
1 
 

Estimating precipitation susceptibility in warm marine clouds using 
multi-sensor aerosol and cloud products from A-Train satellites  
Heming Bai1,2, Cheng Gong3, Minghuai Wang1,2, Zhibo Zhang4, Tristan L'Ecuyer5 

1Institute for Climate and Global Change Research and School of Atmospheric Sciences, Nanjing University, Nanjing, China 
2Collaborative Innovation Center of Climate Change, Jiangsu Province, China 5 
3Institute of Atmospheric Physics, Chinese Academy of Science, Beijing, China 
4Physics Department, University of Maryland Baltimore County (UMBC), Baltimore, Maryland, USA 
5Department of Atmospheric and Oceanic Sciences, University of Wisconsin, Madison, Wisconsin, USA 

Corresponding to: Minghuai Wang (minghuai.wang@nju.edu.cn) 

Abstract. Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol-cloud interactions and 10 

constraining aerosol indirect effects. However, large discrepancies exist in the previous satellite estimates of precipitation 

susceptibility. In this paper, multi-sensor aerosol and cloud products, including those from CALIPSO, CloudSat, MODIS, 

and AMSR-E from June 2006 to April 2011 are analyzed to estimate precipitation frequency susceptibility SPOP, 

precipitation intensity susceptibility SI, and precipitation rate susceptibility SR in warm marine clouds. We find that SPOP 

strongly depends on atmospheric stability, with larger values under more stable environments. Our results show that 15 

precipitation susceptibility for drizzle (with -15 dBZ rainfall threshold) is significantly different from that for rain (with 0 

dBZ rainfall threshold). Onset of drizzle is not as readily suppressed in warm clouds as rainfall while precipitation intensity 

susceptibility is generally smaller for rain than for drizzle. We find that SPOP derived with respect to aerosol index (AI) is 

about one-third of SPOP derived with respect to cloud droplet number concentration (CDNC). Overall, SPOP demonstrates 

relatively robust features throughout independent liquid water path (LWP) products and diverse rain products. In contrast, 20 

the behaviors of SI and SR are subject to LWP or rain products used to derive them. Recommendations are further made for 

how to better use these metrics to quantify aerosol-cloud-precipitation interactions in observations and models.  

1 Introduction 

Aerosol-cloud interactions play an important role in the climate system and affect the global energy budget and hydrological 

cycle. The effective radiative forcing from aerosol-cloud interactions (ERFaci), which includes the instantaneous effect on 25 

cloud albedo from changes in cloud condensation nuclei (CCN) or ice nuclei and all subsequent changes to cloud lifetime 

and thermodynamics, remains one of the largest uncertainties in our estimates of anthropogenic radiative forcing (Boucher et 

al., 2013). Over the past few decades, numerous methodologies have been developed to understand and quantify the impacts 

of aerosol-cloud interactions on the climate system. A unique method is to use the so-called “susceptibility” to explain and 

predict how cloud and precipitation would response if there were some aerosol perturbations. Susceptibility is defined as the 30 
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derivative of cloud and/or precipitation properties with respect to aerosol related properties. For example, Platnick and 

Twomey (1994) proposed a cloud albedo susceptibility as 𝑆! = 𝜕A/𝜕𝐶𝐷𝑁𝐶, where A is cloud albedo and CDNC is cloud 

droplet number concentration, to quantify the cloud albedo effect of aerosol.  

Precipitation susceptibility has been proposed to evaluate aerosol-cloud-precipitation interactions and to further 

constrain cloud water response to aerosol perturbations in climate models (Feingold and Siebert, 2009; Terai et al., 2012; 5 

Wang et al., 2012). It was first proposed by Feingold and Siebert (2009) and was defined as: 

CDNCd
RdS

ln
ln

0 −=                                                                           (1) 

where R is precipitation intensity (precipitation rate for rainy clouds) and CDNC is cloud droplet number concentration 

(Feingold and Siebert, 2009). Sorooshian et al. (2009) further estimated S0 by replacing CDNC with aerosol index (AI). 

Wang et al. (2012) proposed an alternative metric, the precipitation frequency susceptibility, defined as: 10 

AId
POPdSPOP ln

ln
−=                                                                           (2) 

where POP is the probability of precipitation. SPOP has been shown to strongly correlate with cloud water response to aerosol 

perturbations in global climate models (Wang et al., 2012;Ghan et al., 2016). Terai et al. (2012；2015) further extended the 

definition of precipitation susceptibility: 

CDNCd
XdSX ln

ln
−=                                                                           (3) 15 

where X can represent precipitation intensity (I, precipitation rate from rainy clouds only), precipitation fraction (POP, or f) 

or precipitation rate (R=POP×I, mean precipitation rate from both rainy and non-rainy clouds). Depending on whether I, 

POP or R is used in Eq. (3), precipitation intensity susceptibility (SI), precipitation frequency susceptibility (SPOP or Sf) or 

precipitation rate susceptibility (SR) are therefore defined accordingly. Since R can be decomposed into the product of POP 

and I, SR≈SPOP +SI (Terai et al., 2012, 2015). In addition, some other studies substitute aerosol concentration (NA) or cloud 20 

condensation nuclei (CCN) concentration (NCCN) for CDNC to calculate SX (Terai et al., 2012; Mann et al., 2014).  

The behavior and magnitude of aforementioned precipitation susceptibility metrics varies a lot in different studies. For 

instance, SR and SPOP, using NA as an aerosol proxy from Terai et al. (2012), both noticeably decrease with increasing LWP, 

whereas SI is flat in the same study. Additionally, previous satellite studies (Wang et al., 2012; Terai et al., 2015; Michibata 

et al., 2016) show SX calculated with respect to CDNC is higher than that with respect to AI. The diverse definitions of 25 

precipitation susceptibility make it challenging to understand susceptibility discrepancies in different studies. An important 

objective of this study is to derive these susceptibilities using the same observations in the same context and to better 

understand their differences through comparisons. 

Another source of uncertainty in the estimation of precipitation susceptibility is the uncertainty associated with the 

observation. Among many others, AMSR-E and MODIS are two widely-used satellite cloud retrieval products in 30 

aerosol-cloud interaction studies. For instance, Sorooshian et al. (2009) and Wang et al. (2012) both used AMSR-E LWP 
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product to estimate SI and SPOP with respect to AI, respectively. Terai et al. (2015) and Michibata et al. (2016) used MODIS 

LWP product to estimate SI with respect to CDNC. Both products have their advantages and limitations, and are both subject 

to various retrieval uncertainties. AMSR-E has a coarser spatial resolution than MODIS. Its LWP retrievals are available for 

both daytime and night time, but suffer from instrument noise, cloud detection issues and beam filling effect (Greenwald et 

al., 2007; Horváth and Gentemann, 2007; Seethala and Horváth, 2010). MODIS LWP retrievals are available only during 5 

daytime. The main uncertainty sources in MODIS LWP retrievals include instrument noise, sub-pixel cloud inhomogeneity, 

three-dimensional radiative effects and uncertainties in ancillary data (Cho et al., 2015; Platnick et al., 2017; Zhang and 

Platnick, 2011). A recent study by Seethala and Horváth, (2010) revealed several significant differences between ASMR-E 

and MODIS LWP products, which could contribute to the aforementioned discrepancy of precipitation susceptibility in the 

literature. 10 

Additionally, different definitions of rain events and/or different methods to derive rain rates could also lead to 

discrepancy in observation-based estimation of precipitation susceptibility. For example, the rain rate used in Terai et al. 

(2015) and Michibata et al. (2016) is simply estimated based on a Z-R relationship from CloudSat radar reflectivity profiles 

measurements. In contrast, Sorooshian et al. (2009) and Wang et al. (2012) used the rain rate reported in CloudSat 

operational product, which make use not only radar reflectivity but also path-integrated attenuation in the retrieval process 15 

(Haynes et al., 2009). The primary satellite data sets used in the previous studies for estimating precipitation susceptibility 

are listed in Table. 1. To account for the discrepancy in susceptibility as shown in Table. 1, it’s important to examine how 

different LWP and rain data sets affect the estimates of precipitation susceptibility. 

Here we estimate precipitation susceptibility using multi-sensor cloud and aerosol products from A-Train satellites. The 

main objective of this study is to compare precipitation susceptibility estimates based on different retrieval products, and to 20 

better understand discrepancies documented in previous studies. As previous studies have shown that aerosol indirect effect 

and its uncertainties vary in different cloud dynamical regimes (L’Ecuyer et al., 2009; Wang et al., 2012; Zhang et al., 2016), 

we further examine how precipitation susceptibility might be different under different atmospheric stability conditions. 

Section 2 introduces different satellite products and methods used to calculate the susceptibility; Section 3 compares 

precipitation susceptibility estimates from different satellite products and explores how atmospheric stability affects 25 

precipitation susceptibility; finally, the discussions are made in Section 4, followed by the summary in Section 5. 

2 Methods 

2.1 Satellite datasets 

This study mainly uses cloud and aerosol property retrieval products from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) on Aqua, the Advanced Microwave Scanning Radiometer for Earth Observing System 30 
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(AMSR-E) on Aqua, the Cloud Profiling Radar (CPR) on CloudSat and the Cloud-Aerosol Lidar with Orthogonal 

Polarization (CALIOP) on CALIPSO. All of these satellites operate in the framework of the A-Train constellation (L’Ecuyer 

and Jiang, 2010; Stephens et al., 2002). Considering most of the warm rainfall occurs in the marine areas (Mülmenstädt et al., 

2015) and that satellite retrievals often suffer large uncertainties in the polar regions (Seethala and Horváth, (2010) , the 

study region is limited to 60°S to 60°N over global oceans, covering the period June 2006 to April 2011. Since MODIS 5 

cloud LWP retrieval is only available for daytime, we restrict our analysis to clouds observed in daytime (13:30 local time). 

MODIS cloud product and CPR radar reflectivity observations used in this study are both provided from the Caltrack 

datasets, which resample observations from many sensors under CALIOP subtrack with the horizontal resolution of 5km 

(see the website of http://www.icare.univ-lille1.fr/projects/calxtract/products for more information). For other aerosol and 

cloud products, including MODIS/CALIOP aerosol products and AMSR-E cloud products, they are further collocated into 10 

the CALIOP subtracks in the Caltrack dataset. For each cloud pixel in the Caltrack dataset, the closest aerosol/cloud retrieval 

sample within one-degree grid box (1°×1°) centered at this Caltrack cloud pixel is chosen. To reduce the uncertainty in cloud 

retrievals, only samples where MODIS cloud fraction is equal to 100% are selected. The main satellite datasets used in this 

study are briefly listed in Table. 2. 

2.1.1 AI and CDNC 15 

Three aerosol products are used in the study: MODIS Level 3 daily mean atmosphere product (MYD08_D3, Collection 

6), MODIS Level 2 aerosol product (MYD04_L2, Collection 6) and CALIOP Level 2 aerosol layer product 

(CAL_LID_L2_05kmALay, Version 3.01). The one degree daily mean product of MYD08_D3 is aggregated from 

MYD04_L2 with 10 km horizontal resolution (Hubanks et al., 2016). This MODIS Level 3 dataset has been used in previous 

studies to examine aerosol-cloud-precipitation interactions (e.g., L’Ecuyer et al., 2009; Wang et al., 2012) and is compared 20 

here with results form the MODIS Level 2 aerosol product to examine how aerosol homogeneity might affect precipitation 

susceptibility estimates.Horizontal resolution of column aerosol optical depth from CAL_LID_L2_05kmALay product is 5 

km. Aerosol property in this dataset is obtained by averaging the 16 aerosol extinction profiles with 333 m of native 

resolution along track (Young and Vaughan, 2009). 

Since AI is a better proxy for CCN concentrations as compared to AOD (Nakajima et al., 2001), AI is calculated as one 25 

of the proxy for CCN based on the definition of AI=AOD×AE, where AOD and AE are aerosol optical depth and Ångström 

coefficient, respectively. For MODIS, AOD at 0.55 µm reported from MYD08_D3 and MYD04_L2 products are based on 

the Dark Target algorithm over ocean (Kaufman et al., 1997; Tanré et al., 1997; Levy et al., 2013). For CALIOP, AOD at 

wavelength of 0.532 µm is obtained from the CAL_LID_L2_05kmALay product (Vaughan et al., 2004). Unlike MODIS AE, 

which is directly reported in aerosol products, AE measurement for CALIOP is calculated based on AOD at 1.064µm and 30 

0.532µm from CAL_LID_L2_05kmALay product (Bréon et al., 2011). Our data screening for CAL_LID_L2_05kmALay 
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follows a previous study by Kim et al. (2013).  

Three aerosol products used in this study are listed in Table 2. It should be noted that all aerosol samples are under 

cloud free conditions and are selected in close proximity to cloud pixels. Retrievals of aerosol properties from passive 

sensors and lidar observation are both affected by clouds near the aerosol, and thereby result in overestimation for aerosol 

property (Chand et al., 2012; Christensen et al., 2017; Tackett and Di Girolamo, 2009). The extent of this overestimation 5 

may be different among different sensors, and depends on how far aerosol pixels chosen are from the corresponding cloud 

pixels (Christensen et al., 2017). This effect, however, would likely impact all metrics in a similar way and we would not 

expect this effect would impact qualitative comparisons between different metrics. 

CDNC is derived from the cloud optical thickness τ and cloud top effective radius reff, both reported in the MODIS 

level 2 cloud product (namely, MYD06_L2), based on the following formula (Bennartz, 2007; Quaas et al., 2006): 10 

5.25.0 −= effrCDNC ατ                                                                          (4) 

where the coefficient ɑ=1.37×10-5m-0.5 is estimated based on the assumption that cloud vertical structure follows the classic 

adiabatic growth model (Quaas et al., 2006). To reduce the uncertainty when deriving CDNC, cloud pixels (identified by 

Caltrack-MODIS cloud product with the horizontal resolution of 5 km) where cloud optical depth is less than 3 and cloud 

fraction is less than 100% are excluded (Cho et al., 2015; Zhang and Platnick, 2011). Additionally, we limit our analysis to 15 

warm clouds by screening cloud pixels with cloud top temperature warmer than 273K. Under these screening criteria, our 

results show that 94% warm clouds are single layered (93% in Kubar et al., 2009). Therefore, our analysis mainly focuses on 

single-layer clouds.  

2.1.2 LWP 

Cloud LWP for MODIS is diagnosed from solar reflectance observations of reff and τ as (Platnick et al., 2003):  20 

effw raLWP τρ=                                                                              (5) 

where ρw denotes the liquid water density and  is a constant determined by the assumed vertical variation in cloud droplet 

size (Greenwald, 2009). For a vertically homogeneous cloud, = 2/3 (Bennartz, 2007), and  = 5/9 when the adiabatic 

assumption is applied (Szczodrak et al., 2001). A recent study by Miller et al. (2016) provides a systematic investigation of 

the impacts of cloud vertical structure on MODIS LWP retrievals. To be consistent with the adiabatic assumption used in Eq. 25 

(4) for estimating CDNC, = 5/9 is applied here. 

The other LWP retrieval comes from AMSR-E Level 2B Global Swath Ocean Product (Wentz and Meissner, 2004). 

Unlike retrieving from solar reflectance of visible near-infrared (VNIR) for MODIS, LWP for AMSR-E is directly derived 

from brightness temperatures based on liquid-sensitive 37 GHz channel measurements (Seethala and Horváth, 2010). More 

information of retrieval technique of AMSR-E LWP is documented in Wentz and Meissner (2000). Horizontal resolution of 30 

a

a a
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AMSR-E LWP product (12km) is also different from MODIS LWP product (5km). 

2.1.3 Precipitation 

Precipitation datasets used in this study are derived from three different products from the CloudSat CPR, namely 

2B-GEOPROF, 2C-PRECIP-COLUMN and 2C-RAIN-PROFILE. All the estimates are limited to cloudy profiles by using 

2B-GEOPROF cloud mask, which is set to greater than 20 (King et al., 2015). For the 2B-GEOPROF product (Marchand et 5 

al., 2008), the maximum radar reflectivity for each cloudy profile is used to define rain event and to estimate rain rate. More 

specifically, rain rate is obtained by employing the reflectivity-rainfall (Z-R) relationship at cloud base (Z=25R1.3 from 

Comstock et al., 2004), and a radar reflectivity threshold is used to distinguish between drizzling and nondrizzling clouds 

(Terai et al., 2012, 2015).  

The empirical Z-R relationship, however, does not account for multiple-scattering by raindrops and attenuation due to 10 

both gases and hydrometeors, which poses major challenges for calculation of rain rate, especially surface rain rate (Lebsock 

and L’Ecuyer, 2011). To address those challenges, Haynes et al. (2009) introduced a full rainfall retrieval algorithm, which 

is the basis of the 2C-PRECIP-COLUMN product. The algorithm first makes use of path-integrated attenuation (PIA) 

derived from measurements of radar backscatter over ocean surface in conjunction with surface wind speed and sea surface 

temperature. Surface rain rate is then estimated based on a simple algorithm using the PIA. For the 2C-PRECIP-COLUMN 15 

product, rain event is identified by using rain likelihood mask. Here, we use flag of “rain certain” to define rain event, which 

means attenuation-corrected reflectivity near surface is above 0dBZ (Haynes et al., 2009). 

2C-PRECIP-COLUMN assumes a constant vertical rain profile in the precipitating column (Haynes et al., 2009), which 

may not be suitable for warm rain where vertical variation of rain profile is significant (Lebsock and L’Ecuyer, 2011).  To 

address this issue, CloudSat developed a third rain product, 2C-RAIN-PROFILE that utilizes the complete 20 

vertically-resolved reflectivity profile observed by the CPR and incorporates a subcloud evaporation model. 

2C-RAIN-PROFILE also uses MODIS cloud visible properties to constrain cloud water in its retrieval algorithm (Lebsock 

and L’Ecuyer, 2011). Note that the 2C-RAIN-PROFILE algorithm directly uses the precipitation occurrence flag from 

2C-PRECIP-COLUMN, to define rain events. Thus the probability of precipitation (POP) is the same for both rain products. 

Note that surface rain rates are only retrieved for those pixels that identified as rain certain in 2C-RAIN-PROFILE product 25 

(Lebsock and L’Ecuyer, 2011). Overall, three rain rate datasets in this study are significantly different: rain rate directly 

estimated from 2B-GEOPROF represents the maximum rainfall rate, precipitation from 2C-PRECIP-COLUMN is the 

column-mean rainfall rate, and rain rate from 2C-RAIN-PROFILE stands for surface rainfall rate. 

2.2 Meteorological datasets 

Aerosol-cloud-precipitation interactions and precipitation susceptibility have been shown to depend on cloud regimes 30 
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(L’Ecuyer et al., 2009). Following Klein and Hartmann. (1993), we use the lower-tropospheric static stability (LTSS), which 

is defined as the difference in potential temperature between 700hPa and the surface, to separate different atmosphere 

thermodynamic regimes. In this study, unstable and stable environments are defined as LTSS less than 13.5K and LTSS 

larger than 18K, respectively. Pixels where LTSS between 13.5K and 18K are defined as the mid-stable environment (Wang 

et al., 2012). The European Centre for Medium-Range Weather Forecasts Auxiliary (ECMWF-AUX) product, as an 5 

ancillary CloudSat product that contains temperature and pressure within each CPR bin, is used to calculate LTSS. 

2.3 Precipitation susceptibility calculation 

Following previous studies (Feingold and Siebert, 2009; Sorooshian et al., 2009; Wang et al., 2012; Terai et al., 2012, 

2015), precipitation susceptibility is generally defined as: 

Yd
XdS YX ln

ln
_ −=                                                                          (6) 10 

where X can be substituted by POP (precipitation frequency), I (precipitation intensity), or R (R=POP×I, precipitation rate), 

and Y indicates AI or CDNC. Consequently, six different precipitation susceptibilities can be obtained from the observations 

described above. To constrain cloud macrophysical environment, all samples are sorted according to their LWP values first 

and then divided into 10 LWP bins. The ratio of the number of pixels in each bin to the total pixels ranges from 5% to 14%. 

For each LWP bin, samples are sorted by AI or CDNC, and ten AI/CDNC bins are equally divided to calculate POP, mean I, 15 

R, AI and CDNC within each AI/CDNC bin. Finally, the values of SX_Y are derived by linear regression in log-log space. 

3 Results 

3.1 SX_AI versus SX_CDNC 

SX_AI and SX_CDNC as a function of LWP are shown in Fig. 1. Here LWP from MODIS and rain data from 

2B-GEOPROF with a rain threshold of -15dBZ are used, to better compare with other satellite studies (Terai et al., 2015; 20 

Michibata et al., 2016). Here AI is estimated by using MYD04 dataset and detailed comparison among different aerosol 

products will be discussed in Section 3.2. 

Consistent with previous studies, SX_AI are generally much smaller than SX_CDNC as shown in Fig. 1. SPOP_AI from Wang 

et al. (2012) is less than 0.2 over all LWP bins, while Terai et al. (2015) showed that SPOP_CDNC decreases with increasing 

LWP, ranging from 1 to 0, and SR_CDNC is maintained at around 0.5. Fig. 1b further shows SI_CDNC monotonically increases 25 

with LWP, followed by a slight decrease. Although the SI_CDNC peak (around 0.6 with LWP 350 gm-2) is not significant in 

Fig. 1b, SI_CDNC would decrease distinctly after the peak if the upper bound of LWP and the number of LWP bins both 

increase (not shown). This turning point may correspond to conversion process shifting from the autoconversion to accretion 

regime (Michibata et al., 2016). 
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To account for discrepancy between SX_AI and SX_CDNC, we use the condition probability method (Gryspeerdt et al., 

2016) to explore relationships between AI and CDNC. As Fig. 2a shows, the majority of CDNC values concentrate on the 

intervals between 20 cm-3 to 100 cm-3, representing an upward tendency with increasing AI over global oceans. The similar 

feature of CDNC with AI is also shown in different LTSS conditions (Fig. 2b, 2c and 2d). Note that fluctuation of the curve 

at high AI results from the small number of effective pixels, especially in unstable condition. 5 

To formally account for the relationship between CDNC and AI, SX_AI can be decomposed into two parts: 

AId
CDNCdS

AId
CDNCd

CDNCd
Xd

AId
XdS CDNCXAIX ln

ln
ln

ln
ln
ln

ln
ln

__ =−=−=                               (7) 

where dlnCDNC/dlnAI is the link between SX_AI and SX_CDNC. SX_AI is expected to be smaller than SX_CDNC if 

dlnCDNC/dlnAI is smaller than 1. Fig. 3 shows dlnCDNC/dlnAI over global oceans, which is calculated by log-log linear 

regressions in each MODIS LWP bin. dlnCDNC/dlnAI is smaller than 0.4, which explains why SX_AI is generally smaller 10 

than SX_CDNC. Table 3 further shows the LWP-weighted mean of dlnCDNC/dlnAI, SX_AI, and SX_CDNC over global oceans. 

Our results are consistent with the previous satellite observations. For instance, SPOP_AI is equal to 0.11 in our results 

obtained from AMSR-E LWP, close to the value of 0.12 in Wang et al. (2012), and our SR_CDNC derived from MODIS LWP 

is 0.74, similar to that (0.6) in Terai et al. (2015). Since the global mean dlnCDNC/dlnAI is about 0.3, we would expect SX_AI 

is about one-third of SX_CDNC, according to Eq. (7). Table 3 shows that this relationship is generally true for SPOP, but less so 15 

for SI, especially for SI calculated based on MODIS LWP.  

Table 3 further demonstrates that SR≈SI+SPOP is generally true for different LWP products and over different stability 

regimes, consistent with Terai et al. (2015).  

3.2 SX_AI from different aerosol products 

Now we explore how precipitation susceptibility estimates might be different from different aerosol products (i.e., 20 

MYD04, MYD08 and CAL_LID_L2_05kmALay). As shown in Figure 4, despite differences in their horizontal resolutions 

(10 km versus 1 degree), SX_AI calculated from MYD04 and MYD08 agrees well (Fig. 4a and Fig. 4b), which may result 

from the fact that aerosol layers are likely homogeneous over relatively large spatial scales less than 200 km (Anderson et al., 

2003), especially over global oceans. In addition, McComiskey and Feingold (2012) found that the statistics (i.e., min, max 

and variance) of AOD are constant between MYD04 and MYD08 products over the northeast Pacific Ocean for a given day. 25 

Although not shown here, the probability distributions of AI derived from MYD04 and MYD08 products are qualitatively 

similar over global oceans. In comparison with the results based on MODIS retrievals, SX_AI obtained from CALIOP (Fig. 4c) 

is smaller and relatively flat across all LWP bins. Further test shows that SX_AI using CALIOP AOD but MYD04 AE agrees 

better with that based on MODIS aerosol products (Fig. 4d). This suggests that differences in AE estimates from MODIS 

and CALIOP largely explain the discrepancy between two aerosol products. Previous studies indicate that MODIS and 30 

CALIOP AOD are poorly correlated (e.g., Costantino and Bréon, 2010; Kim et al., 2013; Kittaka et al., 2011; Ma et al., 
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2013). Our results suggest that differences in AOD retrievals can lead to differences in AE estimates and further affect AI 

and precipitation susceptibly estimates. Given that AI from MODIS has been widely used in previous studies for examining 

aerosol-cloud-precipitation interactions, for the rest of the paper, AI from MYD04 is used, unless otherwise stated. 

3.3 SX_Y from different LWP dataset 

   Figure 5 shows the behavior of SPOP and SI based on different LWP data sets (i.e., AMSR-E and MODIS LWP). 5 

Estimates of rain rate and rain events are based on 2B-GEOPROF with -15dBZ threshold as mentioned in Section 2.1.3. 

Here we focus on characteristics of SPOP and SI since SR≈SI+SPOP as mentioned in Section 3.1. As shown in Fig. 5a, 

SPOP_CDNC based on MODIS LWP is similar to that calculated based on AMSR-E LWP. This consistency is also found for 

SPOP_AI. In contrast, SI_CDNC and SI_AI calculated based on two LWP products are quite different (Fig. 5b). SI_CDNC based on 

MODIS LWP are significantly larger than that based on AMSR-E LWP over all LWP bins (see upward triangles in Fig. 5b), 10 

while SI_AI from two LWP products shows an opposite pattern: SI_AI based on MODIS LWP is lower than that based on 

AMSR-E LWP (see downward triangles in Fig. 5b). These features of discrepancies in SI between MODIS and AMSR-E 

LWP are still applicable to SPOP, though the magnitude is much smaller and is not statistically significant (Fig. 5a).  

Fig. 5b shows that LWP value where SI_CDNC peaks based on MODIS LWP is larger than that based on AMSR-E LWP. 

Large eddy simulation analysis by Duong et al. (2011) showed a similar shift in LWP with changing spatial resolutions, 15 

which is attributed to reduction in mean LWP at coarser resolutions. However, Fig. 6 shows that there is no systematic shift 

in the frequency distribution of LWP between two LWP products, regardless of precipitation or non-precipitation samples. 

To better understand the discrepancy in precipitation susceptibility estimates from two LWP products in Fig. 5, we plot 

POP and intensity as a function of CDNC/AI in log space for each LWP bin obtained from MODIS and AMSR-E. Fig. 7a-7d 

shows that the relationships between POP and CDNC (AI) from MODIS LWP are similar to that from AMSR-E LWP. In 20 

contrast, intensity versus CDNC (AI) between two LWP products shows large differences (Fig. 7e-7h). Fig. 7f shows that 

intensity is positively correlated with CDNC at low CDNC for high AMSR-E LWP bins, which helps to explain why SI_CDNC 

from AMSR-E LWP is smaller than that from MODIS, especially at high LWP bins (Fig. 5b). 

Combining Eq. (4) and (5), CDNC from MODIS can be reformulated as a function of LWP and reff: 

35.05.0)( −−= effw rLWPaCDNC ρα                                                          (8) 25 

where α ,  and wρ  are all constant. Accordingly, reff decreases with increasing CDNC for any given MODIS LWP bin, 

and larger CDNC leads to smaller reff, which further results in reduction in precipitation efficiency, as shown in Fig. 7e. The 

CDNC-reff relationship still holds when data is binned by AMSR-E LWP and reff decreases with increasing CDNC even at 

larger LWP AMSRE-LWP bins (Fig. 8a). We would then expect rain intensity still decreases with increasing CDNC for the 

AMSR-E LWP at low CDNC. So then what might lead to increases in precipitation intensity with increasing CDNC at low 30 

a
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CDNC when data are binned according to constant AMSR-E LWP (Fig. 7f)? Our analysis suggests that this might come 

from the discrepancies in two LWP products under low CDNC. Fig. 8b shows that, under constant AMSR-E LWP, MODIS 

LWP significantly varies with CDNC (Fig. 8b). In particular, MODIS LWP rapidly increases with CDNC at low CDNC, 

which might explain why rain intensity increases with increasing CDNC at low CDNC under constant AMSR-E LWP, 

which further leads to much smaller SI_CDNC from AMSR-E LWP. Our results further indicate that rain intensity retrieval 5 

from CloudSat might be more consistent with LWP retrieval from MODIS than that from AMSR-E, as under constant 

AMSR-E LWP, rain intensity increases with increasing MODIS LWP at low CDNC (Fig. 7f and Fig. 8b).  

   It is interesting to note that, for rainy pixels, difference in LWP between MODIS and AMSR-E varies with MODIS 

CDNC. Under constant AMSR-E LWP (larger than 200 g m-2), MODIS LWP dramatically increases with increasing CDNC 

at lower CDNC (< ~25 cm-3). These features are also applicable to non-rainy samples (not shown). Further studies are 10 

needed to understand the aforementioned discrepancy. 

3.4 SX_Y from different rainfall definition 

Given that rainy samples may be dominated by different precipitation process (e.g., autoconversion vs. accretion 

process) with increasing threshold for defining a rainfall event (Jung et al., 2016), precipitation susceptibility may be 

changed when we apply different rainfall thresholds. To examine this, we plot SPOP and SI under different thresholds (i.e., 15 

-15dBZ and 0dBZ of maximum radar reflectivity) used to define a rain event based on 2B-GEOPROF products. These 

thresholds of -15dBZ and 0dBZ correspond to approximately precipitation rate of 0.14 and 2 mm d-1, respectively (Comstock 

et al., 2004). Hence, precipitation susceptibilities under these two thresholds can be referred to as drizzle (> -15 dBZ) and 

rain (> 0 dBZ) susceptibilities. As Fig. 9 indicates, difference in SX_AI between drizzle and rain is, at first glance, less evident 

compared to SX_CDNC. This can be partly attributed to the low values of SX_AI themselves. Relative differences in SX_AI are 20 

even larger than that of SX_CDNC at low AMSR-E LWP (not shown). Fig. 9a and Fig. 9c show that rain SPOP_AI is higher than 

that of drizzle over most LWP bins, which is consistent with results from Wang et al. (2012).  

Rainfall definition significantly impacts SPOP_CDNC and SI_CDNC: increasing the threshold results in reduction of SI_CDNC 

over all LWP and, by contrast, leads to distinctly increase in SPOP_CDNC, especially at moderate LWP (see Fig. 9). These 

overall changes in SI_CDNC and SPOP_CDNC after increasing the threshold are consistent with Terai et al. (2015). The 25 

observational result from Mann et al. (2014) have also shown an evident increase in SPOP with respect to NCCN at high LWP 

with increasing thresholds. The systematic increase in SPOP_CDNC may result from larger proportion of non-drizzling samples 

with increasing threshold. The reduction of SI_CDNC is in agreement with previous studies (Duong et al., 2011; Jung et al., 

2016). Although not shown here, for a fixed threshold, there is no significant discrepancy between the results of SI_CDNC and 

SR_CDNC based on different Z-R relationships (Z=25R1.3 and Z=302R0.9 are used both from Comstock et al. 2004, which aim 30 

at cloud base and surface rain rate, respectively), which is consistent with the result from Terai et al. (2012).  
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Overall, our results show that SPOP and SI are both sensitive to the rainfall definition and that SPOP is greater for rain while 

SI is greater for drizzle. Our results further imply that onset of drizzle is not as readily suppressed in warm clouds as rainfall 

(i.e., SPOP is greater for rain than for drizzle). By contrast, SR is not affected by the rainfall definition since the mean rain rate 

R for a given LWP/CDNC or LWP/AI bin is calculated based on both rainy and non-rainy clouds and does not depend on 

rainfall thresholds (not shown). 5 

While the response of precipitation susceptibility to change in threshold shows the same pattern between MODIS and 

AMSR-E LWP (Fig. 9), the extent to which susceptibility changes with increasing threshold is quite different between these 

LWP products. Overall, sensitivity of SX_CDNC to different thresholds using MODIS LWP is larger than that based on 

AMSR-E LWP; this pattern is opposite for SX_AI. It is interesting to note that while the difference in SPOP between MODIS 

and AMSR-E LWP is small with the -15dBZ threshold (Fig. 5; Fig. 9a and Fig. 9c), the difference is relatively larger for the 10 

0 dBZ threshold (Fig. 9a and Fig. 9c), especially at larger LWP bins.  

3.5 SX_Y from different precipitation data sets 

The diverse rain data sets allow us to explore differences in precipitation susceptibility estimates from different rain 

products. In Fig. 10, we illustrate SPOP and SI for different rain data sets, namely, 2B-GEOPROF, 2C-PRECIP-COLUMN 

and 2C-RAIN-PROFILE (Marchand et al., 2008; Haynes et al., 2009; Lebsock and L’Ecuyer, 2011) products. Here we use 15 

LWP derived from MODIS and use “rain certain” flag for rain definition reported in the latter two rain products. Since the 

precipitation flags used in these two rain products are identical (Lebsock and L’Ecuyer, 2011), only SPOP based on 

2C-PRECIP-COLUMN is plotted in Fig. 10. For 2B-GEOPROF, the threshold of 0dBZ radar reflectivity is used to define a 

rain event and rain rate is estimated by using Z=25R1.3 suggested by Comstock et al. (2004). Note that using “rain certain” 

flag or threshold of 0 dBZ to identify rain event for those rain products would result in a reduction of rain events across all 20 

LWP bins, especially at low LWP bins, therefore we expand bounds of low LWP bins to include enough rain samples at low 

LWP bins.  

SPOP exhibits a similar dependence on LWP among these three rain products, but SPOP based on 2B-GEOPROF is 

systematically larger than that based on 2C-PRECIP-COLUMN (this is also true for SI). It is unclear what might lead to 

higher SPOP and SI from 2B-GEOPROF. The vertical structure of clouds may play a role here, as the maximum radar 25 

reflectivity is used from 2B-GEOPROF and surface rain rates are used from the other products.  

The most significant discrepancy occurs in SI_CDNC and SI_AI (see Fig. 10b). Fig. 10b shows that SI_CDNC and SI_AI are 

both near-zero for LWP <400 g m-2, which may be attributed to high thresholds used among the three rain products. This 

indicates that precipitation intensity with high threshold is insensitive to CDNC and AI at moderate LWP. This result is 

consistent with Terai et al. (2015) who suggested that heavy drizzle intensity is insensitive to CDNC. As Fig. 10b shows, 30 

SI_CDNC based on 2C-RAIN-PROFILE product (red squares in Fig. 10b) with subcloud evaporation model incorporated is 
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higher than that based on 2C-PRECIP-COLUMN product (blue squares in Fig. 10b) at high LWP (above 300 gm-2). Hill et al. 

(2015) showed that, when considering rain evaporation, SI_CDNC based on surface rain rate is larger than that based on cloud 

base and column max rain rate at LWP > 400 gm-2. However, their difference is more obvious than our results, which may 

result from threshold used (0.01 mm day-1 in Hill et al. (2015) versus surface the 0 dBZ in 2C-RAIN-PROFILE and 

2C-PRECIP-COLUMN products). It is interesting to note that the sign of SI_CDNC at large LWP is different from that of SI_AI 5 

(Fig. 10b), which is not true for AMSR-E LWP (not shown). This warrants further investigation in the future.  

3.6 SX_Y under different stability regimes 

Here we examine precipitation susceptibility under different atmospheric stability regimes, as 

aerosol-cloud-precipitation interactions have been shown to differ under different stability regimes (e.g., L’Ecuyer et al., 

2009; Zhang et al., 2016; Michibata et al., 2016). Based on MODIS LWP and 2B-GEOPROF product with -15 dBZ 10 

threshold, Fig. 11a and Fig. 11b suggest that both SPOP and SI increase with more stable environment. This pattern for SPOP is 

consistent with the findings of L’Ecuyer et al. (2009) who showed that suppression of precipitation was largest at lower 

LWP in stable environments. Terai et al. (2015) also found maximum SPOP_CDNC occurred in regions where stable regime was 

predominant. The distribution of the precipitation susceptibility with respect to LTSS and LWP shown in Fig. 12 using 

2B-GEOPROF product with the -15 dBZ rain threshold is consistent with Fig. 11a and Fig. 11b: SPOP increases with 15 

increasing LTSS with the exception of high LWP. Although not shown here, SPOP_AI based on 2C-PRECIP-COLUMN and 

AMSR-E LWP product produces a similar pattern with the result of L’Ecuyer et al. (2009), who showed the slope between 

POP and AI is small both at low and high LWP, but this magnitude tends to increase at intermediate LWP and high LTSS. 

Rain definition significantly affects spread of SPOP and SI under different stability regimes. As rain threshold increases, 

the discrepancy in SPOP among different LTSS conditions is more significant (Fig. 11c versus Fig. 11a) while discrepancy in 20 

SI becomes smaller. LTSS-dependence of SI is even reversed at low LWP with the 0 dBZ threshold compared to that using 

the -15 dBZ threshold (Fig. 11d versus Fig. 11b).  

The above-mentioned features of LTSS-dependency are also true in terms of LWP-weighed mean value, as shown in 

Fig. 13. For all those cases based on different rain products and LWP products, the LWP-weighed mean of SPOP is generally 

larger under stable conditions compared with unstable conditions. Yet, this feature does not hold true for SI except the case 25 

based on the 2B-GEOPROF dataset with the -15 dBZ threshold. Our results also suggest that it is important to account for 

the influence of atmospheric stability owing to the clear dependence of SPOP on metrics like LTSS, though it is 

acknowledged that LTSS alone is an imperfect metric for isolating cloud regimes (e.g., Nam and Quaas, 2013). Different 

metrics associated with cloud regimes should be examined in future to better understand the effect of cloud regimes on 

precipitation susceptibility. For instance, LTSS can be combined with vertical pressure velocity to distinguish between 30 

different cloud types (Zhang et al., 2016). 
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4 Discussion 

Fig. 14 shows the range of precipitation susceptibility estimated from different LWP and rain products. Here the 

threshold of 0dBZ of maximum radar reflectivity is used for 2B-GEOPROF product and the “rain certain” flag is used for 

2C-PRECIP-COLUMN and 2C-RAIN-PROFILE products. It shows that uncertainties in SPOP (Fig. 14a) as a result of using 

different LWP and/or rain products are smaller than the uncertainties associated with SI and SR (Fig. 14b and c). The 5 

uncertainties in SPOP are mainly attributed to different LWP products as described in Section 3.4 (see red symbols in Fig. 9a 

and Fig. 9c). 

Our results may help to reconcile some of the differences in previous estimates of precipitation susceptibility. For 

example, our results show that SX_AI≈0.3SX_CDNC(Table 3 and Fig. 1), which explains why SPOP_CDNC in Terai et al. (2015) is 

much larger than SPOP_AI in Wang et al., (2012). Previous studies are also different in how precipitation susceptibility varies 10 

with increasing LWP. Our results show that SI generally increases with LWP at low and moderate LWP and then decreases 

with increasing LWP at moderate and high LWP, consistent with results from Feingold et al., (2013), Michibata et al., (2016) 

and Jung et al., (2016). The monotonic increase of SI_CDNC with increasing LWP in Terai et al., (2015) is mainly because that 

the LWP range in their study is relatively narrow (from 0 to ~400 g m-2) and our results suggest that when the upper bound 

of LWP is extended to ~800 g m-2, the “descending branch” (S decreases with increasing LWP) noted in Feingold et al. 15 

(2013) appears, though the exact LWP value where SI_CDNC peaks depend on LWP and rain products used as well as the 

rainfall threshold choices. 

Interestingly, SI tends to be negative at low LWP both for AMSR-E and MODIS LWP (Fig. 5b). This is closely 

associated with positive correlation between conditional-mean rainfall intensity and CDNC (AI) at low LWP bins where 

CDNC (AI) is high (Fig. 7e-7h). More negative values are captured when SI is estimated using 2C-PRECIP-COLUMN and 20 

2C-RAIN-PROFILE products and using high rainfall thresholds (Fig. 9b, Fig. 9d, Fig. 10b and Fig. 13). Furthermore, based 

on these rain products, SI_CDNC is all negative at low and intermediate LWP regardless of the LWP dataset used (Fig. 10b) 

and almost all of mean SI_CDNC is significantly negative regardless of stability regimes (Fig. 13). Depending on LWP 

products adopted, using AI instead of CDNC in estimating SI can make it less negative (for AMSR-E LWP) or more 

negative (for MODIS LWP) (Fig. 13). Terai et al. (2015) also found negative values of SI_CDNC at low LWP and high CDNC. 25 

In their study, sign and/or magnitude of SI_CDNC at low LWP are distinct across different regions. In addition, Koren et al. 

(2014) found a positive relationship between AOD and rain rate over pristine areas with warm and aerosol-limited clouds, 

which was attributed to aerosol invigoration effect. As SI shows large differences under different stability regimes (Fig. 13), 

it would be highly interesting to analyze regional variation in SI to further understand negative SI in the future, especially 

under unstable regimes.  30 

Furthermore, our results show that drizzle intensity is more susceptible to aerosol perturbations than rain intensity (see 
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Fig. 9b and Fig. 9d), which might help to explain why negative values of SI_CDNC occur more frequently with increasing 

rainfall thresholds. Jung et al. (2016) found more negative values of SI_CDNC with increasing threshold (see Fig. B2 in Jung et 

al. (2016)). In addition, rain products used in our study are all derived from CPR onboard CloudSat. With increasing 

thresholds, rainfall becomes heavy and uncertainty in rain rate retrieval can grow as CPR is insensitive to heavy precipitation 

(Haynes et al., 2009). So combination of different rain satellite products (e.g., CloudSat and TRMM) would be helpful for 5 

better understanding negative SI. 

It should be noted that precipitation susceptibility in our study is based on Eq. (7) and is derived by linear regression 

between precipitation fields and CDNC/AI in log-log space. The negative/positive correlation between precipitation 

frequency/intensity and aerosols may not be readily explained as aerosol effects on precipitation. For example, a negative 

correlation between precipitation frequency and aerosols may come from the wet scavenging effects of aerosols (more 10 

precipitation leads to less aerosols) but not aerosol suppression of precipitation. However, in our study, we not only calculate 

precipitation susceptibility with respect to AI (SX_AI), but also with respect to CDNC (SX_CDNC) and the later one is expected 

to be less affected by the wet scavenging effects. The broad consistency between these two estimates shown in our results 

(Fig. 13), especially for the estimate of SPOP, lends the support to the limited influence of wet scavenging in our estimate. 

Further support for this comes from the fact that precipitation susceptibility estimates based on the 1 degree L3 MODIS 15 

aerosol products are similar to those based on the 10 km L2 MODIS aerosol products (Fig. 4), as we would expect the wet 

scavenging effects are more important at smaller scales if the wet scavenging effects are a dominating factor. Nevertheless, 

the effects of wet scavenging can still be important in satellite studies of aerosol-cloud-precipitation interactions, and should 

be better quantified in future, perhaps in combination with model simulations.  

5 Summary 20 

In this paper, we estimate precipitation susceptibility on warm clouds over global oceans based on multi-sensor aerosol 

and cloud products from the A-Train satellites, including MODIS, AMSR-E, CALIOP and CPR observations, covering the 

period June 2006 to April 2011. In addition to different aerosol, cloud and rain products, we also analyze other factors that 

have potential influence on susceptibility, such as different definitions of precipitation susceptibility (six different 

susceptibilities defined by Eq. (6)), stability regimes, and different thresholds for defining a rain event (i.e., -15dBZ and 25 

0dBZ of maximum radar reflectivity for 2B-GEOPROF). The primary goal of the study is to quantify uncertainties in 

precipitation susceptibility estimates from satellite observations.  

In general, SPOP is a relatively robust metric throughout different LWP and rain products and its estimate is less 

sensitive to different datasets used (Fig. 13-14). SPOP_CDNC shows overall a monotonic decreasing trend with respect to LWP.  

SPOP_AI increases to a maximum at low LWP and then decreases with higher LWP. In contrast, SI differs considerably among 30 
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different LWP and rain products (Fig. 13-14). Interestingly, SI_CDNC and SI_AI differ between those LWP products with 

opposite pattern: SI_CDNC based on MODIS LWP is higher than that using AMSR-E LWP and the reverse is true for SI_AI (Fig. 

13). Negative SI is found in our study, especially at low LWP. However, the extent of negative SI depends on LWP and rain 

products, rainfall thresholds, and whether SI is calculated with respect to AI or CDNC (Fig. 13). More negative values are 

found when SI is calculated based on 2C-PRECIP-COLUMN and 2C-RAIN-PROFILE products, and SI based on rain 5 

samples (with 0 dBZ threshold) tends to be more negative. Further studies (regional variation in SI, combination of different 

rain satellite products, etc.) are needed to understand this issue. 

Precipitation susceptibility for drizzle (with -15 dBZ rainfall threshold) is significantly different from that for rain (with 

0 dBZ rainfall threshold) (Fig. 9 and Fig. 13). Our results suggest that onset of drizzle is not as readily suppressed by 

increases in AI or CDNC in warm clouds as rainfall (i.e., SPOP is smaller for drizzle than for rain, especially at moderate 10 

LWP, Fig. 9). This may partly come from the fact that POP of drizzle is close to 100% at moderate and high LWP regardless 

of CDNC or AI values (Fig. 7a-d), which makes it insensitive to perturbations in CDNC or AI and results in smaller SPOP at 

these LWP bins compared with SPOP for rain (Fig. 9). On the other hand, precipitation intensity susceptibility is generally 

smaller for rain than for drizzle. This is consistent with our expectation that when precipitation intensity increases, accretion 

contributes more to the production of precipitation, which makes precipitation intensity less sensitive to perturbation in 15 

CDNC or AI, as accretion is less dependent on CDNC compared with autconversion (Feingold et al., 2013; Wood, 2005). In 

addition, the extent of these differences between drizzle and rain depends on the LWP products used.  

SX_AI based on aerosol products at different spatial resolutions (i.e., 10 km versus 1 degree) is consistent with each other. 

Chen et al. (2014) also found that aerosol indirect forcing derived from satellite observations was similar from AI 

observations at different resolutions (i.e., 20 km versus 1 degree). This suggests that aerosol layers over oceans are relatively 20 

homogeneous, implying that aerosol properties at coarse resolution may be suitable for studying aerosol-cloud interactions 

over oceans. 

SPOP strongly depends on LTSS, with larger values under more stable environment. This dependence is evident over all 

LWP bins, especially at low and moderate LWP bins and is more significant for rain than for drizzle (Fig. 11 and Fig. 13). 

These features, however, are less robust for SI throughout different LWP and rain products as SI estimates show large 25 

uncertainties from different datasets (Fig. 13). Only in the case of SI estimated from 2B-GEOPROF product for drizzle (with 

-15 dBZ threshold), does the LTSS-dependence of SI hold for both MODIS and AMSR-E LWP. The pattern of SPOP_AI under 

different stability conditions from our paper (Fig. 13b and Fig. 13f) is consistent with the findings of L’Ecuyer et al., (2009). 

In addition, Terai et al., (2015) found maximum SPOP_CDNC occurred in regions where stable regime is predominant. Lebo and 

Feingold (2014) calculated precipitation susceptibility for stratocumulus and trade wind cumulus using large-eddy 30 

simulations (LES) and included an overview of precipitation susceptibility estimates based on LES in the literature. However, 

their results focus on the relationship between precipitation susceptibility and cloud water response to aerosol perturbations, 
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and did not examine how precipitation susceptibility might be different for clouds under different cloud regimes. The 

physical mechansims behind the strong dependence of SPOP on stability are still unclear and warrant further investigation in 

the future. 	

The results presented here show that the discrepancy in magnitude between SX_AI and SX_CDNC can be mainly attributed 

to the dependency of CDNC on AI. On the global scale, our results show that SX_AI is about one-third of SX_CDNC. This 5 

relationship is more applicable to SPOP, and is less applicable to SI. In addition, SR≈SI+SPOP is generally true for different 

LWP products and over different LTSS conditions. 

As SPOP demonstrates relatively robust features across different LWP and rain products, this makes it a valuable metric 

for quantifying aerosol-cloud-precipitation interactions in observations and models. For instance, it would be highly 

interesting to examine why SPOP strongly depends on atmospheric stability and how well this dependence is represented in a 10 

hierarchy of models (e.g., large eddy simulations, cloud resolving models, regional climate models, and global climate 

models). We also note that SPOP_CDNC is generally less uncertain compared to SPOP_AI and that a relatively robust relationship 

between SPOP_CDNC and SPOP_AI exists (i.e., SX_AI≈0.3SX_CDNC) (Fig. 13 and Table 3). Given that aerosol retrievals near clouds 

are still challenging and aerosol-cloud relationships in satellite observations can be affected by aerosol retrieval 

contaminations from clouds, we recommend to first thoroughly quantify SPOP_CDNC in observations and models. As SPOP_CDNC 15 

is derived based on CDNC instead of AI, SPOP_CDNC is also not influenced by wet scavenging. Only after SPOP_CDNC is 

thoroughly quantified, we can then combine it with how CDNC depends on AI to better quantify SPOP_AI. 

On the other hand, SI estimates strongly depend on satellite retrieval products. Uncertainties in SI estimate are 

particular large when SI is estimated based on rain samples (> 0 dBZ) rather than drizzle samples (> -15 dBZ). It would then 

be desirable to use drizzle samples to estimate SI. However, satellite retrieval of precipitation rate for drizzle can be highly 20 

uncertain. It is therefore recommended to further improve the retrieval accuracy of precipitation rate for drizzle in satellite 

observations in order to better use satellite estimate of SI to quantify aerosol-cloud precipitation interactions. Alternatively, 

long-term ground and in-situ observations with high accuracy precipitation rate retrievals can be used to provide better 

estimate SI and to further quantify aerosol-cloud-precipitation interactions.  
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Table 1. The summary of previous satellite studies for estimating precipitation susceptibility.  

Studies 
Rain 

variables 
Aerosol 
Proxies 

Thresholds Behavior Satellite datasets 

Sorooshian et 
al., 2009 

I AI surface 1mm h-1  SI:↗↘ 
2C-PRECIP-COLUMN 
AMSR-E L2B-Ocean 

MYD08-D3  

Wang et al., 
2012 

POP AI rain certaina SPOP<0.2 
2C-PRECIP-COLUMN 
AMSR-E L2B-Ocean 

MYD08-D3 

Terai et al., 
2015 

R/POP/I CDNC -15dBZ of Zmax
b 

SR: ↘ 
SPOP:↘ 
SI:↗ 

2B-GEOPROF 
MYD06_L2 

Michibata et 
al., 2016 

I CDNC -15dBZ of Zmax
b SI:↗↘ 

2B-GEOPROF 
MYD06_L2 

aRain certain is a flag of 2C-PRECIP-COLUMN product, which is equivalent to greater than attenuation-corrected 
reflectivity threshold of 0dBZ.  
bZmax: the maximum column radar reflectivity from the 2B-GEOPROF product. Symbols of ↗ (↘) represent the increasing 
(decreasing) trend of susceptibility with increasing LWP. 
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Table 2. Satellite products employed to estimate aerosol and cloud properties in this study 

Parameter Product Subset Horizontal resolution Sensor Satellite 

AI 

MYD08_D3 
Aerosol_Optical_Depth_Land_Ocean_Mean 

1° 

MODIS AQUA 
Aerosol_AE1_Ocean_JHisto_vs_Opt_Depth 

MYD04_L2 
Optical_Depth_Land_And_Ocean 

10km 
Angstrom_Exponent_1_Ocean 

CAL_LID_L2_05kmALay 
Column_Optical_Depth_Aerosol_532 

5km CALIOP CALIPSO 
Column_Optical_Depth_Aerosols_1064 

CDNC/LWP MYD06_L2a 
Cloud_Effective_Radius 

5km MODIS AQUA 
Cloud_Optical_Thickness 

LWP AE_Ocean_L2B High_res_cloud 12km AMSR-E AQUA 

POP/R 

2B-GEOPROFa 
CPR_Cloud_mask 

5km 

CPR CloudSat 

Radar_Reflectivity 

2C-PRECIP-COLUMN 
Precip_rate 

1.4km×1.7km 
Precip_flag 

2C-RAIN-PROFILE 
Rain_rate 

Precip_flag 
aThe original horizontal resolution of MYD06_L2 and 2B-GEOPROF products is 1km and 1.4km×1.7km, respectively. 
Since these products both are obtained from caltrack product collocated to CALIOP subtrack, the resolution is resampled to 
5km. Detailed information is provided by the website (http://www.icare.univ-lille1.fr/projects/calxtract/products). 
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Table 3. The LWP weighted-mean values of precipitation susceptibility Sx_y and dlnCDNC/dlnAI over global oceans under 

different stability regimes. The statistics is based on 2B-GEOPROF/CPR product using cloud base Z-R relationship and -15dBZ 

threshold. 

 
 

SR_AI SI_AI SPOP_AI SR_CDNC SI_CDNC SPOP_CDNC dlnCDNC/dlnAI 

MODIS LWP 

global 0.05  -0.02  0.08  0.74  0.47  0.44  0.28  

unstable -0.04  -0.09  0.04  0.52  0.30  0.26  0.22  

stable 0.22  0.13  0.12  0.84  0.48  0.60  0.30  

midstable 0.01  -0.05  0.07  0.66  0.39  0.35  0.29  

AMSR-E 

LWP 

global 0.17  0.07  0.11  0.47  0.16  0.37  0.32 

unstable 0.14  0.06  0.08  0.21  0.04  0.18  0.25 

stable 0.29  0.17  0.15  0.67  0.23  0.55  0.33 

midstable 0.13  0.04  0.10  0.40  0.13  0.29  0.34 
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Figure 1. SPOP, SI and SR as a function of MODIS LWP with (a) AI and (b) CDNC. Red squares, green upward triangles and blue 

downward triangles stand for SR, SPOP and SI, respectively. Error bars are based on 95% confidence intervals for the susceptibility 

estimates. AI is derived from MYD04/MODIS and CDNC is estimated from MYD06/MODIS. Intensity and probability of 

precipitation are based on 2B-GEOPROF product with -15dBZ threshold. The total amount of data samples for left panel and 

right panel are about 2.1 and 3.1 million.  
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Figure 2. The probability of CDNC under given AI over (a) global ocean, (b) unstable, (c) stable and (d) mid-stable conditions. In 

each figure, the red line represents change in average CDNC with AI, and the lower and upper lines stand for mean CDNC for 25 

percentile and 75 percentile of samples. AI and CDNC are estimated from MYD04 and MYD06, respectively. 
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Figure 3. dlnCDNC/dlnAI obtained by linear regression of lnCDNC and lnAI under MODIS LWP bins. Red line denote global 

ocean. Green, blue and cyan stand for unstable, stable and mid-stable condition, respectively. AI and CDNC are estimated from 

MYD04 and MYD06. 
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Figure 4. Susceptibilities (SX_AI) as a function of MODIS LWP. Rain product used is the same as Figure 1. AI is derived from (a) 

MYD04/MODIS, (b) MYD08/MODIS and (c) CAL_LID_L2_05kmALay/CALIOP product. Panel d is the same as panel c but 

using MYD04 AE.  
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Figure 5. (a) SPOP_Y and (b) SI_Y as a function of LWP. The subscript Y denotes different aerosol proxies corresponding to AI 

(downward triangles) and CDNC (upward triangles). Blue (red) represent LWP derived from MODIS (AMSR-E). Rain product 

used is the same as Figure 1. AI and CDNC are estimated from MYD04 and MYD06, respectively.  
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Figure 6. Distribution of frequency of LWP derived from MODIS and AMSR-E under different scenarios, namely, all samples, 

nonprecipitation and only precipitation samples.  
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Figure 7. POP and I as a function of CDNC (AI) for each LWP bin obtained from (left) MODIS and (right) AMSR-E. The data 

used here is the same as Figure 5. 
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Figure 8. (a) reff and (b) MODIS LWP as a function of CDNC for each AMSR-E LWP bin. Only rainy samples defined by -15dBZ 

threshold are used in here. Different color lines represent different AMSR-E bins corresponding to Fig. 7f.  
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Figure 9. (a, c) SPOP_Y and (b, d) SI_Y as a function of LWP. The subscript y denotes different aerosol proxies corresponding to AI 

(downward triangles) and CDNC (upward triangles). 2B-GEOPROF product is used here. Blue and red symbols represent -15dBZ 

threshold and 0dBZ threshold, respectively. The top and bottom panels stand for MODIS and AMSR-E LWP, respectively.  
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Figure 10. (a) SPOP_Y and (b) SI_Y as a function of MODIS LWP. The subscript Y denotes different aerosol proxies corresponding 

to AI (point) and CDNC (square). Different color symbols stand for different rain products: 2B-GEOPROF (2B-GEOP, green), 

2C-PRECIP-COLUMN (2C-COLU, blue) and 2C-RAIN-PROFILE (2C-PROF, red). See text for further details. 
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Figure 11. (a, c) SPOP_Y and (b, d) SI_Y as a function of MODIS LWP. The subscript y denotes different aerosol proxies 

corresponding to AI (point) and CDNC (square). Blue, red and green symbols stand for stable, unstable and mid-stable regimes, 

respectively. Rain data comes from 2B-GEOPROF. The top panels are for results based on the rain threshold of -15 dBZ and the 

bottom panels are based on the rain threshold of 0 dBZ. 
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Figure 12. Distribution of (a-b) SPOP_Y and (c-d) SI_Y as a function of MODIS LWP and LTSS. Rain data is from 2B-GEOPROF 

with threshold of -15dBZ. Each LTSS bin contains on average the same amount of pixels. 
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Figure 13. The LWP-weighed mean values of (a-b, e-f) SPOP and (c-d, g-h) SI under different stability regimes for four cases. The 

case1 and case2 are both based on 2B-GEOPROF product, but use threshold of -15 dBZ and 0 dBZ, respectively. The case3 and 

case4 use 2C-PRECIP-COLUMN and 2C-RAIN-PROFILE products, respectively. The top two panels use MODIS LWP and the 

bottom two panels use AMSR-E LWP. Error bars are based on the LWP-weighed mean values of 95% confidence intervals for the 

susceptibility estimates. 
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Figure 14. (a) SPOP_Y, (b) SI_Y and (c) SR_Y as a function of LWP. The subscript y denotes different aerosol proxies corresponding to 

AI (light green) and CDNC (light blue). Shade areas show the range of precipitation susceptibility from different rain products 

(same as the Fig. 10) and different LWP products (MODIS and AMSR-E). 

 


