Supporting information for *"Updated atmospheric mercury emissions from iron and steel production in China during 2000-2015"*

Q. R. Wu^{1,2}, W. Gao^{1,2}, S. X. Wang^{1,2*}, J. M. Hao^{1,2}

¹School of Environment, and State Key Joint Laboratory of Environment Simulation and Pollution Control, Tsinghua University, Beijing 100084, China

²State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China

Correspondence to: S. X. Wang (shxwang@tsinghua.edu.cn)

11 pages (including cover page)

5 Tables (S1, S2, S3, S4, S5)

Processes	Hg release rate (%)					
	Wang	g F. Y.	Zhang et al.,	Fukuda et al.,	Ma, 2	This stu
	et al.,	2016	2015	2011	008	dy
Roasting	98					98
Coke oven	71	90	87	94	60	80
Sinter/pellet	61	91	92	96		85
Blast furnace	99	98	94	100		98
Oxygen steel making	73	87				80
Arc steel making	95					95

1 Table S1. Hg release rate during different processes

Province	Crude	Limest	Dolomi	Coking	PCI	Iron	Scrap	Alloy
	steel	one	te	coal	coal	Concentr	steel	(Mt)
	(Mt)	(Mt)	(Mt)	(Mt)	(Mt)	ates	(Mt)	
						(Mt)		
Beijing	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Tianjin	20.7	5.6	1.0	2.6	2.8	23.9	2.1	0.7
Hebei	188.3	45.0	8.2	74.1	25.0	217.1	19.5	6.0
Shanxi	38.5	11.3	2.0	108.6	5.1	44.4	4.0	1.2
Inner	17.4	4.8	0.9	41.1	2.1	20.0	1.8	0.6
Mongolia								
Liaoning	60.7	14.9	2.7	28.3	8.7	70.0	6.3	1.9
Jilin	10.7	3.1	0.6	5.0	1.4	12.3	1.1	0.3
Heilongjiang	4.2	1.9	0.3	9.3	0.6	4.8	0.4	0.1
Shanghai	17.8	4.4	0.8	7.2	2.4	20.6	1.8	0.6
Jiangsu	110.0	22.6	4.1	32.9	10.1	126.8	11.4	3.5
Zhejiang	15.9	4.1	0.8	4.0	1.5	18.4	1.7	0.5
Anhui	25.1	6.5	1.2	13.0	3.0	28.9	2.6	0.8
Fujian	15.9	4.1	0.7	2.1	1.4	18.3	1.6	0.5
Jiangxi	22.1	5.6	1.0	11.0	3.0	25.5	2.3	0.7
Shandong	66.2	16.3	3.0	59.0	9.7	76.3	6.9	2.1
Henan	29.0	5.9	1.1	39.8	4.2	33.4	3.0	0.9
Hubei	29.2	7.8	1.4	12.4	3.3	33.7	3.0	0.9
Hunan	18.5	4.4	0.8	8.9	2.5	21.4	1.9	0.6
Guangdong	17.6	4.1	0.8	3.3	1.6	20.3	1.8	0.6
Guangxi	21.5	4.2	0.8	7.9	1.8	24.7	2.2	0.7
Hainan	0.2	0.1	0.0	0.0	0.0	0.3	0.0	0.0
Chongqing	6.9	2.1	0.4	2.9	0.5	8.0	0.7	0.2
Sichuan	19.5	5.3	1.0	17.6	2.5	22.5	2.0	0.6
Guizhou	4.7	1.2	0.2	9.9	0.6	5.4	0.5	0.1
Yunnan	14.2	4.6	0.8	15.5	1.8	16.4	1.5	0.5
Tibet	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Shaanxi	10.3	2.4	0.4	49.2	1.2	11.8	1.1	0.3
Gansu	8.5	2.5	0.4	7.1	1.0	9.8	0.9	0.3
Qinghai	1.2	0.4	0.1	0.0	0.2	1.4	0.1	0.0
Ningxia	1.8	0.3	0.1	10.2	0.3	2.1	0.2	0.1
Xinjiang	7.4	3.0	0.5	22.2	1.1	8.5	0.8	0.2

2 Table S2. Provincial crude steel productions and raw materials consumptions in 2015

3 Note: PCI: Pulverized coal injection.

Year	Production (Mt)			Consum	ption (Mt)						
	Crude steel	Pig iron	Sinter	Pellet	Coke	Limestone	Dolomite	Iron concentrates	Coking coal	PCI coal	Scrap steel	Alloy
2000	127	131	179	19	122	30	6	198	175	19	29	9
2001	152	156	193	21	131	36	7	214	188	22	34	11
2002	182	171	248	28	116	43	8	276	163	25	39	12
2003	222	214	254	35	178	52	10	289	251	31	48	15
2004	273	252	304	44	210	64	12	349	292	36	54	17
2005	356	345	369	59	254	84	16	428	349	50	63	20
2006	421	413	430	76	298	99	19	506	409	59	67	21
2007	490	477	524	99	336	115	22	623	459	69	69	21
2008	512	483	560	100	324	120	23	660	453	70	72	22
2009	577	569	622	106	353	135	26	728	476	82	83	26
2010	639	596	688	124	392	157	29	812	529	86	87	27
2011	702	645	769	156	432	173	31	925	583	93	91	28
2012	731	670	810	136	442	180	33	946	597	96	84	26
2013	813	748	887	158	482	203	37	1044	651	108	86	27
2014	822	714	901	139	480	203	37	1041	648	103	88	27
2015	804	691	887	118	448	199	36	1005	605	100	83	26

4 Table S3. Productions and consumptions during 2000-2015

5 Note: PCI-pulverized coal injection.

Processes	APCDs ²	Applic	ation rate				Hg removal	l	Hg speciati	on profile		
		2000	2005	2010	2015	Reference ³	Efficiency	Reference ²	Hg^0	Hg ²⁺	Hg _p	Reference ²
		(%)	(%)	(%)	(%)		(%)		(%)	(%)	(%)	
Roasting	CYC/NOC	97	92	32	0	(1)-(4)	1	(5)-(6)	38	38	24	(5)-(6)
plant	WS	3	8	18	0		23	(5)-(6)	65	34	1	(5)-(6)
	ESP	0	0	25	50		29	(7)	14	85	1	(7)
	FF	0	0	25	50		67	(6)	48	52	0	(10)
Coke oven	NOC ¹	100	100	100	100	(1)-(4)	0	(6)	60	35	5	(9)
	Cooler	100	100	75	50		70	(5)-(6)	46	53	1	(5)-(6)
	Cooler+WS	0	0	25	50		93	(6)	65	34	1	(6)
Sinter/Pellet	CYC	20	5	0	0	(1)-(4)	1	(5)-(6)	38	38	24	(5)-(6)
plant	WS	40	20	5	0		23	(5)-(6)	65	34	1	(5)-(6)
	ESP	40	65	50	25		29	(7)	18	82	0	(7)
	FF	0	10	13	15		67	(6)	18	82	0	(7)
	ESP+WFGD	0	0	25	50		57	(7)	41	59	0	(7)
_	ESP+DFGD+FF	0	0	7	10		72	(7)	0.5	99	0.5	(7)
Blast furnace	WS+Venturi	100	100	90	80	(1)-(4)	45	(7)-(8)	65	30	5	(7)
	FF	0	0	10	20		67	(7)	38	61	1	(6)
Oxygen steel	WS	50	40	88	78	(1)-(4)	38	(7)	65	34	1	(5)-(6)
making	ESP	50	60	12	22		68	(7)	57	43	0	(7)
Arc steel	WS	85	60	30	0	(1)-(4)	23	(5)-(6)	65	34	1	(5)-(6)
making	ESP	10	30	47	37		29	(7)	58	41	1	(6)
	FF	5	10	23	63		35	(7)	92	8	0	(7)

6 Table S4. Application rate, Hg removal efficiency, and Hg speciation profile of APCDs

7 Note: 1. Specifc for indigeous coke making process;

- 8 2. NOC-None of control;CYC-Cyclone; WS-Wet scrubber; ESP-Electrostatic precipitator; FF- Fabric filter; WFGD: Wet flue gas desulfurization towers;
- 9 3. (1)Wang et al., 2014; (2)Zhao et al., 2013; (3)CISIA, 2001-2016; (4)NBS, 2001-2016; (5)Zhang et al., 2015; (6)Wu et al., 2016; (7)Wang F.Y. et al., 2016;
- 10 (8)Zhang, 2012; (9)Li, 2011; (10)Yang, 2014.

Region	APCDs ¹	Emission	Note	References ²
0		factor		
Whole pro	cess (unit: g/	/t crude steel)		
Global	-	0.0400	Sinter/Pellet plant + Blast furnace	(1)-(6)
Global		0.0413	Coke oven + Sinter/Pellet plant +	(7)
			Blast furnace + Oxygen steel	
			making	
Europe	-	0.1000	Coke oven + Sinter/Pellet plant +	(8)
			Blast furnace	
Japan		0.0488	Coke oven + Sinter/Pellet plant +	(9)
			Blast furnace	
China		0.0527	Sinter/Pellet plant + Blast furnace	This study
(2000)				
China		0.0296	Sinter/Pellet plant + Blast furnace	This study
(2015)				
China	-	0.0590	Sinter/Pellet plant + Blast furnace	This study
(2000)			+ Steel making	
China		0.0320	Sinter/Pellet plant + Blast furnace	This study
(2015)			+ Steel making	
China	-	0.0818	Coke oven + Sinter/Pellet plant +	This study
(2000)			Blast furnace + Steel making	
China		0.0363	Coke oven + Sinter/Pellet plant +	This study
(2015)			Blast furnace + Steel making	
China	-	0.0902	Roasting plant + Coke oven +	This study
(2000)			Sinter/Pellet plant + Blast furnace	
			+ Steel making	
China	-	0.0407	Roasting plant + Coke oven +	This study
(2015)			Sinter/Pellet plant + Blast furnace	
			+ Steel making	
Roasting p	lant (unit: g	/t lime)		
Global	-	0.0074	Roasting plant	(10)
China	-	0.0663	Roasting plant	This study
(2000)				
China	-	0.0439	Roasting plant	This study
(2015)				
Coke oven	(unit: g/t co	ke)		
Europe	-	0.2185	Coke oven	(8)
Germany	-	0.01-0.03	Coke oven	(10)
China	-	0.0238	Coke oven	This study
(2000)				

11 Table S5. Comparison of emission factors from different studies

China		0.0077	Calva avan	This study
(2015)	-	0.0077	Coke oven	This study
(2013) Sinter plan	t (mits alt ain	tor		
Sinter plan	it (unit: g/t sin	0.0490	Sinter plant	(8) (11)
Europe		0.1040	Sinter plant	(8), (11)
Europe	WEGD	0.1040	Sinter plant	(8), (11)
Europe	dry ESP	0.0090	Sinter plant	(8), (11)
Europe		0.0090	Sinter plant	(8), (11)
Europe	ACI+FF	0.1051	Sinter plant	(8), (11)
Japan	ESP	0.1251	Sinter plant	(8), (11)
Japan	ESP+FGD	0.0718	Sinter plant	(8), (11)
Japan	ESP+AC	0.2962	Sinter plant	(8), (11)
Korea	dry ESP	0.0427	Sinter plant	(12)
China	-	0.0243	Sinter plant	This study
(2000) China		0.0159	Sinter plant	This standay
(2015)	-	0.0158	Sinter plant	This study
(2015)	4 (: 4,/41)	- 4)		
Pellet plan	t (unit: g/t pen	et)		
Europe	-	0.2000	Pellet plant	(8), (11)
China	-	0.0255	Pellet plant	This study
(2000)				2
China	-	0.0165	Pellet plant	This study
(2015)			•	-
Blast furna	ace (unit: g/t p	ig iron)		
Russia	-	0.0395	Blast furnace	(12)
Europe	-	0.0001	Blast furnace	(8), (11)
Europe	FF/Heat	0.0002	Blast furnace	(8), (11), (13)
	recovery			
Europe	dry ESP	0.0001	Blast furnace	(8), (11)
Japan	-	0.0014	Blast furnace	(9)
China	-	0.0142	Blast furnace	This study
(2000)				
China	-	0.0114	Blast furnace	This study
(2015)				
Oxygen ste	el making (g/t	crude steel)		
Furope	dry FSP	0 0006	Oxygen steel making	(8) (11)
China	FF	0.0000	Oxygen steel making	(13)
China	-	0.0019	Oxygen steel making	(15) This study
(2000)	-	0.0025	Oxygen steel making	rins study
(2000) China	_	0.0018	Oxygen steel making	This study
(2015)	-	0.0010	Oxygen steel making	r mo study
(2013)				

Arc steel making (g/t crude steel)

Europe	-	0.0500	Arc steel making	(8), (11)
Europe	FF	0.0761	Arc steel making	(8), (11), (13)
Europe	dry ESP	0.0240	Arc steel making	(8), (11)
Korea	FF	0.0190	Arc steel making	(12)
China	-	0.0272	Arc steel making	This study
(2000)				
China	-	0.0162	Arc steel making	This study
(2015)				

12 Note: 1. ESP-Electrostatic precipitator; FF-Fabric filter; (W)FGD-(Wet) flue gas desulfurization

13 towers; ACI-Activated carbon injection; AC-Activated coke adsorption tower

14 2. (1)Pacyna and Pacyna, 2002; (2)Pacyna et al., 2006; (3)Pacyna et al., 2010; (4)AMAP/UNEP,

15 2008; (5)Zhang et al., 2015; (6)Wu et al., 2016; (7)AMAP/UNEP, 2013; (8)EMEP/EEA, 2013;

16 (9)Fukuda et al., 2011; (10)UNEP, 2005; (11)EMEP/CORINAIR, 2001; (12)Kim et al., 2010;

17 (13)ACAP, 2005; (13)Wang K. et al., 2016

18 **Reference**

19	Arctic Council Action Plan (ACAP): Assessment of mercury releases from the Russian Federation,
20	ACAP, Washton D. C., United States, 2005.
21	Arctic Monitoring and Assessment Programme and United Nations Environment Programme
22	(AMAP/UNEP): Technical background report to the global atmospheric mercury assessment,
23	AMAP/UNEP, Geneva, Switzerland, 2008.
24	Arctic Monitoring and Assessment Programme and United Nations Environment Programme
25	(AMAP/UNEP): Technical background report for the global mercury assessment, AMAP/UNEP,
26	Geneva, Switzerland, 2013.
27	China Iron and Steel Industry Association (CISIA): China Steel yearbook, CISIA, Beijing, China,
28	2001-2016.
29	European Monitoring and Evaluation Programme/Core Inventory of Air Emissions Project
30	(EMEP/CORINAIR): Emission inventory guidebook, EMEP/CORINAIR, Copenhagen, Denmark,
31	2001.
32	European Monitoring and Evaluation Programme/European Economic Area (EMEP/EEA): Air pollutant
33	emission inventory guidebook 2013, EMEP/EEA, Copenhagen, Danmark, 2013.
34	Fukuda, N., Takaoka, M., Doumoto, S., Oshita, K., Morisawa, S., and Mizuno, T.: Mercury emission and
35	behavior in primary ferrous metal production, Atmos. Environ., 45, 3685-3691, 2011.
36	Kim, J. H., Park, J. M., Lee, S. B., Pudasainee, D., and Seo, Y. C.: Anthropogenic mercury emission
37	inventory with emission factors and total emission in Korea, Atmos. Environ., 44, 2714-2721,
38	2010.
39	Li, Y.: Experimental study on emission and high temperature control of trace elements during coal
40	gasification, Doctor thesis, Huazhong University of Science and Technology, Thermoal engeering,
41	Wuhan, China, 144, 2011.
42	Ma, J.: Study on the transformation of hazardous trace elements during the coal-coking, Master thesis,
43	Wuhan University of Science and Technology, School of chemical engineering and technology,
44	Wuhan, China, 67, 2008.
45	National Statistical Bureau of China (NBS): China Environmental Statistics Yearbook, NBS, Beijing,
46	China, 2001-2016.
47	Pacyna, E. G., and Pacyna, J. M.: Global emission of mercury from anthropogenic sources in 1995,
48	Water Air Soil Pollut., 137, 149-165, 2002.
49	Pacyna, E. G., Pacyna, J. M., Steenhuisen, F., and Wilson, S.: Global anthropogenic mercury emission
50	inventory for 2000, Atmos. Environ., 40, 4048-4063, 2006.
51	Pacyna, E. G., Pacyna, J. M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., and
52	Maxson, P.: Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and
53	projections to 2020, Atmos. Environ., 44, 2487-2499, 2010.
54	United Nations Environment Programme (UNEP): Toolkit for identification and quantification of

S10

- 55 mercury release Geneva, Switzerland M,2005.
- Wang, F. Y., Wang, S. X., Zhang, L., Yang, H., Gao, W., Wu, Q. R., and Hao, J. M.: Mercury mass flow in
 iron and steel production process and its implications for mercury emission control, J. Environ. Sci.,
 43, 293-301, 2016.
- Wang, K., Tian, H. Z., Hua, S. B., Zhu, C. Y., Gao, J. J., Xue, Y. F., Hao, J. M., Wang, Y., and Zhou, J. R.:
 A comprehensive emission inventory of multiple air pollutants from iron and steel industry in China:
 Temporal trends and spatial variation characteristics, Sci. Total Environ., 559, 7-14, 2016.
- 62 Wang, S. X., Zhao, B., Cai, S. Y., Klimont, Z., Nielsen, C. P., Morikawa, T., Woo, J. H., Kim, Y., Fu, X.,
- Ku, J. Y., Hao, J. M., and He, K. B.: Emission trends and mitigation options for air pollutants in East
 Asia, Atmos. Chem. Phys., 14, 6571-6603, 2014.
- Wu, Q., Wang, S., Li, G., Liang, S., Lin, C.-J., Wang, Y., Cai, S., Liu, K., and Hao, J.: Temporal Trend
 and Spatial Distribution of Speciated Atmospheric Mercury Emissions in China During 1978–2014,
 Environ. Sci. Technol., 50, 13428-13435, 2016.
- Yang, H.: Research on the characteristic and control strategy of mercury emission from cement
 production industry Master thesis, Tsinghua University, School of Environment, Beijing, China,
 2014.
- Zhang, L.: Emission characteristics and synergistic control strategies of atmospheric mercury from coal
 combustion in China, Ph.D. Dissertation, Tsinghua University, School of Environment, Beijing,
 China, 2012.
- Zhang, L., Wang, S. X., Wang, L., Wu, Y., Duan, L., Wu, Q. R., Wang, F. Y., Yang, M., Yang, H., Hao, J.
 M., and Liu, X.: Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China, Environ. Sci. Technol., 49, 3185-3194, 2015.
- Zhao, B., Wang, S. X., Liu, H., Xu, J. Y., Fu, K., Klimont, Z., Hao, J. M., He, K. B., Cofala, J., and
 Amann, M.: NOx emissions in China: historical trends and future perspectives, Atmos. Chem.
 Phys., 13, 9869-9897, 2013.
- 80