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In	various	studies,	the	precipitation	susceptibility	metric	has	been	used	to	quantify	
the	effect	of	aerosols	on	the	precipitation	in	both	models	and	observations	and	to	
indicate	the	strength	of	the	cloud	lifetime	effect.	The	present	article	examines	how	
observationally-based	 estimates	 of	 the	 precipitation	 susceptibility	 metric	 vary	
depending	 on	 the	 various	 dataset	 and	 analysis	 choices.	 Previous	 attempts	 to	
provide	an	observational	constraint	on	the	precipitation	susceptibility	metric	have	
led	 to	 different	 strengths	 in	 susceptibility	 and	 also	 in	 different	 behaviors	 of	 the	
susceptibility.	 The	 study	 contributes	 to	 the	 existing	 literature	 by	 attempting	 to	
reconcile	those	differences	by	examining	a	wide	range	of	data	and	analysis	choices	
in	 the	 same	 framework,	 which	 might	 help	 answer	 why	 different	 studies	 have	
arrived	at	different	susceptibility	estimates.	The	authors	examine	the	sensitivity	of	
the	susceptibility	metric	to	the	choice	of	aerosol	proxy,	precipitation	characteristic	
(intensity,	 probability	 of	 precipitation	 (POP),	 or	 mean	 precipitation),	 stability	
regime,	 liquid	 water	 path	 retrieval,	 precipitation	 retrieval,	 and	 precipitation	
threshold.	 After	 examining	 the	whole	 range	 of	 sensitivities,	 the	 authors	 conclude	
that	 SPOP	 has	 the	 least	 amount	 of	 spread	 that	 arises	 from	 the	 choice	 of	 liquid	
water	 path	 and	 precipitation	 data	 product.	 The	 authors	 also	 find	 strong	
sensitivities	 in	 the	choice	of	 stability	regime	and	 in	whether	aerosol	 index	(AI)	or	
the	cloud	droplet	number	concentration	(CDNC)	is	used	as	the	aerosol	proxy.	 	
	
The	 study	 is	 a	 substantial	 contribution	 to	 the	 existing	 literature	 by	 providing	 a	
comprehensive	examination	of	 the	possible	 source	of	discrepancies	 that	can	arise	
when	trying	to	estimate	the	precipitation	susceptibility	based	on	satellite	retrievals.	
The	manuscript	methodically	goes	through	the	different	choices	that	can	be	made,	
and	 assesses	 their	 impact	 on	 the	 value	 and	 behavior	 of	 the	 metric.	 There	 are	 a	
couple	issues	with	the	paper	that	I	would	like	to	see	the	authors	address.	First,	the	
authors	 mention	 in	 the	 introduction	 of	 how	 estimates	 from	Wang	 et	 al.	 (2012),	
Terai	et	al.	(2015),	and	Michibata	et	al.	(2016)	differ	in	the	magnitude	of	the	SPOP	
metric.	Although	it	appears	that	the	use	of	AI	or	CDNC	is	the	largest	source	of	the	
discrepancy,	I	expected	to	see	the	authors	discuss	more	thoroughly	how	the	effect	of	
the	 choice	 of	 aerosol	 proxy	 compares	 with	 effect	 of	 the	 choice	 of	 precipitation	
dataset	 and	 threshold.	 I	 had	 also	 expected	 a	 similar	 discussion	 that	 folds	 in	 the	
results	from	Sorroshiaan	et	al.	(2009)	on	both	the	magnitude	of	the	susceptibility,	
as	well	as	the	behavior	of	the	susceptibility.	Second,	statistical	confidence	limits	to	
the	 susceptibilities	 should	 be	 provided	 to	 determine	 how	 the	 statistical	
uncertainties	compare	with	the	other	dataset/methodology	uncertainties	that	are	



examined	 in	 the	 study.	 The	 confidence	 intervals	 would	 help	 inform	 whether	 the	
choice	of	datasets	significantly	change	the	susceptibility	estimates	or	not.	Overall,	
the	 manuscript	 has	 a	 clear	 scientific	 question,	 uses	 analyses	 that	 address	 the	
question,	and	is	well	organized.	I	do	not	consider	the	main	issues	that	I	have	to	be	
major.	 Therefore,	 I	 recommend	 that	 the	 manuscript	 be	 published	 after	 the	
following	comments	and	issues	have	been	addressed.	
	
Main	comments	and	issues:	
1.	 The	 uncertainties	 in	 the	 susceptibility	 estimates	 should	 be	 reported	 in	 all	 the	
figures	 and	 graphs.	 The	 95%	 confidence	 intervals	 can	 be	 calculated	 from	 the	
standard	 deviation	 of	 the	 regression	 or	 using	 bootstrapping	 techniques.	 The	
statistical	 uncertainties	will	 help	 the	 author	 substantiate	 some	of	 the	 statements	
within	the	manuscript	that	say	whether	or	not	various	choices	significantly	change	
the	susceptibilities.	
The	 error	 bars	 with	 95%	 confidence	 intervals	 are	 now	 added	 to	 all	 the	
susceptibilities	figures	except	Fig.	10	and	Fig.	11.	Given	that	each	panel	of	
Fig.	10	and	Fig.	11	includes	six	susceptibility	curves,	these	figures	would	be	
not	clear	and	messy	if	error	bars	are	added.	The	error	bars	can	be	found	for	
global	mean	values	for	these	cases	in	Fig.	13.	 	
	
We	thank	the	reviewer	for	this	excellent	suggestion!	Adding	the	statistical	
uncertainties	 indeed	helps	us	 substantiate	 some	of	 our	 statements	 in	 the	
manuscript.	For	instance,	we	can	state	with	confidence	that	SPOP	estimates	
are	not	significantly	influenced	by	LWP	products,	while	SI	estimates	are,	as	
shown	 in	 Fig.	 5	 in	 the	 revised	 manuscript.	 On	 the	 other	 hand,	 the	
differences	 of	 dlnCDNC/dlnAI	 between	different	 stability	 regimes	 are	 not	
significant	 (Fig.	 3).	 We	 also	 find	 that	 almost	 all	 of	 mean	 SI_CDNC	 is	
significantly	negative	regardless	of	stability	regimes	(Fig.	13).	
	
2.	Given	that	the	main	purpose	of	the	study	is	to	examine	how	the	various	choices	
have	led	to	differences	in	the	susceptibility	that	are	reported	in	the	literature,	the	
authors	 should	 provide	 more	 discussion	 on	 how	 this	 study	 helps	 to	 reconcile	
existing	differences.	In	particular,	the	authors	should	do	their	best	to	identify	likely	
reasons	why	 the	 estimates	 in	 the	 previous	 studies	 have	 differed	 (if	 they	 do).	 For	
example,	there	are	differences	in	the	magnitude	of	the	susceptibility	(e.g.,	Wang	et	
al.,	 2012	 versus	 Terai	 et	 al.,	 2015).	 There	 are	 also	 differences	 in	 the	 behavior	 of	
susceptibility	(monotonic	decrease	versus	increase	and	then	decrease).	
We	have	provided	more	discussion	 on	 the	differences	 in	 both	magnitude	
and	behavior	of	susceptibility	in	previous	studies	in	the	second	paragraph	
of	the	Section	4	(Discussion).	Now	the	text	reads	"Our	results	may	help	to	
reconcile	 some	 of	 the	 differences	 in	 previous	 estimates	 of	 precipitation	
susceptibility.	 For	example,	 our	 results	 show	 that	 SX_AI≈0.3SX_CDNC,(Table	3	
and	 Fig.	 1),	 which	 explains	 why	 SPOP_CDNC	 in	 Terai	 et	 al.	 (2015)	 is	 much	
larger	than	SPOP_AI	in	Wang	et	al.,	(2012).	Previous	studies	are	also	different	



in	how	precipitation	susceptibility	varies	with	increasing	LWP.	Our	results	
show	that	SI	generally	 increases	with	LWP	at	 low	and	moderate	LWP	and	
then	decreases	with	increasing	LWP	at	moderate	and	high	LWP,	consistent	
with	results	from	Feingold	et	al.,	(2013),	Michibata	et	al.,	(2016)	and	Jung	
et	 al.,	 (2016).	 The	 monotonic	 increase	 of	 SI_CDNC	 with	 increasing	 LWP	 in	
Terai	et	al.,	(2015)	is	mainly	because	that	the	LWP	range	in	their	study	is	
relatively	narrow	(from	0	to	~400	g	m-2)	and	our	results	suggest	that	when	
the	upper	bound	of	LWP	is	extended	to	~800	g	m-2,	the	“descending	branch”	
(S	decreases	with	increasing	LWP)	noted	in	Feingold	et	al.	(2013)	appears,	
though	 the	exact	LWP	value	where	SI_CDNC	peaks	depend	on	LWP	and	rain	
products	used	as	well	as	the	rainfall	threshold	choices."	
	
	
3.	 The	 authors	 seem	 to	 argue	 for	 the	 use	 of	 SPOP	 as	 a	 metric	 to	 quantify	
aerosol-cloud-precipitation	 interactions	 due	 to	 SPOP	 having	 a	 smaller	 range	 of	
possible	values,	based	on	different	LWP	and	precipitation	rate	retrievals	(Fig.	14).	
There	is	less	discussion	on	the	advantages	and	disadvantages	of	using	CDNC	or	AI	
as	a	metric	and	also	a	lack	of	discussion	on	how	the	threshold	(rain	vs.	drizzle)	can	
significantly	 change	 SPOP	 values.	 Given	 that	 the	 authors	 have	 examined	 a	 wide	
range	 of	 potential	 sources	 that	 lead	 to	 differences	 in	 susceptibility	 estimates,	 it	
would	be	informative	for	the	readers	to	have	the	authors	synthesize	their	findings	
and	discuss	what	should	be	considered	in	future	attempts	to	try	to	observationally	
constrain	precipitation	susceptibility	or	attempts	to	compare	susceptibilities	 from	
models	and	from	observations.	
Thanks	 for	your	suggestions!	We	now	made	 further	recommendations	on	
how	 to	 better	 use	 these	 metrics	 to	 quantify	 aerosol-cloud-precipitation	
interactions	in	models	and	observations	in	Section	5,	and	it	reads:	 	 	
“As	SPOP	demonstrates	relatively	robust	 features	across	different	LWP	and	
rain	 products,	 this	 makes	 it	 a	 valuable	 metric	 for	 quantifying	
aerosol-cloud-precipitation	 interactions	 in	 observations	 and	 models.	 For	
instance,	 it	 would	 be	 highly	 interesting	 to	 examine	 why	 SPOP	 strongly	
depends	 on	 atmospheric	 stability	 and	 how	 well	 this	 dependence	 is	
represented	 in	 a	 hierarchy	 of	models	 (e.g.,	 large	 eddy	 simulations,	 cloud	
resolving	models,	regional	climate	models,	and	global	climate	models).	We	
also	note	 that	SPOP_CDNC	 is	generally	 less	uncertain	compared	 to	SPOP_AI	and	
that	a	relatively	robust	relationship	between	SPOP_CDNC	and	SPOP_AI	exists	(i.e.,	
SX_AI≈0.3SX_CDNC)	 (Fig.	 13	 and	 Table	 3).	 Given	 that	 aerosol	 retrievals	 near	
clouds	 are	 still	 challenging	 and	 aerosol-cloud	 relationships	 in	 satellite	
observations	 can	 be	 affected	 by	 aerosol	 retrieval	 contaminations	 from	
clouds,	we	recommend	to	first	thoroughly	quantify	SPOP_CDNC	in	observations	
and	models.	As	SPOP_CDNC	is	derived	based	on	CDNC	instead	of	AI,	SPOP_CDNC	is	
also	 not	 influenced	 by	 wet	 scavenging.	 Only	 after	 SPOP_CDNC	 is	 thoroughly	
quantified,	we	can	then	combine	it	with	how	CDNC	depends	on	AI	to	better	
quantify	SPOP_AI.	



On	 the	other	hand,	 SI	 estimates	 strongly	depend	on	 satellite	 retrieval	
products.	 Uncertainties	 in	 SI	 estimate	 are	 particular	 large	 when	 SI	 is	
estimated	based	on	rain	samples	(>	0	dBZ)	rather	than	drizzle	samples	(>	
-15	dBZ).	 It	would	then	be	desirable	to	use	drizzle	samples	to	estimate	SI.	
However,	 satellite	 retrieval	 of	precipitation	 rate	 for	drizzle	 can	be	highly	
uncertain.	 It	 is	 therefore	 recommended	 to	 further	 improve	 the	 retrieval	
accuracy	of	precipitation	rate	for	drizzle	in	satellite	observations	in	order	
to	better	use	satellite	estimate	of	SI	to	quantify	aerosol-cloud	precipitation	
interactions.	Alternatively,	long-term	ground	and	in-situ	observations	with	
high	 accuracy	 precipitation	 rate	 retrievals	 can	 be	 used	 to	 provide	 better	
estimate	 SI	 and	 to	 further	 quantify	 aerosol-cloud-precipitation	
interactions.”.	 	
	
Further	discussions	are	added	on	difference	of	SPOP	and	SI	between	rain	and	
drizzle	in	Section	5	and	now	the	text	reads	"	Our	results	suggest	that	onset	
of	drizzle	is	not	as	readily	suppressed	by	increases	in	AI	or	CDNC	in	warm	
clouds	as	rainfall	(i.e.,	SPOP	is	smaller	for	drizzle	than	for	rain,	especially	at	
moderate	 LWP,	 Fig.	 9).	 This	 may	 partly	 come	 from	 the	 fact	 that	 POP	 of	
drizzle	is	close	to	100%	at	moderate	and	high	LWP	regardless	of	CDNC	or	
AI	values	(Fig.	7a-d),	which	makes	 it	 insensitive	to	perturbations	 in	CDNC	
or	AI	and	results	in	smaller	SPOP	at	these	LWP	bins	compared	with	SPOP	for	
rain	 (Fig.	 9).	 On	 the	 other	 hand,	 precipitation	 intensity	 susceptibility	 is	
generally	 smaller	 for	 rain	 than	 for	 drizzle.	 This	 is	 consistent	 with	 our	
expectation	 that	 when	 precipitation	 intensity	 increases,	 accretion	
contributes	 more	 to	 the	 production	 of	 precipitation,	 which	 makes	
precipitation	 intensity	 less	 sensitive	 to	 perturbation	 in	 CDNC	 or	 AI,	 as	
accretion	 is	 less	 dependent	 on	 CDNC	 compared	 with	 autconversion	
(Feingold	et	al.,	2013;	Wood,	2005)"	
	
Minor	Comments:	
1.	P2	L3:	“Susceptibility	is	an	inherent	property	of	the	aerosol-cloud	system.”	–	This	
is	 an	 interesting	 statement,	 but	 it	 is	 also	 vague.	 Does	 the	 statement	 mean	 that	
susceptibility	 doesn’t	 change	 with	 cloud	 condition?	 Or	 aerosol	 condition?	 Should	
they	be	robust	to	differences	in	measurement	platform,	etc.?	
We	 agree	 this	 statement	 is	 indeed	 vague,	 and	 this	 statement	 is	 now	
removed	in	the	revised	manuscript.	 	
	
2.	 P5	 L32:	 “...	 selected	 in	 close	 proximity	 of	 clouds	 pixels.”	What	 exact	 criteria	 is	
used	to	determine	how	close	aerosol	retrievals	must	be	to	be	used	in	the	study?	
Exact	 criteria	 for	 collocation	are	added	 in	Sec	2.1.	Now	 the	 text	 reads	 "….	
MODIS	cloud	product	and	CPR	radar	reflectivity	observations	used	 in	this	
study	 are	 both	 provided	 from	 the	 Caltrack	 datasets,	 which	 resample	
observations	 from	 many	 sensors	 under	 CALIOP	 subtrack	 with	 the	
horizontal	 resolution	 of	 5km	 (see	 the	 website	 of	



http://www.icare.univ-lille1.fr/projects/calxtract/products	 for	 more	
information).	 For	 other	 aerosol	 and	 cloud	 products,	 including	
MODIS/CALIOP	 aerosol	 products	 and	 AMSR-E	 cloud	 products,	 these	 are	
further	 collocated	 into	 the	 CALIOP	 subtracks	 in	 the	 Caltrack	 dataset.	 For	
each	 CALIOP	 subtrack,	 the	 closest	 aerosol	 and	 cloud	 retrieval	 samples	
within	one-degree	grid	box	(1°×1°)	centered	at	this	subtrack	are	chosen.	To	
reduce	 the	 uncertainty	 in	 cloud	 retrievals,	 only	 samples	 where	 MODIS	
cloud	fraction	is	equal	to	100%	are	selected”.	 	
	
3.	P6	L23:	replace	“significant”	with	“significantly”	
Done.	
	
4.	 P6	 L25:	 What	 is	 the	 spatial	 resolution	 of	 the	 precipitation	 data?	 Is	 it	 at	 the	
footprint	 level?	 In	general,	 how	are	pairs	 of	 LWP,	precipitation	 rate,	 and	aerosol	
proxy	combined?	Are	they	all	combined	at	the	footprint	of	the	precipitation	rate?	Is	
the	coarsest	footprint	used	for	the	comparison?	
The	horizontal	resolution	of	all	precipitation	data	used	in	the	paper	is	at	a	
footprint	 level	with	1.3km	cross	 track	and	1.7	km	along	track	except	CPR	
radar	 reflectivity	 observations	 (i.e.,	 2B-GEOPROF	 product	 collocated	 to	
CALIOP	 subtrack	 with	 5km	 resolution).	 The	 resolution	 of	 different	
products	 can	 be	 seen	 in	 Table2.	 Overall,	 MODIS	 LWP,	 precipitation	 rate	
from	 2B-GEOPROF	 and	 aerosol	 proxy	 are	 combined	 to	 CALIOP	 subtrack	
since	CALIOP	aerosol	product,	MODIS	cloud	product	and	CPR	2B-GEOPROF	
product	 used	 in	 the	 paper	 are	 all	 provided	 from	 Caltrack	 datasets.	 For	
other	 retrieval	 products,	 including MODIS/CALIOP aerosol products and 
AMSR-E cloud products, these are further collocated into the CALIOP 
subtracks in the Caltrack dataset. For each CALIOP subtrack, the closest 
aerosol and cloud retrieval samples within one-degree grid box (1°×1°) centered 
at this subtrack are chosen.	More	details	can	be	found	in	the	first	paragraph	
of	Sec	2.1	in	the	revised	manuscript.	 	 	 	 	
	
5.	P7	L15:	Provide	some	indication	of	statistical	uncertainty	in	the	estimates	in	Fig.	
1.	See	main	comment	1.	Also,	it	would	be	informative	to	indicate	the	0	value	with	a	
dotted	or	gray	 line,	because	values	below	 that	 line	will	 indicate	 that	 increases	 in	
aerosols/cloud	droplets	lead	to	more	precipitation.	
We	have	added	error	bars	with	95%	confidence	 intervals	and	zeroline	 in	
the	Fig.	1.	
	
6.	 P7	 L22-24:	 The	 turning	 point	 is	 very	 slight.	 The	 confidence	 intervals	 will	 be	
helpful	in	determining	how	significant	the	peak	is.	
Thanks!	We	 now	 added	 error	 bars.	 The	 peak	 is	 not	 significant	 anymore	
after	 the	 error	bars	 are	 added.	But	 SI_CDNC	would	decrease	distinctly	 after	
the	 peak	 if	 the	 upper	 bound	 of	 LWP	 and	 the	 number	 of	 LWP	 bins	 both	
increased	 (see	 figure	 below).	 The	 sentence	 is	 now	 reformulated	 to	



"Although	the	SI_CDNC	peak	(around	0.6	with	LWP	350	gm-2)	is	not	significant	
in	 Fig.	 1b,	 SI_CDNC	 would	 decrease	 distinctly	 after	 the	 peak	 if	 the	 upper	
bound	of	LWP	and	the	number	of	LWP	bins	both	increase	(not	shown).	This	
turning	 point	 may	 correspond	 to	 conversion	 process	 shifting	 from	 the	
autoconversion	to	accretion	regime	(Michibata	et	al.,	2016)."	

	
Same	as	the	Fig.	1b	but	with	increase	in	the	upper	boundary	of	LWP	and	the	number	of	

LWP	bins	
	

7.	P7	L29:	To	show	that	the	fluctuations	in	the	mean	are	small	compared	to	noise,	
the	 interquartile	 range	 (between	 25th	 percentile	 and	 75th	 percentile)	 can	 be	
shown.	
Done.	The	interquartile	range	is	now	added	to	Fig.	2.	
	
8.	P7	L29:	Also,	because	the	AI	vs.	CDNC	relationship	takes	the	form	d	ln(CDNC)/d	
ln(AI)	 and	 because	 it	 looks	 like	 the	 AI	 has	 a	 lognormal	 distribution,	 it	might	 be	
better	to	plot	the	x-axis	in	log-scale.	
Done.	Now	the	x-axis	in	Fig.	2	is	in	log-scale.	
	
9.	 P8	 L4-5:	 The	 differences	 in	 dlnCDNC/dlnAI	 between	 the	 different	 stability	
regimes	are	interesting,	in	particular,	the	lack	of	sensitivity	(or	negative	sensitivity	
at	 high	 LWPs).	 Are	 these	 differences	 significant?	 Do	 the	 authors	 have	 an	
explanation	as	to	why	the	stability	affects	the	sensitivity?	
We	now	add	error	bars	to	Fig.	3,	and	now	the	differences	in	dlnCDNC/dlnAI	
between	 the	 different	 stability	 regimes	 and	 negative	 sensitivity	 at	 high	
LWP	are	both	not	significant	anymore.	 	
	
10.	 P8	 L16:	 The	 subtle	 differences	 in	 Fig	 4	 are	 hard	 to	 see	 because	 of	 the	 large	
y-axis	range.	I	can	understand	the	choice	to	try	to	keep	the	same	axis	range	across	
different	figures,	but	in	this	case,	I	would	suggest	narrowing	the	range	to	allow	the	
reader	to	discern	any	differences.	
We	 have	 narrowed	 the	 range	 of	 y-axis	 and	 also	 added	 a	 zeroline	 to	 this	
figure	in	the	revised	manuscript.	
	



11.	 P8	 L26-28:	 Is	 there	 a	 reason	why	we	would	 rely	more	 heavily	 on	 and	 prefer	
MODIS	AI	rather	than	CALIPSO	AI?	
This	is	mainly	because	MODIS	AI	has	been	widely	used	in	previous	studies	
for	 examining	 aerosol-cloud-precipitation	 interactions.	 What	 is	 more,	
Costantino	 and	 Bréon,	 (2010)	 shown	 that	 AOD	 estimate	 from	 CALIPSO	
product	 was	 very	 noisy	 and	 less	 reliable	 than	 the	 equivalent	 parameter	
from	MODIS.	The	2D vs. 1D sampling is a likely reason for the MODIS AI being 
a bit smoother that the CALIPSO AI.  
	
12.	P9	L2-7:	This	 is	 one	 case	where	 confidence	 intervals	 can	 show	 that	 the	 SPOP	
estimates	are	not	significantly	affected	by	the	choice	of	LWP	retrievals,	whereas	the	
SI	and	SR	estimate	are	significantly	affected.	
Thanks	a	lot	for	this	excellent	suggestion!	After	adding	error	bars	to	Fig.5,	
it	indeed	shows	the	discrepancies	in	SPOP	between	MODIS	and	AMSR-E	LWP	
are	not	significant.	We	have	added	this	sentence	 to	 the	 first	paragraph	 in	
Sec	3.3.	 	
	
13.	P9	L26:	Data	is	plural,	so	it	should	be	“...	when	data	are	binned...”	
Corrected.	
	
14.	 P10	 L11:	 Although	 the	 axis	 labels	 show	 this,	 the	 figure	 caption	 to	 Figure	 9	
should	indicate	the	difference	between	the	top	row	and	the	bottom	row.	
We	have	clarified	this	in	the	caption	of	Fig.	9.	 	
	
15.	P10	L26-28:	What	is	the	impact	on	SR	if	SPOP	increases	and	SI	decreases	with	
increases	in	the	threshold?	

SR	is	indeed	not	affected	by	the	rainfall	definition	since	mean	rain	rate	
for	 any	 given	 LWP/CDNC	 or	 LWP/AI	 bin	 is	 calculated	 for	 both	 rainy	 and	
non-rainy	 clouds,	 and	 does	 not	 depend	 on	 rainfall	 thresholds	 used	 to	
define	a	rain	event.	We	have	added	this	sentence	to	the	third	paragraph	in	
Sec	3.4	and	it	reads	“By	contrast,	SR	is	not	affected	by	the	rainfall	definition	
since	 the	 mean	 rain	 rate	 R	 for	 a	 given	 LWP/CDNC	 or	 LWP/AI	 bin	 is	
calculated	based	on	both	rainy	and	non-rainy	clouds	and	does	not	depend	
on	rainfall	thresholds	(not	shown).”	
	
16.	 P10	 L31:	 “more	 significant”	 should	 be	 replaced	 with	 “larger”,	 because	
significant	has	a	particular	meaning	in	the	literature	(statistical	significance),	and	
to	state	more	significant	would	require	examining	the	confidence	intervals.	
Done.	
	
17.	P11	L28:	“sigh”	should	be	replaced	by	“sign”	
Done.	
	
18.	P14	L5:	 Insert	“by	 increases	 in	AI	or	CDNC”	between	“readily	suppressed”	and	



“in	warm	clouds”	
Done.	
	
19.	 P14	 L5-6:	 Taken	 at	 face	 value,	 this	 statement	 is	 counterintuitive,	 isn’t	 it?	
Wouldn’t	 we	 expect	 rainfall,	 which	 is	 more	 dependent	 on	 accretion	 than	 on	
autoconversion,	to	have	a	weaker	dependence	to	CDNC?	
The	 above	 expectation	 is	 consistent	 with	 how	 SI	 changes	 with	 rainfall	
thresholds.	When	the	rainfall	 threshold	 increases,	 it	shifts	 the	production	
of	 rain	 from	 autoconversion	 to	 accretion,	 which	 reduces	 precipitation	
intensity	 susceptibility.	 As	 for	 precipitation	 frequency	 susceptibility,	 it	
depends	 on	 how	 often	 precipitation	 frequency	 reaches	 its	 upper	 limit,	
100%.	As	the	rainfall	 threshold	decreases	from	0	dBZ	to	-15	dBZ,	POP	for	
drizzle	 is	 close	 to	 100%	 at	 intermediate	 and	 high	 LWP	 as	 shown	 in	 the	
figure	 below,	which	make	 it	 insensitive	 to	 perturbation	 in	 CDNC	 or	 AI	 at	
intermediate	 and	high	 LWP,	 resulting	 in	much	 smaller	 SPOP	 at	 these	 LWP	
bins	as	shown	in	Fig.	9	 in	 the	main	text.	We	now	added	this	discussion	to	
the	third	paragraph	in	Sec.5.	Now	the	text	reads	"Our	results	suggest	 that	
onset	of	drizzle	is	not	as	readily	suppressed	by	increases	in	AI	or	CDNC	in	
warm	 clouds	 as	 rainfall	 (i.e.,	 SPOP	 is	 smaller	 for	 drizzle	 than	 for	 rain,	
especially	at	moderate	LWP,	Fig.	9).	This	may	partly	come	from	the	fact	that	
POP	 of	 drizzle	 is	 close	 to	 100%	at	moderate	 and	 high	 LWP	 regardless	 of	
CDNC	or	AI	values	(Fig.	7a-d),	which	makes	it	 insensitive	to	perturbations	
in	CDNC	or	AI	and	results	 in	 smaller	SPOP	at	moderate	and	high	LWP	bins	
compared	 with	 SPOP	 for	 rain	 (Fig.	 9).	 On	 the	 other	 hand,	 precipitation	
intensity	susceptibility	is	generally	smaller	for	rain	than	for	drizzle.	This	is	
consistent	with	our	expectation	that	when	precipitation	intensity	increases,	
accretion	contributes	more	to	the	production	of	precipitation,	which	makes	
precipitation	 intensity	 less	 sensitive	 to	 perturbation	 in	 CDNC	 or	 AI,	 as	
accretion	 is	 less	 dependent	 on	 CDNC	 compared	 with	 autconversion	
(Feingold	et	al.,	2013;	Wood,	2005).	".	

	
Probability	of	precipitation	as	a	function	of	MODIS	LWP	and	its	breakdown	into	drizzle	

(>0.14	mm	d-1)	and	rain	(>2	mm	d-1)	 	
	
20.	P14	L14:	Replace	“value”	with	“values”	



Done.	
	
21.	P14	L14-18:	Are	 these	results	consistent	with	existing	conceptual	 frameworks	
(such	 as	 those	 based	 on	 LES)	 on	 how	 stability	 affects	 aerosol-cloud-precipitation	
interactions?	Are	there	LES	studies	that	have	addressed	how	stability	might	affect	
susceptibility?	
The	 pattern	 of	 SPOP_AI	 under	 different	 stability	 conditions	 from	our	 paper	
(Fig.	 13b	 and	 Fig.	 13f)	 is	 consistent	 with	 the	 findings	 of	 L’Ecuyer	 et	 al.,	
(2009).	In	addition,	Terai	et	al.,	(2015)	found	maximum	SPOP_CDNC	occurred	
in	 regions	 where	 stable	 regime	 is	 predominant.	 These	 satellite-based	
studies,	however,	did	not	provide	physical	 interpretations	of	such	results.	
Lebo	 and	 Feingold	 (2014)	 calculated	 precipitation	 susceptibility	 for	
stratocumulus	and	trade	wind	cumulus	using	large-eddy	simulations(LES)	
and	 included	 an	 overview	 of	 precipitation	 susceptibility	 estimates	 in	 the	
ligature	 based	 on	 LES.	 However,	 their	 study	 focus	 on	 the	 relationship	
between	precipitation	 susceptibility	 and	 cloud	water	 response	 to	 aerosol	
perturbations,	and	did	not	examine	how	precipitation	susceptibility	might	
be	different	 for	clouds	under	different	cloud	regimes.	We	now	added	 this	
discussion	 in	 the	 revised	 manuscript	 and	 calls	 further	 efforts	 to	
understand	this	difference,	especially	for	SPOP	in	the	Section	5.	 	
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