
We	are	grateful	to	the	evaluations	from	the	reviewers,	which	have	allowed	
us	to	clarify	and	improve	the	manuscript.	Below	we	addressed	the	reviewer	
comments,	with	the	reviewer	comments	in	italic	and	our	response	in	bold.	 	
	
J.Quaas	(Referee	#1)	
	
Received	and	published:	7	November	2017	
	
Bai	 et	 al.	 present	 a	 comprehensive	 calculation	 of	 statistics	 of	 precipitation	 vs.	
aerosol	 index/cloud	 droplet	 concentration	 from	 A-Train	 satellite	 retrievals.	 The	
document	 differences	 in	 the	 linear	 regression	 metrics	 when	 applying	 different	
(microwave	 vs.	 visible-near	 infrared)	 LWP	 retrievals;	 different	 precipitation	
retrievals	(albeit	all	 from	CloudSat),	different	aerosol	metrics	(aerosol	 index	from	
different	 retrievals	 vs.	 cloud	 droplet	 number	 concentration	 estimates),	 and	
different	thresholds.	
	
Although	 this	 work	 does	 not	 provide	 breakthrough	 science	 itself,	 documenting	
these	differences	in	a	consistent	way	is	useful	to	the	debate.	The	study	is	in	general	
performed	diligently	and	is	pertinent	to	ACP	
	
I	have	two	main	modifications	I	recommend,	and	several	specific	comments.	 	
I	 have	 not	 highlighted	 semantic	 or	 orthographic	 mistakes	 since	 I	 assume	 the	
Copernicus	copy	editing	will	take	care	of	this.	
	
Main	remarks:	
1.	The	authors	should	expand	their	discussion	of	the	state	of	the	art,	especially	they	
need	 to	 discuss	 the	 various	 other	 aerosol-precipitation	 interactions	 beyond	 the	
“lifetime	 effect”.	 It	 is	 in	 particular	 necessary	 that	 the	 authors	 discuss	 the	 role	 of	
aerosol	scavenging	when	interpreting	the	metrics	they	investigate.	
Thanks	for	your	comments!	We	now	added	more	discussion	in	Section	4	to	
acknowledge	 aerosol-precipitaiton	 interactions	 beyond	 the	 “lifetime	
effects”,	and	it	reads:	“It	should	be	noted	that	precipitation	susceptibility	in	
our	study	is	based	on	Eq.	(7)	and	is	derived	by	linear	regression	between	
precipitation	 fields	 and	 CDNC/AI	 in	 log-log	 space.	 The	 negative/positive	
correlation	 between	 precipitation	 frequency/intensity	 and	 aerosols	 may	
not	be	readily	explained	as	aerosol	effects	on	precipitation.	For	example,	a	
negative	 correlation	 between	 precipitation	 frequency	 and	 aerosols	 may	
come	from	the	wet	scavenging	effects	of	aerosols	(more	precipitation	leads	
to	less	aerosols)	but	not	aerosol	suppression	of	precipitation.	However,	in	
our	study,	we	not	only	calculate	precipitation	susceptibility	with	respect	to	
AI	 (SX_AI),	 but	 also	 with	 respect	 to	 CDNC	 (SX_CDNC)	 and	 the	 later	 one	 is	
expected	 to	 be	 less	 affected	 by	 the	 wet	 scavenging	 effects.	 The	 broad	
consistency	 between	 these	 two	 estimates	 shown	 in	 our	 results	 (Fig.	 13),	
especially	 for	 the	 estimate	 of	 SPOP,	 lends	 the	 support	 to	 the	 limited	



influence	of	wet	scavenging	in	our	estimate.	Further	support	for	this	comes	
from	 the	 fact	 that	 precipitation	 susceptibility	 estimates	 based	 on	 the	 1	
degree	L3	MODIS	aerosol	products	are	similar	to	those	based	on	the	10	km	
L2	MODIS	aerosol	products	(Fig.	4),	as	we	would	expect	the	wet	scavenging	
effects	 are	more	 important	at	 smaller	 scales	 if	 the	wet	 scavenging	effects	
are	a	dominating	factor.	Nevertheless,	the	effects	of	wet	scavenging	can	still	
be	important	in	satellite	studies	of	aerosol-cloud-precipitation	interactions,	
and	 should	 be	 better	 quantified	 in	 future,	 perhaps	 in	 combination	 with	
model	simulations.”.	 	
	
2.	 I	 am	a	 bit	 astonished	 on	 how	 rather	 poorly	 the	 figures	 are	 done.	 The	 authors	
should	take	care	revising	these	so	that	the	content	is	more	readily	understandable.	
Thanks	 a	 lot	 for	 your	 suggestions!	 We	 have	 revised	 most	 figures	 in	 the	
paper	according	to	the	comments	provided	by	two	referees.	This	includes	
adding	 95%	 confidence	 intervals	 and	 zero	 lines	 to	 most	 figures,	 and	
narrowing	the	range	of	y-axis	in	most	figures.	 	 	
	
Specific	remarks	
1.	P1	 l15:	Here	and	at	 a	plenty	 of	 instances	 in	 the	 text,	 the	 relationship	between	
aerosol	 and	 precipitation	 derived	 from	 the	 observations	 is	 overly	 readily	
interpreted	in	a	cause-effect	manner.	If	only	this	science	was	so	easy,	then	a	plenty	
of	issues	wouldn’t	exist.	I	urge	the	authors	to	thoroughly	revise	their	text	and	imply	
causality	 only	 where	 they	 can	 prove	 it,	 or	 at	 least	 where	 they	 can	 corroborate	
cause-effect	 relationships.	 Why	 not	 interpret	 a	 negative	 aerosol	 index	 –	 POP	
relationship,	 for	 example,	 as	 showing	 the	 wet	 scavenging	 precipitation	 effect	 on	
aerosol?	
The	sentence	 is	now	reformulated	 to	 "We	 find	 that	SPOP	 strongly	depends	
on	 atmospheric	 stability,	 with	 larger	 values	 under	 more	 stable	
environments".	We	have	added	more	discussion	in	Section	4	for	addressing	
this	issue.	See	our	reply	to	your	main	remaks#1.	 	
	
2.	 P1	 l26:	 I	 suggest	 the	 authors	 adapt	 to	 the	 IPCC	 AR5	 language	 and	 define	 the	
radiative	 forcing	 due	 to	 aerosol-cloud	 interactions	 (“cloud	 albedo	 effect”)	 and	
cloud	adjustments	 (all	 subsequent	modifications).	 It	 is	necessary	 that	 the	authors	
put	 the	 “cloud	 lifetime	 effect”	 hypothesis	 into	 context	 of	 the	 manifold	 other	
hypotheses.	
Thanks	for	this	suggestion!	We	now	adapted	the	IPCC	AR5	language	in	the	
manuscript.	The	text	 in	 the	 first	paragraph	of	 the	 introduction	now	reads	
"Aerosol-cloud	 interactions	 play	 an	 important	 role	 in	 the	 climate	 system	
and	 affect	 the	 global	 energy	 budget	 and	 hydrological	 cycle.	 The	 effective	
radiative	forcing	from	aerosol-cloud	interactions	(ERFaci),	which	includes	
the	 instantaneous	 effect	 on	 cloud	 albedo	 from	 changes	 in	 cloud	
condensation	 nuclei	 (CCN)	 or	 ice	 nuclei	 and	 all	 subsequent	 changes	 to	
cloud	 lifetime	 and	 thermodynamics,	 remains	 one	 of	 the	 largest	



uncertainties	in	our	estimates	of	anthropogenic	radiative	forcing	(Boucher	
et	al.,	2013).”	We	also	removed	all	other	references	to	“cloud	lifetime	effect”	
in	 the	 manuscript	 and	 replaced	 it	 by	 “cloud	 water	 response	 to	 aerosol	
perturbations”.	 	
	
3.	P2	l4:	Also,	the	relationship	would	need	to	be	linear	(or	more	generally,	of	known,	
universal,	monotonic	functional	form).	
Thanks!	We	agree	and	now	removed	this	sentence.	 	
 
4.	P4	l17:	But	L3	is	at	1◦,	so	far	from	the	stated	5	km	resolution.	
We	are	sorry	for	the	confusion	here.	We	now	further	clarified	in	the	revised	
manuscript	 about	 how	 the	 collocation	 among	 different	 datasets	 is	 done	
(See	 the	 first	paragraph	 in	 the	 section	2.1),	 including	1	degree	MODIS	L3	
dataset.	The	reason	why	we	used	L3	aerosol	product	is	because	we	would	
like	 to	 examine	 how	 aerosol	 homogeneity	 might	 affect	 the	 estimate	 of	
precipitation	 susceptibility.	 This	 is	 now	 added	 in	 the	 first	 paragraph	 of	
Section	 2.2.1	 and	 it	 reads	 “This	MODIS	 Level	 3	 dataset	 has	 been	 used	 in	
previous	studies	to	examine	aerosol-cloud-precipitation	interactions	(e.g.,	
L’Ecuyer	et	al.,	2009;	Wang	et	al.,	2012)	and	is	compared	here	with	results	
form	 the	 MODIS	 Level	 2	 aerosol	 product	 to	 examine	 how	 aerosol	
homogeneity	 might	 affect	 precipitation	 susceptibility	 estimates.”.	 The	
comparison	 between	 the	 MODIS	 L3	 and	 L2	 products	 is	 documented	 in	
details	in	Section	3.2.	 	
	
5.	P4	l25:	again,	why	the	two,	and	not	only	the	L2	data?	
Please	see	our	reply	to	comment#4.	 	
	
6.	P5	l1:	The	authors	should	report	exactly	how	the	colocation	is	done.	
Thanks	 for	 the	 suggestion.	We	 now	 clarified	 this	 in	 Sec	 2.1	 and	 the	 text	
reads	"MODIS	cloud	product	and	CPR	radar	reflectivity	observations	used	
in	this	study	are	both	provided	from	the	Caltrack	datasets,	which	resample	
observations	 from	 many	 sensors	 under	 CALIOP	 subtrack	 with	 the	
horizontal	 resolution	 of	 5km	 (see	 the	 website	 of	
http://www.icare.univ-lille1.fr/projects/calxtract/products	 for	 more	
information).	 For	 other	 aerosol	 and	 cloud	 products,	 including	
MODIS/CALIOP	 aerosol	 products	 and	 AMSR-E	 cloud	 products,	 they	 are	
further	 collocated	 into	 the	 CALIOP	 subtracks	 in	 the	 Caltrack	 dataset.	 For	
each	CALIOP	 subtrack,	 the	 closest	 aerosol/	 cloud	 retrieval	 sample	within	
one-degree	grid	box	(1°×1°)	centered	at	this	subtrack	is	chosen.	To	reduce	
the	 uncertainty	 in	 cloud	 retrievals,	 only	 samples	 where	 MODIS	 cloud	
fraction	is	equal	to	100%	are	selected.	"	
	
7.	 P5	 l5:	 A	 discussion	 of	 Christensen	 et	 al.	 doi	 10.5194/acp-2017-450	 would	 be	
useful	here.	



Thanks	for	bringing	this	paper	to	our	attention!	This	 is	highly	relevant	to	
our	 study	 and	 this	 paper	 is	 now	 added	 and	 discussed	 in	 the	 revised	
manuscript	 and	 it	 reads	 “Retrievals	 of	 aerosol	 properties	 from	 passive	
sensors	and	lidar	observation	are	both	affected	by	clouds	near	the	aerosol,	
and	 thereby	 result	 in	 overestimation	 for	 aerosol	 property	 (Chand	 et	 al.,	
2012;	Tackett	and	Di	Girolamo,	2009;	Christensen	et	al.,	2017).	The	extent	
of	 this	 overestimation	 may	 be	 different	 among	 different	 sensors,	 and	
depends	 on	 how	 far	 aerosol	 pixels	 chosen	 are	 from	 the	 corresponding	
cloud	pixels	(Christensen	et	al.,	2017).”.	 	
	
8.	P5	l7:	Wood	and	Hartmann	is	a	good	paper,	but	is	it	a	pertinent	reference	here?	
Thanks!	We	checked	and	this	is	now	removed.	 	
	
9.	 P5	 l12:	 What	 is	 a	 “pixel”	 here?	 A	 1-km	 MODIS	 cloud	 retrieval,	 or	 rather	 an	
aggregated	CALTRACK	5	km	grid	box?	
Pixel	 here	 is	 an	 aggregated	 CALTRACK	 5	 km	 grid	 box	 as	 MODIS	 cloud	
product	is	provided	from	the	Caltrack	datasets.	Sorry	for	the	confusion.	The	
sentence	 is	 reformulated	 to	 "To	 reduce	 the	 uncertainty	 when	 deriving	
CDNC,	 cloud	 pixels	 (identified	 by	 Caltrack-MODIS	 cloud	 product	with	 the	
horizontal	resolution	of	5	km)	where	cloud	optical	depth	is	less	than	3	and	
cloud	fraction	is	less	than	100%	are	excluded	(Cho	et	al.,	2015;	Zhang	and	
Platnick,	2011)."	
	
10.	 P5	 l15:	 Is	 this	 statement	 tested/implemented?	 Or	 is	 it	 just	 taken	 for	 granted	
from	the	Kubar	study?	
Thanks!	We	now	examined	the	percentage	of	single	layer	clouds	in	our	
study	and	it	is	94%,	consistent	with	Kubar	et	al.	(2009),	and	we	now	
updated	the	text	and	it	reads:	"Additionally,	we	limit	our	analysis	to	warm	
clouds	by	screening	cloud	pixels	with	cloud	top	temperature	warmer	than	
273K.	Under	these	screening	criteria,	our	results	show	that	94%	warm	
clouds	are	single	layered	(93%	in	Kubar	et	al.,	2009).	Therefore,	our	
analysis	mainly	focuses	on	single-layer	clouds."	
	
11.	P6	l29:	It	is	nonsense	that	LTS	is	able	to	clearly	distinguish	cloud	regimes	(e.g.	
Nam	and	Quaas	doi	10.1002/grl.50945).	Klein	and	Hartmann	only	 show	that	 the	
seasonal	cycles	of	cloud	fraction	and	LTS	correlate.	
We	agreed	that	it	is	still	a	challenging	task	to	find	a	unique	metric	to	clearly	
distinguish	 different	 cloud	 regimes.	 In	 previous	 studies,	 several	 metrics	
were	applied	to	define	different	cloud	regimes.	For	instance,	by	using	LTSS	
and	 vertical	 pressure	 velocity,	 Zhang	 et	 al.,	 (2016)	 divided	 descending	
regimes	 into	 stratocumulus,	 transitional	 clouds	 and	 trade	 wind	 cumulus	
regimes.	Webb	et	al.,	(2015)	developed	an	index	(ALPI)	based	on	LTSS	and	
precipitation	to	distinguish	cloud	regimes.	 	
	



LTSS	may	have	its	limitation	for	defining	different	cloud	regimes.	However,	
our	 results	 show	 that	 precipitation	 susceptibility	 has	 clear	
LTSS-dependence,	especially	for	SPOP	(Fig	11	and	Fig	13).	This	suggests	LTSS	
provides	 a	 feasible	 way	 to	 examine	 how	 precipitation	 susceptibility	may	
depend	 on	 cloud	 regimes.	 LTSS	 was	 also	 used	 in	 many	 previous	 studies	
(e.g.,L’Ecuyer	 et	 al.,	 2009;	 Terai	 et	 al.,	 2015).	 Nevertheless,	 we	
acknowledged	 the	 limitation	of	LTSS	 in	 the	revised	manuscript	 in	Section	
3.6	and	it	reads:	"	Our	results	also	suggest	that	it	is	important	to	account	for	
the	influence	of	atmospheric	stability	owing	to	the	clear	dependence	of	SPOP	
on	 metrics	 like	 LTSS,	 though	 it	 is	 acknowledged	 that	 LTSS	 alone	 is	 an	
imperfect	metric	 for	 isolating	 cloud	regimes	 (e.g.,	Nam	and	Quaas,	2013).	
Different	 metrics	 associated	 with	 cloud	 regimes	 should	 be	 examined	 in	
future	 to	 better	 understand	 the	 effect	 of	 cloud	 regimes	 on	 precipitation	
susceptibility.	 For	 instance,	 LTSS	 can	be	 combined	with	 vertical	 pressure	
velocity	to	distinguish	between	different	cloud	types	(Zhang	et	al.,	2016).”.	 	
	
12.	P6	l30:	The	term	“unstable”	is	a	misnomer.	“unstable”	would	mean,	a	negative	
LTSS.	 	
Given	that	our	study	focus	on	ocean	warm	clouds	mostly	with	positive	LTSS	
values,	we	followed	the	same	definition	of	unstable	as	L’Ecuyer	et	al.,	(2009)	
and	Wang	 et	 al.,	 (2012),	 and	 they	 both	 defined	 unstable	 environment	 by	
LTSS	values	less	than	13.5K.	
	
13.	P7	l10:	Why	this	choice	and	not	deciles?	
In	our	analysis,	we	keep	the	LWP	bins	the	same	when	we	compare	different	
satellite	products	in	individual	plots	in	order	to	facilitate	the	comparison.	
So	the	number	of	samples	for	each	LWP	varies,	from	5%	to	14%.	However,	
each	LWP	bin	still	includes	more	than	ten	thousand	samples,	large	enough	
for	producing	robust	estimate	of	precipitation	susceptibility.	 	
	
14.	 P9l5:	 When	 using	 AMSR-E	 LWP,	 are	 the	 pixels	 selected	 overcast	 at	 AMSR-E	
footprint?	Or	is	the	AMSR-E	interpolated	to	the	CALTRACK	grid	cells?	
The	AMSR-E	pixels	closest	to	CALTRACK	grid	cells	are	selected.	We	do	not	
require	 the	AMSR-E	pixels	 to	be	overcast,	but	 clouds	 from	 the	CALTRACK	
pixels	 are	 overcast	 with	 MODIS	 cloud	 fraction	 of	 100%.	 The	 details	 of	
collocation	strategy	are	added	to	Sec	2.1	in	the	revised	manuscript.	
	
15.	P9	l17:	Is	this	may	be	due	to	the	fact	that	AMSR-E	LWP	in	fact	is	cloud	fraction	
times	in-cloud	LWP,	in	combination	with	the	fact	that	CDNC	is	positively	correlated	
to	cloud	fraction	(Fig.	2)?	
Thanks!	 If	 this	 is	 the	 case,	 for	 a	 constant	 AMSR-E	 LWP	 shown	 in	 Fig.	 7f,	
in-cloud	 LWP	 would	 decrease	 with	 increasing	 CDNC	 as	 increasing	 CDNC	
means	 increasing	 cloud	 fraction.	 Smaller	 in-cloud	 LWP	would	 then	 imply	
lower	 precipitation	 intensity,	 opposite	 to	 what	 is	 shown	 in	 Fig.	 7f.	 Our	



results	shown	in	Fig.	8	suggests	that	this	might	be	related	to	differences	in	
MODIS	 and	 AMSR-E	 LWP	 at	 low	 MODIS	 CDNC,	 but	 what	 might	 cause	 the	
discrepancies	 in	 two	LWP	product	 still	 needs	 further	 investigation	 in	 the	
future.	 	
	
16.	Fig.	1:	Since	there	are	only	ten	bins	in	LWP,	I	suggest	to	label	each	bin	center	on	
the	 x-axis.	 Possibly	 the	 axis	 could	 be	 chosen	 irregular	 then.	 It	 would	 be	 good	 to	
indicate	the	total	amount	of	data	points	in	the	caption.	In	(a)	a	zeroline	would	be	
helpful.	
We	have	added	a	zeroline	in	the	Fig.	1.	The	total	number	of	data	points	now	
is	 included	 in	 the	 caption.	 Since	 labels	 of	 the	 x-axis	would	 be	 dense	 and	
overlapped	at	low	LWP	if	we	label	each	mean	value	of	LWP	bin,	the	x-axis	
now	is	divided	into	smaller	intervals.	In	addition,	each	mean	value	of	LWP	
bin	is	shown	in	Fig.7.	
	
17.	Fig.	4:	The	authors	need	to	choose	a	different	y-axis	that	spans	only	the	range	of	
data.	As	it	is	now,	no	details	can	be	distinguished.	Again,	a	zeroline	is	necessary	
The	range	of	y-axis	is	now	narrowed	and	a	zeroline	is	also	added	for	most	
figures	(Fig.1,	Fig.3-Fig.5	and	Fig.9-Fig.11)in	the	revised	manuscript.	
	
18.	Fig.	5:	zeroline	would	be	good	
A	zeroline	is	now	added	in	the	Fig.5.	
	
19.	Fig.	7:	a,	b,	 e,	 f:	more	x-axis	 tick	marks	necessary;	 e-f:	more	y-axis	 tick	marks	
necessary	
More	x-axis	and	y-axis	tick	marks	are	now	added	accordingly.	
	
20.	Fig.	10	b:	zeroline	necessary	
A	zeroline	is	now	added	in	the	Fig.10.	
	
21.	Fig.	12:	the	color	code	is	poorly	selected.	The	colors	should	be	centered	around	
zero	(light	pink	shouldn’t	indicate	positive).	Are	the	LTSS	bins	chosen	so	that	each	
contains	on	average	the	same	amount	of	pixels	(that	is	the	way	it	should	be,	else	a	
PDF	of	LTSS	would	need	to	be	shown).	
We	have	changed	the	color	code	of	Fig.	12	and	its	colors	are	now	centered	
around	 zero.	 The	 light	 pink	 now	 indicates	 negative	 value.	 In	 this	 figure,	
each	LTSS	bin	now	contains	on	average	the	same	amount	of	pixels.	We	also	
have	added	this	sentence	to	the	caption	of	Fig.	12.	 	
	 	
22.	Fig.	14:	is	it	not	possible	to	differentiate	likelihoods,	e.g.	by	putting	equal	weight	
on	 each	 curve	 entering	 the	 shaded	 area	 and	 then	 varying	 the	 color	
intensity/darkness?	
Thanks	a	lot	for	your	suggestion!	We	would	like	to	take	this	suggestion,	but	
as	we	only	have	eight	 curves	 for	each	metric	 shown	 in	Fig.	14,	we	do	not	



have	 large	number	of	curves	to	show	the	 likelihoods.,	so	we	have	to	keep	
the	figure	as	it	is.	 	 	
	
Anonymous	Referee	#2	
	
Received	and	published:	11	November	2017	
	
In	various	studies,	the	precipitation	susceptibility	metric	has	been	used	to	quantify	
the	effect	of	aerosols	on	the	precipitation	in	both	models	and	observations	and	to	
indicate	the	strength	of	the	cloud	lifetime	effect.	The	present	article	examines	how	
observationally-based	 estimates	 of	 the	 precipitation	 susceptibility	 metric	 vary	
depending	 on	 the	 various	 dataset	 and	 analysis	 choices.	 Previous	 attempts	 to	
provide	an	observational	constraint	on	the	precipitation	susceptibility	metric	have	
led	 to	 different	 strengths	 in	 susceptibility	 and	 also	 in	 different	 behaviors	 of	 the	
susceptibility.	 The	 study	 contributes	 to	 the	 existing	 literature	 by	 attempting	 to	
reconcile	those	differences	by	examining	a	wide	range	of	data	and	analysis	choices	
in	 the	 same	 framework,	 which	 might	 help	 answer	 why	 different	 studies	 have	
arrived	at	different	susceptibility	estimates.	The	authors	examine	the	sensitivity	of	
the	susceptibility	metric	to	the	choice	of	aerosol	proxy,	precipitation	characteristic	
(intensity,	 probability	 of	 precipitation	 (POP),	 or	 mean	 precipitation),	 stability	
regime,	 liquid	 water	 path	 retrieval,	 precipitation	 retrieval,	 and	 precipitation	
threshold.	 After	 examining	 the	whole	 range	 of	 sensitivities,	 the	 authors	 conclude	
that	 SPOP	 has	 the	 least	 amount	 of	 spread	 that	 arises	 from	 the	 choice	 of	 liquid	
water	 path	 and	 precipitation	 data	 product.	 The	 authors	 also	 find	 strong	
sensitivities	 in	 the	choice	of	 stability	regime	and	 in	whether	aerosol	 index	(AI)	or	
the	cloud	droplet	number	concentration	(CDNC)	is	used	as	the	aerosol	proxy.	 	
	
The	 study	 is	 a	 substantial	 contribution	 to	 the	 existing	 literature	 by	 providing	 a	
comprehensive	examination	of	 the	possible	 source	of	discrepancies	 that	can	arise	
when	trying	to	estimate	the	precipitation	susceptibility	based	on	satellite	retrievals.	
The	manuscript	methodically	goes	through	the	different	choices	that	can	be	made,	
and	 assesses	 their	 impact	 on	 the	 value	 and	 behavior	 of	 the	 metric.	 There	 are	 a	
couple	issues	with	the	paper	that	I	would	like	to	see	the	authors	address.	First,	the	
authors	 mention	 in	 the	 introduction	 of	 how	 estimates	 from	Wang	 et	 al.	 (2012),	
Terai	et	al.	(2015),	and	Michibata	et	al.	(2016)	differ	in	the	magnitude	of	the	SPOP	
metric.	Although	it	appears	that	the	use	of	AI	or	CDNC	is	the	largest	source	of	the	
discrepancy,	I	expected	to	see	the	authors	discuss	more	thoroughly	how	the	effect	of	
the	 choice	 of	 aerosol	 proxy	 compares	 with	 effect	 of	 the	 choice	 of	 precipitation	
dataset	 and	 threshold.	 I	 had	 also	 expected	 a	 similar	 discussion	 that	 folds	 in	 the	
results	from	Sorroshiaan	et	al.	(2009)	on	both	the	magnitude	of	the	susceptibility,	
as	well	as	the	behavior	of	the	susceptibility.	Second,	statistical	confidence	limits	to	
the	 susceptibilities	 should	 be	 provided	 to	 determine	 how	 the	 statistical	
uncertainties	compare	with	the	other	dataset/methodology	uncertainties	that	are	
examined	 in	 the	 study.	 The	 confidence	 intervals	 would	 help	 inform	 whether	 the	



choice	of	datasets	significantly	change	the	susceptibility	estimates	or	not.	Overall,	
the	 manuscript	 has	 a	 clear	 scientific	 question,	 uses	 analyses	 that	 address	 the	
question,	and	is	well	organized.	I	do	not	consider	the	main	issues	that	I	have	to	be	
major.	 Therefore,	 I	 recommend	 that	 the	 manuscript	 be	 published	 after	 the	
following	comments	and	issues	have	been	addressed.	
	
Main	comments	and	issues:	
1.	 The	 uncertainties	 in	 the	 susceptibility	 estimates	 should	 be	 reported	 in	 all	 the	
figures	 and	 graphs.	 The	 95%	 confidence	 intervals	 can	 be	 calculated	 from	 the	
standard	 deviation	 of	 the	 regression	 or	 using	 bootstrapping	 techniques.	 The	
statistical	 uncertainties	will	 help	 the	 author	 substantiate	 some	of	 the	 statements	
within	the	manuscript	that	say	whether	or	not	various	choices	significantly	change	
the	susceptibilities.	
The	 error	 bars	 with	 95%	 confidence	 intervals	 are	 now	 added	 to	 all	 the	
susceptibilities	figures	except	Fig.	10	and	Fig.	11.	Given	that	each	panel	of	
Fig.	10	and	Fig.	11	includes	six	susceptibility	curves,	these	figures	would	be	
not	clear	and	messy	if	error	bars	are	added.	The	error	bars	can	be	found	for	
global	mean	values	for	these	cases	in	Fig.	13.	 	
	
We	thank	the	reviewer	for	this	excellent	suggestion!	Adding	the	statistical	
uncertainties	 indeed	helps	us	 substantiate	 some	of	 our	 statements	 in	 the	
manuscript.	For	instance,	we	can	state	with	confidence	that	SPOP	estimates	
are	not	significantly	influenced	by	LWP	products,	while	SI	estimates	are,	as	
shown	 in	 Fig.	 5	 in	 the	 revised	 manuscript.	 On	 the	 other	 hand,	 the	
differences	 of	 dlnCDNC/dlnAI	 between	different	 stability	 regimes	 are	 not	
significant	 (Fig.	 3).	 We	 also	 find	 that	 almost	 all	 of	 mean	 SI_CDNC	 is	
significantly	negative	regardless	of	stability	regimes	(Fig.	13).	
	
2.	Given	that	the	main	purpose	of	the	study	is	to	examine	how	the	various	choices	
have	led	to	differences	in	the	susceptibility	that	are	reported	in	the	literature,	the	
authors	 should	 provide	 more	 discussion	 on	 how	 this	 study	 helps	 to	 reconcile	
existing	differences.	In	particular,	the	authors	should	do	their	best	to	identify	likely	
reasons	why	 the	 estimates	 in	 the	 previous	 studies	 have	 differed	 (if	 they	 do).	 For	
example,	there	are	differences	in	the	magnitude	of	the	susceptibility	(e.g.,	Wang	et	
al.,	 2012	 versus	 Terai	 et	 al.,	 2015).	 There	 are	 also	 differences	 in	 the	 behavior	 of	
susceptibility	(monotonic	decrease	versus	increase	and	then	decrease).	
We	have	provided	more	discussion	 on	 the	differences	 in	 both	magnitude	
and	behavior	of	susceptibility	in	previous	studies	in	the	second	paragraph	
of	the	Section	4	(Discussion).	Now	the	text	reads	"Our	results	may	help	to	
reconcile	 some	 of	 the	 differences	 in	 previous	 estimates	 of	 precipitation	
susceptibility.	 For	example,	 our	 results	 show	 that	 SX_AI≈0.3SX_CDNC,(Table	3	
and	 Fig.	 1),	 which	 explains	 why	 SPOP_CDNC	 in	 Terai	 et	 al.	 (2015)	 is	 much	
larger	than	SPOP_AI	in	Wang	et	al.,	(2012).	Previous	studies	are	also	different	
in	how	precipitation	susceptibility	varies	with	increasing	LWP.	Our	results	



show	that	SI	generally	 increases	with	LWP	at	 low	and	moderate	LWP	and	
then	decreases	with	increasing	LWP	at	moderate	and	high	LWP,	consistent	
with	results	from	Feingold	et	al.,	(2013),	Michibata	et	al.,	(2016)	and	Jung	
et	 al.,	 (2016).	 The	 monotonic	 increase	 of	 SI_CDNC	 with	 increasing	 LWP	 in	
Terai	et	al.,	(2015)	is	mainly	because	that	the	LWP	range	in	their	study	is	
relatively	narrow	(from	0	to	~400	g	m-2)	and	our	results	suggest	that	when	
the	upper	bound	of	LWP	is	extended	to	~800	g	m-2,	the	“descending	branch”	
(S	decreases	with	increasing	LWP)	noted	in	Feingold	et	al.	(2013)	appears,	
though	 the	exact	LWP	value	where	SI_CDNC	peaks	depend	on	LWP	and	rain	
products	used	as	well	as	the	rainfall	threshold	choices."	
	
	
3.	 The	 authors	 seem	 to	 argue	 for	 the	 use	 of	 SPOP	 as	 a	 metric	 to	 quantify	
aerosol-cloud-precipitation	 interactions	 due	 to	 SPOP	 having	 a	 smaller	 range	 of	
possible	values,	based	on	different	LWP	and	precipitation	rate	retrievals	(Fig.	14).	
There	is	less	discussion	on	the	advantages	and	disadvantages	of	using	CDNC	or	AI	
as	a	metric	and	also	a	lack	of	discussion	on	how	the	threshold	(rain	vs.	drizzle)	can	
significantly	 change	 SPOP	 values.	 Given	 that	 the	 authors	 have	 examined	 a	 wide	
range	 of	 potential	 sources	 that	 lead	 to	 differences	 in	 susceptibility	 estimates,	 it	
would	be	informative	for	the	readers	to	have	the	authors	synthesize	their	findings	
and	discuss	what	should	be	considered	in	future	attempts	to	try	to	observationally	
constrain	precipitation	susceptibility	or	attempts	to	compare	susceptibilities	 from	
models	and	from	observations.	
Thanks	 for	your	suggestions!	We	now	made	 further	recommendations	on	
how	 to	 better	 use	 these	 metrics	 to	 quantify	 aerosol-cloud-precipitation	
interactions	in	models	and	observations	in	Section	5,	and	it	reads:	 	 	
“As	SPOP	demonstrates	relatively	robust	 features	across	different	LWP	and	
rain	 products,	 this	 makes	 it	 a	 valuable	 metric	 for	 quantifying	
aerosol-cloud-precipitation	 interactions	 in	 observations	 and	 models.	 For	
instance,	 it	 would	 be	 highly	 interesting	 to	 examine	 why	 SPOP	 strongly	
depends	 on	 atmospheric	 stability	 and	 how	 well	 this	 dependence	 is	
represented	 in	 a	 hierarchy	 of	models	 (e.g.,	 large	 eddy	 simulations,	 cloud	
resolving	models,	regional	climate	models,	and	global	climate	models).	We	
also	note	 that	SPOP_CDNC	 is	generally	 less	uncertain	compared	 to	SPOP_AI	and	
that	a	relatively	robust	relationship	between	SPOP_CDNC	and	SPOP_AI	exists	(i.e.,	
SX_AI≈0.3SX_CDNC)	 (Fig.	 13	 and	 Table	 3).	 Given	 that	 aerosol	 retrievals	 near	
clouds	 are	 still	 challenging	 and	 aerosol-cloud	 relationships	 in	 satellite	
observations	 can	 be	 affected	 by	 aerosol	 retrieval	 contaminations	 from	
clouds,	we	recommend	to	first	thoroughly	quantify	SPOP_CDNC	in	observations	
and	models.	As	SPOP_CDNC	is	derived	based	on	CDNC	instead	of	AI,	SPOP_CDNC	is	
also	 not	 influenced	 by	 wet	 scavenging.	 Only	 after	 SPOP_CDNC	 is	 thoroughly	
quantified,	we	can	then	combine	it	with	how	CDNC	depends	on	AI	to	better	
quantify	SPOP_AI.	



On	 the	other	hand,	 SI	 estimates	 strongly	depend	on	 satellite	 retrieval	
products.	 Uncertainties	 in	 SI	 estimate	 are	 particular	 large	 when	 SI	 is	
estimated	based	on	rain	samples	(>	0	dBZ)	rather	than	drizzle	samples	(>	
-15	dBZ).	 It	would	then	be	desirable	to	use	drizzle	samples	to	estimate	SI.	
However,	 satellite	 retrieval	 of	precipitation	 rate	 for	drizzle	 can	be	highly	
uncertain.	 It	 is	 therefore	 recommended	 to	 further	 improve	 the	 retrieval	
accuracy	of	precipitation	rate	for	drizzle	in	satellite	observations	in	order	
to	better	use	satellite	estimate	of	SI	to	quantify	aerosol-cloud	precipitation	
interactions.	Alternatively,	long-term	ground	and	in-situ	observations	with	
high	 accuracy	 precipitation	 rate	 retrievals	 can	 be	 used	 to	 provide	 better	
estimate	 SI	 and	 to	 further	 quantify	 aerosol-cloud-precipitation	
interactions.”.	 	
	
Further	discussions	are	added	on	difference	of	SPOP	and	SI	between	rain	and	
drizzle	in	Section	5	and	now	the	text	reads	"	Our	results	suggest	that	onset	
of	drizzle	is	not	as	readily	suppressed	by	increases	in	AI	or	CDNC	in	warm	
clouds	as	rainfall	(i.e.,	SPOP	is	smaller	for	drizzle	than	for	rain,	especially	at	
moderate	 LWP,	 Fig.	 9).	 This	 may	 partly	 come	 from	 the	 fact	 that	 POP	 of	
drizzle	is	close	to	100%	at	moderate	and	high	LWP	regardless	of	CDNC	or	
AI	values	(Fig.	7a-d),	which	makes	 it	 insensitive	to	perturbations	 in	CDNC	
or	AI	and	results	in	smaller	SPOP	at	these	LWP	bins	compared	with	SPOP	for	
rain	 (Fig.	 9).	 On	 the	 other	 hand,	 precipitation	 intensity	 susceptibility	 is	
generally	 smaller	 for	 rain	 than	 for	 drizzle.	 This	 is	 consistent	 with	 our	
expectation	 that	 when	 precipitation	 intensity	 increases,	 accretion	
contributes	 more	 to	 the	 production	 of	 precipitation,	 which	 makes	
precipitation	 intensity	 less	 sensitive	 to	 perturbation	 in	 CDNC	 or	 AI,	 as	
accretion	 is	 less	 dependent	 on	 CDNC	 compared	 with	 autconversion	
(Feingold	et	al.,	2013;	Wood,	2005)"	
	
Minor	Comments:	
1.	P2	L3:	“Susceptibility	is	an	inherent	property	of	the	aerosol-cloud	system.”	–	This	
is	 an	 interesting	 statement,	 but	 it	 is	 also	 vague.	 Does	 the	 statement	 mean	 that	
susceptibility	 doesn’t	 change	 with	 cloud	 condition?	 Or	 aerosol	 condition?	 Should	
they	be	robust	to	differences	in	measurement	platform,	etc.?	
We	 agree	 this	 statement	 is	 indeed	 vague,	 and	 this	 statement	 is	 now	
removed	in	the	revised	manuscript.	 	
	
2.	 P5	 L32:	 “...	 selected	 in	 close	 proximity	 of	 clouds	 pixels.”	What	 exact	 criteria	 is	
used	to	determine	how	close	aerosol	retrievals	must	be	to	be	used	in	the	study?	
Exact	 criteria	 for	 collocation	are	added	 in	Sec	2.1.	Now	 the	 text	 reads	 "….	
MODIS	cloud	product	and	CPR	radar	reflectivity	observations	used	 in	this	
study	 are	 both	 provided	 from	 the	 Caltrack	 datasets,	 which	 resample	
observations	 from	 many	 sensors	 under	 CALIOP	 subtrack	 with	 the	
horizontal	 resolution	 of	 5km	 (see	 the	 website	 of	



http://www.icare.univ-lille1.fr/projects/calxtract/products	 for	 more	
information).	 For	 other	 aerosol	 and	 cloud	 products,	 including	
MODIS/CALIOP	 aerosol	 products	 and	 AMSR-E	 cloud	 products,	 these	 are	
further	 collocated	 into	 the	 CALIOP	 subtracks	 in	 the	 Caltrack	 dataset.	 For	
each	 CALIOP	 subtrack,	 the	 closest	 aerosol	 and	 cloud	 retrieval	 samples	
within	one-degree	grid	box	(1°×1°)	centered	at	this	subtrack	are	chosen.	To	
reduce	 the	 uncertainty	 in	 cloud	 retrievals,	 only	 samples	 where	 MODIS	
cloud	fraction	is	equal	to	100%	are	selected”.	 	
	
3.	P6	L23:	replace	“significant”	with	“significantly”	
Done.	
	
4.	 P6	 L25:	 What	 is	 the	 spatial	 resolution	 of	 the	 precipitation	 data?	 Is	 it	 at	 the	
footprint	 level?	 In	general,	 how	are	pairs	 of	 LWP,	precipitation	 rate,	 and	aerosol	
proxy	combined?	Are	they	all	combined	at	the	footprint	of	the	precipitation	rate?	Is	
the	coarsest	footprint	used	for	the	comparison?	
The	horizontal	resolution	of	all	precipitation	data	used	in	the	paper	is	at	a	
footprint	 level	with	1.3km	cross	 track	and	1.7	km	along	track	except	CPR	
radar	 reflectivity	 observations	 (i.e.,	 2B-GEOPROF	 product	 collocated	 to	
CALIOP	 subtrack	 with	 5km	 resolution).	 The	 resolution	 of	 different	
products	 can	 be	 seen	 in	 Table2.	 Overall,	 MODIS	 LWP,	 precipitation	 rate	
from	 2B-GEOPROF	 and	 aerosol	 proxy	 are	 combined	 to	 CALIOP	 subtrack	
since	CALIOP	aerosol	product,	MODIS	cloud	product	and	CPR	2B-GEOPROF	
product	 used	 in	 the	 paper	 are	 all	 provided	 from	 Caltrack	 datasets.	 For	
other	 retrieval	 products,	 including MODIS/CALIOP aerosol products and 
AMSR-E cloud products, these are further collocated into the CALIOP 
subtracks in the Caltrack dataset. For each CALIOP subtrack, the closest 
aerosol and cloud retrieval samples within one-degree grid box (1°×1°) centered 
at this subtrack are chosen.	More	details	can	be	found	in	the	first	paragraph	
of	Sec	2.1	in	the	revised	manuscript.	 	 	 	 	
	
5.	P7	L15:	Provide	some	indication	of	statistical	uncertainty	in	the	estimates	in	Fig.	
1.	See	main	comment	1.	Also,	it	would	be	informative	to	indicate	the	0	value	with	a	
dotted	or	gray	 line,	because	values	below	 that	 line	will	 indicate	 that	 increases	 in	
aerosols/cloud	droplets	lead	to	more	precipitation.	
We	have	added	error	bars	with	95%	confidence	 intervals	and	zeroline	 in	
the	Fig.	1.	
	
6.	 P7	 L22-24:	 The	 turning	 point	 is	 very	 slight.	 The	 confidence	 intervals	 will	 be	
helpful	in	determining	how	significant	the	peak	is.	
Thanks!	We	 now	 added	 error	 bars.	 The	 peak	 is	 not	 significant	 anymore	
after	 the	 error	bars	 are	 added.	But	 SI_CDNC	would	decrease	distinctly	 after	
the	 peak	 if	 the	 upper	 bound	 of	 LWP	 and	 the	 number	 of	 LWP	 bins	 both	
increased	 (see	 figure	 below).	 The	 sentence	 is	 now	 reformulated	 to	



"Although	the	SI_CDNC	peak	(around	0.6	with	LWP	350	gm-2)	is	not	significant	
in	 Fig.	 1b,	 SI_CDNC	 would	 decrease	 distinctly	 after	 the	 peak	 if	 the	 upper	
bound	of	LWP	and	the	number	of	LWP	bins	both	increase	(not	shown).	This	
turning	 point	 may	 correspond	 to	 conversion	 process	 shifting	 from	 the	
autoconversion	to	accretion	regime	(Michibata	et	al.,	2016)."	

	
Same	as	the	Fig.	1b	but	with	increase	in	the	upper	boundary	of	LWP	and	the	number	of	

LWP	bins	
	

7.	P7	L29:	To	show	that	the	fluctuations	in	the	mean	are	small	compared	to	noise,	
the	 interquartile	 range	 (between	 25th	 percentile	 and	 75th	 percentile)	 can	 be	
shown.	
Done.	The	interquartile	range	is	now	added	to	Fig.	2.	
	
8.	P7	L29:	Also,	because	the	AI	vs.	CDNC	relationship	takes	the	form	d	ln(CDNC)/d	
ln(AI)	 and	 because	 it	 looks	 like	 the	 AI	 has	 a	 lognormal	 distribution,	 it	might	 be	
better	to	plot	the	x-axis	in	log-scale.	
Done.	Now	the	x-axis	in	Fig.	2	is	in	log-scale.	
	
9.	 P8	 L4-5:	 The	 differences	 in	 dlnCDNC/dlnAI	 between	 the	 different	 stability	
regimes	are	interesting,	in	particular,	the	lack	of	sensitivity	(or	negative	sensitivity	
at	 high	 LWPs).	 Are	 these	 differences	 significant?	 Do	 the	 authors	 have	 an	
explanation	as	to	why	the	stability	affects	the	sensitivity?	
We	now	add	error	bars	to	Fig.	3,	and	now	the	differences	in	dlnCDNC/dlnAI	
between	 the	 different	 stability	 regimes	 and	 negative	 sensitivity	 at	 high	
LWP	are	both	not	significant	anymore.	 	
	
10.	 P8	 L16:	 The	 subtle	 differences	 in	 Fig	 4	 are	 hard	 to	 see	 because	 of	 the	 large	
y-axis	range.	I	can	understand	the	choice	to	try	to	keep	the	same	axis	range	across	
different	figures,	but	in	this	case,	I	would	suggest	narrowing	the	range	to	allow	the	
reader	to	discern	any	differences.	
We	 have	 narrowed	 the	 range	 of	 y-axis	 and	 also	 added	 a	 zeroline	 to	 this	
figure	in	the	revised	manuscript.	
	



11.	 P8	 L26-28:	 Is	 there	 a	 reason	why	we	would	 rely	more	 heavily	 on	 and	 prefer	
MODIS	AI	rather	than	CALIPSO	AI?	
This	is	mainly	because	MODIS	AI	has	been	widely	used	in	previous	studies	
for	 examining	 aerosol-cloud-precipitation	 interactions.	 What	 is	 more,	
Costantino	 and	 Bréon,	 (2010)	 shown	 that	 AOD	 estimate	 from	 CALIPSO	
product	 was	 very	 noisy	 and	 less	 reliable	 than	 the	 equivalent	 parameter	
from	MODIS.	The	2D vs. 1D sampling is a likely reason for the MODIS AI being 
a bit smoother that the CALIPSO AI.  
	
12.	P9	L2-7:	This	 is	 one	 case	where	 confidence	 intervals	 can	 show	 that	 the	 SPOP	
estimates	are	not	significantly	affected	by	the	choice	of	LWP	retrievals,	whereas	the	
SI	and	SR	estimate	are	significantly	affected.	
Thanks	a	lot	for	this	excellent	suggestion!	After	adding	error	bars	to	Fig.5,	
it	indeed	shows	the	discrepancies	in	SPOP	between	MODIS	and	AMSR-E	LWP	
are	not	significant.	We	have	added	this	sentence	 to	 the	 first	paragraph	 in	
Sec	3.3.	 	
	
13.	P9	L26:	Data	is	plural,	so	it	should	be	“...	when	data	are	binned...”	
Corrected.	
	
14.	 P10	 L11:	 Although	 the	 axis	 labels	 show	 this,	 the	 figure	 caption	 to	 Figure	 9	
should	indicate	the	difference	between	the	top	row	and	the	bottom	row.	
We	have	clarified	this	in	the	caption	of	Fig.	9.	 	
	
15.	P10	L26-28:	What	is	the	impact	on	SR	if	SPOP	increases	and	SI	decreases	with	
increases	in	the	threshold?	

SR	is	indeed	not	affected	by	the	rainfall	definition	since	mean	rain	rate	
for	 any	 given	 LWP/CDNC	 or	 LWP/AI	 bin	 is	 calculated	 for	 both	 rainy	 and	
non-rainy	 clouds,	 and	 does	 not	 depend	 on	 rainfall	 thresholds	 used	 to	
define	a	rain	event.	We	have	added	this	sentence	to	the	third	paragraph	in	
Sec	3.4	and	it	reads	“By	contrast,	SR	is	not	affected	by	the	rainfall	definition	
since	 the	 mean	 rain	 rate	 R	 for	 a	 given	 LWP/CDNC	 or	 LWP/AI	 bin	 is	
calculated	based	on	both	rainy	and	non-rainy	clouds	and	does	not	depend	
on	rainfall	thresholds	(not	shown).”	
	
16.	 P10	 L31:	 “more	 significant”	 should	 be	 replaced	 with	 “larger”,	 because	
significant	has	a	particular	meaning	in	the	literature	(statistical	significance),	and	
to	state	more	significant	would	require	examining	the	confidence	intervals.	
Done.	
	
17.	P11	L28:	“sigh”	should	be	replaced	by	“sign”	
Done.	
	
18.	P14	L5:	 Insert	“by	 increases	 in	AI	or	CDNC”	between	“readily	suppressed”	and	



“in	warm	clouds”	
Done.	
	
19.	 P14	 L5-6:	 Taken	 at	 face	 value,	 this	 statement	 is	 counterintuitive,	 isn’t	 it?	
Wouldn’t	 we	 expect	 rainfall,	 which	 is	 more	 dependent	 on	 accretion	 than	 on	
autoconversion,	to	have	a	weaker	dependence	to	CDNC?	
The	 above	 expectation	 is	 consistent	 with	 how	 SI	 changes	 with	 rainfall	
thresholds.	When	the	rainfall	 threshold	 increases,	 it	shifts	 the	production	
of	 rain	 from	 autoconversion	 to	 accretion,	 which	 reduces	 precipitation	
intensity	 susceptibility.	 As	 for	 precipitation	 frequency	 susceptibility,	 it	
depends	 on	 how	 often	 precipitation	 frequency	 reaches	 its	 upper	 limit,	
100%.	As	the	rainfall	 threshold	decreases	from	0	dBZ	to	-15	dBZ,	POP	for	
drizzle	 is	 close	 to	 100%	 at	 intermediate	 and	 high	 LWP	 as	 shown	 in	 the	
figure	 below,	which	make	 it	 insensitive	 to	 perturbation	 in	 CDNC	 or	 AI	 at	
intermediate	 and	high	 LWP,	 resulting	 in	much	 smaller	 SPOP	 at	 these	 LWP	
bins	as	shown	in	Fig.	9	 in	 the	main	text.	We	now	added	this	discussion	to	
the	third	paragraph	in	Sec.5.	Now	the	text	reads	"Our	results	suggest	 that	
onset	of	drizzle	is	not	as	readily	suppressed	by	increases	in	AI	or	CDNC	in	
warm	 clouds	 as	 rainfall	 (i.e.,	 SPOP	 is	 smaller	 for	 drizzle	 than	 for	 rain,	
especially	at	moderate	LWP,	Fig.	9).	This	may	partly	come	from	the	fact	that	
POP	 of	 drizzle	 is	 close	 to	 100%	at	moderate	 and	 high	 LWP	 regardless	 of	
CDNC	or	AI	values	(Fig.	7a-d),	which	makes	it	 insensitive	to	perturbations	
in	CDNC	or	AI	and	results	 in	 smaller	SPOP	at	moderate	and	high	LWP	bins	
compared	 with	 SPOP	 for	 rain	 (Fig.	 9).	 On	 the	 other	 hand,	 precipitation	
intensity	susceptibility	is	generally	smaller	for	rain	than	for	drizzle.	This	is	
consistent	with	our	expectation	that	when	precipitation	intensity	increases,	
accretion	contributes	more	to	the	production	of	precipitation,	which	makes	
precipitation	 intensity	 less	 sensitive	 to	 perturbation	 in	 CDNC	 or	 AI,	 as	
accretion	 is	 less	 dependent	 on	 CDNC	 compared	 with	 autconversion	
(Feingold	et	al.,	2013;	Wood,	2005).	".	

	
Probability	of	precipitation	as	a	function	of	MODIS	LWP	and	its	breakdown	into	drizzle	

(>0.14	mm	d-1)	and	rain	(>2	mm	d-1)	 	
	
20.	P14	L14:	Replace	“value”	with	“values”	



Done.	
	
21.	P14	L14-18:	Are	 these	results	consistent	with	existing	conceptual	 frameworks	
(such	 as	 those	 based	 on	 LES)	 on	 how	 stability	 affects	 aerosol-cloud-precipitation	
interactions?	Are	there	LES	studies	that	have	addressed	how	stability	might	affect	
susceptibility?	
The	 pattern	 of	 SPOP_AI	 under	 different	 stability	 conditions	 from	our	 paper	
(Fig.	 13b	 and	 Fig.	 13f)	 is	 consistent	 with	 the	 findings	 of	 L’Ecuyer	 et	 al.,	
(2009).	In	addition,	Terai	et	al.,	(2015)	found	maximum	SPOP_CDNC	occurred	
in	 regions	 where	 stable	 regime	 is	 predominant.	 These	 satellite-based	
studies,	however,	did	not	provide	physical	 interpretations	of	such	results.	
Lebo	 and	 Feingold	 (2014)	 calculated	 precipitation	 susceptibility	 for	
stratocumulus	and	trade	wind	cumulus	using	large-eddy	simulations(LES)	
and	 included	 an	 overview	 of	 precipitation	 susceptibility	 estimates	 in	 the	
ligature	 based	 on	 LES.	 However,	 their	 study	 focus	 on	 the	 relationship	
between	precipitation	 susceptibility	 and	 cloud	water	 response	 to	 aerosol	
perturbations,	and	did	not	examine	how	precipitation	susceptibility	might	
be	different	 for	clouds	under	different	cloud	regimes.	We	now	added	 this	
discussion	 in	 the	 revised	 manuscript	 and	 calls	 further	 efforts	 to	
understand	this	difference,	especially	for	SPOP	in	the	Section	5.	 	
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Abstract. Precipitation susceptibility to aerosol perturbation plays a key role in understanding aerosol-cloud interactions and 10 

constraining aerosol indirect effects. However, large discrepancies exist in the previous satellite estimates of precipitation 

susceptibility. In this paper, multi-sensor aerosol and cloud products, including those from CALIPSO, CloudSat, MODIS, 

and AMSR-E from June 2006 to April 2011 are analyzed to estimate precipitation frequency susceptibility SPOP, 

precipitation intensity susceptibility SI, and precipitation rate susceptibility SR in warm marine clouds. We find that SPOP 

strongly depends on atmospheric stability, with larger values under more stable environments. Our results show that 15 

precipitation susceptibility for drizzle (with -15 dBZ rainfall threshold) is significantly different from that for rain (with 0 

dBZ rainfall threshold). Onset of drizzle is not as readily suppressed in warm clouds as rainfall while precipitation intensity 

susceptibility is generally smaller for rain than for drizzle. We find that SPOP derived with respect to aerosol index (AI) is 

about one-third of SPOP derived with respect to cloud droplet number concentration (CDNC). Overall, SPOP demonstrates 

relatively robust features throughout independent liquid water path (LWP) products and diverse rain products. In contrast, 20 

the behaviors of SI and SR are subject to LWP or rain products used to derive them. Recommendations are further made for 

how to better use these metrics to quantify aerosol-cloud-precipitation interactions in observations and models.  

1 Introduction 

Aerosol-cloud interactions play an important role in the climate system and affect the global energy budget and hydrological 

cycle. The effective radiative forcing from aerosol-cloud interactions (ERFaci), which includes the instantaneous effect on 25 

cloud albedo from changes in cloud condensation nuclei (CCN) or ice nuclei and all subsequent changes to cloud lifetime 

and thermodynamics, remains one of the largest uncertainties in our estimates of anthropogenic radiative forcing (Boucher et 

al., 2013). Over the past few decades, numerous methodologies have been developed to understand and quantify the impacts 

of aerosol-cloud interactions on the climate system. A unique method is to use the so-called “susceptibility” to explain and 

predict how cloud and precipitation would response if there were some aerosol perturbations. Susceptibility is defined as the 30 
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derivative of cloud and/or precipitation properties with respect to aerosol related properties. For example, Platnick and 

Twomey (1994) proposed a cloud albedo susceptibility as 𝑆! = 𝜕A/𝜕𝐶𝐷𝑁𝐶, where A is cloud albedo and CDNC is cloud 

droplet number concentration, to quantify the cloud albedo effect of aerosol.  

Precipitation susceptibility has been proposed to evaluate aerosol-cloud-precipitation interactions and to further 

constrain cloud water response to aerosol perturbations in climate models (Feingold and Siebert, 2009; Terai et al., 2012; 5 

Wang et al., 2012). It was first proposed by Feingold and Siebert (2009) and was defined as: 

CDNCd
RdS

ln
ln

0 −=                                                                           (1) 

where R is precipitation intensity (precipitation rate for rainy clouds) and CDNC is cloud droplet number concentration 

(Feingold and Siebert, 2009). Sorooshian et al. (2009) further estimated S0 by replacing CDNC with aerosol index (AI). 

Wang et al. (2012) proposed an alternative metric, the precipitation frequency susceptibility, defined as: 10 

AId
POPdSPOP ln

ln
−=                                                                           (2) 

where POP is the probability of precipitation. SPOP has been shown to strongly correlate with cloud water response to aerosol 

perturbations in global climate models (Wang et al., 2012;Ghan et al., 2016). Terai et al. (2012；2015) further extended the 

definition of precipitation susceptibility: 

CDNCd
XdSX ln

ln
−=                                                                           (3) 15 

where X can represent precipitation intensity (I, precipitation rate from rainy clouds only), precipitation fraction (POP, or f) 

or precipitation rate (R=POP×I, mean precipitation rate from both rainy and non-rainy clouds). Depending on whether I, 

POP or R is used in Eq. (3), precipitation intensity susceptibility (SI), precipitation frequency susceptibility (SPOP or Sf) or 

precipitation rate susceptibility (SR) are therefore defined accordingly. Since R can be decomposed into the product of POP 

and I, SR≈SPOP +SI (Terai et al., 2012, 2015). In addition, some other studies substitute aerosol concentration (NA) or cloud 20 

condensation nuclei (CCN) concentration (NCCN) for CDNC to calculate SX (Terai et al., 2012; Mann et al., 2014).  

The behavior and magnitude of aforementioned precipitation susceptibility metrics varies a lot in different studies. For 

instance, SR and SPOP, using NA as an aerosol proxy from Terai et al. (2012), both noticeably decrease with increasing LWP, 

whereas SI is flat in the same study. Additionally, previous satellite studies (Wang et al., 2012; Terai et al., 2015; Michibata 

et al., 2016) show SX calculated with respect to CDNC is higher than that with respect to AI. The diverse definitions of 25 

precipitation susceptibility make it challenging to understand susceptibility discrepancies in different studies. An important 

objective of this study is to derive these susceptibilities using the same observations in the same context and to better 

understand their differences through comparisons. 

Another source of uncertainty in the estimation of precipitation susceptibility is the uncertainty associated with the 

observation. Among many others, AMSR-E and MODIS are two widely-used satellite cloud retrieval products in 30 

aerosol-cloud interaction studies. For instance, Sorooshian et al. (2009) and Wang et al. (2012) both used AMSR-E LWP 
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product to estimate SI and SPOP with respect to AI, respectively. Terai et al. (2015) and Michibata et al. (2016) used MODIS 

LWP product to estimate SI with respect to CDNC. Both products have their advantages and limitations, and are both subject 

to various retrieval uncertainties. AMSR-E has a coarser spatial resolution than MODIS. Its LWP retrievals are available for 

both daytime and night time, but suffer from instrument noise, cloud detection issues and beam filling effect (Greenwald et 

al., 2007; Horváth and Gentemann, 2007; Seethala and Horváth, 2010). MODIS LWP retrievals are available only during 5 

daytime. The main uncertainty sources in MODIS LWP retrievals include instrument noise, sub-pixel cloud inhomogeneity, 

three-dimensional radiative effects and uncertainties in ancillary data (Cho et al., 2015; Platnick et al., 2017; Zhang and 

Platnick, 2011). A recent study by Seethala and Horváth, (2010) revealed several significant differences between ASMR-E 

and MODIS LWP products, which could contribute to the aforementioned discrepancy of precipitation susceptibility in the 

literature. 10 

Additionally, different definitions of rain events and/or different methods to derive rain rates could also lead to 

discrepancy in observation-based estimation of precipitation susceptibility. For example, the rain rate used in Terai et al. 

(2015) and Michibata et al. (2016) is simply estimated based on a Z-R relationship from CloudSat radar reflectivity profiles 

measurements. In contrast, Sorooshian et al. (2009) and Wang et al. (2012) used the rain rate reported in CloudSat 

operational product, which make use not only radar reflectivity but also path-integrated attenuation in the retrieval process 15 

(Haynes et al., 2009). The primary satellite data sets used in the previous studies for estimating precipitation susceptibility 

are listed in Table. 1. To account for the discrepancy in susceptibility as shown in Table. 1, it’s important to examine how 

different LWP and rain data sets affect the estimates of precipitation susceptibility. 

Here we estimate precipitation susceptibility using multi-sensor cloud and aerosol products from A-Train satellites. The 

main objective of this study is to compare precipitation susceptibility estimates based on different retrieval products, and to 20 

better understand discrepancies documented in previous studies. As previous studies have shown that aerosol indirect effect 

and its uncertainties vary in different cloud dynamical regimes (L’Ecuyer et al., 2009; Wang et al., 2012; Zhang et al., 2016), 

we further examine how precipitation susceptibility might be different under different atmospheric stability conditions. 

Section 2 introduces different satellite products and methods used to calculate the susceptibility; Section 3 compares 

precipitation susceptibility estimates from different satellite products and explores how atmospheric stability affects 25 

precipitation susceptibility; finally, the discussions are made in Section 4, followed by the summary in Section 5. 

2 Methods 

2.1 Satellite datasets 

This study mainly uses cloud and aerosol property retrieval products from the Moderate Resolution Imaging 

Spectroradiometer (MODIS) on Aqua, the Advanced Microwave Scanning Radiometer for Earth Observing System 30 
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(AMSR-E) on Aqua, the Cloud Profiling Radar (CPR) on CloudSat and the Cloud-Aerosol Lidar with Orthogonal 

Polarization (CALIOP) on CALIPSO. All of these satellites operate in the framework of the A-Train constellation (L’Ecuyer 

and Jiang, 2010; Stephens et al., 2002). Considering most of the warm rainfall occurs in the marine areas (Mülmenstädt et al., 

2015) and that satellite retrievals often suffer large uncertainties in the polar regions (Seethala and Horváth, (2010) , the 

study region is limited to 60°S to 60°N over global oceans, covering the period June 2006 to April 2011. Since MODIS 5 

cloud LWP retrieval is only available for daytime, we restrict our analysis to clouds observed in daytime (13:30 local time). 

MODIS cloud product and CPR radar reflectivity observations used in this study are both provided from the Caltrack 

datasets, which resample observations from many sensors under CALIOP subtrack with the horizontal resolution of 5km 

(see the website of http://www.icare.univ-lille1.fr/projects/calxtract/products for more information). For other aerosol and 

cloud products, including MODIS/CALIOP aerosol products and AMSR-E cloud products, they are further collocated into 10 

the CALIOP subtracks in the Caltrack dataset. For each cloud pixel in the Caltrack dataset, the closest aerosol/cloud retrieval 

sample within one-degree grid box (1°×1°) centered at this Caltrack cloud pixel is chosen. To reduce the uncertainty in cloud 

retrievals, only samples where MODIS cloud fraction is equal to 100% are selected. The main satellite datasets used in this 

study are briefly listed in Table. 2. 

2.1.1 AI and CDNC 15 

Three aerosol products are used in the study: MODIS Level 3 daily mean atmosphere product (MYD08_D3, Collection 

6), MODIS Level 2 aerosol product (MYD04_L2, Collection 6) and CALIOP Level 2 aerosol layer product 

(CAL_LID_L2_05kmALay, Version 3.01). The one degree daily mean product of MYD08_D3 is aggregated from 

MYD04_L2 with 10 km horizontal resolution (Hubanks et al., 2016). This MODIS Level 3 dataset has been used in previous 

studies to examine aerosol-cloud-precipitation interactions (e.g., L’Ecuyer et al., 2009; Wang et al., 2012) and is compared 20 

here with results form the MODIS Level 2 aerosol product to examine how aerosol homogeneity might affect precipitation 

susceptibility estimates.Horizontal resolution of column aerosol optical depth from CAL_LID_L2_05kmALay product is 5 

km. Aerosol property in this dataset is obtained by averaging the 16 aerosol extinction profiles with 333 m of native 

resolution along track (Young and Vaughan, 2009). 

Since AI is a better proxy for CCN concentrations as compared to AOD (Nakajima et al., 2001), AI is calculated as one 25 

of the proxy for CCN based on the definition of AI=AOD×AE, where AOD and AE are aerosol optical depth and Ångström 

coefficient, respectively. For MODIS, AOD at 0.55 µm reported from MYD08_D3 and MYD04_L2 products are based on 

the Dark Target algorithm over ocean (Kaufman et al., 1997; Tanré et al., 1997; Levy et al., 2013). For CALIOP, AOD at 

wavelength of 0.532 µm is obtained from the CAL_LID_L2_05kmALay product (Vaughan et al., 2004). Unlike MODIS AE, 

which is directly reported in aerosol products, AE measurement for CALIOP is calculated based on AOD at 1.064µm and 30 

0.532µm from CAL_LID_L2_05kmALay product (Bréon et al., 2011). Our data screening for CAL_LID_L2_05kmALay 
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follows a previous study by Kim et al. (2013).  

Three aerosol products used in this study are listed in Table 2. It should be noted that all aerosol samples are under 

cloud free conditions and are selected in close proximity to cloud pixels. Retrievals of aerosol properties from passive 

sensors and lidar observation are both affected by clouds near the aerosol, and thereby result in overestimation for aerosol 

property (Chand et al., 2012; Christensen et al., 2017; Tackett and Di Girolamo, 2009). The extent of this overestimation 5 

may be different among different sensors, and depends on how far aerosol pixels chosen are from the corresponding cloud 

pixels (Christensen et al., 2017). This effect, however, would likely impact all metrics in a similar way and we would not 

expect this effect would impact qualitative comparisons between different metrics. 

CDNC is derived from the cloud optical thickness τ and cloud top effective radius reff, both reported in the MODIS 

level 2 cloud product (namely, MYD06_L2), based on the following formula (Bennartz, 2007; Quaas et al., 2006): 10 

5.25.0 −= effrCDNC ατ                                                                          (4) 

where the coefficient ɑ=1.37×10-5m-0.5 is estimated based on the assumption that cloud vertical structure follows the classic 

adiabatic growth model (Quaas et al., 2006). To reduce the uncertainty when deriving CDNC, cloud pixels (identified by 

Caltrack-MODIS cloud product with the horizontal resolution of 5 km) where cloud optical depth is less than 3 and cloud 

fraction is less than 100% are excluded (Cho et al., 2015; Zhang and Platnick, 2011). Additionally, we limit our analysis to 15 

warm clouds by screening cloud pixels with cloud top temperature warmer than 273K. Under these screening criteria, our 

results show that 94% warm clouds are single layered (93% in Kubar et al., 2009). Therefore, our analysis mainly focuses on 

single-layer clouds.  

2.1.2 LWP 

Cloud LWP for MODIS is diagnosed from solar reflectance observations of reff and τ as (Platnick et al., 2003):  20 

effw raLWP τρ=                                                                              (5) 

where ρw denotes the liquid water density and  is a constant determined by the assumed vertical variation in cloud droplet 

size (Greenwald, 2009). For a vertically homogeneous cloud, = 2/3 (Bennartz, 2007), and  = 5/9 when the adiabatic 

assumption is applied (Szczodrak et al., 2001). A recent study by Miller et al. (2016) provides a systematic investigation of 

the impacts of cloud vertical structure on MODIS LWP retrievals. To be consistent with the adiabatic assumption used in Eq. 25 

(4) for estimating CDNC, = 5/9 is applied here. 

The other LWP retrieval comes from AMSR-E Level 2B Global Swath Ocean Product (Wentz and Meissner, 2004). 

Unlike retrieving from solar reflectance of visible near-infrared (VNIR) for MODIS, LWP for AMSR-E is directly derived 

from brightness temperatures based on liquid-sensitive 37 GHz channel measurements (Seethala and Horváth, 2010). More 

information of retrieval technique of AMSR-E LWP is documented in Wentz and Meissner (2000). Horizontal resolution of 30 
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AMSR-E LWP product (12km) is also different from MODIS LWP product (5km). 

2.1.3 Precipitation 

Precipitation datasets used in this study are derived from three different products from the CloudSat CPR, namely 

2B-GEOPROF, 2C-PRECIP-COLUMN and 2C-RAIN-PROFILE. All the estimates are limited to cloudy profiles by using 

2B-GEOPROF cloud mask, which is set to greater than 20 (King et al., 2015). For the 2B-GEOPROF product (Marchand et 5 

al., 2008), the maximum radar reflectivity for each cloudy profile is used to define rain event and to estimate rain rate. More 

specifically, rain rate is obtained by employing the reflectivity-rainfall (Z-R) relationship at cloud base (Z=25R1.3 from 

Comstock et al., 2004), and a radar reflectivity threshold is used to distinguish between drizzling and nondrizzling clouds 

(Terai et al., 2012, 2015).  

The empirical Z-R relationship, however, does not account for multiple-scattering by raindrops and attenuation due to 10 

both gases and hydrometeors, which poses major challenges for calculation of rain rate, especially surface rain rate (Lebsock 

and L’Ecuyer, 2011). To address those challenges, Haynes et al. (2009) introduced a full rainfall retrieval algorithm, which 

is the basis of the 2C-PRECIP-COLUMN product. The algorithm first makes use of path-integrated attenuation (PIA) 

derived from measurements of radar backscatter over ocean surface in conjunction with surface wind speed and sea surface 

temperature. Surface rain rate is then estimated based on a simple algorithm using the PIA. For the 2C-PRECIP-COLUMN 15 

product, rain event is identified by using rain likelihood mask. Here, we use flag of “rain certain” to define rain event, which 

means attenuation-corrected reflectivity near surface is above 0dBZ (Haynes et al., 2009). 

2C-PRECIP-COLUMN assumes a constant vertical rain profile in the precipitating column (Haynes et al., 2009), which 

may not be suitable for warm rain where vertical variation of rain profile is significant (Lebsock and L’Ecuyer, 2011).  To 

address this issue, CloudSat developed a third rain product, 2C-RAIN-PROFILE that utilizes the complete 20 

vertically-resolved reflectivity profile observed by the CPR and incorporates a subcloud evaporation model. 

2C-RAIN-PROFILE also uses MODIS cloud visible properties to constrain cloud water in its retrieval algorithm (Lebsock 

and L’Ecuyer, 2011). Note that the 2C-RAIN-PROFILE algorithm directly uses the precipitation occurrence flag from 

2C-PRECIP-COLUMN, to define rain events. Thus the probability of precipitation (POP) is the same for both rain products. 

Note that surface rain rates are only retrieved for those pixels that identified as rain certain in 2C-RAIN-PROFILE product 25 

(Lebsock and L’Ecuyer, 2011). Overall, three rain rate datasets in this study are significantly different: rain rate directly 

estimated from 2B-GEOPROF represents the maximum rainfall rate, precipitation from 2C-PRECIP-COLUMN is the 

column-mean rainfall rate, and rain rate from 2C-RAIN-PROFILE stands for surface rainfall rate. 

2.2 Meteorological datasets 

Aerosol-cloud-precipitation interactions and precipitation susceptibility have been shown to depend on cloud regimes 30 
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(L’Ecuyer et al., 2009). Following Klein and Hartmann. (1993), we use the lower-tropospheric static stability (LTSS), which 

is defined as the difference in potential temperature between 700hPa and the surface, to separate different atmosphere 

thermodynamic regimes. In this study, unstable and stable environments are defined as LTSS less than 13.5K and LTSS 

larger than 18K, respectively. Pixels where LTSS between 13.5K and 18K are defined as the mid-stable environment (Wang 

et al., 2012). The European Centre for Medium-Range Weather Forecasts Auxiliary (ECMWF-AUX) product, as an 5 

ancillary CloudSat product that contains temperature and pressure within each CPR bin, is used to calculate LTSS. 

2.3 Precipitation susceptibility calculation 

Following previous studies (Feingold and Siebert, 2009; Sorooshian et al., 2009; Wang et al., 2012; Terai et al., 2012, 

2015), precipitation susceptibility is generally defined as: 

Yd
XdS YX ln

ln
_ −=                                                                          (6) 10 

where X can be substituted by POP (precipitation frequency), I (precipitation intensity), or R (R=POP×I, precipitation rate), 

and Y indicates AI or CDNC. Consequently, six different precipitation susceptibilities can be obtained from the observations 

described above. To constrain cloud macrophysical environment, all samples are sorted according to their LWP values first 

and then divided into 10 LWP bins. The ratio of the number of pixels in each bin to the total pixels ranges from 5% to 14%. 

For each LWP bin, samples are sorted by AI or CDNC, and ten AI/CDNC bins are equally divided to calculate POP, mean I, 15 

R, AI and CDNC within each AI/CDNC bin. Finally, the values of SX_Y are derived by linear regression in log-log space. 

3 Results 

3.1 SX_AI versus SX_CDNC 

SX_AI and SX_CDNC as a function of LWP are shown in Fig. 1. Here LWP from MODIS and rain data from 

2B-GEOPROF with a rain threshold of -15dBZ are used, to better compare with other satellite studies (Terai et al., 2015; 20 

Michibata et al., 2016). Here AI is estimated by using MYD04 dataset and detailed comparison among different aerosol 

products will be discussed in Section 3.2. 

Consistent with previous studies, SX_AI are generally much smaller than SX_CDNC as shown in Fig. 1. SPOP_AI from Wang 

et al. (2012) is less than 0.2 over all LWP bins, while Terai et al. (2015) showed that SPOP_CDNC decreases with increasing 

LWP, ranging from 1 to 0, and SR_CDNC is maintained at around 0.5. Fig. 1b further shows SI_CDNC monotonically increases 25 

with LWP, followed by a slight decrease. Although the SI_CDNC peak (around 0.6 with LWP 350 gm-2) is not significant in 

Fig. 1b, SI_CDNC would decrease distinctly after the peak if the upper bound of LWP and the number of LWP bins both 

increase (not shown). This turning point may correspond to conversion process shifting from the autoconversion to accretion 

regime (Michibata et al., 2016). 
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To account for discrepancy between SX_AI and SX_CDNC, we use the condition probability method (Gryspeerdt et al., 

2016) to explore relationships between AI and CDNC. As Fig. 2a shows, the majority of CDNC values concentrate on the 

intervals between 20 cm-3 to 100 cm-3, representing an upward tendency with increasing AI over global oceans. The similar 

feature of CDNC with AI is also shown in different LTSS conditions (Fig. 2b, 2c and 2d). Note that fluctuation of the curve 

at high AI results from the small number of effective pixels, especially in unstable condition. 5 

To formally account for the relationship between CDNC and AI, SX_AI can be decomposed into two parts: 

AId
CDNCdS

AId
CDNCd

CDNCd
Xd

AId
XdS CDNCXAIX ln

ln
ln

ln
ln
ln

ln
ln

__ =−=−=                               (7) 

where dlnCDNC/dlnAI is the link between SX_AI and SX_CDNC. SX_AI is expected to be smaller than SX_CDNC if 

dlnCDNC/dlnAI is smaller than 1. Fig. 3 shows dlnCDNC/dlnAI over global oceans, which is calculated by log-log linear 

regressions in each MODIS LWP bin. dlnCDNC/dlnAI is smaller than 0.4, which explains why SX_AI is generally smaller 10 

than SX_CDNC. Table 3 further shows the LWP-weighted mean of dlnCDNC/dlnAI, SX_AI, and SX_CDNC over global oceans. 

Our results are consistent with the previous satellite observations. For instance, SPOP_AI is equal to 0.11 in our results 

obtained from AMSR-E LWP, close to the value of 0.12 in Wang et al. (2012), and our SR_CDNC derived from MODIS LWP 

is 0.74, similar to that (0.6) in Terai et al. (2015). Since the global mean dlnCDNC/dlnAI is about 0.3, we would expect SX_AI 

is about one-third of SX_CDNC, according to Eq. (7). Table 3 shows that this relationship is generally true for SPOP, but less so 15 

for SI, especially for SI calculated based on MODIS LWP.  

Table 3 further demonstrates that SR≈SI+SPOP is generally true for different LWP products and over different stability 

regimes, consistent with Terai et al. (2015).  

3.2 SX_AI from different aerosol products 

Now we explore how precipitation susceptibility estimates might be different from different aerosol products (i.e., 20 

MYD04, MYD08 and CAL_LID_L2_05kmALay). As shown in Figure 4, despite differences in their horizontal resolutions 

(10 km versus 1 degree), SX_AI calculated from MYD04 and MYD08 agrees well (Fig. 4a and Fig. 4b), which may result 

from the fact that aerosol layers are likely homogeneous over relatively large spatial scales less than 200 km (Anderson et al., 

2003), especially over global oceans. In addition, McComiskey and Feingold (2012) found that the statistics (i.e., min, max 

and variance) of AOD are constant between MYD04 and MYD08 products over the northeast Pacific Ocean for a given day. 25 

Although not shown here, the probability distributions of AI derived from MYD04 and MYD08 products are qualitatively 

similar over global oceans. In comparison with the results based on MODIS retrievals, SX_AI obtained from CALIOP (Fig. 4c) 

is smaller and relatively flat across all LWP bins. Further test shows that SX_AI using CALIOP AOD but MYD04 AE agrees 

better with that based on MODIS aerosol products (Fig. 4d). This suggests that differences in AE estimates from MODIS 

and CALIOP largely explain the discrepancy between two aerosol products. Previous studies indicate that MODIS and 30 

CALIOP AOD are poorly correlated (e.g., Costantino and Bréon, 2010; Kim et al., 2013; Kittaka et al., 2011; Ma et al., 
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2013). Our results suggest that differences in AOD retrievals can lead to differences in AE estimates and further affect AI 

and precipitation susceptibly estimates. Given that AI from MODIS has been widely used in previous studies for examining 

aerosol-cloud-precipitation interactions, for the rest of the paper, AI from MYD04 is used, unless otherwise stated. 

3.3 SX_Y from different LWP dataset 

   Figure 5 shows the behavior of SPOP and SI based on different LWP data sets (i.e., AMSR-E and MODIS LWP). 5 

Estimates of rain rate and rain events are based on 2B-GEOPROF with -15dBZ threshold as mentioned in Section 2.1.3. 

Here we focus on characteristics of SPOP and SI since SR≈SI+SPOP as mentioned in Section 3.1. As shown in Fig. 5a, 

SPOP_CDNC based on MODIS LWP is similar to that calculated based on AMSR-E LWP. This consistency is also found for 

SPOP_AI. In contrast, SI_CDNC and SI_AI calculated based on two LWP products are quite different (Fig. 5b). SI_CDNC based on 

MODIS LWP are significantly larger than that based on AMSR-E LWP over all LWP bins (see upward triangles in Fig. 5b), 10 

while SI_AI from two LWP products shows an opposite pattern: SI_AI based on MODIS LWP is lower than that based on 

AMSR-E LWP (see downward triangles in Fig. 5b). These features of discrepancies in SI between MODIS and AMSR-E 

LWP are still applicable to SPOP, though the magnitude is much smaller and is not statistically significant (Fig. 5a).  

Fig. 5b shows that LWP value where SI_CDNC peaks based on MODIS LWP is larger than that based on AMSR-E LWP. 

Large eddy simulation analysis by Duong et al. (2011) showed a similar shift in LWP with changing spatial resolutions, 15 

which is attributed to reduction in mean LWP at coarser resolutions. However, Fig. 6 shows that there is no systematic shift 

in the frequency distribution of LWP between two LWP products, regardless of precipitation or non-precipitation samples. 

To better understand the discrepancy in precipitation susceptibility estimates from two LWP products in Fig. 5, we plot 

POP and intensity as a function of CDNC/AI in log space for each LWP bin obtained from MODIS and AMSR-E. Fig. 7a-7d 

shows that the relationships between POP and CDNC (AI) from MODIS LWP are similar to that from AMSR-E LWP. In 20 

contrast, intensity versus CDNC (AI) between two LWP products shows large differences (Fig. 7e-7h). Fig. 7f shows that 

intensity is positively correlated with CDNC at low CDNC for high AMSR-E LWP bins, which helps to explain why SI_CDNC 

from AMSR-E LWP is smaller than that from MODIS, especially at high LWP bins (Fig. 5b). 

Combining Eq. (4) and (5), CDNC from MODIS can be reformulated as a function of LWP and reff: 

35.05.0)( −−= effw rLWPaCDNC ρα                                                          (8) 25 

where α ,  and wρ  are all constant. Accordingly, reff decreases with increasing CDNC for any given MODIS LWP bin, 

and larger CDNC leads to smaller reff, which further results in reduction in precipitation efficiency, as shown in Fig. 7e. The 

CDNC-reff relationship still holds when data is binned by AMSR-E LWP and reff decreases with increasing CDNC even at 

larger LWP AMSRE-LWP bins (Fig. 8a). We would then expect rain intensity still decreases with increasing CDNC for the 

AMSR-E LWP at low CDNC. So then what might lead to increases in precipitation intensity with increasing CDNC at low 30 

a
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CDNC when data are binned according to constant AMSR-E LWP (Fig. 7f)? Our analysis suggests that this might come 

from the discrepancies in two LWP products under low CDNC. Fig. 8b shows that, under constant AMSR-E LWP, MODIS 

LWP significantly varies with CDNC (Fig. 8b). In particular, MODIS LWP rapidly increases with CDNC at low CDNC, 

which might explain why rain intensity increases with increasing CDNC at low CDNC under constant AMSR-E LWP, 

which further leads to much smaller SI_CDNC from AMSR-E LWP. Our results further indicate that rain intensity retrieval 5 

from CloudSat might be more consistent with LWP retrieval from MODIS than that from AMSR-E, as under constant 

AMSR-E LWP, rain intensity increases with increasing MODIS LWP at low CDNC (Fig. 7f and Fig. 8b).  

   It is interesting to note that, for rainy pixels, difference in LWP between MODIS and AMSR-E varies with MODIS 

CDNC. Under constant AMSR-E LWP (larger than 200 g m-2), MODIS LWP dramatically increases with increasing CDNC 

at lower CDNC (< ~25 cm-3). These features are also applicable to non-rainy samples (not shown). Further studies are 10 

needed to understand the aforementioned discrepancy. 

3.4 SX_Y from different rainfall definition 

Given that rainy samples may be dominated by different precipitation process (e.g., autoconversion vs. accretion 

process) with increasing threshold for defining a rainfall event (Jung et al., 2016), precipitation susceptibility may be 

changed when we apply different rainfall thresholds. To examine this, we plot SPOP and SI under different thresholds (i.e., 15 

-15dBZ and 0dBZ of maximum radar reflectivity) used to define a rain event based on 2B-GEOPROF products. These 

thresholds of -15dBZ and 0dBZ correspond to approximately precipitation rate of 0.14 and 2 mm d-1, respectively (Comstock 

et al., 2004). Hence, precipitation susceptibilities under these two thresholds can be referred to as drizzle (> -15 dBZ) and 

rain (> 0 dBZ) susceptibilities. As Fig. 9 indicates, difference in SX_AI between drizzle and rain is, at first glance, less evident 

compared to SX_CDNC. This can be partly attributed to the low values of SX_AI themselves. Relative differences in SX_AI are 20 

even larger than that of SX_CDNC at low AMSR-E LWP (not shown). Fig. 9a and Fig. 9c show that rain SPOP_AI is higher than 

that of drizzle over most LWP bins, which is consistent with results from Wang et al. (2012).  

Rainfall definition significantly impacts SPOP_CDNC and SI_CDNC: increasing the threshold results in reduction of SI_CDNC 

over all LWP and, by contrast, leads to distinctly increase in SPOP_CDNC, especially at moderate LWP (see Fig. 9). These 

overall changes in SI_CDNC and SPOP_CDNC after increasing the threshold are consistent with Terai et al. (2015). The 25 

observational result from Mann et al. (2014) have also shown an evident increase in SPOP with respect to NCCN at high LWP 

with increasing thresholds. The systematic increase in SPOP_CDNC may result from larger proportion of non-drizzling samples 

with increasing threshold. The reduction of SI_CDNC is in agreement with previous studies (Duong et al., 2011; Jung et al., 

2016). Although not shown here, for a fixed threshold, there is no significant discrepancy between the results of SI_CDNC and 

SR_CDNC based on different Z-R relationships (Z=25R1.3 and Z=302R0.9 are used both from Comstock et al. 2004, which aim 30 

at cloud base and surface rain rate, respectively), which is consistent with the result from Terai et al. (2012).  
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Overall, our results show that SPOP and SI are both sensitive to the rainfall definition and that SPOP is greater for rain while 

SI is greater for drizzle. Our results further imply that onset of drizzle is not as readily suppressed in warm clouds as rainfall 

(i.e., SPOP is greater for rain than for drizzle). By contrast, SR is not affected by the rainfall definition since the mean rain rate 

R for a given LWP/CDNC or LWP/AI bin is calculated based on both rainy and non-rainy clouds and does not depend on 

rainfall thresholds (not shown). 5 

While the response of precipitation susceptibility to change in threshold shows the same pattern between MODIS and 

AMSR-E LWP (Fig. 9), the extent to which susceptibility changes with increasing threshold is quite different between these 

LWP products. Overall, sensitivity of SX_CDNC to different thresholds using MODIS LWP is larger than that based on 

AMSR-E LWP; this pattern is opposite for SX_AI. It is interesting to note that while the difference in SPOP between MODIS 

and AMSR-E LWP is small with the -15dBZ threshold (Fig. 5; Fig. 9a and Fig. 9c), the difference is relatively larger for the 10 

0 dBZ threshold (Fig. 9a and Fig. 9c), especially at larger LWP bins.  

3.5 SX_Y from different precipitation data sets 

The diverse rain data sets allow us to explore differences in precipitation susceptibility estimates from different rain 

products. In Fig. 10, we illustrate SPOP and SI for different rain data sets, namely, 2B-GEOPROF, 2C-PRECIP-COLUMN 

and 2C-RAIN-PROFILE (Marchand et al., 2008; Haynes et al., 2009; Lebsock and L’Ecuyer, 2011) products. Here we use 15 

LWP derived from MODIS and use “rain certain” flag for rain definition reported in the latter two rain products. Since the 

precipitation flags used in these two rain products are identical (Lebsock and L’Ecuyer, 2011), only SPOP based on 

2C-PRECIP-COLUMN is plotted in Fig. 10. For 2B-GEOPROF, the threshold of 0dBZ radar reflectivity is used to define a 

rain event and rain rate is estimated by using Z=25R1.3 suggested by Comstock et al. (2004). Note that using “rain certain” 

flag or threshold of 0 dBZ to identify rain event for those rain products would result in a reduction of rain events across all 20 

LWP bins, especially at low LWP bins, therefore we expand bounds of low LWP bins to include enough rain samples at low 

LWP bins.  

SPOP exhibits a similar dependence on LWP among these three rain products, but SPOP based on 2B-GEOPROF is 

systematically larger than that based on 2C-PRECIP-COLUMN (this is also true for SI). It is unclear what might lead to 

higher SPOP and SI from 2B-GEOPROF. The vertical structure of clouds may play a role here, as the maximum radar 25 

reflectivity is used from 2B-GEOPROF and surface rain rates are used from the other products.  

The most significant discrepancy occurs in SI_CDNC and SI_AI (see Fig. 10b). Fig. 10b shows that SI_CDNC and SI_AI are 

both near-zero for LWP <400 g m-2, which may be attributed to high thresholds used among the three rain products. This 

indicates that precipitation intensity with high threshold is insensitive to CDNC and AI at moderate LWP. This result is 

consistent with Terai et al. (2015) who suggested that heavy drizzle intensity is insensitive to CDNC. As Fig. 10b shows, 30 

SI_CDNC based on 2C-RAIN-PROFILE product (red squares in Fig. 10b) with subcloud evaporation model incorporated is 
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higher than that based on 2C-PRECIP-COLUMN product (blue squares in Fig. 10b) at high LWP (above 300 gm-2). Hill et al. 

(2015) showed that, when considering rain evaporation, SI_CDNC based on surface rain rate is larger than that based on cloud 

base and column max rain rate at LWP > 400 gm-2. However, their difference is more obvious than our results, which may 

result from threshold used (0.01 mm day-1 in Hill et al. (2015) versus surface the 0 dBZ in 2C-RAIN-PROFILE and 

2C-PRECIP-COLUMN products). It is interesting to note that the sign of SI_CDNC at large LWP is different from that of SI_AI 5 

(Fig. 10b), which is not true for AMSR-E LWP (not shown). This warrants further investigation in the future.  

3.6 SX_Y under different stability regimes 

Here we examine precipitation susceptibility under different atmospheric stability regimes, as 

aerosol-cloud-precipitation interactions have been shown to differ under different stability regimes (e.g., L’Ecuyer et al., 

2009; Zhang et al., 2016; Michibata et al., 2016). Based on MODIS LWP and 2B-GEOPROF product with -15 dBZ 10 

threshold, Fig. 11a and Fig. 11b suggest that both SPOP and SI increase with more stable environment. This pattern for SPOP is 

consistent with the findings of L’Ecuyer et al. (2009) who showed that suppression of precipitation was largest at lower 

LWP in stable environments. Terai et al. (2015) also found maximum SPOP_CDNC occurred in regions where stable regime was 

predominant. The distribution of the precipitation susceptibility with respect to LTSS and LWP shown in Fig. 12 using 

2B-GEOPROF product with the -15 dBZ rain threshold is consistent with Fig. 11a and Fig. 11b: SPOP increases with 15 

increasing LTSS with the exception of high LWP. Although not shown here, SPOP_AI based on 2C-PRECIP-COLUMN and 

AMSR-E LWP product produces a similar pattern with the result of L’Ecuyer et al. (2009), who showed the slope between 

POP and AI is small both at low and high LWP, but this magnitude tends to increase at intermediate LWP and high LTSS. 

Rain definition significantly affects spread of SPOP and SI under different stability regimes. As rain threshold increases, 

the discrepancy in SPOP among different LTSS conditions is more significant (Fig. 11c versus Fig. 11a) while discrepancy in 20 

SI becomes smaller. LTSS-dependence of SI is even reversed at low LWP with the 0 dBZ threshold compared to that using 

the -15 dBZ threshold (Fig. 11d versus Fig. 11b).  

The above-mentioned features of LTSS-dependency are also true in terms of LWP-weighed mean value, as shown in 

Fig. 13. For all those cases based on different rain products and LWP products, the LWP-weighed mean of SPOP is generally 

larger under stable conditions compared with unstable conditions. Yet, this feature does not hold true for SI except the case 25 

based on the 2B-GEOPROF dataset with the -15 dBZ threshold. Our results also suggest that it is important to account for 

the influence of atmospheric stability owing to the clear dependence of SPOP on metrics like LTSS, though it is 

acknowledged that LTSS alone is an imperfect metric for isolating cloud regimes (e.g., Nam and Quaas, 2013). Different 

metrics associated with cloud regimes should be examined in future to better understand the effect of cloud regimes on 

precipitation susceptibility. For instance, LTSS can be combined with vertical pressure velocity to distinguish between 30 

different cloud types (Zhang et al., 2016). 
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4 Discussion 

Fig. 14 shows the range of precipitation susceptibility estimated from different LWP and rain products. Here the 

threshold of 0dBZ of maximum radar reflectivity is used for 2B-GEOPROF product and the “rain certain” flag is used for 

2C-PRECIP-COLUMN and 2C-RAIN-PROFILE products. It shows that uncertainties in SPOP (Fig. 14a) as a result of using 

different LWP and/or rain products are smaller than the uncertainties associated with SI and SR (Fig. 14b and c). The 5 

uncertainties in SPOP are mainly attributed to different LWP products as described in Section 3.4 (see red symbols in Fig. 9a 

and Fig. 9c). 

Our results may help to reconcile some of the differences in previous estimates of precipitation susceptibility. For 

example, our results show that SX_AI≈0.3SX_CDNC(Table 3 and Fig. 1), which explains why SPOP_CDNC in Terai et al. (2015) is 

much larger than SPOP_AI in Wang et al., (2012). Previous studies are also different in how precipitation susceptibility varies 10 

with increasing LWP. Our results show that SI generally increases with LWP at low and moderate LWP and then decreases 

with increasing LWP at moderate and high LWP, consistent with results from Feingold et al., (2013), Michibata et al., (2016) 

and Jung et al., (2016). The monotonic increase of SI_CDNC with increasing LWP in Terai et al., (2015) is mainly because that 

the LWP range in their study is relatively narrow (from 0 to ~400 g m-2) and our results suggest that when the upper bound 

of LWP is extended to ~800 g m-2, the “descending branch” (S decreases with increasing LWP) noted in Feingold et al. 15 

(2013) appears, though the exact LWP value where SI_CDNC peaks depend on LWP and rain products used as well as the 

rainfall threshold choices. 

Interestingly, SI tends to be negative at low LWP both for AMSR-E and MODIS LWP (Fig. 5b). This is closely 

associated with positive correlation between conditional-mean rainfall intensity and CDNC (AI) at low LWP bins where 

CDNC (AI) is high (Fig. 7e-7h). More negative values are captured when SI is estimated using 2C-PRECIP-COLUMN and 20 

2C-RAIN-PROFILE products and using high rainfall thresholds (Fig. 9b, Fig. 9d, Fig. 10b and Fig. 13). Furthermore, based 

on these rain products, SI_CDNC is all negative at low and intermediate LWP regardless of the LWP dataset used (Fig. 10b) 

and almost all of mean SI_CDNC is significantly negative regardless of stability regimes (Fig. 13). Depending on LWP 

products adopted, using AI instead of CDNC in estimating SI can make it less negative (for AMSR-E LWP) or more 

negative (for MODIS LWP) (Fig. 13). Terai et al. (2015) also found negative values of SI_CDNC at low LWP and high CDNC. 25 

In their study, sign and/or magnitude of SI_CDNC at low LWP are distinct across different regions. In addition, Koren et al. 

(2014) found a positive relationship between AOD and rain rate over pristine areas with warm and aerosol-limited clouds, 

which was attributed to aerosol invigoration effect. As SI shows large differences under different stability regimes (Fig. 13), 

it would be highly interesting to analyze regional variation in SI to further understand negative SI in the future, especially 

under unstable regimes.  30 

Furthermore, our results show that drizzle intensity is more susceptible to aerosol perturbations than rain intensity (see 
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Fig. 9b and Fig. 9d), which might help to explain why negative values of SI_CDNC occur more frequently with increasing 

rainfall thresholds. Jung et al. (2016) found more negative values of SI_CDNC with increasing threshold (see Fig. B2 in Jung et 

al. (2016)). In addition, rain products used in our study are all derived from CPR onboard CloudSat. With increasing 

thresholds, rainfall becomes heavy and uncertainty in rain rate retrieval can grow as CPR is insensitive to heavy precipitation 

(Haynes et al., 2009). So combination of different rain satellite products (e.g., CloudSat and TRMM) would be helpful for 5 

better understanding negative SI. 

It should be noted that precipitation susceptibility in our study is based on Eq. (7) and is derived by linear regression 

between precipitation fields and CDNC/AI in log-log space. The negative/positive correlation between precipitation 

frequency/intensity and aerosols may not be readily explained as aerosol effects on precipitation. For example, a negative 

correlation between precipitation frequency and aerosols may come from the wet scavenging effects of aerosols (more 10 

precipitation leads to less aerosols) but not aerosol suppression of precipitation. However, in our study, we not only calculate 

precipitation susceptibility with respect to AI (SX_AI), but also with respect to CDNC (SX_CDNC) and the later one is expected 

to be less affected by the wet scavenging effects. The broad consistency between these two estimates shown in our results 

(Fig. 13), especially for the estimate of SPOP, lends the support to the limited influence of wet scavenging in our estimate. 

Further support for this comes from the fact that precipitation susceptibility estimates based on the 1 degree L3 MODIS 15 

aerosol products are similar to those based on the 10 km L2 MODIS aerosol products (Fig. 4), as we would expect the wet 

scavenging effects are more important at smaller scales if the wet scavenging effects are a dominating factor. Nevertheless, 

the effects of wet scavenging can still be important in satellite studies of aerosol-cloud-precipitation interactions, and should 

be better quantified in future, perhaps in combination with model simulations.  

5 Summary 20 

In this paper, we estimate precipitation susceptibility on warm clouds over global oceans based on multi-sensor aerosol 

and cloud products from the A-Train satellites, including MODIS, AMSR-E, CALIOP and CPR observations, covering the 

period June 2006 to April 2011. In addition to different aerosol, cloud and rain products, we also analyze other factors that 

have potential influence on susceptibility, such as different definitions of precipitation susceptibility (six different 

susceptibilities defined by Eq. (6)), stability regimes, and different thresholds for defining a rain event (i.e., -15dBZ and 25 

0dBZ of maximum radar reflectivity for 2B-GEOPROF). The primary goal of the study is to quantify uncertainties in 

precipitation susceptibility estimates from satellite observations.  

In general, SPOP is a relatively robust metric throughout different LWP and rain products and its estimate is less 

sensitive to different datasets used (Fig. 13-14). SPOP_CDNC shows overall a monotonic decreasing trend with respect to LWP.  

SPOP_AI increases to a maximum at low LWP and then decreases with higher LWP. In contrast, SI differs considerably among 30 
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different LWP and rain products (Fig. 13-14). Interestingly, SI_CDNC and SI_AI differ between those LWP products with 

opposite pattern: SI_CDNC based on MODIS LWP is higher than that using AMSR-E LWP and the reverse is true for SI_AI (Fig. 

13). Negative SI is found in our study, especially at low LWP. However, the extent of negative SI depends on LWP and rain 

products, rainfall thresholds, and whether SI is calculated with respect to AI or CDNC (Fig. 13). More negative values are 

found when SI is calculated based on 2C-PRECIP-COLUMN and 2C-RAIN-PROFILE products, and SI based on rain 5 

samples (with 0 dBZ threshold) tends to be more negative. Further studies (regional variation in SI, combination of different 

rain satellite products, etc.) are needed to understand this issue. 

Precipitation susceptibility for drizzle (with -15 dBZ rainfall threshold) is significantly different from that for rain (with 

0 dBZ rainfall threshold) (Fig. 9 and Fig. 13). Our results suggest that onset of drizzle is not as readily suppressed by 

increases in AI or CDNC in warm clouds as rainfall (i.e., SPOP is smaller for drizzle than for rain, especially at moderate 10 

LWP, Fig. 9). This may partly come from the fact that POP of drizzle is close to 100% at moderate and high LWP regardless 

of CDNC or AI values (Fig. 7a-d), which makes it insensitive to perturbations in CDNC or AI and results in smaller SPOP at 

these LWP bins compared with SPOP for rain (Fig. 9). On the other hand, precipitation intensity susceptibility is generally 

smaller for rain than for drizzle. This is consistent with our expectation that when precipitation intensity increases, accretion 

contributes more to the production of precipitation, which makes precipitation intensity less sensitive to perturbation in 15 

CDNC or AI, as accretion is less dependent on CDNC compared with autconversion (Feingold et al., 2013; Wood, 2005). In 

addition, the extent of these differences between drizzle and rain depends on the LWP products used.  

SX_AI based on aerosol products at different spatial resolutions (i.e., 10 km versus 1 degree) is consistent with each other. 

Chen et al. (2014) also found that aerosol indirect forcing derived from satellite observations was similar from AI 

observations at different resolutions (i.e., 20 km versus 1 degree). This suggests that aerosol layers over oceans are relatively 20 

homogeneous, implying that aerosol properties at coarse resolution may be suitable for studying aerosol-cloud interactions 

over oceans. 

SPOP strongly depends on LTSS, with larger values under more stable environment. This dependence is evident over all 

LWP bins, especially at low and moderate LWP bins and is more significant for rain than for drizzle (Fig. 11 and Fig. 13). 

These features, however, are less robust for SI throughout different LWP and rain products as SI estimates show large 25 

uncertainties from different datasets (Fig. 13). Only in the case of SI estimated from 2B-GEOPROF product for drizzle (with 

-15 dBZ threshold), does the LTSS-dependence of SI hold for both MODIS and AMSR-E LWP. The pattern of SPOP_AI under 

different stability conditions from our paper (Fig. 13b and Fig. 13f) is consistent with the findings of L’Ecuyer et al., (2009). 

In addition, Terai et al., (2015) found maximum SPOP_CDNC occurred in regions where stable regime is predominant. Lebo and 

Feingold (2014) calculated precipitation susceptibility for stratocumulus and trade wind cumulus using large-eddy 30 

simulations (LES) and included an overview of precipitation susceptibility estimates based on LES in the literature. However, 

their results focus on the relationship between precipitation susceptibility and cloud water response to aerosol perturbations, 
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and did not examine how precipitation susceptibility might be different for clouds under different cloud regimes. The 

physical mechansims behind the strong dependence of SPOP on stability are still unclear and warrant further investigation in 

the future. 	

The results presented here show that the discrepancy in magnitude between SX_AI and SX_CDNC can be mainly attributed 

to the dependency of CDNC on AI. On the global scale, our results show that SX_AI is about one-third of SX_CDNC. This 5 

relationship is more applicable to SPOP, and is less applicable to SI. In addition, SR≈SI+SPOP is generally true for different 

LWP products and over different LTSS conditions. 

As SPOP demonstrates relatively robust features across different LWP and rain products, this makes it a valuable metric 

for quantifying aerosol-cloud-precipitation interactions in observations and models. For instance, it would be highly 

interesting to examine why SPOP strongly depends on atmospheric stability and how well this dependence is represented in a 10 

hierarchy of models (e.g., large eddy simulations, cloud resolving models, regional climate models, and global climate 

models). We also note that SPOP_CDNC is generally less uncertain compared to SPOP_AI and that a relatively robust relationship 

between SPOP_CDNC and SPOP_AI exists (i.e., SX_AI≈0.3SX_CDNC) (Fig. 13 and Table 3). Given that aerosol retrievals near clouds 

are still challenging and aerosol-cloud relationships in satellite observations can be affected by aerosol retrieval 

contaminations from clouds, we recommend to first thoroughly quantify SPOP_CDNC in observations and models. As SPOP_CDNC 15 

is derived based on CDNC instead of AI, SPOP_CDNC is also not influenced by wet scavenging. Only after SPOP_CDNC is 

thoroughly quantified, we can then combine it with how CDNC depends on AI to better quantify SPOP_AI. 

On the other hand, SI estimates strongly depend on satellite retrieval products. Uncertainties in SI estimate are 

particular large when SI is estimated based on rain samples (> 0 dBZ) rather than drizzle samples (> -15 dBZ). It would then 

be desirable to use drizzle samples to estimate SI. However, satellite retrieval of precipitation rate for drizzle can be highly 20 

uncertain. It is therefore recommended to further improve the retrieval accuracy of precipitation rate for drizzle in satellite 

observations in order to better use satellite estimate of SI to quantify aerosol-cloud precipitation interactions. Alternatively, 

long-term ground and in-situ observations with high accuracy precipitation rate retrievals can be used to provide better 

estimate SI and to further quantify aerosol-cloud-precipitation interactions.  

Acknowledgement 25 

M. Wang was supported by the National Natural Science Foundation of China (41575073 and 41621005) and by the Jiangsu 

Province Specially-appointed professorship grant, the One Thousand Young Talents Program. MYD08_D3 and MYD04_L2 

products are available through LAADS, the Level 1 and Atmosphere Archive and Distribution System 

(https://ladsweb.modaps.eosdis.nasa.gov). MYD06_L2 and 2B-GEOPROF data, both collocated to CALIOP subtrack, are 

obtained from ICARE Data and Services Center (http://www.icare.univ-lille1.fr/projects/calxtract/products). 30 

2C-PRECIP-COLUMN and 2C-RAIN-PROFILE data sets are available from CloudSat Data Processing Center 

dell � 2017/12/8 9:41 AM

已删除 :  

Minghuai Wang� 2017/12/7 9:50 PM

已删除 : Despite the quantified relationship 

between SX__AI and SX_CDNC, we suggest that 

CDNC should be used broadly to estimate 35 
precipitation susceptibility compared to AI 

given the following reasons: (1) near-cloud 

aerosol retrievals would affect aerosol-cloud 

relationships in satellite observations. For 

instance, more resent study of Christensen et 40 
al., (2017) shown that cloud albedo effect and 

cloud faction effect forcing both decreased by 

40% and 70% respectively after rejecting 

aerosol samples located within 15 km of the 

nearest cloud; (2) the difference of SX_CDNC 45 
among SR, SI and SPOP is more obvious since 

SX_CDNC are much larger than SX_AI (Fig. 1); (3) 

SX_CDNC is less sensitive to the wet scavenging 

effect since it does not need aerosol data for 

calculation; (4) SX_CDNC can be easily compare 50 
to parameterization of cloud microphysics in 

models (e.g., the water conversion rate by 

autoconversion process (Paut) in GCMs is 

usually represented as Paut ～ 

LWCɑ×CDNC-β, where ɑ and β are both 55 
constants and LWC is liquid water content 

(Michibata et al., 2016)).



17 
 

(http://cloudsat.atmos.colostate.edu/data). CAL_LID_L2_05kmALay data is gained from ASDC, Atmospheric Science Data 

Center (https://eosweb.larc.nasa.gov). AMSR-E/Aqua L2B Global Swath Ocean product can be obtained from NASA 

Distributed Active Archive Center (DAAC) at NSIDC (http://nsidc.org/daac). We thank Dr. Johannes Quaas and an 

anonymous reviewer for their constructive comments, which allows us to further improve the manuscript.  

References 5 

Anderson, T. L., Charlson, R. J., Winker, D. M., Ogren, J. a. and Holmén, K.: Mesoscale Variations of Tropospheric 

Aerosols, J. Atmos. Sci., 60(1), 119–136, doi:10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2, 2003. 

Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. 

Res., 112, D02201, doi:DOI 10.1029/2006JD007547, 2007. 

Bréon, F. M., Vermeulen, A. and Descloitres, J.: An evaluation of satellite aerosol products against sunphotometer 10 

measurements, Remote Sens. Environ., 115(12), 3102–3111, doi:10.1016/j.rse.2011.06.017, 2011. 

Chand, D., Wood, R., Ghan, S. J., Wang, M., Ovchinnikov, M., Rasch, P. J., Miller, S., Schichtel, B. and Moore, T.: Aerosol 

optical depth increase in partly cloudy conditions, J. Geophys. Res. Atmos., 117(17), doi:10.1029/2012JD017894, 2012. 

Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster, P., Kerminen, V.-M., Kondo, Y., Liao, H., 

Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in: Climate 15 

Change 2013: The Phys- ical Science Basis. Contribution ofWorking Group I to the Fifth Assessment Report of the 

Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., 

Boschung, J., Nauels, A., Xia, Y., Bex V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom 

and New York, NY, USA, 2013. 

Chen, Y.-C., Christensen, M. W., Stephens, G. L. and Seinfeld, J. H.: Satellite-based estimate of global aerosol-cloud 20 

radiative forcing by marine warm clouds, Nat. Geosci., 7(9), 643–646, doi:10.1038/ngeo2214, 2014. 

Cho, H.-M., Zhang, Z., Meyer, K., Lebsock, M., Platnick, S., Ackerman, A. S., Di Girolamo, L., C.-Labonnote, L., Cornet, 

C., Riedi, J. and Holz, R. E.: Frequency and causes of failed MODIS cloud property retrievals for liquid phase clouds over 

global oceans, J. Geophys. Res. Atmos., 120(9), 4132–4154, doi:10.1002/2015JD023161, 2015. 

Christensen, M. W., Neubauer, D., Poulsen, C., Thomas, G., McGarragh, G., Povey, A. C., Proud, S. and Grainger, R. G.: 25 

Unveiling aerosol-cloud interactions Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing 

estimate, Atmos. Chem. Phys. Discuss., 20(May), 1–21, doi:10.5194/acp-2017-450, 2017. 

Comstock, K. K., Wood, R., Yuter, S. E. and Bretherton, C. S.: Reflectivity and rain rate in and below drizzling 

stratocumulus, Q. J. R. Meteorol. Soc., 130, 2891–2918, doi:10.1256/qj.03.187, 2004. 

Costantino, L. and Bréon, F. M.: Analysis of aerosol-cloud interaction from multi-sensor satellite observations, Geophys. 30 



18 
 

Res. Lett., 37(11), 1–5, doi:10.1029/2009GL041828, 2010. 

Duong, H. T., Sorooshian, A. and Feingold, G.: Investigating potential biases in observed and modeled metrics of 

aerosol-cloud-precipitation interactions, Atmos. Chem. Phys., 11(9), 4027–4037, doi:10.5194/acp-11-4027-2011, 2011. 

Feingold, G. and Siebert, H.: Cloud-Aerosol Interactions from the Micro to the Cloud Scale, MIT Press. Cambridge, Mass, 

319–338, 2009. 5 

Feingold, G., McComiskey, A., Rosenfeld, D. and Sorooshian, A.: On the relationship between cloud contact time and 

precipitation susceptibility to aerosol, J. Geophys. Res. Atmos., 118(18), 10544–10554, doi:10.1002/jgrd.50819, 2013. 

Ghan, S., Wang, M., Zhang, S., Ferrachat, S., Gettelman, A., Griesfeller, J., Kipling, Z., Lohmann, U., Morrison, H., 

Neubauer, D., Partridge, D. G., Stier, P., Takemura, T., Wang, H. and Zhang, K.: Challenges in constraining anthropogenic 

aerosol effects on cloud radiative forcing using present-day spatiotemporal variability, Proc. Natl. Acad. Sci., 113(21), 5804–10 

5811, doi:10.1073/pnas.1514036113, 2016. 

Greenwald, T. J.: A 2 year comparison of AMSR-E and MODIS cloud liquid water path observations, Geophys. Res. Lett., 

36(20), 2–7, doi:10.1029/2009GL040394, 2009. 

Greenwald, T. J., L’Ecuyer, T. S. and Christopher, S. A.: Evaluating specific error characteristics of microwave-derived 

cloud liquid water products, Geophys. Res. Lett., 34(22), L22807, doi:10.1029/2007GL031180, 2007. 15 

Gryspeerdt, E., Quaas, J. and Bellouin, N.: Constraining the aerosol influence on cloud fraction, J. Geophys. Res. Atmos., 

121(7), 3566–3583, doi:10.1002/2015JD023744, 2016. 

Haynes, J. M., L’Ecuyer, T. S., Stephens, G. L., Miller, S. D., Mitrescu, C., Wood, N. B. and Tanelli, S.: Rainfall retrieval 

over the ocean with spaceborne W-band radar, J. Geophys. Res. Atmos., 114, D00A22, doi:10.1029/2008JD009973, 2009. 

Hill, A. A., Shipway, B. J. and Boutle, I. A.: How sensitive are aerosol-precipitation interactions to the warm rain 20 

representation?, J. Adv. Model. Earth Syst., 7(3), 987–1004, doi:10.1002/2014MS000422, 2015. 

Horváth, Á. and Gentemann, C.: Cloud-fraction-dependent bias in satellite liquid water path retrievals of shallow, 

non-precipitating marine clouds, Geophys. Res. Lett., 34(22), L22806, doi:10.1029/2007GL030625, 2007. 

Hubanks, P., Platnick, S., King, M. and Ridgway, B.: MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis 

Document (ATBD) & Users Guide,Collection 006,Version 4.2., NASA-GSFC, 1, 2016. 25 

Jung, E., Albrecht, B. A., Sorooshian, A., Zuidema, P. and Jonsson, H. H.: Precipitation susceptibility in marine 

stratocumulus and shallow cumulus from airborne measurements, Atmos. Chem. Phys., 16(17), 11395–11413, 

doi:10.5194/acp-16-11395-2016, 2016. 

Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A. and Holben, B. N.: Operational remote sensing of 

tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102(D14), 30 

17051–17067, doi:10.1029/96JD03988, 1997. 

Kim, M. H., Kim, S. W., Yoon, S. C. and Omar, A. H.: Comparison of aerosol optical depth between CALIOP and 



19 
 

MODIS-Aqua for CALIOP aerosol subtypes over the ocean, J. Geophys. Res. Atmos., 118(23), 13241–13252, 

doi:10.1002/2013JD019527, 2013. 

King, J. M., Kummerow, C. D., van den Heever, S. C. and Igel, M. R.: Observed and Modeled Warm Rainfall Occurrence 

and Its Relationships with Cloud Macrophysical Properties, J. Atmos. Sci., 72(11), 4075–4090, 

doi:10.1175/JAS-D-14-0368.1, 2015. 5 

Kittaka, C., Winker, D. M., Vaughan, M. A., Omar, A. and Remer, L. A.: Intercomparison of column aerosol optical depths 

from CALIPSO and MODIS-Aqua, Atmos. Meas. Tech., 4(2), 131–141, doi:10.5194/amt-4-131-2011, 2011. 

Klein, S. A. and Hartmann, D. L.: The seasonal cycle of low stratiform clouds, J. Clim., 6(8), 1587–1606, 

doi:10.1175/1520-0442(1993)006<1587:TSCOLS>2.0.CO;2, 1993. 

Koren, I., Dagan, G. and Altaratz, O.: From aerosol-limited to invigoration of warm convective clouds., Science, 344(6188), 10 

1143–6, doi:10.1126/science.1252595, 2014. 

Kubar, T. L., Hartmann, D. L. and Wood, R.: Understanding the Importance of Microphysics and Macrophysics for Warm 

Rain in Marine Low Clouds. Part I: Satellite Observations, J. Atmos. Sci., 66(10), 2953–2972, doi:10.1175/2009JAS3071.1, 

2009. 

L’Ecuyer, T. S. and Jiang, J. H.: Touring the atmosphere aboard the A-Train, Phys. Today, 63(7), 36–41, 15 

doi:10.1063/1.3653856, 2010. 

L’Ecuyer, T. S., Berg, W., Haynes, J., Lebsock, M. and Takemura, T.: Global observations of aerosol impacts on 

precipitation occurrence in warm maritime clouds, J. Geophys. Res. Atmos., 114(9), 1–15, doi:10.1029/2008JD011273, 

2009. 

Lebsock, M. D. and L’Ecuyer, T. S.: The retrieval of warm rain from CloudSat, J. Geophys. Res. Atmos., 116(20), 1–14, 20 

doi:10.1029/2011JD016076, 2011. 

Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F. and Hsu, N. C.: The Collection 6 MODIS 

aerosol products over land and ocean, Atmos. Meas. Tech., 6(11), 2989–3034, doi:10.5194/amt-6-2989-2013, 2013. 

Ma, X., Bartlett, K., Harmon, K. and Yu, F.: Comparison of AOD between CALIPSO and MODIS: Significant differences 

over major dust and biomass burning regions, Atmos. Meas. Tech., 6(9), 2391–2401, doi:10.5194/amt-6-2391-2013, 2013. 25 

Mann, J. A. L., Chiu, J. C., Hogan, R. J., Oconnor, E. J., Lecuyer, T. S., Stein, T. H. M. and Jefferson, A.: Aerosol impacts 

on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments, J. Geophys. Res., 

119(7), 4136–4148, doi:10.1002/2013JD021339, 2014. 

Marchand, R., Mace, G. G., Ackerman, T. and Stephens, G.: Hydrometeor detection using Cloudsat - An earth-orbiting 

94-GHz cloud radar, J. Atmos. Ocean. Technol., 25(4), 519–533, doi:10.1175/2007JTECHA1006.1, 2008. 30 

McComiskey, A. and Feingold, G.: The scale problem in quantifying aerosol indirect effects, Atmos. Chem. Phys., 12(2), 

1031–1049, doi:10.5194/acp-12-1031-2012, 2012. 



20 
 

Michibata, T., Suzuki, K., Sato, Y. and Takemura, T.: The source of discrepancies in aerosol--cloud--precipitation 

interactions between GCM and A-Train retrievals, Atmos. Chem. Phys., 16(23), 15413–15424, 

doi:10.5194/acp-16-15413-2016, 2016. 

Miller, D. J., Zhang, Z., Ackerman, A. S., Platnick, S. and Baum, B. A.: The impact of cloud vertical profile on liquid water 

path retrieval based on the bispectral method: A theoretical study based on large-eddy simulations of shallow marine 5 

boundary layer clouds, J. Geophys. Res. Atmos., 121(8), 4122–4141, doi:10.1002/2015JD024322, 2016. 

Mülmenstädt, J., Sourdeval, O., Delanoë, J. and Quaas, J.: Frequency of occurrence of rain from liquid-, mixed-, and 

ice-phase clouds derived from A-Train satellite retrievals, Geophys. Res. Lett., 42(15), 6502–6509, 

doi:10.1002/2015GL064604, 2015. 

Nakajima, T., Higurashi, A., Kawamoto, K. and Penner, J. E.: A possible correlation between satellite-derived cloud and 10 

aerosol microphysical parameters, Geophys. Res. Lett., 28(7), 1171–1174, doi:10.1029/2000GL012186, 2001. 

Nam, C. C. W. and Quaas, J.: Geographically versus dynamically defined boundary layer cloud regimes and their use to 

evaluate general circulation model cloud parameterizations, Geophys. Res. Lett., 40(18), 4951–4956, doi:10.1002/grl.50945, 

2013. 

Platnick, S. and Twomey, S.: Determining the susceptibility of cloud albedo to changes in droplet concentration with the 15 

Advanced Very High Resolution Spectrometer, J. Appl. Meteorol., 33(3), 334–347, 

doi:10.1175/1520-0450(1994)033<0334:DTSOCA>2.0.CO;2, 1994. 

Platnick, S., King, M. D., Ackerman, S. A., Menzel, W. P., Baum, B. A., Riédi, J. C. and Frey, R. A.: The MODIS cloud 

products: Algorithms and examples from terra, IEEE Trans. Geosci. Remote Sens., 41(2 PART 1), 459–472, 

doi:10.1109/TGRS.2002.808301, 2003. 20 

Platnick, S., Meyer, K. G., King, M. D., Wind, G., Amarasinghe, N., Marchant, B., Arnold, G. T., Zhang, Z., Hubanks, P. A., 

Holz, R. E., Yang, P., Ridgway, W. L. and Riedi, J.: The MODIS Cloud Optical and Microphysical Products: Collection 6 

Updates and Examples from Terra and Aqua, IEEE Trans. Geosci. Remote Sens., 55(1), 502–525, 

doi:10.1109/TGRS.2016.2610522, 2017. 

Quaas, J., Boucher, O. and Lohmann, U.: Constraining the total aerosol indirect effect in the LMDZ and ECHAM4 GCMs 25 

using MODIS satellite data, Atmos. Chem. Phys., 6(4), 947–955, doi:10.5194/acp-6-947-2006, 2006. 

Seethala, C. and Horváth, Á.: Global assessment of AMSR-E and MODIS cloud liquid water path retrievals in warm oceanic 

clouds, J. Geophys. Res. Atmos., 115(13), 1–19, doi:10.1029/2009JD012662, 2010. 

Sorooshian, A., Feingold, G., Lebsock, M. D., Jiang, H. and Stephens, G. L.: On the precipitation susceptibility of clouds to 

aerosol perturbations, Geophys. Res. Lett., 36, L13803, doi:10.1029/2009GL038993, 2009. 30 

Stephens, G. L., Vane, D. G., Boain, R. J., Mace, G. G., Sassen, K., Wang, Z., Illingworth, A. J., O’Connor, E. J., Rossow, 

W. B., Durden, S. L., Miller, S. D., Austin, R. T., Benedetti, A. and Mitrescu, C.: The cloudsat mission and the A-Train: A 



21 
 

new dimension of space-based observations of clouds and precipitation, Bull. Am. Meteorol. Soc., 83(12), 1771–1790, 

doi:10.1175/BAMS-83-12-1771, 2002. 

Szczodrak, M., Austin, P. H. and Krummel, P. B.: Variability of optical depth and effective radius in marine stratocumulus 

clouds, J. Atmos. Sci., 58(19), 2912–2926, doi:10.1175/1520-0469(2001)058<2912:VOODAE>2.0.CO;2, 2001. 

Tackett, J. L. and Di Girolamo, L.: Enhanced aerosol backscatter adjacent to tropical trade wind clouds revealed by 5 

satellite-based lidar, Geophys. Res. Lett., 36(14), 1–5, doi:10.1029/2009GL039264, 2009. 

Tanré, D., Kaufman, Y. J., Herman, M. and Mattoo, S.: Remote sensing of aerosol properties over oceans using the 

MODIS/EOS spectral radiances, J. Geophys. Res., 102(D14), 16971–16988, doi:10.1029/96JD03437, 1997. 

Terai, C. R., Wood, R., Leon, D. C. and Zuidema, P.: Does precipitation susceptibility vary with increasing cloud thickness 

in marine stratocumulus, Atmos. Chem. Phys., 12(10), 4567–4583, doi:10.5194/acp-12-4567-2012, 2012. 10 

Terai, C. R., Wood, R. and Kubar, T. L.: Satellite estimates of precipitation susceptibility in low-level marine stratiform 

clouds, J. Geophys. Res. Atmos., 120(17), 8878–8889, doi:10.1002/2015JD023319, 2015. 

Vaughan, M. a, Young, S., Winker, D. M., Powell, K., Omar,  a, Liu, Z., Hu, Y. and Hostetler, C.: Fully automated analysis 

of space-based lidar data: an overview of the CALIPSO retrieval algorithms and data products, Proc. SPIE, 5575, 16–30, 

doi:10.1117/12.572024, 2004. 15 

Wang, M., Ghan, S., Liu, X., L’Ecuyer, T. S., Zhang, K., Morrison, H., Ovchinnikov, M., Easter, R., Marchand, R., Chand, 

D., Qian, Y. and Penner, J. E.: Constraining cloud lifetime effects of aerosols using A-Train satellite observations, Geophys. 

Res. Lett., 39, L15709, doi:10.1029/2012GL052204, 2012. 

Wentz, F. and Meissner, T.: AMSR Ocean Algorithm Theoretical Basis Document (ATBD), RSS Tech.Doc, Santa 

Rosa,Calif., 2000. 20 

Wentz, F.. and Meissner, T.: AMSR-E/Aqua L2B Global Swath Ocean Products derived from Wentz Algorithm. Version 2. 

Boulder, Colorado USA: NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: 

10.5067/AMSR-E/AE_OCEAN.002,2004. 

Wood, R.: Drizzle in Stratiform Boundary Layer Clouds. Part II: Microphysical Aspects, J. Atmos. Sci., 62(9), 3034–3050, 

doi:10.1175/JAS3530.1, 2005. 25 

Wood, R. and Hartmann, D. L.: Spatial variability of liquid water path in marine low cloud: The importance of mesoscale 

cellular convection, J. Clim., 19(9), 1748–1764, doi:10.1175/JCLI3702.1, 2006. 

Young, S. A. and Vaughan, M. A.: The Retrieval of Profiles of Particulate Extinction from Cloud-Aerosol Lidar Infrared 

Pathfinder Satellite Observations (CALIPSO) Data: Algorithm Description, J. Atmos. Ocean. Technol., 26(6), 1105–1119, 

doi:10.1175/2008JTECHA1221.1, 2009. 30 

Zhang, S., Wang, M., J. Ghan, S., Ding, A., Wang, H., Zhang, K., Neubauer, D., Lohmann, U., Ferrachat, S., Takeamura, T., 

Gettelman, A., Morrison, H., Lee, Y., T. Shindell, D., G. Partridge, D., Stier, P., Kipling, Z. and Fu, C.: On the 



22 
 

characteristics of aerosol indirect effect based on dynamic regimes in global climate models, Atmos. Chem. Phys., 16(5), 

2765–2783, doi:10.5194/acp-16-2765-2016, 2016. 

Zhang, Z. and Platnick, S.: An assessment of differences between cloud effective particle radius retrievals for marine water 

clouds from three MODIS spectral bands, J. Geophys. Res. Atmos., 116(20), doi:10.1029/2011JD016216, 2011. 

 5 

 

 

 

 

 10 

 



23 
 

Table 1. The summary of previous satellite studies for estimating precipitation susceptibility.  

Studies 
Rain 

variables 
Aerosol 
Proxies 

Thresholds Behavior Satellite datasets 

Sorooshian et 
al., 2009 

I AI surface 1mm h-1  SI:↗↘ 
2C-PRECIP-COLUMN 
AMSR-E L2B-Ocean 

MYD08-D3  

Wang et al., 
2012 

POP AI rain certaina SPOP<0.2 
2C-PRECIP-COLUMN 
AMSR-E L2B-Ocean 

MYD08-D3 

Terai et al., 
2015 

R/POP/I CDNC -15dBZ of Zmax
b 

SR: ↘ 
SPOP:↘ 
SI:↗ 

2B-GEOPROF 
MYD06_L2 

Michibata et 
al., 2016 

I CDNC -15dBZ of Zmax
b SI:↗↘ 

2B-GEOPROF 
MYD06_L2 

aRain certain is a flag of 2C-PRECIP-COLUMN product, which is equivalent to greater than attenuation-corrected 
reflectivity threshold of 0dBZ.  
bZmax: the maximum column radar reflectivity from the 2B-GEOPROF product. Symbols of ↗ (↘) represent the increasing 
(decreasing) trend of susceptibility with increasing LWP. 
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Table 2. Satellite products employed to estimate aerosol and cloud properties in this study 

Parameter Product Subset Horizontal resolution Sensor Satellite 

AI 

MYD08_D3 
Aerosol_Optical_Depth_Land_Ocean_Mean 

1° 

MODIS AQUA 
Aerosol_AE1_Ocean_JHisto_vs_Opt_Depth 

MYD04_L2 
Optical_Depth_Land_And_Ocean 

10km 
Angstrom_Exponent_1_Ocean 

CAL_LID_L2_05kmALay 
Column_Optical_Depth_Aerosol_532 

5km CALIOP CALIPSO 
Column_Optical_Depth_Aerosols_1064 

CDNC/LWP MYD06_L2a 
Cloud_Effective_Radius 

5km MODIS AQUA 
Cloud_Optical_Thickness 

LWP AE_Ocean_L2B High_res_cloud 12km AMSR-E AQUA 

POP/R 

2B-GEOPROFa 
CPR_Cloud_mask 

5km 

CPR CloudSat 

Radar_Reflectivity 

2C-PRECIP-COLUMN 
Precip_rate 

1.4km×1.7km 
Precip_flag 

2C-RAIN-PROFILE 
Rain_rate 

Precip_flag 
aThe original horizontal resolution of MYD06_L2 and 2B-GEOPROF products is 1km and 1.4km×1.7km, respectively. 
Since these products both are obtained from caltrack product collocated to CALIOP subtrack, the resolution is resampled to 
5km. Detailed information is provided by the website (http://www.icare.univ-lille1.fr/projects/calxtract/products). 
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Table 3. The LWP weighted-mean values of precipitation susceptibility Sx_y and dlnCDNC/dlnAI over global oceans under 

different stability regimes. The statistics is based on 2B-GEOPROF/CPR product using cloud base Z-R relationship and -15dBZ 

threshold. 

 
 

SR_AI SI_AI SPOP_AI SR_CDNC SI_CDNC SPOP_CDNC dlnCDNC/dlnAI 

MODIS LWP 

global 0.05  -0.02  0.08  0.74  0.47  0.44  0.28  

unstable -0.04  -0.09  0.04  0.52  0.30  0.26  0.22  

stable 0.22  0.13  0.12  0.84  0.48  0.60  0.30  

midstable 0.01  -0.05  0.07  0.66  0.39  0.35  0.29  

AMSR-E 

LWP 

global 0.17  0.07  0.11  0.47  0.16  0.37  0.32 

unstable 0.14  0.06  0.08  0.21  0.04  0.18  0.25 

stable 0.29  0.17  0.15  0.67  0.23  0.55  0.33 

midstable 0.13  0.04  0.10  0.40  0.13  0.29  0.34 
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Figure 1. SPOP, SI and SR as a function of MODIS LWP with (a) AI and (b) CDNC. Red squares, green upward triangles and blue 

downward triangles stand for SR, SPOP and SI, respectively. Error bars are based on 95% confidence intervals for the susceptibility 

estimates. AI is derived from MYD04/MODIS and CDNC is estimated from MYD06/MODIS. Intensity and probability of 

precipitation are based on 2B-GEOPROF product with -15dBZ threshold. The total amount of data samples for left panel and 

right panel are about 2.1 and 3.1 million.  
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Figure 2. The probability of CDNC under given AI over (a) global ocean, (b) unstable, (c) stable and (d) mid-stable conditions. In 

each figure, the red line represents change in average CDNC with AI, and the lower and upper lines stand for mean CDNC for 25 

percentile and 75 percentile of samples. AI and CDNC are estimated from MYD04 and MYD06, respectively. 
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Figure 3. dlnCDNC/dlnAI obtained by linear regression of lnCDNC and lnAI under MODIS LWP bins. Red line denote global 

ocean. Green, blue and cyan stand for unstable, stable and mid-stable condition, respectively. AI and CDNC are estimated from 

MYD04 and MYD06. 
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Figure 4. Susceptibilities (SX_AI) as a function of MODIS LWP. Rain product used is the same as Figure 1. AI is derived from (a) 

MYD04/MODIS, (b) MYD08/MODIS and (c) CAL_LID_L2_05kmALay/CALIOP product. Panel d is the same as panel c but 

using MYD04 AE.  
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Figure 5. (a) SPOP_Y and (b) SI_Y as a function of LWP. The subscript Y denotes different aerosol proxies corresponding to AI 

(downward triangles) and CDNC (upward triangles). Blue (red) represent LWP derived from MODIS (AMSR-E). Rain product 

used is the same as Figure 1. AI and CDNC are estimated from MYD04 and MYD06, respectively.  
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Figure 6. Distribution of frequency of LWP derived from MODIS and AMSR-E under different scenarios, namely, all samples, 

nonprecipitation and only precipitation samples.  
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Figure 7. POP and I as a function of CDNC (AI) for each LWP bin obtained from (left) MODIS and (right) AMSR-E. The data 

used here is the same as Figure 5. 
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Figure 8. (a) reff and (b) MODIS LWP as a function of CDNC for each AMSR-E LWP bin. Only rainy samples defined by -15dBZ 

threshold are used in here. Different color lines represent different AMSR-E bins corresponding to Fig. 7f.  
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Figure 9. (a, c) SPOP_Y and (b, d) SI_Y as a function of LWP. The subscript y denotes different aerosol proxies corresponding to AI 

(downward triangles) and CDNC (upward triangles). 2B-GEOPROF product is used here. Blue and red symbols represent -15dBZ 

threshold and 0dBZ threshold, respectively. The top and bottom panels stand for MODIS and AMSR-E LWP, respectively.  
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Figure 10. (a) SPOP_Y and (b) SI_Y as a function of MODIS LWP. The subscript Y denotes different aerosol proxies corresponding 

to AI (point) and CDNC (square). Different color symbols stand for different rain products: 2B-GEOPROF (2B-GEOP, green), 

2C-PRECIP-COLUMN (2C-COLU, blue) and 2C-RAIN-PROFILE (2C-PROF, red). See text for further details. 
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Figure 11. (a, c) SPOP_Y and (b, d) SI_Y as a function of MODIS LWP. The subscript y denotes different aerosol proxies 

corresponding to AI (point) and CDNC (square). Blue, red and green symbols stand for stable, unstable and mid-stable regimes, 

respectively. Rain data comes from 2B-GEOPROF. The top panels are for results based on the rain threshold of -15 dBZ and the 

bottom panels are based on the rain threshold of 0 dBZ. 
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Figure 12. Distribution of (a-b) SPOP_Y and (c-d) SI_Y as a function of MODIS LWP and LTSS. Rain data is from 2B-GEOPROF 

with threshold of -15dBZ. Each LTSS bin contains on average the same amount of pixels. 
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Figure 13. The LWP-weighed mean values of (a-b, e-f) SPOP and (c-d, g-h) SI under different stability regimes for four cases. The 

case1 and case2 are both based on 2B-GEOPROF product, but use threshold of -15 dBZ and 0 dBZ, respectively. The case3 and 

case4 use 2C-PRECIP-COLUMN and 2C-RAIN-PROFILE products, respectively. The top two panels use MODIS LWP and the 

bottom two panels use AMSR-E LWP. Error bars are based on the LWP-weighed mean values of 95% confidence intervals for the 

susceptibility estimates. 
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Figure 14. (a) SPOP_Y, (b) SI_Y and (c) SR_Y as a function of LWP. The subscript y denotes different aerosol proxies corresponding to 

AI (light green) and CDNC (light blue). Shade areas show the range of precipitation susceptibility from different rain products 

(same as the Fig. 10) and different LWP products (MODIS and AMSR-E). 

 


