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DSD profiles for each flight

Figures S1-4 show the individual DSD profiles for each flight considered in this study. It clearly shows the cohesiveness of

the aerosol effect on the vertical structure of the warm-phase. Altitudes shown are relative to cloud base.
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Figure S1. Droplet size distributions as function of altitude above cloud base, aerosol particle number concentration, and
vertical wind speed, W, for flight AC19. Four 1000-m-thick layers are considered in the vertical, where the legends in the
graphs show the respective upper limit of each one. Solid lines represent averaged DSDs for -1 mst<W<1ms?, i.e.,
for relatively neutral vertical movements. Dashed lines represent averaged DSDs for the updraft regions where W >1m

st, and dot-dashed lines represent the downdrafts (W < -1 m s%).
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Figure S2. Droplet size distributions as function of altitude above cloud base, aerosol particle number concentration, and
vertical wind speed, W, for flights a) AC9 and b) AC18. Four 1000-m-thick layers are considered in the vertical, where the
legends in the graphs show the respective upper limit of each one. Solid lines represent averaged DSDs for -1 ms*<W<1m
s, i.e., for relatively neutral vertical movements. Dashed lines represent averaged DSDs for the updraft regions where W > 1

m s, and dot-dashed lines represent the downdrafts (W < -1 m s%).
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Figure S3. Droplet size distributions as function of altitude above cloud base, aerosol particle number concentration, and
vertical wind speed, W, for flights a) AC7, b) AC11, and ¢) AC20. Four 1000-m-thick layers are considered in the vertical,
where the legends in the graphs show the respective upper limit of each one. Solid lines represent averaged DSDs for -1 m s
<W<1ms?, ie., for relatively neutral vertical movements. Dashed lines represent averaged DSDs for the updraft regions

where W > 1 m s, and dot-dashed lines represent the downdrafts (W < -1 m s2).
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Figure S4. Droplet size distributions as function of altitude above cloud base, aerosol particle number concentration, and
vertical wind speed, W, for flights a) AC12 and b) AC13. Four 1000-m-thick layers are considered in the vertical, where the
legends in the graphs show the respective upper limit of each one. Solid lines represent averaged DSDs for -1 ms*<W<1m
s, i.e., for relatively neutral vertical movements. Dashed lines represent averaged DSDs for the updraft regions where W > 1

m s, and dot-dashed lines represent the downdrafts (W < -1 m s2).
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Sensitivities for individual intervals

By fixing two dimensions in the 3D matrices and varying the third, we can obtain individual sensitivities in the form of the
Equation 1 in the manuscript. As an example, we can fix both w and H and obtain the sensitivities of DSD parameters to
varying Na. By using the natural logarithm scale and applying a linear fit, we obtain the sensitivity as the angular coefficient
and the R? parameter is a measure of the significance of the relation. By calculating every possible combination, we obtain
Tables S1-15 shown below. The amount of 1 Hz data for each sensitivity are shown in Tables S16-18.

w (ms?)\H (m) | 200 500 950 1625 [ 2637.5 |4156.25
s 011 |-027 |-025 |-023 |-038 |-047
R?=0.85 | R?=0.96 | R?=0.99 | R?= 0.94 | R?= 0.97 | R?= 0.71
013 |026 |030 |-018 |025 |-026
! R?=0.84 | R?=0.93 | R?=0.99 | R?= 0.86 | R?= 1.00 | R?= 0.96
016 |026 |028 |017 |031L |-016
g R?=0.79 | R?=0.98 | R?= 0.91 | R?= 0.64 | R?= 0.98 | R?= 0.53
. 018 |-028 |025 |-025 |03l |-028
R?=0.82 | R?= 0.95 | R?= 0.96 | R?= 0.95 | R?= 0.95 | R?= 0.99
026 |-0.33
8 ) ) ) ) R?=0.80 | R2=0.98

Table S1. sensitivities of Deft to Na - SDEff(Na) = a;?:;if " Intervals upper limits are highlighted in bold letters.
Na (cm) \ H (m) [ 200 500 950 1625 2637.5 4156.25
0.020 0.049 0.048 -0.018 0.032
200 R?2=0.63|R?=0.61|R?=0.90 |R?=0.034|R?=0.77 )
0.018 0.031 0.0072 0.046 0.0032 0.0034
1000 R?2=0.17|R?=0.57 |R?=0.029 | R?=0.71 |R?=0.0040 | R?=0.0010
0.031 0.044 -0.011 0.13 0.18
3000 R?2=0.90 |R?=0.69 ) R?=0.055|R?=10.93 R2=0.72
-0.085 0.013 0.046 -0.0063 0.021 0.024
4500 R?2=097|R?=057|R?=0.62 |R?=0.23 |R?=0.44 R2=0.48
Table S2. sensitivities of Desr to w - SDe”(w) = % N Intervals upper limits are highlighted in bold letters.
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Na (cm3)\w (ms?)|0.5 1 2 4 8
0.33 0.27 0.31 0.32
>00 R2=0.98 |R?=0.92 |R?=10.85 | R?=0.92 )
0.35 0.32 0.30 0.32 0.41
1000 R2=0.98 |R?=0.99 |[R?=0.95|R?=1.00 |R?2=0.94
3000 0.14 0.23 0.28 0.26 0.27
R?=0.62 |[R?=0.90 | R>=0.96 | R®?=0.97 | R? = 0.96
0.19 0.24 0.24 0.26
4500 -
R?=0.95|R?=0.98 | R>=0.99 | R?=0.97
Table S3. sensitivities of Der to H - Sp, . (H) = al:l:;” o Intervals upper limits are highlighted in bold letters.
w(ms?)\H(m)|200 500 950 1625 2637.5 4156.25
0.69 0.75 1.23 0.64 -0.069 1.24
oS R?=0.97 |[R?=0.82|R?=0.89 |R?=0.86 | R?=0.011 | R = 0.83
0.67 0.79 0.90 0.87 0.70 111
! R?2=0.90|R?=0.87 |R?=1.00 |R?=0.88| R?=1.00 |R?=0.95
0.72 0.89 1.049 0.87 0.90 1.40
2 R2=0.84|R?=0.98 |R?=0.94 |[R?=0.92|R?=0.92 |R?=0.96
0.54 0.85 0.79 0.49 0.72 1.22
4 R?=0.62|R?=0.95|R?=0.99| R?=0.37 |[R?=0.92 |R?=0.98
0.94 0.83
8 ) ) ] ) R?=100 |R2=0.98
Table S4. sensitivities of Ngto Na- Sy, (Ng) = Zizxz = Intervals upper limits are highlighted in bold letters.
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Na (cm3) \ H (m) | 200 500 950 1625 26375 |4156.25
500 0.57 0.46 0.86 -0.12 0.40
R?2=1.00|R?=0.89 |R?=0.97 | R?=0.070 | R>=0.76
1000 0.45 0.44 0.34 0.32 0.29 0.64
R?2=0.91|R?=0.99 |R?=0.47 |R>=0.89 |R?>=0.91|R?=0.89
0.61 0.85 0.37 0.39 0.65
3000 -
RZ2=0.94|R2=0.96 R?2=0.82 |R?=0.95|R?=10.92
4500 0.24 0.30 0.41 -0.37 1.034 0.38
RZ2=0.91|R?2=0.89 |R?=0.67 |[R?=0.46 |R?=0.70|R?=0.90
Table S5. sensitivities of Ngto w - Sy, (w) = 'Z:xj g Intervals upper limits are highlighted in bold letters.
Na (cm3)\w (ms?)|0.5 1 2 4 8
500 0.20 -0.29 -0.084 -0.094
RZ2=0.11 |R?=0.97|R?=0.20 |R?=10.080
-0.24 -0.21 -0.22 -0.26 -0.15
1000
R?2=0.36 |R?=0.24|R?=0.21 |R?=054 |R?>=0.64
-0.11 -0.14 -0.22 -0.32 -0.26
3000
R?2=0.97 |R?=0.26|R?=0.94 |R?=0.89 |R?=0.85
-0.26 0.068 0.075 0.081
4500 -
R2=0.094 |R?=0.14 | R?=10.056 | R? = 0.022
Table S6. sensitivities of Ngto H- Sy, (H) = a;::\: o Intervals upper limits are highlighted in bold letters.




w (ms?) \H (m) [ 200 500 950 1625 26375 | 4156.25
0.30 011 0.48 0022|111 0.058

0 R?=097 |R2=0070 |R2=0.66 |R2=0.013|R2=0.82 |R2=0.0052
0.24 -0.030 0.055 0.43 0.024 0.62

! R?=0.40 |R?=0.0072|R2=042 |R2=0.50 |R2=0.12 |R2=0.90

, 0.22 0.021 0.23 0.41 0043 |0.60
R2=026 |R2=0019 |R?=021 |R2=0.34 |R?=0.097 |R2=0.41

. 0.032 -0.025 0.015 0.42 0.12 0.20
R?=0.0033 | R? = 0.0067 | R2 = 0.054 | R2= 0.25 |R2=0.29 |R2=0.98

0.15 -0.20
8 ) ) ) ) R2=0.17 |R2=0.90

dlnLwc

Table S7. sensitivities of LWC to Na- Sywc(Nqo) = 5 —
a ly,

. Intervals upper limits are highlighted in bold letters.
H

Na (cm?) \H (m) [ 200 500 950 1625 26375 |4156.25
0.62 0.60 1.024  |0.060 0.34
°00 R?=1.00|R2=0.85| R2=0.98 | R2 = 0.0047 | R2=0.91|
0.50 0.42 0.37 0.42 0.31 0.69
1000 R2=0.87|R?=0.90 |[R2=0.43|R?=0.88 |R?=0.85|R2=0.75
0.70 0.94 0.33 0.70 0.89
3000 R?=097|R2=0.94| R2=0.72 |R?®=0.96|R?=0.87
4500 0.10 0.33 0.53 -0.47 1.00 0.42
R2=0.44|R?2=0.84|R?=0.70|R2=0.64 |R?=0.66|R?=0.81

Table S8. sensitivities of LWC to w- Sy c(w) = a:‘ﬂ . Intervals upper limits are highlighted in bold letters.

Inw



Na (cm3)\w (ms?) 0.5 1 2 4 8
1.14 0.27 0.74 0.80
500 -
R?2=0.83|R?=0.45|R?=0.62 | R?=0.84
0.73 0.69 0.65 0.71 1.062
1000
R?=0.92|R?=0.90 | R?=0.65|R?=0.92 |R?=0.79
0.51 0.58 0.64 0.48 0.52
3000
R?=0.61|R?=0.76 |R?=0.95|R>=10.92 | R>=0.86
0.36 0.77 0.70 0.76
4500 -
R?=0.16 |R?=0.98 |R?=0.83 | R>=0.62

Table S9. sensitivities of LWC to H- S,y c(H) = ag;f:;c Now Intervals upper limits are highlighted in bold letters.

w (ms?) \H (m)[200 500 950 1625 26375 |4156.25
-0.25 0.20 0.51 0.43 0.53 0.54

05 R2=0.50 |R?=0.50 |[R?=0.70 |R>=0.74 | R?=0.87 | R?=0.40

) -0.33 0.12 0.62 0.37 0.37 0.74
R?2=0.76 |R?=0.17 |R?=0.87 |R?=0.87 |R?=62 |R?>=10.86

) -0.42 0.11 0.40 0.40 0.51 0.069
R?2=0.93|R?=0.28 | R?=0.91 |R?=0.66 | R>=0.86 | R?=0.13

. -0.54 -0.15 0.062 0.29 0.56 0.14
R2=0.97 |R?=0.39 |R>=0.20 |R?=0.36 | R?=0.88 |R?=0.18

0.52 0.090
° _ _ _ _ R?=0.99 | R? = 0.93

dlnA

Table S10. sensitivities of 410 Na- Sy(N,) = pYe
aly,

. Intervals upper limits are highlighted in bold letters.
H
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Na (cm3) \ H (m) | 200 500 950 1625 2637.5 4156.25
500 0.35 0.35 0.41 0.049 -0.090
R?2=0.98 |R?=0.65 |R?=0.66|R?=0.14 |R?>=10.98
1000 0.061 0.0043 -0.062 0.19 -0.11 0.24
R?2=0.24|R?=0.0037 |R?=0.11|R?=0.67 |R?=0.75 |R?=0.82
-0.062 0.13 0.015 -0.14 -0.15
3000 -
RZ2=0.31|R2=0.55 R?2=0.045|R?=0.83 |R?2=0.42
4500 -0.0064 |-0.11 -0.097 -0.18 0.0068 0.049
R?2=0.13|R?2=0.91 |R?=0.82|R?=0.23 |R?=10.0089 | R?=0.56
Table S11. sensitivities of 4 tow- S,(w) = gll% . Intervals upper limits are highlighted in bold letters.
Na (cm3)\w (ms?) | 0.5 1 2 4 8
-0.75 -0.84 -0.94 -1.11
500 -
R2=0.96 |R?=0.94|R?=0.98 | R>=10.97
-0.61 -0.63 -0.47 -0.54 -0.25
1000
R?2=0.98 |R?=0.96 |R?=0.87 |R?=10.86 | R?=0.073
-0.10 -0.17 -0.25 -0.21 -0.26
3000
R?2=0.088|R?=0.48 | R?=0.54 |R?=0.34 | R?=0.38
-0.17 -0.15 -0.15 -0.14
4500 -
R2=0.47 |R?=0.43|R?=0.50 | R>=10.62
Table S12. sensitivities of A to H- S, (H) = gzl% e’ Intervals upper limits are highlighted in bold letters.
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w (m s\ H (m) [ 200 500 950 1625  |26375 |4156.25
0.17 0.013 0.17 012 |-0.097 |-0.097

0 R?=0.81|R?=0.014 |R?=0.45 |R?=0.66|R2=0.56 | R2=0.36
0.21 0.066 -0.19 011 |-0.080 |-0.24

! R?=093|R?2=021 |R?=0.75 |R?=0.80|R2=38 |R2=0.77

, 0.30 0.027 0.12 014 |-014  |0.036
R?=0.95 | R?=0.068 | R?=0.98 |R?=0.50|R?=0.72 | R = 0.090

. 0.44 0.091 0.0092 |-0072 |-017  |0.0031
R?=1.00|R?=0.24 |R2=0.018 |R?=0.12|R?=0.70 | R? = 0.0012

018 |0.16
8 ) ) ) ) R2=0.94 |R?=0.95

Table S13. sensitivities of ¢ to Na- S¢(N,) =

dlne
dlnN, w

. Intervals upper limits are highlighted in bold letters.
H

Na (cm?) \H (m) [ 200 500 950 1625 26375 4156.25
2029 |-011 |-019 |0015 0.063
>0 R2=0.95 |R2=0.60 |R2=0.80 |[R2=0.057 |R?=1.00 |
-0.080 |-0.016 |0.076 |-0.12 0.049 -0.14
1000 R2=0.41|R?=0.71|R2=0.34 | R?= 0.78 R2=053 |R?=0.86
0037 |-017 0.00013 0.0024 -0.035
3000 R?=031|R2=0.76| R?=0.000024 | R? = 0.0019 | R2 = 0.22
4500 0.027 |0.037 |0.024 |0018 -0.025 -0.023
R2=051|R?=0.61|R?=0.53 |R2=0.30 R2=027 |R?=0.28

Table S14. sensitivities of e tow- S, (w) =

dlne
dlnw

12
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Na (cm3)\w (ms?) |0.5 1 2 4 8
0.22 0.30 0.36 0.48
500 -
R2=0.85 R?2=0.73 |R?=0.94 |R?=0.99
0.15 0.16 0.094 0.16 -0.16
1000
R2=0.79 R?=0.82 |R?=0.63 |R?=0.74 |R?=0.084
3000 0.0066 0.0093 0.017 0.028 0.010
R?=0.0045| R?=0.030 | R?=0.046 | R = 0.032 | R = 0.0024
-0.022 -0.037 -0.036 -0.046
4500 -
R?2=0.062 |R?=0.20 |R?=0.17 |R?=0.29

dlne

Table S15. sensitivities of s to H- S.(H) = oty

. Intervals upper limits are highlighted in bold letters.

w (msT)\H (m) [200] 500 | 950 | 1625 | 2637.5 | 4156.25
05 289(89 |21 |32 |36 |45
1 247(82 |20 |24 |22 |45
2 223(87 |26 |34 |28 |49
4 111[47 |30 |37 |29 |38
8 0 (0 [0 |0 [18 |27

Table S16. number of 1 Hz DSD data for the sensitivities to Na.

Na (cm3) \ H (m) [ 200 [500] 950 | 1625 | 2637.5 | 4156.25

500 25984 |28 |27 |11 0
1000 23484 |38 |40 |56 81
3000 265|91 |0 |61 |43 75
4500 125|55 |25 |16 |23 44

5 Table S17. number of 1 Hz DSD data for the sensitivities to w.

Na(cmH\w(ms?) |05 |1 |2 |4 |8
500 169(119(90 (35 |0
1000 137 (136|146 |94 |20
3000 142100138 11051
4500 64 |85 |73 |53 |0

Table S18. number of 1 Hz DSD data for the sensitivities to H.
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