer for carefully reviewing our manuscript and providing helpful comments. All the comments have been addressed in the revised manuscript and we believe that the revisions based on these comments have substantially improved our manuscript. In the following please find our responses to the comments one by one, and the corresponding changes made to the manuscript. The original comments are shown in italics. The changes made in the revised manuscript are highlighted.

I support the other referee's assessment, including the recommendation that Part 1 and Part 2 be combined into a single article. The articles don't stand on their own, and studying the reaction of SO_2 with NO_2 in the absence of O_2 , as in Part 1 - since O_2 apparently plays a role in the reaction - is not relevant for atmospheric chemistry. I also agree that there are numerous English language errors in this manuscript.

Response:

We appreciate the reviewer's opinion on how to better present our studies. However, these two studies are substantially different regarding the scientific questions under investigation and the chemistry involved, although they have some links. We have decided to arrange the two manuscripts as independent papers instead of companion papers to highlight their distinct features. The reasons for this arrangement are as follows:

1. The question whether the multiphase reaction of SO_2 directly with NO_2 is an important pathway for sulfate formation in the real atmosphere, e.g., during haze episodes in China, requires investigating the "pure" reaction of SO_2 with NO_2 without confounding effects of other oxidants. In another manuscript (Zhao et al., 2017), we address this question. And in this manuscript, we address a different question, i.e., whether the multiphase reaction of SO_2 with O_2 in the presence of NO_2 is an important reaction pathway of SO_2 oxidation. Both reactions have their own relevance to the atmosphere.

2. We found that the multiphase reaction of SO_2 with NO_2 and the reaction of SO_2 with O_2 in the presence of NO_2 have significantly different chemistry, with different reaction mechanisms, products, and atmospheric implications.

i. The multiphase reaction of SO_2 directly with NO_2 involves two reactants whereas the reaction of SO_2 with O_2/NO_2 involves three reactants. In the former reaction NO_2 is the main oxidant of SO_2 while in the latter reaction O_2 is the main oxidant of SO_2 and NO_2 only acts as an initiator of chain reactions.

ii. According to the reaction mechanism, the main products in the multiphase reaction of SO_2 with NO_2 are sulfate and nitrite with a stoichiometry of 1:1. In contrast, the main product in

the multiphase reaction of SO_2 with O_2 in the presence of NO_2 is sulfate and the ratio of sulfate to nitrite is expected to be much higher than 1:1 according to the free-radical chain mechanism in the present study because nitrite is only formed in the chain initiation step.

iii. Due to the different reaction mechanism, the atmospheric implication of the reaction of SO_2 with O_2 in the presence of NO_2 is significantly different from the direct reaction of SO_2 with NO_2 because the former leads to much faster sulfate formation.

Based on these reasons, we have changed the title of this manuscript to "NO₂-initiated Multiphase Oxidation of SO₂ by O₂ on CaCO₃ Particles" in the revised manuscript. Accordingly, in the revised manuscript we have deleted the parts where we stated about the companionship of these two papers (lines 63-64, 80 in the manuscript). We have also adjusted the wording in the abstract and introduction to reflect this change.

Regarding the language errors, we have made a thorough language check of the text of this manuscript and corrected the errors in language.

The study and the results presented are interesting. However, I have doubts about the technical soundness of the approach. For one thing, it's impossible to understand the experimental approach based on what is written in section 2 of this manuscript. Yes, the reactor was a flow reactor, but where were the particles? Were they part of the flow? Or were gases flowing past the particles which are stationary on a surface? What were the particles like (size, shape, porosity, etc.)? How were they prepared and dispersed? The manuscript is meaningless without these basic pieces of information. It is possible that they were mentioned in Part I of the manuscript, but I am being asked to review only this manuscript - and it must stand on its own at least to this extent.

Response:

Agree. In the revised manuscript, we have elaborated the experimental part. The details of experiments including the details that the reviewer is concerned with have been added and explicitly described. The revision has also reflected the change from the companion paper of our last manuscript to a completely independent paper. The revised experimental part is as follows.

"The experiments were conducted using a flow reaction system and the setup is shown in Fig. S1. The experimental setup and procedure used have been described in detail in previous studies (Zhao et al., 2017; Zhao et al., 2011; Liu et al., 2008). A gas mixture of NO₂, SO₂, O₂, N₂, and water vapor reacted with particles deposited on a substrate in the flow reaction cell. The concentrations of SO₂ and NO₂ were controlled using mass flow controllers by varying the flow rates of SO₂ (2,000 ppm in high purity N₂, National Institute of Metrology P.R. China), NO₂ (1,000 ppm in high purity N₂, Messer, Germany), and synthetic air [20% O₂ (high purity grade: 99.999%, Beijing Haikeyuanchang Practical Gas Co., Ltd.) and 80% N₂ (high purity grade: 99.999%, Beijing Haikeyuanchang Practical Gas Co., Ltd.)]. Relative humidity (RH) was controlled by regulating the flow rates of reactant gases, dry synthetic air, and humidified synthetic air. Humidified synthetic air was prepared by bubbling synthetic air through fritted glass in water. In some experiments, the O₂ concentrations were varied by regulating the mixing ratios of O₂ and N₂ to investigate the effect of O₂. SO₂/O₂/NO₂/H₂O mixtures flew through the reaction cell and reacted with individual stationary CaCO₃ particles, which were deposited on a Teflon-FEP film substrate annealed to a silicon wafer. RH and temperature were measured using a hygrometer (HMT100, Vaisala, Vantaa, Finland) at the exit of the reaction cell. Additionally, temperature was measured using another small temperature sensor (Pt 100, 1/3 DIN B, Heraeus, Hanau, Germany) in the reaction cell. All the experiments were conducted at 298 ± 0.5 K. The experiments were conducted under two RHs (72% and 82%) at 75 ppm SO₂ and 75 ppm NO₂.

During the reaction, particles were monitored *in-situ* via a glass window on the top of the reaction cell using a Micro-Raman spectrometer (LabRam HR800, HORIBA Jobin Yvon, Kyoto, Japan) to obtain microscopic images and Raman spectra. A 514-nm excitation laser was used, and back scattering Raman signals were detected. The details of the instrument are described elsewhere (Liu et al., 2008; Zhao et al., 2011). Because the particles were larger than the laser spot in this study (~1.5 μ m), confocal Raman mapping was used to measure the spectra at different locations on a particle to obtain the chemical information of the entire particle. The mapping area was rectangular and was slightly larger than the particle, with mapping steps of 1 × 1 μ m. Raman spectra in the range of 800–3,900 cm⁻¹ were acquired with an exposure time of 1 s for each mapping point. Raman spectra were analyzed using Labspec 5 software (HORIBA Jobin Yvon). Raman peaks were fitted to Gaussian–Lorentzian functions to obtain peak positions and peak areas at different locations on the particle. The

Particles of CaCO₃ (98%, Sigma-Aldrich, USA), with average diameters of about 7–10 μ m as specified by the manufacturer, were used in the experiments. The CaCO₃ particles were rhombohedron crystals; X-ray diffraction analysis indicated that they were calcite (Fig. S2). Individual particles were prepared by dripping a dilute CaCO₃ suspended solution onto Teflon-FEP film using a pipette and then drying the sample in an oven at 80°C for 10 h.

The amount of CaSO₄ as a reaction product was quantified based on Raman peak areas and particle sizes. The details of the method are described in our previous study (Zhao et al., 2017). Briefly, the amount of reaction product CaSO₄ formed was determined as a function of time using Raman peak areas. Raman peak areas were converted to the amount of compound formed using a calibration curve obtained from pure CaSO₄ particles of different sizes, which were determined according to microscopic images. The reaction rate, i.e., the sulfate production rate, was derived from the amount of sulfate formed as a function of time. The reactive uptake coefficient of SO₂ for sulfate formation (γ) was further determined from the reaction rate and collision rate of SO₂ on the surface of a single particle.

$$\gamma = \frac{\frac{d(3O_4)}{dt}}{Z} \,. \tag{1}$$

$$Z = \frac{1}{4} cA_s[SO_2], \tag{2}$$

$$c = \sqrt{\frac{8RT}{\pi M_{SO_2}}} , \qquad (3)$$

where R is the gas constant, T is temperature, Mso_2 is the molecular weight of SO₂, c is the mean molecular velocity of SO₂, A_s is the surface area of an individual particle, and Z is the collision rate of SO₂ on the surface of a particle. ${SO_4^{2^-}}$ indicates the amount of sulfate in the particle phase in moles. The average reaction rate and surface area of particles during the multiphase reaction period were used to derive the reactive uptake coefficient. The period was chosen to start after the induction period when ~10% of the final sulfate was formed. [SO₂] indicates the concentration of SO₂ in the gas phase.

The influence of gas phase diffusion on reactive uptake was evaluated using the resistor model described by Davidovits et al. (2006) and references therein, as well as using the gas phase diffusion correction factor for a reactive uptake coefficient according to the method described by Pöschl et al. (2007). The reactive uptake of SO_2 was found to not be limited by gas phase diffusion (see details in the Supplement S1).

In addition, we conducted experiments of the reaction SO_2 with only O_2 on both $CaCO_3$ solid particles and internally mixed $CaCO_3/Ca(NO_3)_2$ particles (with $CaCO_3$ embedded in $Ca(NO_3)_2$ droplets), while keeping other conditions the same as the reaction of SO_2 with an O_2/NO_2 mixture. These experiments of the multiphase oxidation of SO_2 by O_2 can help determine the role of NO_2 in the reaction of SO_2 with an O_2/NO_2 mixture."

I suspect that the particles were not part of the flow. In which case, did the authors consider the issue of gas phase diffusion limitations in their data analysis?

Response:

d(co2-)

Particles were deposited on a Teflon-FEP film in this study. Please refer the description about the experimental setup.

We evaluated the influence of gas phase diffusion on the reactive uptake coefficient using the resistor model described by Davidovits et al. (2006) and references therein (see details in the

Supplement S1 below, which has been added in the revised manuscript). The contribution of the resistance $(1/\Gamma_{diff})$ due to gas phase diffusion to the reactive uptake coefficient in this study was less than 0.1%. Therefore we conclude that the reactive uptake of SO₂ was not limited by gas phase diffusion. The same conclusion can also be drawn by calculating the gas phase diffusion correction factor for a reactive uptake coefficient according to the method in Pöschl et al. (2007) (Equation 20 in their study).

In the revised manuscript, we have briefly discussed this point.

"The influence of gas phase diffusion on reactive uptake was evaluated using the resistor model described by Davidovits et al. (2006) and references therein, as well as using the gas phase diffusion correction factor for a reactive uptake coefficient according to the method described by Pöschl et al. (2007). The reactive uptake of SO_2 was found to not be limited by gas phase diffusion (see details in the Supplement S1)."

The Supplement S1 that has been added in the revised manuscript is as follows.

"S1. Influence of gas phase diffusion on reactive uptake coefficients

The Influence of the gas phase diffusion on reactive uptake coefficients was analyzed using the resistor model described by Davidovits et al. (2006) and the references therein.

$$\frac{1}{\gamma} = \frac{1}{\Gamma_{diff}} + \frac{1}{\alpha} + \frac{1}{\Gamma_{sat} + \Gamma_{rxn}}$$
(1)

where Γ_{diff} is the transport coefficient in the gas phase, $1/\Gamma_{\text{diff}}$ is the resistance due to the diffusion in the gas phase. Similarly, $1/\Gamma_{\text{sat}}$ and $1/\Gamma_{\text{rxn}}$ are the resistance due to liquid phase saturation and liquid phase reaction, respectively. α is the mass accommodation coefficient of SO₂.

 $1/\Gamma_{\text{diff}}$ can be determined using the following equation:

 $\frac{1}{\Gamma_{\rm diff}} = \frac{0.75 + 0.238 \rm{Kn}}{\rm{Kn}(1 + \rm{Kn})} \,. \tag{2}$

where Kn is Knudsen number. Knudsen number is defined as

$$Kn = \frac{\lambda}{a} , \qquad (3)$$

where λ is the mean free path of a molecule in the gas phase and a is the radius of the particle. λ can be derived from

$$\lambda = \frac{3D_g}{c},\tag{4}$$

where D_g is the diffusion coefficient in the gas phase and c is the mean molecular velocity. c is determined by

where R is the gas constant, T is temperature, and M is the molecular mass of SO₂.

 $1/\Gamma_{diff}$ was calculated to be 78 and $1/\gamma$ was calculated to be $\sim 8.3 \times 10^4$. $1/\Gamma_{diff}$ only accounted for < 0.1% of $1/\gamma$. Therefore, the reactive uptake of SO₂ in this study was not limited by gas phase diffusion.

The same conclusion can also be drawn by calculating the gas phase diffusion correction factor for a reactive uptake coefficient according to the method in Pöschl et al. (2007) (Equation 20 in their study, also shown as equation 6 below).

$$C_g = \frac{1}{1 + \gamma \frac{0.75}{Kn}}$$
(6)

where C_g is the gas phase diffusion correction factor for a reactive uptake coefficient."

Was relative humidity actually measured or only inferred from mixing ratios of humid and dry air? RH is well know to be unpredictable in experiments, it should be measured directly.

Response:

Relative humidity was measured directly in our study using a hygrometer (HMT100, Vaisala). In the revised manuscript, we have clearly described this as follows.

"RH and temperature were measured using a hygrometer (HMT100, Vaisala, Vantaa, Finland) at the exit of the reaction cell. Additionally, temperature was measured using another small temperature sensor (Pt 100, 1/3 DIN B, Heraeus, Hanau, Germany) in the reaction cell."

Line 36: This may be a language issue but it is not appropriate to refer to a point of disagreement in the literature which has prompted detailed analysis and publications as "different opinions." Replace with "uncertainties in the pH value..." or something similar.

Response:

Agree. In the revised manuscript, we have changed "different opinions" to "uncertainties in the pH value".

Line 56: Delete " O_2 is abundant in the atmosphere," this is an atmospheric chemistry journal.

Response:

Agree. In the revised manuscript, we have deleted this sentence.

References

Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., and Worsnop, D. R.: Mass accommodation and chemical reactions at gas-liquid interfaces, Chem. Rev., 106, 1323-1354, 10.1021/cr040366k, 2006.

Liu, Y. J., Zhu, T., Zhao, D. F., and Zhang, Z. F.: Investigation of the hygroscopic properties of Ca(NO3)(2) and internally mixed Ca(NO3)(2)/CaCO3 particles by micro-Raman spectrometry, Atmos. Chem. Phys., 8, 7205-7215, 2008.

Pöschl, U., Rudich, Y., and Ammann, M.: Kinetic model framework for aerosol and cloud surface chemistry and gas-particle interactions - Part 1: General equations, parameters, and terminology, Atmos. Chem. Phys., 7, 5989-6023, 2007.

Zhao, D., Song, X., Zhu, T., Zhang, Z., and Liu, Y.: Multiphase Reaction of SO2 with NO2 on CaCO3 Particles. 1. Oxidation of SO2 by NO2, Atmos. Chem. Phys. Discuss., 2017, 1-23, 10.5194/acp-2017-610, 2017.

Zhao, D. F., Zhu, T., Chen, Q., Liu, Y. J., and Zhang, Z. F.: Raman micro-spectrometry as a technique for investigating heterogeneous reactions on individual atmospheric particles, Sci. China Chem., 54, 154-160, 10.1007/s11426-010-4182-x, 2011.

Multiphase Reaction of SO₂ with NO₂ on CaCO₃ Particles. 2. NO₂-initialized_initiated multiphase oxidation of SO₂ by O₂ on <u>CaCO₃ particles</u>

4 Ting Yu^{1,2,*}, Defeng Zhao^{1,2,*}, Xiaojuan Song^{1,2}, Tong Zhu^{1,2}

- 6 100871, China
- 7 ²BIC ESAT, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China-
- 8 *These authors contributed equally to this work.
- 9 Correspondence to: Tong Zhu (tzhu@pku.edu.cn)

10 Abstract. The reaction of SO₂ with NO₂ on the surface of aerosol particles has been suggested to be important in sulfate formation during severe air pollution episodes in China. However, we found that the direct oxidation of 11 SO₂ by NO₂ was slow and might not be the main reason for sulfate formation in ambient air. In this study, we 12 13 investigated the multiphase reaction of SO₂ with an O₂/NO₂ mixture on single CaCO₃ particles in synthetic air, 14 15 Ca(NO₃)₂ droplet containing, with CaSO₄•2H₂O solid particles embedded in it, which constituted a largesignificant fraction of the droplet volume at the end of the reaction. Compared with the reaction in the 16 17 absence of O₂, the morphology of the particle during the reaction in synthetic air was significantly different and the amount of sulfate formed at the end of the experiment was much higher. The reactive uptake coefficient of 18 SO_2 for sulfate formation was on the order of 10^{-5} , which was two to three higher than that for the multiphase 19 reaction of SO₂ directly with NO₂ by 2-3 orders of magnitude higher than that in the absence of O₂. According to 20 21 the difference between the reactive uptake coefficient of SO_2 in the absence of O_2 and that in the presence of Θ_2 our observations and the literature, we found that in the multiphase reaction of SO₂ with the O_2/NO_2 in 22 23 synthetic airmixture, O2 was the main oxidant of SO2 and was necessary for radical chain propagation. NO2 acted 24 as the initializetor of the radical formation, but not as the main oxidant. Such The synergy of NO₂ and O₂ resulted in much faster sulfate formation than when either of them was absent the sum of the reaction rates with NO2 and 25 26 with O_2 alone. We estimated that the multiphase oxidation of SO_2 by O_2 in the presence of initiated by NO_2 <u>cancould</u> be an important source of sulfate and <u>a</u> sink of SO_{2a} based on the calculated lifetime of SO_2 regarding 27 28 the loss bythrough the multiphase reaction versus the lifetime regarding the loss bythrough the gas-phase reaction 29 with OH radical. Parameterizing the reactive uptake coefficient of the reaction observed in our laboratory for 30 further model simulation is needed, as well as an integrated assessment based on field observations, laboratory 31 study results, and model simulations to evaluate the importance of the reaction in ambient air during the severe 32 air pollution perpisodes, especially in China.

^{5 &}lt;sup>4</sup>SKL<u>BIC-ESAT and SKL</u>-ESPC, College of Environmental Sciences and Engineering, Peking University, Beijing,

33 1 Introduction

58 59

It has been suggested that multiphase or heterogeneous oxidation of SO_2 by NO_2 has been suggested to potentially plays an important role in sulfate formation in the atmosphere (Seinfeld and Pandis, 2006). During the severe pollution episodes that occur frequently in China, high sulfate concentrations cannot be explained by the gas phase oxidation of SO_2 and its well-known aqueous chemistry (Zheng et al., 2015a; Cheng et al., 2016), highlighting the role of under-appreciated heterogeneous oxidation or multiphase pathways.

39 Recently, the multiphase oxidation of SO₂ by NO₂ has been introduced in air quality model simulations to 40 explain the discrepancy between the modeled and observed sulfate concentration during the heavily pollutedsevere pollution episodes frequently occurring in China (Cheng et al., 2016; Gao et al., 2016; Wang et al., 41 42 2016; Xue et al., 2016), despite the different opinions aboutuncertainties in the kinetic parameters for SO₂ 43 oxidation and in the pH value of aerosol particles in China (Wang et al., 2016; Cheng et al., 2016; Liu et al., 2017; Guo et al., 2017). However, according to our recently published results (Zhao et al., 2017).-, the direct oxidation 44 of SO₂ by NO₂ could not contribute significantly to sulfate formation in the atmosphere because the reactive 45 uptake coefficient of SO₂ for sulfate formation due to direct oxidation by NO₂ is very low ($\sim 10^{-8}$). 46

47 Although the contribution of the direct oxidation of SO_2 by NO_2 to sulfate formation is not significant, NO_2 48 may be involved in other oxidation pathways of SO_2 . It has been reported that the reaction of NO_2 with SO_3^{-2} and 49 HSO_3^{-} in the bulk aqueous phase can form the SO_3^{-1} radical, which can further react with O_2 and produce a series 50 of radicals that oxidize S(IV) species (Littlejohn et al., 1993). The reaction pathway may result in a fast SO_2 51 oxidation due to the potential synergy of NO_2 and O_2 .

Despite such a reaction mechanism for SO₂ oxidation being proposed, its role in SO₂ oxidation in the ambient atmosphere is not well established. Most previous studies have focused on the direct reaction of SO₂ with NO₂, including the determination of its rate constant (Lee and Schwartz, 1983; Clifton et al., 1988; Shen and Rochelle, 1998; Spindler et al., 2003; Nash, 1979; Huie and Neta, 1986). According to the reaction products and their reported yields (Lee and Schwartz, 1983; Clifton et al., 1988), the overall reaction equations of the direct reaction of SO₂ with NO₂ are as follows:

$2NO_2(aq) + HSO_3^-$	$\bar{J}_{3}(aq) + H_2 0 \rightarrow 2NO_2^{-}(aq) + SO_4^{2-}(aq) + 3H^+(aq),$	<u>(R1)</u>
$2NO_{2}(ag) + SO_{2}^{2-}$	$(ag) + H_2 0 \rightarrow 2NO_2^-(ag) + SO_4^{2-}(ag) + 2H^+(ag).$	(R2)

60 and the reactions are proposed to proceed via NO_2 -S(IV) adduct complexes (Clifton et al., 1988).

61	$NO_2(aq) + SO_3^{2-}(aq) \rightarrow [NO_2 - SO_3]^{2-}(aq).$	<u>(R3)</u>
62	$NO_2(aq) + [NO_2 - SO_3]^{2-}(aq) \rightarrow [NO_2 - SO_3 - NO_2]^{2-}(aq).$	<u>(R4)</u>
63	$[NO_2 - SO_3 - NO_2]^{2-}(aq) + OH^-(aq) \rightarrow [NO_2 - SO_4H - NO_2]^{3-}(aq).$	<u>(R5)</u>
64	$[NO_2 - SO_4H - NO_2]^{3-}(aq) \rightarrow 2NO_2^-(aq) + SO_4^{2-}(aq) + H^+(aq).$	<u>(R6)</u>

65 <u>However, studies of the oxidation rate of SO₂ at the O₂ concentrations relevant to the ambient atmosphere</u> 66 <u>and the potential influence of the synergy of NO₂ and O₂ on the oxidation rate are very limited (Turšič et al., 2001;</u> 67 He et al., 2014), except a few studies investigated SO₂ oxidation in the presence of NO₂ as well as O₂ (Littlejohn 68 et al., 1993; Shen and Rochelle, 1998; Santachiara et al., 1990)Quantitative and accurate assessment of the role of 69 multiphase oxidation SO₂ by NO₂ on particle relies on determining reaction kinetic parameters and understanding 70 the reaction mechanism. The aqueous oxidation of SO₂ (S(IV) species including H₂SO₃, SO₃², and HSO₃⁻) by

- NO₂ has been investigated by a number of laboratory studies and valuable kinetic parameters and understanding
 on reaction products and process have been obtained. For example, and measured the second order rate
 constant of the reaction of NO₂ with bisulfate and sulfite solution. The reaction products observed include nitrite,
 sulfate, and dithionate (e.g.,). Based on these studies, the reaction mechanism was deduced .
- Previous studies <u>.</u> Moreover, previous studies have mainly focused on the reaction in bulk solution-<u>and only</u> few studies <u>onhave investigated</u> the oxidation of SO_2 by NO_2 on aerosol particles (Santachiara et al., 1990, 1993)have been conducted <u>.</u> On aerosol particles, water activity <u>of aerosol water</u>, pH, ion<u>ic</u> strength, <u>the</u> presence of other compounds or ions, and the role of particle surface are different from <u>in</u> dilute bulk solution and may affect the reaction process and reaction rate. Moreover, many previous studies conducted the experiments either in the absence of O_2 or with low O_2 concentrations. Studies on the potential role of O_2 especially at the concentration levels in ambient air and the potential synergy of NO_2 and O_2 in the reaction are very limited.
- O_2 is abundant in the atmosphere and may affect the multiphase reaction of SO_2 with NO_2 . For example, found that the oxidation rate of sulfite in the aqueous reaction with NO_2 increases with O_2 concentration (0.5% by volume). The enhancement of SO_2 oxidation rate in the reaction with NO_2 have been also found in the heterogeneous reaction on mineral particle surface when O_2 is present. Therefore, further studies of the multiphase reaction of SO_2 with O_2/NO_2 mixtures on aerosol particles in air are needed in orderrequired to determine <u>the</u> kinetic parameters and elucidate the mechanism of the reaction.
- 88 In a companion manuscript, we reported the results of the this study on, we investigated the multiphase 89 oxidreaction of SO₂ directly by NO₂with O₂ in N₂the presence of NO₂ on CaCO₃ particles. We found that the reactive uptake coefficient of SO₂ for sulfate formation due to the oxidation by NO₂ is on the order of 10^{-8} , and 90 91 concluded that the oxidation of SO₂ by NO₂ alone could not contribute significantly to sulfate formation in the atmosphere. In this manuscript, we present the results of our study on the multiphase reaction of SO₂ with NO₂ in 92 93 synthetic air, i.e., in the presence of O₂, on CaCO₃ particles. We quantified the reactive uptake coefficient of SO₂ due to the reaction with an $O_2/NO_2/O_2/H_2O$ mixture in synthetic air. Based on theour observations and the 94 95 existing literature, we further discussed the reaction mechanism. By comparing with the Furthermore, we estimated the role of the multiphase oxidation of SO₂ by NO_2 in N_2 , we highlight the role of O₂ in the multiphase 96 97 $\frac{1}{1}$ of $\frac{1}{2}$ of \frac{1}{2} of \frac{1}{

98 2 Experimental

99 The The experiments were conducted using a flow reaction system and the setup is shown in Fig. S1. The experimental setup and procedure used in this study have been described in details in previous studies (Zhao et al., 100 101 2017; Zhao et al., 2011; Liu et al., 2008). Here we only provide a brief description. The reaction A gas mixture of 102 SO₂ with NO₂ on CaCO₃, SO₂, O₂, N₂, and water vapor reacted with particles was investigated using deposited on 103 a flow reactor. SO₂ (2000 ppmsubstrate in high purity N_2) the flow reaction cell. The concentrations of SO₂ and 104 NO₂ (1000were controlled using mass flow controllers by varying the flow rates of SO₂ (2,000 ppm in high purity 105 N₂, National Institute of Metrology P.R. China), NO₂ (1,000 ppm in high purity N₂) were diluted with, Messer, 106 Germany), and synthetic air [20% O₂ (high purity grade: 99.999%, Beijing Haikeyuanchang Practical Gas Co., 107 Ltd.), and 80% N₂ (high purity grade: 99.999%, Beijing Haikeyuanchang Practical Gas Co., Ltd.) to 75 ppm.)].

108 Relative humidity (RH) was controlled by regulating the flow rates of reactant gases, dry synthetic air, and 109 humidified synthetic air. More details about the experiment conditions can be found in the companion paper . 110 SO₂/NO₂/H₂O reaction mixture in Humidified synthetic air was prepared by bubbling synthetic air through fritted glass in water. In some experiments, the O₂ concentrations were varied by regulating the mixing ratios of O₂ and 111 112 N₂ to investigate the effect of O₂. SO₂/O₂/NO₂/H₂O mixtures flew through the reaction cell and reacted with 113 individual stationary CaCO₃ particles, which were deposited on a Teflon-FEP film- substrate annealed to a 114 silicon wafer. RH and temperature were measured using a hygrometer (HMT100, Vaisala, Vantaa, Finland) at the exit of the reaction cell. Additionally, temperature was measured using another small temperature sensor (Pt 100, 115 116 1/3 DIN B, Heraeus, Hanau, Germany) in the reaction cell. All the experiments were conducted at 298 ± 0.5 K. 117 The experiments were conducted under two RHs (72% and 82%) at 75 ppm SO₂ and 75 ppm NO₂.

118 During the reaction, the particles were in situ monitored in situ via a glass window on the top of the flow 119 reactor reaction cell using a Micro-Raman spectrometer (LabRam HR800, HORIBA Jobin Yvon, Kyoto, Japan) to 120 obtain microscopic images and Raman spectra. A 514-nm excitation laser was used, and back scattering Raman signals were detected. The details of the instrument are described elsewhere (Liu et al., 2008; Zhao et al., 121 122 2011)All the experiments were conducted at 298±0.5 K. Because the particles were larger than the laser spot in 123 this study (~1.5 µm), confocal Raman mapping was used to measure the spectra at different locations on a 124 particle to obtain the chemical information of the entire particle. The mapping area was rectangular and was 125 slightly larger than the particle, with mapping steps of $1 \times 1 \mu m$. Raman spectra in the range of 800–3,900 cm⁻¹ 126 were acquired with an exposure time of 1 s for each mapping point. Raman spectra were analyzed using Labspec 127 5 software (HORIBA Jobin Yvon). Raman peaks were fitted to Gaussian-Lorentzian functions to obtain peak 128 positions and peak areas at different locations on the particle. The peak areas were then added together to obtain 129 the peak area for the entire particle.

Particles of CaCO₃ (98%, Sigma-Aldrich, USA), with average diameters of about 7–10 µm as specified by
 the supplier, were used in the experiments. The CaCO₃ particles were rhombohedron crystals; X-ray diffraction
 analysis indicated that they were calcite (Fig. S2). Individual particles were prepared by dripping a dilute CaCO₃
 suspended solution onto Teflon-FEP film using a pipette and then drying the sample in an oven at 80°C for 10 h.

134 The amount of the CaSO₄ as a reaction product CaSO₄ was quantified based on Raman peak areas and 135 particle sizes. The details of the method are described in our previous study (Zhao et al., 2017). Briefly, the 136 amount of reaction product CaSO₄ formed was followeddetermined as a function of time using Raman peak areas. 137 Raman peak areas were converted to the amount of compound formed using a calibration curve obtained from 138 pure CaSO₄ particles of different sizes, which were determined according to microscopic images. The reaction 139 rate, that is, i.e., the sulfate production rate, was derived from the amount of sulfate formed as a function of time. The reactive uptake coefficient of SO₂ for sulfate formation (γ) was further determined from the reaction rate and 140 141 collision rate of SO_2 on the surface of a single particle.

142
$$\gamma = \frac{\frac{d\{SO_4^{2^-}\}}{dt}}{Z} . \tag{1}$$

143
$$Z = \frac{1}{4} cA_s [SO_2],$$
 (2)

144
$$c = \sqrt{\frac{8RT}{\pi M_{SO_2}}} \quad , \tag{3}$$

where R is the gas constant, T is temperature, Mso₂ is the molecular weight of SO₂, and c is the mean molecular velocity of SO₂, A_s is the surface area of an individual particle, and Z is the collision rate of SO₂ on <u>the</u> surface of a particle. ${SO_4^{2-}}$ indicates the amount of sulfate <u>onin</u> the particle phase in moles. The average reaction rate and surface area of particles during the multiphase reaction period were used to derive the reactive uptake coefficient. The period was chosen to start after the induction period when ~10% of <u>the</u> final sulfate was formed. ${SO_2}$ indicates the concentration of SO₂ in the gas phase.

151 Besides The influence of gas phase diffusion on reactive uptake was evaluated using the resistor model 152 described by Davidovits et al. (2006)reaction of SO₂ with NO₂/O₂/H₂O on CaCO₃ particles in synthetic air, in 153 some experiments, we varied and references therein, as well as using the concentrations of O₂ in gas phase 154 diffusion correction factor for a reactive uptake coefficient according to the method described by Pöschl et al. 155 (2007)carrier gas in order to investigate. The reactive uptake of SO₂ was found to not be limited by gas phase 156 diffusion (see details in the effect of O₂ concentration on the reaction. Supplement S1).

In addition, we carried outconducted experiments without $NO_{25}of$ the reaction SO_2 with only O_2 on eitherboth CaCO₃ solid particle, or CaCO₃/Ca(NO₃)₂-particles and internally mixed particle-CaCO₃/Ca(NO₃)₂ particles (with CaCO₃ embedded in Ca(NO₃)₂ droplet in order to elucidatedroplets), while keeping other conditions the same as the reaction of SO₂ with an O₂/NO₂ mixture. These experiments of the multiphase oxidation of SO₂ by O₂ can help determine the role of NO₂ in the reaction of SO₂ with an O₂/NO₂ mixture.

162 **3 Results and discussion**

163 **3.1** Reaction products and <u>changes in particle morphology-change</u>

Figure 1 shows the Raman spectra of a CaCO₃ particle during the multiphase reaction of SO₂ with 164 $O_2/NO_2/O_2/H_2O$ on it in synthetic air its surface. The peak at $\frac{10871,087}{10871,087}$ cm⁻¹ is assigned to the symmetric 165 stretching of carbonate $(v_s(CO_3^{2-}))$ (Nakamoto, 1997). During the reaction, the peak at $\frac{10871,087}{10871,087}$ cm⁻¹ 166 decreased continuously and finally disappeared and someas new peaks were observed. The peak at 10501,050 167 cm^{-1} iswas assigned to the symmetric stretching of nitrate (v_s(NO₃-)). The peaks at 10101,010 cm⁻¹ and 168 $\frac{11361,136}{1,136}$ cm⁻¹ awere assigned to the symmetric stretching (v_s(SO₄²⁻))) and asymmetric stretching(v_{as}(SO₄²⁻)))) 169 170 of sulfate in gypsum (CaSO₄·2H₂O), respectively (Sarma et al., 1998). In addition, after the reaction, a broad envelope in the range of 2800-38002,800-3,800 cm⁻¹ assigned to OH the stretching of the OH bond in water 171 molecules was observed. On the top of Above this envelope, there awere two peaks at 34083,408 cm⁻¹ and 172 34973,497 cm⁻⁻¹, which <u>awe</u>re assigned to <u>the</u>OH <u>bond</u> stretching in crystallization water of CaSO₄·2H₂O 173 (Sarma et al., 1998; Ma et al., 2013). 174

During the multiphase reaction with <u>the</u> $SO_2/O_2/NO_2/O_2/H_2O$ mixture, the CaCO₃ particle showedparticles displayed a remarkable change in morphology. The original CaCO₃ particle was a rhombohedron crystal (Fig. 2, panel i, a). As <u>the</u> reaction proceeded, its edges became smoother and later a transparent droplet layer formed, which had a newly -formed solid phase embed in it (Fig. 2, panel i, d). The size of the new solid <u>phase</u> grew during the reaction (Fig. 2, panel i, d-_f) and it seemed to contain <u>a number of many</u> micro-crystals. Raman mapping revealsed that the new solid phase consisted of CaSO₄·2H₂O (Fig. 2, panel iv), and the surrounding aqueous layer consisted of Ca(NO₃)₂ (Fig. 2, panel iii). 182 The particle morphology change shown in Fig. 2 iswas significantly different from the morphology change in 183 the absence direct reaction of $\Theta_2 SO_2$ with NO₂ (Zhao et al., 2017), where the CaCO₃ particle was first converted 184 to a spherical $Ca(NO_3)_2$ droplet and then needle-shaped $CaSO_4$ crystals formed inside the droplet (Zhao et al., 185 2017). Moreover, the amount of CaSO₄ formed in the presence of O_2 this study was much higher than that in the 186 absence of O2-direct reaction of SO2 with NO2. The CaSO4 solid particle constituted most a significant fraction of 187 the volume of the volume droplet here, while in the absence direct reaction of $\Theta_2 SO_2$ with NO₂ the few 188 needle-shaped CaSO₄ crystals that formed only constituted a small fraction of the droplet volume (Zhao et al., 189 2017).

190 **3.2 Reaction process**

191 During the reaction, the amounts of carbonate, nitrate, and sulfate were followeddetermined as a function of 192 time, as shown in Fig. 3. InAt the beginning of the reaction, the amount of carbonate decreased slowly-and, while 193 the amount of nitrate and sulfate increased slowly. After a period of induction of around 50 min, the reaction 194 accelerated significantly, leading to a fastrapid consumption of carbonate and production of nitrate and sulfate. 195 The decrease in the amount of carbonate and the increase in the amount of nitrate was because carbonate reacted 196 continuously with NO₂ and H₂O, forming Ca(NO₃)₂. The detailed mechanism of the multiphase reaction of 197 carbonate with NO₂ and H₂O were discussed in our previous studies (Li et al., 2010; Zhao et al., 2017). The 198 mechanism of sulfate formation is discussed in detail in Section 3.4 of the present study. Finally, the carbonate 199 was completely consumed, and the amounts of nitrate and sulfate levelled off.

Figure 3 shows <u>that</u> nitrate and sulfate were formed simultaneously during the reaction. This <u>finding is in</u> contrast to<u>contrasts with</u> the <u>finding in the absenceobservations made during the direct reaction</u> of Θ_2SO_2 with NO₂, where nitrate was formed first, and sulfate was essentially formed after the complete conversion of CaCO₃ particles to Ca(NO₃)₂ <u>droplets</u> (Zhao et al., 2017)<u>droplet.</u> Moreover, the time <u>taken</u> for carbonate to be completely consumed was longer <u>herein this study</u> than that-in the <u>absencedirect reaction</u> of Θ_2SO_2 with NO₂ (~120 min-vs. ~40 min) when other conditions were kept the same (Zhao et al., 2017).

206 **3.3 Reactive uptake coefficient of SO₂**

207 The reactive uptake coefficients of SO₂ for sulfate formation (γ) in the reaction of SO₂ with the 208 $O_2/NO_2/\Theta_2/H_2O/N_2$ mixture on CaCO₃ in synthetic air and in O_2/N_2 carrier gas with variedous O_2 concentrations 209 isare shown in Table 1. The value of γ for the reaction of SO₂ with O₂/NO₂ in presence of at three O₂ <u>concentrations</u> (5%-, 20, and 86%) is was in the range of (0.35-to-1.7×) × 10⁻⁵, and is was $1.2\times\times10^{-5}$ in 210 211 synthetic air. Theis latter is two to three value was 2–3 orders of magnitude higher than that for the reaction in 212 N₂of SO₂ directly with NO₂ under similar conditions (Zhao et al., 2017). When other conditions were kept 213 constant, γ increased with the O₂ concentration. This indicates that O₂ played a key role in enhancing the 214 oxidation rate of SO₂.

The role of O_2 in enhancing the reactive uptake of SO_2 reported here is consistent with the findings in some of previous studies. For example, Littlejohn et al. (1993)'s data show<u>ed</u> that sulfite oxidation rate increases with the O_2 concentration (0–5% by volume). Shen and Rochelle (1998) also found that in the presence of O_2 , the

aqueous sulfite oxidation wasrate is enhanced. By investigating the oxidation of SO₂ by NO₂ in 218 219 mono-dispersed monodispersed water droplets growing on carbon nuclei, Santachiara et al. (1990) found that 220 sulfate formation rate with 2% O₂ is much higher than that without O₂. Yet, our finding isfindings, as well as 221 those in the studies referred to above, are in contrast to the study those reported by Lee and Schwartz (1983), who 222 found that changing from N_2 to air as <u>a</u> carrier gas only increases $\frac{SO_2 \text{bisulfite}}{SO_2 \text{bisulfite}}$ oxidation rate by no more than 223 10%. The difference between our study and Lee and Schwartz (1983)the study by could be due to the difference 224 in O₂ diffusion from gas to the condensed phase and the different mechanisms between the multiphase reaction 225 on particles and the aqueous reaction.

226 Only few studies have reported the S(IV) oxidation rate in the reaction of S(IV) with O₂/NO₂ mixtures 227 (Turšič et al., 2001; Littlejohn et al., 1993). However, due to the limiting step by the aqueous phase mass transfer, 228 it is difficult to quantitatively compare the reaction rates in those studies with the uptake coefficient in our study 229 and the rate constants determined by Lee and Schwartz (1983) and Clifton et al. (1988). For example, a rate constant of 2.4×10^3 mol⁻¹ L s⁻¹ (at pH 3) can be derived from the results of Turšič et al. (2001), which is much 230 lower than the values reported by Lee and Schwartz (1983) and Clifton et al. (1988). This can be attributed to the 231 232 limiting step by the aqueous-phase mass transfer because the characteristic mixing time in the aqueous phase in 233 Turšič et al. (2001) was likely much longer than that of Lee and Schwartz (1983) (1.7-5.3 s), according to the 234 HSO₃⁻ concentration time series reported by Turšič et al. (2001).

235 **3.4 Reaction mechanism**

- In the multiphase reaction of SO₂ with $O_2/NO_2/O_2/H_2O$ on CaCO₃ particles-in synthetic air, we found <u>that</u> CaCO₃ could reactreacted with NO₂ and H₂O and produced Ca(NO₃)₂, which <u>could deliquescedeliquesced</u>, forming liquid water, and provided a site for <u>the</u> aqueous oxidation of SO₂. This processs wasprocess is similar to the <u>direct</u> reaction in N₂of SO₂ with NO₂ on CaCO₃ particles. The details of this part of the reaction mechanism have beenwere discussed in our previous study (Zhao et al., 2017).
- Once <u>the</u> aqueous phase was formed, SO_2 <u>cancould</u> undergo multiphase reactions with $O_2/NO_2/O_2$. The detailed-mechanism of the <u>direct</u> aqueous reaction of S(IV) with NO_2 in the absence of O_2 is complex. Previous studies have proposed two different <u>kinds of mecchanism-mechanisms for the reaction</u>. One involves the SO_3 . radical formation (Littlejohn et al., 1993; Shen and Rochelle, 1998; Turšič et al., 2001) and, while the other one involves the formation of <u>adductNO_2-S(IV)</u> complexes (Clifton et al., 1988), but not radical formation.
- 246 In the absence of O_2 , suggest the following reaction equation, According to the reaction products and their 247 yields,

248	$\frac{2NO_{\frac{1}{2}}(aq) + HSO_{\frac{1}{2}}(aq) + H_{\frac{1}{2}}O \rightarrow 2NO_{\frac{1}{2}}(aq) + SO_{\frac{1}{2}}^{\pm}(aq) + 3H^{\pm}(aq) (R1)$
249	The yields of SO_4^2 , NO_2^- , and H^+ relative to the HSO_3^- consumed are 1.0 ± 0.05 , 1.5 ± 0.4 , and 2.5 ± 0.4 ,
250	respectively, and the NO ₂ ⁻ formed relative to NO ₂ consumed is 1.0 ± 0.18 .
251	- proposed that the reaction proceeds via NO ₂ -S(IV) adduct complexes:
252	$\underline{-NO_{2}(aq) + SO_{2}^{2-}(aq) \rightarrow [NO_{2} - SO_{2}]^{2-}(aq)} $ (R2)
253	$\frac{NO_2(aq) + [NO_2 - SO_3]^{2-}(aq) \rightarrow [NO_2 - SO_3 - NO_2]^{2-}(aq)}{(\mathbb{R}^3)}$
254	$\frac{[NO_2 SO_3 NO_3]^{2-}(aq) + OH^{-}(aq) \rightarrow [NO_3 SO_4H - NO_3]^{2-}(aq)}{(\mathbb{R}^4)}$
255	$\frac{[NO_{\frac{1}{2}} SO_{\frac{1}{4}}H - NO_{\frac{1}{2}}]^{2-}(aq) \rightarrow 2NO_{\frac{1}{2}}^{-}(aq) + SO_{\frac{1}{4}}^{2-}(aq) + H^{+}(aq). $ (R5)

256	By combing reactions	P) P5 the ove	rall reaction equa	tion can be obtained	as follows:
250	by comong reactions	\mathbf{R}_{2} - \mathbf{R}_{3} , the own	fail reaction equa	tion can be obtained	as 10110 ws.

257 $\frac{2NO_2(aq) + SO_2^2(aq) + H_2O \rightarrow 2NO_2(aq) + SO_2^2(aq) + 2H^+(aq)}{(R6)}$

258 The reaction R6 is similar to R1.

If the NO₂-S(IV) adduct mechanism were the main mechanism in this study, there should be no significant difference in the SO₂-oxidation rate between the reaction in , the presence of O_2 and in the absence of O_2 . In fact, in the presence of O_2 we observed should not affect the SO₂ oxidation rate; however, in this study, a substantial enhancement in the SO₂ oxidation rate was observed in the presence of O_2 compared to the reaction with that in the absence of O_2 . Therefore, the NO₂-S(IV) adduct mechanism is unlikely was not considered to have been important in this study.

265 In contrast to the adduct complex mechanism, suggested a In the free-radical mechanism, the SO₃⁻⁻ radical is proposed to be formed (R7, Table 2), which is based on the observation of $S_2O_6^{2-}$ formation, with 266 $S_2O_6^{2-}$ known to be the combination reaction product of SO_3^{--} (Eriksen, 1974; Hayon et al., 1972; Deister and 267 Warneck, 1990; Brandt et al., 1994; Waygood and McElroy, 1992). In . In addition to SO₄²⁻ and NO₂⁻, S₂O₆²⁻ 268 was detected with an appreciable yield using Raman spectroscopy, following the reaction of NO₂ with aqueous 269 270 sulfite (Littlejohn et al., 1993). $S_2O_6^{2-}$ was also observed in the aqueous oxidation of bisulfite in an N₂-saturated solution in the presence of Fe(III) using ion-interaction chromatography (Podkrajšek et al., 2002), besides SO₄²⁻ 271 and NO_2^{-} , they detected $S_2O_6^{-2-}$ with an appreciable yield using Raman spectroscopy. Since $S_2O_6^{-2-}$ is known to be 272 the combination reaction product of SO₃, -, SO₃, - radical is proposed to be formed: 273

274	$NO_{\frac{1}{2}}(aq) + SO_{\frac{1}{2}}^{2-}(aq) \rightarrow NO_{\frac{1}{2}}^{-}(aq) + SO_{\frac{1}{2}}^{*-}(aq). $ (R7)
275	<u>. The SO₃ radical</u> can react via two pathways, forming either S ₂ O ₆ ²⁻² or SO ₄ ²⁻ .
276	$SO_{3}^{\bullet-}(aq) + SO_{3}^{\bullet-}(aq) \rightarrow S_{2}O_{6}^{2-}(aq) \qquad \qquad$
277	$SO_{\frac{1}{2}}^{\bullet-}(aq) + SO_{\frac{1}{2}}^{\bullet-}(aq) \rightarrow SO_{\frac{1}{2}}^{2-}(aq) + SO_{\frac{1}{2}}^{\bullet-}(aq) + SO_{$
278	$SO_{a}(aq) + H_{2}O \rightarrow SO_{4}^{2-}(aq) + 2H^{+}(aq).$ (_R10

279 , Table 2). The reactions R8-_R10 have been well established in the studystudies of the S(IV) oxidation by other 280 pathways, including the OH oxidation, photo-oxidation, and transitional metal catalyzed oxidation (Eriksen, 1974; 281 Hayon et al., 1972; Deister and Warneck, 1990; Brandt et al., 1994; Brandt and Vaneldik, 1995; Waygood and McElroy, 1992). In addition, although previous studies have not reported the direct observation of the SO₃,[±] 282 radical in the aqueous reaction of S(IV) with NO₂, SO₃.⁻⁻⁻ was directly observed in the reaction of NO₂⁻⁻ with 283 SO_3^{2-} in an acidic buffer solution (pH=_4.0) using electron spin resonance (ESR) (Shi, 1994). Since Because 284 NO_2^{--} is formed in the aqueous reaction of SO₂ with NO_{2_2} and $S_2O_6^{2_2}$ as the combination reaction product of SO₃. 285 286 is observed (Littlejohn et al., 1993), SO₃⁻⁻⁻ formation is plausible.

In the presence of O_2 , the SO₃⁻⁻ radical can react rapidly with O_2 , forming the SO₅⁻⁻ radical (R11, Table 2). Following this reaction, a number of chain reactions can occur to ultimately form sulfate (Littlejohn et al., 1993; Seinfeld and Pandis, 2006; Shen and Rochelle, 1998) (R12–R15, Table 2). Littlejohn et al. (1993) observed that the relative amount of $S_2O_6^{2--}$ relative to SO_4^{2--} formed in the aqueous reaction of NO₂ with sulfite decreases and $S_2O_6^{2--}$ is undetectable in the presence of O_2 compared with the reaction in the absence of O_2 . At low NO₂ concentrations (< 5 ppm)). $S_2O_6^{2--}$ is undetectable in the aqueous reaction (R8, Table 2). Because the SO₃.⁻⁻ radical can react rapidly with O₂, forming <u>the</u> SO₅.⁻⁻ radical, and <u>thuswould therefore</u> be consumed, the suppression of S₂O₆²⁻ is readily⁻ formation can be attributed to the reacition of SO₃.⁻⁻⁻ with O₂.--</sup>

296	$SO_3^{\bullet-}(aq) + O_2(aq) \to SO_5^{\bullet-}(aq)$	(R11)
297	Following this reaction, a number of chain reactions can occur and for	rm sulfate : -
298	$SO_{5}^{\bullet-}(aq) + SO_{2}^{2-}(aq) + H^{+}(aq) \rightarrow HSO_{5}^{-}(aq) + SO_{3}^{\bullet-}(aq)$	(R12)
299	$HSO_{\overline{5}}^{-}(aq) + SO_{\overline{3}}^{2-}(aq) \rightarrow 2SO_{\overline{4}}^{2-}(aq) + H^{+}(aq)$	(R13)
300	$SO_{5}^{\bullet-}(aq) + SO_{3}^{2-}(aq) \rightarrow SO_{4}^{2-}(aq) + SO_{4}^{\bullet-}(aq)$	(R14)
301	$SO_4^{\bullet-}(aq) + SO_2^{2-}(aq) \rightarrow SO_4^{2-}(aq) + SO_2^{\bullet-}(aq).$	(R15)

The reactions __(R11-, Table 2). The reactions R11-R15 have been well established by the study onstudies
 of the oxidation of S(IV) by OH or photo-oxidation, and all the radicals have been observed (Hayon et al., 1972;
 Huie et al., 1989; Huie and Neta, 1987; Chameides and Davis, 1982; Seinfeld and Pandis, 2006).

305 The free-radical chain mechanism is consistent with the findings of this study and is therefore more plausible 306 here. The enhancement of SO_2 oxidation rate in the reaction of the SO₂ oxidation rate in the reaction of SO₂ with 307 $O_2/NO_2/O_2/H_2O$ with on CaCO₃ particles in synthetic air compared towith that in N₂-can be direct reaction of 308 SO₂ with NO₂/H₂O was attributed to the role of O₂. Although during the reaction in the absence of O₂, that is, i.e., the direct oxidation of SO₂ by NO₂, the SO₃. radical can be formed (R7), the reaction chain cannot 309 310 propagate (R11–<u>R</u>15). Therefore, the S(IV) oxidation rate and the reactive uptake coefficient of SO₂ were much 311 lower than that in the presence of O₂. According to the difference between the reactive uptake coefficient in the 312 absence of O₂this study and in the direct reaction of SO₂ with NO₂ (Zhao et al., 2017) presence of O₂₇, the sulfate 313 production rate via chain reactions due to the presence of O_2 (20%) was two to three <u>2-3</u> orders of magnitude faster than the direct oxidation of SO₂ by NO₂. This indicates that sulfate production in the reaction of SO₂ with 314 315 O_2/NO_2 was largely contributed by due to O_2 oxidation via the chain reaction pathway, i.e., "auto-"autoxidation" 316 of S(IV), rather than the direct oxidation²² of $\frac{S(IV)}{SO_2}$ by NO₂ and thus O₂ was the main oxidant of SO₂.

317 Although the direct reoxidation of SO₂ by NO₂ with SO₂-only contributed accounted for a very small 318 fraction toof sulfate formation, NO₂ played an important role in the SO₂ oxidation by initial tizing the chain reactions via producing the production of the SO3.⁻⁻ radical (R7). In the experiment without NO2-while keeping. 319 320 but with other reaction conditions the same, we found that nowere unable to detect sulfate was formed after 5 h of 321 reaction. This indicates that O_2 by itself cannot initialize the chain reaction, (although it favors chain 322 propagation. Therefore, NO₂ initiated), and that the oxidaition of SO₂ by O₂ and it is the syngergy was slow. The 323 effect on the SO₂ oxidation rate when both NO₂ and O₂ were present was much higher than the sum of the effect 324 of NO₂ and O₂ that. We refer to this effect as the synergy of NO₂ and O₂, which resulted in the fast oxidation of 325 SO₂ formingto form sulfate in this study. Without either NO₂-This effect is similar to a "ternary" reaction found 326 with the reaction of NO₂-particles-H₂O or SO₂-particles-O₃ (Zhu et al., 2011) Θ_{27} , where the reaction proceeded 327 much slower rate can be much faster than the sum of the reaction rates for the reaction of the second and third 328 reactant with the first reactant. In addition to acting as the initiator of chain reactions, NO2 also contributed to the 329 formation of the aqueous phase through the reaction with CaCO₃, forming Ca(NO₃)₂ as discussed above, which 330 provided a site for S(IV) oxidation.

Based on the discussion above, we summarize the reaction mechanism of that occurred in this study in Table
The reactions are classified as chain initiation, chain propagation, and chain termination. The dominant S(IV)

333 species depends on pH. Due to the rapid inter-conversion between H₂SO₃₇fast dissociations of SO₂•H₂O and HSO_3^{-} , and SO_3^{-} , reactions consuming one of these <u>S(IV)</u> species will result in instantaneous re-establishment 334 of the equilibria between them (Seinfeld and Pandis, 2006). In this study, the pH of the aqueous layer of 335 336 $Ca(NO_3)_2$ may change dynamically with time during the reaction and may not be completely homogeneous 337 within the aqueous droplet. The pH values could vary between ~3 and ~7.6. In the surface of the aqueous layer, 338 pH was mainly determined by the gas-aqueous equilibrium of SO₂, and was estimated to be ~3. In the vicinity of the CaCO₃ core, pH was mainly determined by the hydrolysis of carbonate and was estimated to be \sim 7.6. It is 339 likely that both HSO₃⁻ and SO₃²⁻ were present, and the dominant species depended on the reaction time and 340 341 location within the aqueous droplet. Nevertheless, to make the reaction mechanism clearer, HSO3 was used in the reaction equations. Similar reaction equations are also applicable to SO_3^{2-} because of the fast dissociations of 342 $SO_2 \cdot H_2O$ and HSO_3^- . Overall, the reaction can be written as follows, which shows clearly shows that O_2 was the 343 344 main oxidant for sulfate formation: $2NO_2(aq) + \frac{2SO_3^{2-}(aq) + (0-1)O_2}{2} + \frac{2HSO_3^-(aq) + (0/1)O_2}{2} \rightarrow 2NO_2^-(aq) + S_2 \frac{O_2^{2-}}{6-9}O_{6/8}^{2-}(aq) + O_2^{2-}(aq) + O_2^{2-}$ 345 346 $2H^{+}(aq)$, (R18) $\frac{2SO_3^{2-}(aq) + O_2 \rightarrow 2SnO_2 + 2nHSO_3^-(aq) \rightarrow 2nSO_4^{2-}(aq)}{(aq) + 2nH^+(aq)}$ 347 348 (R19) $\frac{2HSO_{2}^{-}(aq) + O_{2} \rightarrow 2SO_{4}^{2-}(aq) + 2H^{+}(aq).}{2HSO_{2}^{-}(aq) + 2H^{+}(aq)}$ 349 (R20) 350 —where n >> 1. Once sulfuric acid was formed, it can further react with CaCO₃, forming CaSO₄: 351 $CaCO_{3}(s) + SO_{4}^{2-}(aq) + 2H^{+}(aq) + H_{2}O(aq) \rightarrow CaSO_{4} \bullet 2H_{2}O(s) + CO_{2}(g).$ (R20) 352 Overall, besides acting as the initializer of the chain reaction, NO2 contributed to the formation of aqueous 353 phase by the reaction with CaCO₃ forming Ca(NO₃)₂ as discussed above. The aqueous phase provided the site for 354 S(IV) oxidation. 355 As mentioned above, compared with the direct reaction in N₂of SO₂ with NO₂, CaCO₃ was consumed 356 slower more slowly in the reaction in synthetic air. This difference can be attributed to with O₂/NO₂. There were 357 two possible reasons. Firstly for this. First, the $CaSO_4$ -2H₂O formed in the reaction eancould cover the CaCO₃ 358 surface and partly suppress the diffusion of aqueous ions, such as protons, and also limit the contact of reactants 359 with CaCO₃ the surface of the CaCO₃ particles, thus reducing the CaCO₃ consumption rate. Secondly, compared 360 with the <u>direct</u> reaction in N_2 of SO₂ with NO₂, a much higher fraction of CaCO₃ was converted to CaSO₄-2H₂O 361 instead of Ca(NO₃)₂ due to the fast production of CaSO₄- 2 2H₂O. Therefore, the volume of a Ca(NO₃)₂ droplet 362 was much smaller than that for in the direct reaction in N_2 of SO₂ with NO₂ for a given CaCO₃ particle. 363 <u>SinceBecause</u> the uptake rate of NO₂ was proportional to <u>the</u> droplet surface <u>area</u> and the NO₂ hydrolysis rate iswas proportional to the droplet volume, the production rate of nitric acid production from NO₂ hydrolysis and 364 365 its reaction rate with CaCO₃ were reduced. Therefore, the CaCO₃ particle was particles were consumed

367 4 Conclusion and implications

slower more slowly in the reaction with O₂/NO₂.

366

368 We investigated the multiphase reaction of SO₂ with $\underline{O_2/NO_2/\Theta_2/H_2O}$ on CaCO₃ particle in synthetic 369 air-particles. The reaction converted CaCO₃ particles to Ca(NO₃)₂ droplet withdroplets, in which CaSO₄-2H₂O 370 particle was embedded in it. CaSO₄-2H₂O constituted and accounted for a large significant fraction of the droplet 371 volume inby the end of the reaction, in contrast to the small fraction of the droplet volume in the absence of O₂. 372 The $Ca(NO_3)_2$ droplet formed by the reaction of $CaCO_3$ with NO₂ provided a site for the multiphase oxidation of 373 SO₂. Generally, nitrate and sulfate were formed simultaneously. The reactive uptake coefficient of SO₂ for sulfate formation in the reaction of SO₂ with NO₂/ Θ_2 H₂O in synthetic air was determined to be around 10⁻⁻⁵. Compared 374 with the reaction of SO₂ with NO₂ on <u>a</u> CaCO₃ particle in $\frac{N_2}{N_2}$, that is, the absence of O₂, i.e., the direct oxidation of 375 376 SO_2 by NO_2 in N_2 , sulfate production rate in the reaction of SO_2 with O_2/NO_2 was enhanced by around two to 377 three 2-3 orders of magnitude in the presence of O2-. According to the findings of this study and the existing 378 literature, SO₂ oxidation likely proceeded via a free-radical chain reaction mechanism according to the findings 379 of this study and literature. O₂ was the main oxidant of SO₂, and NO₂ mainly acted as an initializetor of the chain 380 reactions. The synergy of NO₂ and O₂ resulted in the fast oxidation of SO₂. The absence of either NO₂ or O₂ led 381 to much slower SO₂ oxidation.

382 Using a method useddeveloped in our previous study (Zhao et al., 2017), we assessed the importance of the multiphase reoxidation of SO₂ withby O₂ in the presence of NO₂/ O_2/H_2O by estimating the lifetime of SO₂ due 383 to multiphase reactions and the lifetime due to the gas phase reaction (with the OH radical). The lifetime of SO₂ 384 385 due to the multiphase reaction of SO₂ with $O_2/NO_2/O_2$ is was estimated to be around 20 days using the reactive uptake coefficient of SO₂ of (1.2×10^{-5}) and athe typical particle surface area concentration for mineral 386 aerosols in winter in Beijing $(6.3 \times \times 10^{-6} \text{ cm}^2 \text{ cm}^{-3})$ (Huang et al., 2015). This lifetime is substantially shorter 387 than the lifetime regarding the direct oxidation of SO₂ by NO₂ (~7000 days), and comparable to the lifetime of 388 389 SO_2 due to the gas phase reaction with OH-(-, which is ~12 days assuming that the daytime OH concentration is 1×10^{6} molecules cm⁻³) (Lelieveld et al., 2016; Prinn et al., 2005). Therefore, we conclude that the multiphase 390 391 oxidation of SO₂ by O₂ in the presence of NO₂ is likely to be an important source of sulfate and a sink of SO₂ in 392 the ambient atmosphere, and can play a significant role in the sulfate formation in the heavily polluted during 393 severe haze episodes, such as those that frequently occurring in China. High sulfate concentrations are observed 394 during these During haze episodes, but the mechanism of sulfate formation is still not clear. Model simulation 395 often substantially underestimate sulfate. During the haze episodes, the there are high concentrations of SO₂ and 396 NO₂-co-exist and relative humidity is often high (Zhang et al., 2014; Wang et al., 2016; Zheng et al., 2015b). 397 Under these conditions, the multiphase oxidation of SO_2 by O_2 in the presence of NO_2 could proceed rapidly, 398 forming sulfate. The enhanced sulfate concentration due to multiphase reactions and resulteding aerosol water 399 content can further promote the multiphase oxidation of SO₂. The reaction thus proceeds in a self-accelerateding 400 way. Therefore, it can contribute significantly to sulfate formation during haze episodes, which could explain the 401 discrepancies between the observed and modelled sulfate concentrations (Cheng et al., 2016; Gao et al., 2016; 402 Wang et al., 2016; Zheng et al., 2015a)-.

Further understandingIn addition, elucidating the mechanism of the multiphase reaction of SO_2 with $O_2/NO_2/H_2O/O_2$ in air-the atmosphere is important to understand for the other atmospheric implications of the reaction besides sulfate formation. According to the reaction mechanism, the direct oxidation of SO_2 by NO_2 forms NO_2 sulfate and nitrite, with a stoichiometry of 1:1, and nitrite can further form HONO under acidic conditions. The HONO cancould then evaporate into the atmosphere and is, where it would be an important source of OH radical. If NO_2 were the main oxidant of SO_2 in the multiphase reaction, the reaction would form one HONO <u>molecule</u> for every sulfate formed. Thus, the oxidation of SO₂ by NO₂ can simultaneously be an
important source of HONO and OH radical, and the SO₂ oxidation would be strongly coupled with reactive
nitrogen chemistry. <u>YetHowever</u>, according to the mechanism of this study, NO₂ only acted as an initializetor of
the chain reactions in SO₂ oxidation and essentially <u>all</u> the <u>entire</u> SO₂ was oxidized by O₂. Therefore, the amount
of HONO formation per sulfate formed was trivial. The oxidation of SO₂ by O₂/NO₂ is expected to <u>be</u> neither be
an important source of HONO and OH in the atmosphere nor <u>significantlyto have a significant</u> influence on
reactive nitrogen chemistry.

416

417 Acknowledgements

This work was supported by Natural Science Foundation Committee of China (41421064, 21190051,
40490265, 91544000) and Ministry of Science and Technology (Grant No. 2002CB410802).

420 References

- 421 Brandt, C., Fabian, I., and Vaneldik, R.: Kinetics and mechanism of the iron(III)-catalyzed autoxidation of
- sulfur(IV) oxides in aqueous-solution evidence for the redox cycling of iron in the presence of oxygen and
 modeling of the overall reaction-mechanism, Inorg. Chem., 33, 687-701, 10.1021/ic00082a012, 1994.
- Brandt, C., and Vaneldik, R.: Transition metal-catalyzed oxidation of sulfur (IV) oxides. Atmospheric-relevant
 processes and mechanisms, Chem. Rev., 95, 119-190, 10.1021/cr00033a006, 1995.
- 426 Chameides, W. L., and Davis, D. D.: The free-radical chemistry of cloud droplets and its impact upon the
- 427 composition of rain, J. Geophys. Res.-Oceans, 87, 4863-4877, 10.1029/JC087iC07p04863, 1982.
- 428 Cheng, Y. F., Zheng, G. J., Wei, C., Mu, Q., Zheng, B., Wang, Z. B., Gao, M., Zhang, Q., He, K. B., Carmichael,
- 429 G., Poschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol water as a source of sulfate during haze events
- 430 in China, Sci. Adv., 2, 10.1126/sciadv.1601530, 2016.
- Clifton, C. L., Altstein, N., and Huie, R. E.: Rate-constant for the reaction of NO₂ with sulfur(IV) over the pH
 range 5.3-13, Environ. Sci. Technol., 22, 586-589, 10.1021/es00170a018, 1988.
- Davidovits, P., Kolb, C. E., Williams, L. R., Jayne, J. T., and Worsnop, D. R.: Mass accommodation and
 chemical reactions at gas-liquid interfaces, Chem. Rev., 106, 1323-1354, 10.1021/cr040366k, 2006.
- 435 Deister, U., and Warneck, P.: Photooxidation of sulfite (SO32-) in aqueous solution, J. Phys. Chem., 94,
 436 2191-2198, 10.1021/j100368a084, 1990.
- 437 Eriksen, T. E.: pH Effects on the pulse radiolysis of deoxygenated aqueous solutions of sulphur dioxide, Journal
- of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 70, 208-215,
 10.1039/f19747000208, 1974.
- 440 Gao, M., Carmichael, G. R., Wang, Y., Ji, D., Liu, Z., and Wang, Z.: Improving simulations of sulfate aerosols
- 441 during winter haze over Northern China: the impacts of heterogeneous oxidation by NO2, Front. Environ. Sci.
 - 442 Eng., 10, 16, 10.1007/s11783-016-0878-2, 2016.
 - Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise fine particle pH sufficiently to yield
 nitrogen oxide-dominated sulfate production, Sci. Rep., 7, 12109, 10.1038/s41598-017-11704-0, 2017.
 - Hayon, E., Treinin, A., and Wilf, J.: Electronic spectra, photochemistry, and autoxidation mechanism of the
 sulfite-bisulfite-pyrosulfite systems. SO2-, SO3-, SO4-, and SO5- radicals, J. Am. Chem. Soc. , 94, 47-57,
 10.1021/ja00756a009, 1972.
 - He, H., Wang, Y., Ma, Q., Ma, J., Chu, B., Ji, D., Tang, G., Liu, C., Zhang, H., and Hao, J.: Mineral dust and
 NOx promote the conversion of SO2 to sulfate in heavy pollution days, Sci. Rep., 4, 10.1038/srep04172, 2014.
 - 450 Huang, L., Zhao, Y., Li, H., and Chen, Z.: Kinetics of Heterogeneous Reaction of Sulfur Dioxide on Authentic
 - 451 Mineral Dust: Effects of Relative Humidity and Hydrogen Peroxide, Environ. Sci. Technol., 49, 10797-10805,
 - 452 10.1021/acs.est.5b03930, 2015.
- 453 Huie, R. E., and Neta, P.: Kinetics of one-electron transfer-reactions involving ClO2 and NO2, J. Phys. Chem.,
- 454 90, 1193-1198, 10.1021/j100278a046, 1986.
- 455 Huie, R. E., and Neta, P.: Rate constants for some oxidations of S(IV) by radicals in aqueous-solutions, Atmos.
- 456 Environ., 21, 1743-1747, 10.1016/0004-6981(87)90113-2, 1987.
- 457 Huie, R. E., Clifton, C. L., and Altstein, N.: A pulse radiolysis and flash photolysis study of the radicals SO2,
- 458 SO3, SO4 and SO5, Radiat. Phys. Chem. , 33, 361-370, 1989.

- 459 Lee, Y.-N., and Schwartz, S. E.: Kinetics of oxidation of aqueous sulfur (IV) by nitrogen dioxide, in:
- 460 Precipitation Scavenging, Dry Deposition and Resuspension, edited by: Pruppacher, H. R., Semonin, R. G., and
 461 Slinn, W. G. N., Elsevier, New York, 453-466, 1983.
- Lelieveld, J., Gromov, S., Pozzer, A., and Taraborrelli, D.: Global tropospheric hydroxyl distribution, budget and reactivity, Atmos. Chem. Phys., 16, 12477-12493, 10.5194/acp-16-12477-2016, 2016.
- Li, H. J., Zhu, T., Zhao, D. F., Zhang, Z. F., and Chen, Z. M.: Kinetics and mechanisms of heterogeneous
- reaction of NO₂ on CaCO₃ surfaces under dry and wet conditions, Atmos. Chem. Phys., 10, 463-474, 2010.
- Littlejohn, D., Wang, Y. Z., and Chang, S. G.: Oxidation of aqueous sulfite ion by nitrogen-dioxide, Environ. Sci.
- 467 Technol., 27, 2162-2167, 10.1021/es00047a024, 1993.
- 468 Liu, M. X., Song, Y., Zhou, T., Xu, Z. Y., Yan, C. Q., Zheng, M., Wu, Z. J., Hu, M., Wu, Y. S., and Zhu, T.: Fine
- 469 particle pH during severe haze episodes in northern China, Geophys. Res. Lett., 44, 5213-5221,
 470 10.1002/2017gl073210, 2017.
- 471 Liu, Y. J., Zhu, T., Zhao, D. F., and Zhang, Z. F.: Investigation of the hygroscopic properties of Ca(NO3)(2) and
- 472 internally mixed Ca(NO3)(2)/CaCO3 particles by micro-Raman spectrometry, Atmos. Chem. Phys., 8,
 473 7205-7215, 2008.
- Ma, Q., He, H., Liu, Y., Liu, C., and Grassian, V. H.: Heterogeneous and multiphase formation pathways of
 gypsum in the atmosphere, Phys. Chem. Chem. Phys., 15, 19196-19204, 10.1039/c3cp53424c, 2013.
- 476 Nakamoto, K.: Infrared and Raman Spectra of Inorganic and Coordination Compounds Part A, John Wiley
 477 & Sons, New York, 221-247 pp., 1997.
- 478 Nash, T.: Effect of nitrogen-dioxide and of some transition-metals on the oxidation of dilute bisulfite solutions,
- 479 Atmos. Environ., 13, 1149-1154, 10.1016/0004-6981(79)90038-6, 1979.
- 480 Pöschl, U., Rudich, Y., and Ammann, M.: Kinetic model framework for aerosol and cloud surface chemistry and
- gas-particle interactions Part 1: General equations, parameters, and terminology, Atmos. Chem. Phys., 7,
 5989-6023, 2007.
- Podkrajšek, B., Grgić, I., and Turšič, J.: Determination of sulfur oxides formed during the S(IV) oxidation in the
 presence of iron, Chemosphere, 49, 271-277, https://doi.org/10.1016/S0045-6535(02)00324-7, 2002.
- 485 Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., McCulloch, A., Harth, C.,
- 486 Reimann, S., Salameh, P., O'Doherty, S., Wang, R. H. J., Porter, L. W., Miller, B. R., and Krummel, P. B.:
- 487 Evidence for variability of atmospheric hydroxyl radicals over the past quarter century, Geophys. Res. Lett., 32,
- 488 10.1029/2004gl022228, 2005.
- Santachiara, G., Prodi, F., and Vivarelli, F.: SO2 oxidation in monodisperse droplets grown on carbon nuclei in
 presence of NO2, J. Aerosol Sci., 21, S221-S224, 10.1016/0021-8502(90)90224-1, 1990.
- 491 Santachiara, G., Prodi, F., and Vivarelli, F.: Further experiments on SO2 oxidation rate in monodisperse droplets
 492 grown on carbon nuclei in presence of O-2 and NO2, J. Aerosol Sci., 24, 683-685,
 493 10.1016/0021-8502(93)90024-4, 1993.
- 494 Sarma, L. P., Prasad, P. S. R., and Ravikumar, N.: Raman spectroscopic study of phase transitions in natural
- 495 gypsum, J. Raman Spectrosc. , 29, 851-856, 10.1002/(sici)1097-4555(199809)29:9<851::aid-jrs313>3.0.co;2-s,
 496 1998.

- 497 Seinfeld, J. H., and Pandis, S. N.: Atmospheric chemistry and physics: from air pollution to climate change, 2nd
- 498 ed., John Wiley &Sons. Inc., 2006.
- Shen, C. H., and Rochelle, G. T.: Nitrogen Dioxide Absorption and Sulfite Oxidation in Aqueous Sulfite, Environ.
 Sci. Technol., 32, 1994-2003, 10.1021/es970466q, 1998.
- 501 Shi, X. L.: Generation of SO_3^{-1} and OH radicals in SO_3^{-2-1} reactions with inorganic environmental-pollutants and its 502 implications to SO_3^{-2-1} toxicity, J. Inorg. Biochem. , 56, 155-165, 10.1016/0162-0134(94)85002-x, 1994.
- 503 Spindler, G., Hesper, J., Bruggemann, E., Dubois, R., Muller, T., and Herrmann, H.: Wet annular denuder
- measurements of nitrous acid: laboratory study of the artefact reaction of NO2 with S(IV) in aqueous solution and comparison with field measurements, Atmos. Environ., 37, 2643-2662, 10.1016/s1352-2310(03)00209-7, 2003.
- 507 Turšič, J., Grgić, I., and Bizjak, M.: Influence of NO2 and dissolved iron on the S(IV) oxidation in synthetic 508 aqueous solution, Atmos. Environ., 35, 97-104, https://doi.org/10.1016/S1352-2310(00)00283-1, 2001.
- 509 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Levy Zamora, M., Hu, M., Lin, Y., Peng, J., Guo, S., Meng, J., Li,
- 510 J., Cheng, C., Hu, T., Ren, Y., Wang, Y., Gao, J., Cao, J., An, Z., Zhou, W., Li, G., Wang, J., Tian, P.,
- 511 Marrero-Ortiz, W., Secrest, J., Du, Z., Zheng, J., Shang, D., Zeng, L., Shao, M., Wang, W., Huang, Y., Wang, Y.,
- 512 Zhu, Y., Li, Y., Hu, J., Pan, B., Cai, L., Cheng, Y., Ji, Y., Zhang, F., Rosenfeld, D., Liss, P. S., Duce, R. A., Kolb,
- 513 C. E., and Molina, M. J.: Persistent sulfate formation from London Fog to Chinese haze, Proc. Nat. Acad. Sci.
- 514 U.S.A., 113, 13630-13635, 10.1073/pnas.1616540113, 2016.
- Waygood, S. J., and McElroy, W. J.: Spectroscopy and decay kinetics of the sulfite radical anion in aqueous
 solution, J. Chem. Soc.-Faraday Trans., 88, 1525-1530, 10.1039/ft9928801525, 1992.
- 517 Xue, J., Yuan, Z. B., Griffith, S. M., Yu, X., Lau, A. K. H., and Yu, J. Z.: Sulfate Formation Enhanced by a
- 518 Cocktail of High NOx, SO2, Particulate Matter, and Droplet pH during Haze-Fog Events in Megacities in China:
- An Observation-Based Modeling Investigation, Environ. Sci. Technol., 50, 7325-7334, 10.1021/acs.est.6b00768,
 2016.
- Zhang, J. K., Sun, Y., Liu, Z. R., Ji, D. S., Hu, B., Liu, Q., and Wang, Y. S.: Characterization of submicron
 aerosols during a month of serious pollution in Beijing, 2013, Atmos. Chem. Phys., 14, 2887-2903,
 10.5194/acp-14-2887-2014, 2014.
- 524 Zhao, D., Song, X., Zhu, T., Zhang, Z., and Liu, Y.: Multiphase Reaction of SO2 with NO2 on CaCO3 Particles.
- 525 1. Oxidation of SO2 by NO2, Atmos. Chem. Phys. Discuss., 2017, 1-23, 10.5194/acp-2017-610, 2017.
- Zhao, D. F., Zhu, T., Chen, Q., Liu, Y. J., and Zhang, Z. F.: Raman micro-spectrometry as a technique for
 investigating heterogeneous reactions on individual atmospheric particles, Sci. China Chem., 54, 154-160,
 10.1007/s11426-010-4182-x, 2011.
- 529 Zheng, B., Zhang, Q., Zhang, Y., He, K. B., Wang, K., Zheng, G. J., Duan, F. K., Ma, Y. L., and Kimoto, T.:
- 530 Heterogeneous chemistry: a mechanism missing in current models to explain secondary inorganic aerosol
- 531 formation during the January 2013 haze episode in North China, Atmos. Chem. Phys., 15, 2031-2049,
- 532 10.5194/acp-15-2031-2015, 2015a.
- 533 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D.,
- 534 Poschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic

- 535 weather, regional transport and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969-2983,
- 536 10.5194/acp-15-2969-2015, 2015b.
- Zhu, T., Shang, J., and Zhao, D. F.: The roles of heterogeneous chemical processes in the formation of an air
 pollution complex and gray haze, Sci. China Chem., 54, 145-153, 10.1007/s11426-010-4181-y, 2011.

Table 1. Reactive uptake coefficient of SO₂ for sulfate formation <u>underat</u> 82% RH and <u>at</u> different O₂ condicentrations.

$\underline{SO_2}/NO_2/\underline{SO_2}/O_2$	γ	
concentration		
75 ppm/ 75 ppm/ 86 %	1.7×10^{-5}	
75 ppm/ 75 ppm/ 20 %	1.2×10^{-5}	
75 ppm/ 75 ppm/ 5 %	3.5×10 ⁻⁶	

Step	Reactions
	$NO_{2}(aq) + SO_{3}^{2-}(aq) \rightarrow NO_{2}^{-}(aq) + SO_{3}^{\bullet-}(aq) $ (R8a)
Initiation	$\frac{NO_{2}(aq) + HSO_{3}^{-}(aq) \rightarrow NO_{2}^{-}(aq) + SO_{3}^{*-}(aq) + H^{+}(aq)}{(R8b)}NO_{2}(aq) + HSO_{3}^{-}(aq) \rightarrow NO_{2}^{-}(aq) + SO_{3}^{*-}(aq) + H^{+}(aq)_{-} (R7)$
	$\frac{SO_{3}^{\bullet-}(aq) + O_{2}(aq) \rightarrow SO_{5}^{\bullet-}(aq)}{(R11)} \rightarrow SO_{5}^{\bullet-}(aq) \rightarrow SO_{5}^{\bullet-}(aq)$
	$SO_{5}^{\bullet-}(aq) + SO_{3}^{2-}(aq) + H^{+}(aq) \rightarrow HSO_{5}^{-}(aq) + SO_{3}^{\bullet-}(aq) $ (R12)
	$SO_{5}^{\bullet-}(aq) + HSO_{2}^{-}(aq) \rightarrow HSO_{5}^{-}(aq) + SO_{3}^{\bullet-}(aq) $ (R12b)
	$HSO_{5}^{-}(aq) + SO_{2}^{2-}(aq) \rightarrow 2SO_{4}^{2-}(aq) + H^{+}(aq) $ (R13)
	$\frac{HSO_{\Xi}^{-}(aq) + HSO_{\Xi}^{-}(aq) \rightarrow 2SO_{4}^{2-}(aq) + 2H^{+}(aq) \qquad (R13b)$
	$SO_{5}^{\bullet-}(aq) + SO_{3}^{2-}(aq) \rightarrow SO_{4}^{2-}(aq) + SO_{4}^{\bullet-}(aq) $ (R14)
Pro <u>pa</u> gation	$SO_{5}^{\bullet-}(aq) + HSO_{3}^{-}(aq) \rightarrow SO_{4}^{2-}(aq) + SO_{4}^{\bullet-}(aq) + H^{+}(aq) $ (R14b)
	$SO_4^{\bullet-}(aq) + SO_3^{2-}(aq) \rightarrow SO_4^{2-}(aq) + SO_3^{\bullet-}(aq) $ (R15)
	$SO_{4}^{\bullet-}(aq) + HSO_{3}^{\bullet-}(aq) \rightarrow SO_{4}^{2-}(aq) + SO_{3}^{\bullet-}(aq) + H^{+}(aq) - (R15b)SO_{5}^{\bullet-}(aq) + HSO_{3}^{-}(aq) \rightarrow HSO_{5}^{-}(aq) + SO_{3}^{\bullet-}(aq) - (R12)$
	$HSO_{5}^{-}(aq) + HSO_{3}^{-}(aq) \rightarrow 2SO_{4}^{2-}(aq) + 2H^{+}(aq) $ (R13)
	$SO_5^{\bullet-}(aq) + HSO_3^-(aq) \rightarrow SO_4^{2-}(aq) + SO_4^{\bullet-}(aq) + H^+(aq) (R14)$
	$SO_4^{\bullet-}(aq) + HSO_3^-(aq) \rightarrow SO_4^{2-}(aq) + SO_3^{\bullet-}(aq) + H^+(aq)$ (R15)
	$\frac{SO_3^{\bullet-}(aq) + SO_3^{\bullet-}(aq) \rightarrow S_2O_6^{2-}(aq)}{S_2O_6^{2-}(aq)} = SO_3^{\bullet-}(aq) + SO_3^{\bullet-}(aq) \rightarrow S_2O_6^{2-}(aq) \qquad (R8)$
	$SO_3^{\bullet-}(aq) + SO_3^{\bullet-}(aq) \rightarrow SO_3^{2-}(aq) + SO_3$ (R9)
	$\frac{SO_2(aq) + H_2O \rightarrow SO_4^{2-}(aq)}{(R9)}SO_3^{\bullet-}(aq) + SO_3^{\bullet-}(aq) \rightarrow SO_3^{2-}(aq) + SO_3^{\bullet-}(aq)$
Termination	$SO_3(aq) + H_2O \rightarrow SO_4^{2-}(aq) + 2\frac{H^+(aq)}{(R10)} + H^+(aq)$
	$\begin{array}{c} SO_4^{\bullet-}(aq) + SO_4^{\bullet-}(aq) \rightarrow S_2O_8^{2-}(aq) & SO_4^{\bullet-}(aq) + SO_4^{\bullet-}(aq) \rightarrow \\ S_2O_8^{2-}(aq) & (R16) \end{array}$
	$SO_{5}^{\bullet-}(aq) + SO_{5}^{\bullet-}(aq) \rightarrow S_{2}O_{8}^{2-}(aq) + O_{2}(aq) - \frac{(R17)}{SO_{5}^{\bullet-}(aq) + SO_{5}^{\bullet-}(aq) \rightarrow S_{2}O_{8}^{2-}(aq) + O_{2}(aq) - \frac{(R17)}{2}$

Figure 1. Raman spectra of a CaCO₃ particle during the multiphase reaction of SO₂ with $O_2/NO_2/\Theta_2/H_2O$ on the particle in synthetic air. SO₂: 75 ppm, NO₂: 75 ppm, RH: 72%, O₂: 20%. The peak intensity of carbonate (1087 cm⁻¹) at 0 and 42 min was divided by three for clearness. clarity.

559

560 (iv) 561 Figure 2. Microscopic image (i) and Raman mapping image of carbonate (ii), nitrate (iii), and sulfate (iv) 562 on the CaCO₃ particle during the multiphase reaction SO₂ with $O_2/NO_2/O_2/H_2O$ on the particle-in 563 synthetic air. A-f corresponds to the reaction time of 0, 20, 41, 76, 117, and 193 min. SO₂: 75 ppm, NO₂: 564 75 ppm, RH: 72%, O₂: 20%. The mapping image of carbonate, nitrate, and sulfate are made using the 565 peak area at 1050, 1010, and 1087 cm⁻¹, respectively. The red, blue, and green colors indicate the peak 566 intensity of carbonate, nitrate, and sulfate, respectively. The dashed lines in panel iii-f and iv-f indicate 567 the shape of the droplet at the end of the reaction.

569

Figure 3. Time series of the Raman peak intensity of the carbonate, nitrate, NO_3^- , SO_4^{2-} , and sulfate CO_3^{2-} during the reaction of SO₂ with $O_2/NO_2/O_2/H_2O$ on CaCO₃ particles in synthetic air. SO₂: 75 ppm, NO₂: 75 ppm, RH: 72%, O_2 : 20%. The intensity of NO₃⁻, SO₄²⁻, and CO₃²⁻ show the peak area at 1050, 1010, and 1087 cm⁻¹, respectively, in Raman spectra obtained by Raman mapping.