Supplement to: Sensitivities of Amazonian clouds to aerosols and updraft speed

By Micael A. Cecchini¹, Luiz A. T. Machado¹, Meinrat O. Andreae^{2,12}, Scot T. Martin³, Rachel I. Albrecht⁴, Paulo Artaxo⁵, Henrique M. J. Barbosa⁵, Stephan Borrmann^{2,6}, Daniel Fütterer⁷, Tina Jurkat⁷, Christoph Mahnke^{2,6}, Andreas Minikin⁸, Sergej Molleko⁶, Mira L. Böhlkor², Ulrich Böschl², Daniel Fütterer⁷, Tina Jurkat⁷, Christoph Mahnke^{2,6}, Andreas Minikin⁸, Sergej

5 Molleker⁶, Mira L. Pöhlker², Ulrich Pöschl², Daniel Rosenfeld⁹, Christiane Voigt^{6,7}, Bernadett Weinzierl^{7,10}, Manfred Wendisch¹¹

¹Centro de Previsão de Tempo e Estudos Climáticos, Instituto Nacional de Pesquisas Espaciais, Cachoeira Paulista, Brasil. ²Biogeochemistry, Multiphase Chemistry, and Particle Chemistry Departments, Max Planck Institute for Chemistry, P.O. Box 3060, 55020, Mainz, Germany.

- ³School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts, USA.
 ⁴Departamento de Ciências Atmosféricas, Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG), Universidade de São Paulo (USP), Brasil.
 ⁵Instituto de Física (IF), Universidade de São Paulo (USP), São Paulo, Brasil.
- ⁶Institut für Physik der Atmosphäre (IPA), Johannes Gutenberg-Universität, Mainz, Deutschland.
 ⁷Institut für Physik der Atmosphäre, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, 82234 Wessling, Deutschland.
 ⁸Flugexperimente, Deutsches Zentrum für Luft- und Raumfahrt (DLR), Oberpfaffenhofen, Deutschland.
 ⁹Institute of Earth Sciences, The Hebrew University of Jerusalem, Israel.
- ¹⁰Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Wien, Austria.
 ¹¹Leipziger Institut für Meteorologie (LIM), Universität Leipzig, Stephanstr. 3, 04103 Leipzig, Deutschland.
 ¹² Scripps Institution of Oceanography. University of California San Diego, La Jolla, CA92093, USA.

Correspondence to: M. A. Cecchini (micael.cecchini@cptec.inpe.br)

DSD profiles for each flight

25 Figures S1-4 show the individual DSD profiles for each flight considered in this study. It clearly shows the cohesiveness of the aerosol effect on the vertical structure of the warm-phase. Altitudes shown are relative to cloud base.

Figure S1. Droplet size distributions as function of altitude above cloud base, aerosol particle number concentration, and vertical wind speed, *W*, for flight AC19. Four 1000-m-thick layers are considered in the vertical, where the legends in the graphs show the respective upper limit of each one. Solid lines represent averaged DSDs for -1 m s⁻¹ $\leq W \leq 1$ m s⁻¹, i.e., for relatively neutral vertical movements. Dashed lines represent averaged DSDs for the updraft regions where W > 1 m s⁻¹, and dot-dashed lines represent the downdrafts (W < -1 m s⁻¹).

Figure S2. Droplet size distributions as function of altitude above cloud base, aerosol particle number concentration, and vertical wind speed, *W*, for flights a) AC9 and b) AC18. Four 1000-m-thick layers are considered in the vertical, where the legends in the graphs show the respective upper limit of each one. Solid lines represent averaged DSDs for -1 m s⁻¹ $\leq W \leq 1$ m

5 s⁻¹, i.e., for relatively neutral vertical movements. Dashed lines represent averaged DSDs for the updraft regions where W > 1 m s⁻¹, and dot-dashed lines represent the downdrafts (W < -1 m s⁻¹).

Figure S3. Droplet size distributions as function of altitude above cloud base, aerosol particle number concentration, and vertical wind speed, *W*, for flights a) AC7, b) AC11, and c) AC20. Four 1000-m-thick layers are considered in the vertical, where the legends in the graphs show the respective upper limit of each one. Solid lines represent averaged DSDs for -1 m s⁻¹ $\leq W \leq 1$ m s⁻¹, i.e., for relatively neutral vertical movements. Dashed lines represent averaged DSDs for the updraft regions

where $W > 1 \text{ m s}^{-1}$, and dot-dashed lines represent the downdrafts ($W < -1 \text{ m s}^{-1}$).

Figure S4. Droplet size distributions as function of altitude above cloud base, aerosol particle number concentration, and vertical wind speed, *W*, for flights a) AC12 and b) AC13. Four 1000-m-thick layers are considered in the vertical, where the legends in the graphs show the respective upper limit of each one. Solid lines represent averaged DSDs for -1 m s⁻¹ $\leq W \leq 1$ m s⁻¹, i.e., for relatively neutral vertical movements. Dashed lines represent averaged DSDs for the updraft regions where W > 1 m s⁻¹, and dot-dashed lines represent the downdrafts (W < -1 m s⁻¹).

Sensitivities for individual intervals

By fixing two dimensions in the 3D matrices and varying the third, we can obtain individual sensitivities in the form of the Equation 1 in the manuscript. As an example, we can fix both w and H and obtain the sensitivities of DSD parameters to varying N_a . By using the natural logarithm scale and applying a linear fit, we obtain the sensitivity as the angular coefficient and the R² parameter is a measure of the significance of the relation. By calculating every possible combination, we obtain Tables S1-15 shown below. The amount of 1 Hz data for each sensitivity are shown in Tables S16-18.

$w (m s^{-1}) \setminus H (m)$	200	500	950	1625	2637.5	4156.25
0.5	-0.11	-0.27	-0.25	-0.23	-0.38	-0.47
0.5	$R^2 = 0.85$	$R^2 = 0.96$	$R^2 = 0.99$	$R^2 = 0.94$	$R^2 = 0.97$	$R^2 = 0.71$
1	-0.13	-0.26	-0.30	-0.18	-0.25	-0.26
1	$R^2 = 0.84$	$R^2 = 0.93$	$R^2 = 0.99$	$R^2 = 0.86$	$R^2 = 1.00$	$R^2 = 0.96$
2	-0.16	-0.26	-0.28	-0.17	-0.31	-0.16
2	$R^2 = 0.79$	$R^2 = 0.98$	$R^2 = 0.91$	$R^2 = 0.64$	$R^2 = 0.98$	$R^2 = 0.53$
1	-0.18	-0.28	-0.25	-0.25	-0.31	-0.28
4	$R^2 = 0.82$	$R^2 = 0.95$	$R^2 = 0.96$	$R^2 = 0.95$	$R^2 = 0.95$	$R^2 = 0.99$
8					-0.26	-0.33
σ	-	-	-	-	$R^2 = 0.80$	$R^2 = 0.98$

Table S1. sensitivities of D_{eff} to $N_a - S_{D_{eff}}(N_a) = \frac{\partial ln D_{eff}}{\partial ln N_a}\Big|_{w,H}$. Intervals upper limits are highlighted in bold letters.

10

N_a (cm ⁻³) \ H (m)	200	500	950	1625	2637.5	4156.25
500	0.020 $R^2 = 0.63$	0.049 $R^2 = 0.61$	0.048 $R^2 = 0.90$	-0.018 $R^2 = 0.034$	0.032 $R^2 = 0.77$	-
1000	0.018 $R^2 = 0.17$	0.031 $R^2 = 0.57$	0.0072 $R^2 = 0.029$	0.046 $R^2 = 0.71$	0.0032 $R^2 = 0.0040$	0.0034 $R^2 = 0.0010$
3000	0.031 $R^2 = 0.90$	0.044 $R^2 = 0.69$	-	-0.011 R ² = 0.055	0.13 $R^2 = 0.93$	0.18 $R^2 = 0.72$
4500	-0.085 $R^2 = 0.97$	0.013 $R^2 = 0.57$	0.046 $R^2 = 0.62$	-0.0063 $R^2 = 0.23$	0.021 $R^2 = 0.44$	0.024 $R^2 = 0.48$

Table S2. sensitivities of D_{eff} to $w - S_{D_{eff}}(w) = \frac{\partial ln D_{eff}}{\partial ln w}\Big|_{N_a, H}$. Intervals upper limits are highlighted in bold letters.

	N_a (cm ⁻³) \ w (m s ⁻¹)	0.5	1	2	4	8		
	500	0.33 $R^2 = 0.98$	0.27 $R^2 = 0.92$	0.31 $R^2 = 0.85$	0.32 $R^2 = 0.92$	-		
	1000	0.35	0.32	0.30 $P^2 = 0.05$	0.32	0.41		
	3000	0.14	$K^{-} = 0.99$	$K^{-} = 0.95$	0.26	$R^{-} = 0.94$		
	4500	$R^2 = 0.62$ 0.19	$R^2 = 0.90$ 0.24	$R^2 = 0.96$ 0.24	$R^2 = 0.97$ 0.26	$R^2 = 0.96$		
		$R^2 = 0.95$ $\partial ln D_{eff}$	$R^2 = 0.98$	$R^2 = 0.99$	$R^2 = 0.97$	-		
Table S3. sensitivities of D_{eff} to $H - S_{D_{eff}}(H) = \frac{\partial \partial D_{eff}(H)}{\partial lnH}\Big _{N_{a,W}}$. Intervals upper limits are highlighted in bold letters.								

$w (m s^{-1}) \setminus H (m)$	200	500	950	1625	2637.5	4156.25
0.5	0.69	0.75	1.23	0.64	-0.069	1.24
0.5	$R^2 = 0.97$	$R^2 = 0.82$	$R^2 = 0.89$	$R^2 = 0.86$	$R^2 = 0.011$	$R^2 = 0.83$
1	0.67	0.79	0.90	0.87	0.70	1.11
1	$R^2 = 0.90$	$R^2 = 0.87$	$R^2 = 1.00$	$R^2 = 0.88$	$R^2 = 1.00$	$R^2 = 0.95$
2	0.72	0.89	1.049	0.87	0.90	1.40
2	$R^2 = 0.84$	$R^2 = 0.98$	$R^2 = 0.94$	$R^2 = 0.92$	$R^2 = 0.92$	$R^2 = 0.96$
Δ	0.54	0.85	0.79	0.49	0.72	1.22
-	$R^2 = 0.62$	$R^2 = 0.95$	$R^2 = 0.99$	$R^2 = 0.37$	$R^2 = 0.92$	$R^2 = 0.98$
8					0.94	0.83
o	-	-	-	-	$R^2 = 1.00$	$R^2 = 0.98$

Table S4. sensitivities of N_d to $N_a - S_{N_d}(N_a) = \frac{\partial ln N_d}{\partial ln N_a}\Big|_{w,H}$. Intervals upper limits are highlighted in bold letters.

N_a (cm ⁻³) \ H (m)	200	500	950	1625	2637.5	4156.25
500	0.57	0.46	0.86	-0.12	0.40	_
	$R^2 = 1.00$	$R^2 = 0.89$	$R^2 = 0.97$	$R^2 = 0.070$	$R^2 = 0.76$	
1000	0.45	0.44	0.34	0.32	0.29	0.64
1000	$R^2 = 0.91$	$R^2 = 0.99$	$R^2 = 0.47$	$R^2 = 0.89$	$R^2 = 0.91$	$R^2 = 0.89$
3000	0.61	0.85	_	0.37	0.39	0.65
5000	$R^2 = 0.94$	$R^2 = 0.96$		$R^2 = 0.82$	$R^2 = 0.95$	$R^2 = 0.92$
4500	0.24	0.30	0.41	-0.37	1.034	0.38
1500	$R^2 = 0.91$	$R^2 = 0.89$	$R^2 = 0.67$	$R^2 = 0.46$	$R^2 = 0.70$	$R^2 = 0.90$

Table S5. sensitivities of N_d to $w - S_{N_d}(w) = \frac{\partial \ln N_d}{\partial \ln w}\Big|_{N_a, H}$. Intervals upper limits are highlighted in **bold** letters.

N_a (cm ⁻³) \ w (m s ⁻¹)	0.5	1	2	4	8
500	0.20 $R^2 - 0.11$	-0.29 $R^2 - 0.97$	-0.084 $R^2 - 0.20$	-0.094 $R^2 = 0.080$	-
1000	-0.24	-0.21	-0.22	-0.26	-0.15
	$R^2 = 0.36$	$R^2 = 0.24$	$R^2 = 0.21$	$R^2 = 0.54$	$R^2 = 0.64$
3000	-0.11 $R^2 = 0.97$	-0.14 $R^2 = 0.26$	-0.22 R ² = 0.94	-0.32 $R^2 = 0.89$	-0.26 $R^2 = 0.85$
4500	-0.26 $R^2 = 0.094$	0.068 $R^2 = 0.14$	0.075 $R^2 = 0.056$	0.081 $R^2 = 0.022$	-

Table S6. sensitivities of N_d to $H - S_{N_d}(H) = \frac{\partial lnN_d}{\partial lnH}\Big|_{N_{a,w}}$. Intervals upper limits are highlighted in bold letters.

$w (m s^{-1}) \setminus H (m)$	200	500	950	1625	2637.5	4156.25
0.5	0.30	-0.11	0.48	-0.022	-1.11	0.058
0.5	$R^2 = 0.97$	$R^2 = 0.070$	$R^2 = 0.66$	$R^2 = 0.013$	$R^2 = 0.82$	$R^2 = 0.0052$
1	0.24	-0.030	0.055	0.43	0.024	0.62
1	$R^2 = 0.40$	$R^2 = 0.0072$	$R^2 = 0.42$	$R^2 = 0.50$	$R^2 = 0.12$	$R^2 = 0.90$
2	0.22	0.021	0.23	0.41	-0.043	0.60
2	$R^2 = 0.26$	$R^2 = 0.019$	$R^2 = 0.21$	$R^2 = 0.34$	$R^2 = 0.097$	$R^2 = 0.41$
4	0.032	-0.025	0.015	-0.42	-0.12	0.20
4	$R^2 = 0.0033$	$R^2 = 0.0067$	$R^2 = 0.054$	$R^2 = 0.25$	$R^2 = 0.29$	$R^2 = 0.98$
0					0.15	-0.20
o	-	-	-	-	$R^2 = 0.17$	$R^2 = 0.90$

Table S7. sensitivities of *LWC* to $N_a - S_{LWC}(N_a) = \frac{\partial ln LWC}{\partial ln N_a}\Big|_{w,H}$. Intervals upper limits are highlighted in bold letters.

N_a (cm ⁻³) \ H (m)	200	500	950	1625	2637.5	4156.25
500	0.62 $R^2 = 1.00$	0.60 $R^2 = 0.85$	1.024 $R^2 = 0.98$	0.060 $R^2 = 0.0047$	0.34 $R^2 = 0.91$	-
1000	0.50 $R^2 = 0.87$	0.42 $R^2 = 0.90$	0.37 $R^2 = 0.43$	0.42 $R^2 = 0.88$	0.31 $R^2 = 0.85$	0.69 $R^2 = 0.75$
3000	0.70 $R^2 = 0.97$	0.94 $R^2 = 0.94$	-	0.33 $R^2 = 0.72$	0.70 $R^2 = 0.96$	0.89 $R^2 = 0.87$
4500	0.10 $R^2 = 0.44$	0.33 $R^2 = 0.84$	0.53 $R^2 = 0.70$	-0.47 $R^2 = 0.64$	1.00 $R^2 = 0.66$	0.42 $R^2 = 0.81$

Table S8. sensitivities of *LWC* to $w - S_{LWC}(w) = \frac{\partial ln LWC}{\partial ln w}\Big|_{N_a, H}$. Intervals upper limits are highlighted in **bold** letters.

N_a (cm ⁻³) \ w (m s ⁻¹)	0.5	1	2	4	8
500	1.14 $R^2 = 0.83$	0.27 $R^2 = 0.45$	0.74 $R^2 = 0.62$	0.80 $R^2 = 0.84$	-
1000	0.73	0.69	0.65	0.71	1.062
	$R^2 = 0.92$	$R^2 = 0.90$	$R^2 = 0.65$	$R^2 = 0.92$	$R^2 = 0.79$
3000	0.51 $R^2 = 0.61$	0.58 $R^2 = 0.76$	0.64 $R^2 = 0.95$	0.48 $R^2 = 0.92$	0.52 $R^2 = 0.86$
4500	0.36 $R^2 = 0.16$	0.77 $R^2 = 0.98$	0.70 $R^2 = 0.83$	0.76 $R^2 = 0.62$	-

Table S9. sensitivities of *LWC* to *H* - $S_{LWC}(H) = \frac{\partial ln LWC}{\partial ln H}\Big|_{N_a, w}$. Intervals upper limits are highlighted in bold letters.

$w (\mathrm{m \ s^{-1}}) \setminus H (\mathrm{m})$	200	500	950	1625	2637.5	4156.25
0.5	-0.25	0.20	0.51	0.43	0.53	0.54
0.5	$R^2 = 0.50$	$R^2 = 0.50$	$R^2 = 0.70$	$R^2 = 0.74$	$R^2 = 0.87$	$R^2 = 0.40$
1	-0.33	0.12	0.62	0.37	0.37	0.74
1	$R^2 = 0.76$	$R^2 = 0.17$	$R^2 = 0.87$	$R^2 = 0.87$	$R^2 = 62$	$R^2 = 0.86$
2	-0.42	0.11	0.40	0.40	0.51	0.069
2	$R^2 = 0.93$	$R^2 = 0.28$	$R^2 = 0.91$	$R^2 = 0.66$	$R^2 = 0.86$	$R^2 = 0.13$
Λ	-0.54	-0.15	0.062	0.29	0.56	0.14
+	$R^2 = 0.97$	$R^2 = 0.39$	$R^2 = 0.20$	$R^2 = 0.36$	$R^2 = 0.88$	$R^2 = 0.18$
8					0.52	0.090
σ	-	-	-	-	$R^2 = 0.99$	$R^2 = 0.93$

Table S10. sensitivities of Λ to $N_a - S_{\Lambda}(N_a) = \frac{\partial ln\Lambda}{\partial lnN_a}\Big|_{w,H}$. Intervals upper limits are highlighted in bold letters.

N_a (cm ⁻³) \ H (m)	200	500	950	1625	2637.5	4156.25
500	0.35	0.35	0.41	0.049	-0.090	-
200	$R^2 = 0.98$	$R^2 = 0.65$	$R^2 = 0.66$	$R^2 = 0.14$	$R^2 = 0.98$	
1000	0.061	0.0043	-0.062	0.19	-0.11	0.24
1000	$R^2 = 0.24$	$R^2 = 0.0037$	$R^2 = 0.11$	$R^2 = 0.67$	$R^2 = 0.75$	$R^2 = 0.82$
3000	-0.062	0.13		0.015	-0.14	-0.15
5000	$R^2 = 0.31$	$R^2 = 0.55$	-	$R^2 = 0.045$	$R^2 = 0.83$	$R^2 = 0.42$
4500	-0.0064	-0.11	-0.097	-0.18	0.0068	0.049
1000	$R^2 = 0.13$	$R^2 = 0.91$	$R^2 = 0.82$	$R^2 = 0.23$	$R^2 = 0.0089$	$R^2 = 0.56$

Table S11. sensitivities of Λ to $w - S_{\Lambda}(w) = \frac{\partial \ln \Lambda}{\partial \ln w}\Big|_{N_{\alpha}, H}$. Intervals upper limits are highlighted in **bold** letters.

N_a (cm ⁻³) \ w (m s ⁻¹)	0.5	1	2	4	8
500	-0.75 $R^2 = 0.96$	-0.84 $R^2 = 0.94$	-0.94 $R^2 = 0.98$	-1.11 $R^2 = 0.97$	-
1000	-0.61 $R^2 = 0.98$	-0.63 $R^2 = 0.96$	-0.47 $R^2 = 0.87$	-0.54 $R^2 = 0.86$	-0.25 $R^2 = 0.073$
3000	-0.10 $R^2 = 0.088$	-0.17 $R^2 = 0.48$	-0.25 $R^2 = 0.54$	-0.21 $R^2 = 0.34$	-0.26 $R^2 = 0.38$
4500	-0.17 $R^2 = 0.47$	-0.15 $R^2 = 0.43$	-0.15 $R^2 = 0.50$	-0.14 $R^2 = 0.62$	-

Table S12. sensitivities of Λ to $H - S_{\Lambda}(H) = \frac{\partial \ln \Lambda}{\partial \ln H}\Big|_{N_{a}, w}$. Intervals upper limits are highlighted in bold letters.

$w (m s^{-1}) \setminus H (m)$	200	500	950	1625	2637.5	4156.25
0.5	0.17	0.013	-0.17	-0.12	-0.097	-0.097
0.5	$R^2 = 0.81$	$R^2 = 0.014$	$R^2 = 0.45$	$R^2 = 0.66$	$R^2 = 0.56$	$R^2 = 0.36$
1	0.21	0.066	-0.19	-0.11	-0.080	-0.24
1	$R^2 = 0.93$	$R^2 = 0.21$	$R^2 = 0.75$	$R^2 = 0.80$	$R^2 = 38$	$R^2 = 0.77$
2	0.30	0.027	-0.12	-0.14	-0.14	0.036
2	$R^2 = 0.95$	$R^2 = 0.068$	$R^2 = 0.98$	$R^2 = 0.50$	$R^2 = 0.72$	$R^2 = 0.090$
1	0.44	0.091	0.0092	-0.072	-0.17	0.0031
4	$R^2 = 1.00$	$R^2 = 0.24$	$R^2 = 0.018$	$R^2 = 0.12$	$R^2 = 0.70$	$R^2 = 0.0012$
6					-0.18	0.16
o	-	-	-	-	$R^2 = 0.94$	$R^2 = 0.95$

Table S13. sensitivities of ε to $N_a - S_{\varepsilon}(N_a) = \frac{\partial ln\varepsilon}{\partial lnN_a}\Big|_{w,H}$. Intervals upper limits are highlighted in bold letters.

N_a (cm ⁻³) \ H (m)	200	500	950	1625	2637.5	4156.25
500	-0.29	-0.11	-0.19	0.015	0.063	
	$R^2 = 0.95$	$R^2 = 0.60$	$R^2 = 0.80$	$R^2 = 0.057$	$R^2 = 1.00$	-
1000	-0.080	-0.016	0.076	-0.12	0.049	-0.14
1000	$R^2 = 0.41$	$R^2 = 0.71$	$R^2 = 0.34$	$R^2 = 0.78$	$R^2 = 0.53$	$R^2 = 0.86$
3000	0.037	-0.17		0.00013	0.0024	-0.035
5000	$R^2 = 0.31$	$R^2 = 0.76$	-	$R^2 = 0.000024$	$R^2 = 0.0019$	$R^2 = 0.22$
4500	0.027	0.037	0.024	0.018	-0.025	-0.023
	$R^2 = 0.51$	$R^2 = 0.61$	$R^2 = 0.53$	$R^2 = 0.30$	$R^2 = 0.27$	$R^2 = 0.28$

Table S14. sensitivities of ε to $w - S_{\varepsilon}(w) = \frac{\partial ln\varepsilon}{\partial lnw}\Big|_{N_{\alpha},H}$. Intervals upper limits are highlighted in bold letters.

N_a (cm ⁻³) \ w (m s ⁻¹)	0.5	1	2	4	8
500	0.22 $R^2 = 0.85$	0.30 $R^2 = 0.73$	0.36 $R^2 = 0.94$	0.48 $R^2 = 0.99$	-
1000	0.15 $R^2 = 0.79$	0.16 $R^2 = 0.82$	0.094 $R^2 = 0.63$	0.16 $R^2 = 0.74$	-0.16 $R^2 = 0.084$
3000	0.0066 $R^2 = 0.0045$	0.0093 $R^2 = 0.030$	0.017 $R^2 = 0.046$	0.028 $R^2 = 0.032$	0.010 $R^2 = 0.0024$
4500	-0.022 $R^2 = 0.062$	$-0.03\overline{7}$ $R^2 = 0.20$	-0.036 $R^2 = 0.17$	-0.046 $R^2 = 0.29$	-

Table S15. sensitivities of ε to $H - S_{\varepsilon}(H) = \frac{\partial ln\varepsilon}{\partial lnH}\Big|_{N_{\alpha},w}$. Intervals upper limits are highlighted in bold letters.

$w (m s^{-1}) \setminus H (m)$	200	500	950	1625	2637.5	4156.25
0.5	289	89	21	32	36	45
1	247	82	20	24	22	45
2	223	87	26	34	28	49
4	111	47	30	37	29	38
8	0	0	0	0	18	27

Table S16. number of 1 Hz DSD data for the sensitivities to N_a .

N_a (cm ⁻³) \ H (m)	200	500	950	1625	2637.5	4156.25
500	259	84	28	27	11	0
1000	234	84	38	40	56	81
3000	265	91	0	61	43	75
4500	125	55	25	16	23	44

5 **Table S17.** number of 1 Hz DSD data for the sensitivities to *w*.

N_a (cm ⁻³) \ w (m s ⁻¹)	0.5	1	2	4	8
500	169	119	90	35	0
1000	137	136	146	94	20
3000	142	100	138	110	51
4500	64	85	73	53	0

Table S18. number of 1 Hz DSD data for the sensitivities to H.