Supplementary materials

Primary and secondary organic aerosol in summer of Beijing, China

Rongzhi Tang¹, Zepeng Wu¹, Xiao Li¹, Yujue Wang¹, Dongjie Shang¹, Yao Xiao¹, Mengren Li¹, Mattias Hallquist², Limin Zeng¹, Zhijun Wu¹, Min Hu¹, Song Guo*

¹State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China

2 Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden

*Corresponding author.

Address: State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China

E-mail address: guosong@pku.edu.cn (S. Guo)

Figure captions

Fig. S1 Locations of the sampling sites CP and PKUERS

Fig. S2 Mixing ratios of gaseous pollutants and meteorological conditions at (a) CP and (b) PKUERS, including concentrations of SO_2 , O_3 , NO, NO_2 , temperature, relative humidity, wind speed as well as wind direction. Parameters of the gaseous pollutants and meteorological conditions from 1 to 5 June were not available due to technical reasons.

Fig. S3 Back trajectory clusters during the campaign at (a) CP (b) PKUERS

Fig. S4 $PM_{2.5}$ chemical compositions at the regional site CP (a & c) and urban site PKUERS (b & d) Fig. S5 Three categories of $PM_{2.5}$ chemical compositions according to back trajectory clustering

analysis

Fig. S6 Primary organic matter from different directions of CP and PKUERS

Fig. S7 Daily average concentrations for different classes of primary organic matter, (a) n-alkanes

(b) saccharides (c) PAHs (d) hopanes

Fig. S1 Locations of the sampling sites CP and PKUERS

Fig. S2 Mixing ratios of gaseous pollutants and meteorological conditions at (a) CP and (b) PKUERS, including concentrations of SO_2 , O_3 , NO, NO₂, temperature, relative humidity, wind speed as well as wind direction. Parameters of the gaseous pollutants and meteorological conditions from 1 to 5 June were not available due to technical reasons.

Fig. S3 Back trajectory clusters during the campaign at (a) CP (b) PKUERS

Fig. S4 PM_{2.5} chemical compositions at the regional site CP (a & c) and urban site PKUERS (b & d)

Fig. S5 Three categories of $PM_{2.5}$ chemical compositions according to back trajectory clustering analysis

Fig. S6 Primary organic matter from different directions of CP and PKUERS

Fig. S7 Daily average concentrations for different classes of primary organic matter, (a) n-alkanes (b) saccharides (c) PAHs (d) hopanes

Туре	Sites	NO	NO_2	O ₃	SO_2	CO			
Urban	PKUERS	7.1	26.0	32.0	4.9	820.0			
	(2010) (Zheng								
	et al., 2016a)								
	PKUERS	10.5	32.3	48.6	3.9	623.6			
	(2016)								
	CP(2016)	3.1	19.7	57.7	3.0	492.4			

Table S1 Mixing ratios of gaseous pollutants (SO₂, O₃, NO, NO₂)

Table

Table S2 Concentrations of tracer compounds for primary sources

		CP		PKUERS			
	Daytime	Nighttime	Diurnal	Daytime	Nighttime	Diurnal	
Tracers (ng m ⁻³)							
n-alkanes (C28-C33)							
C-28	2.74 ± 1.18	3.34±2.29	3.10±1.84	3.99 ± 1.93	5.06±2.44	4.54±2.24	
C-29	23.12 ± 14.38	22.54 ± 13.38	22.82 ± 13.68	20.49 ± 8.48	24.96 ± 12.69	22.79 ± 10.94	
C-30	1.54±0.62	2.19±1.25	1.88 ± 1.04	2.06±0.72	3.25 ± 1.30	2.72 ± 1.23	
C-31	5.22 ± 1.98	5.85 ± 3.40	5.54±2.78	5.23±2.31	7.24±3.72	6.23±3.22	
C-32	1.67 ± 1.05	1.72 ± 1.11	1.70 ± 1.07	1.91±0.92	2.69 ± 1.71	2.34 ± 1.43	
C-33	1.92 \0.04	2 40 11 25	2.10 ± 1.15	2 54 1 12	2 74 1 51	2 65 1 22	
Levoglucosan	1.03 ±0.94	2.49±1.23	2.19±1.13	2.34±1.12	2.74±1.31	2.03 ± 1.32	
Levoglucosan	28.86 ± 16.95	75.92±40.91	53.03±39.26	39.09 ± 25.04	79.56±39.97	59.87 ± 38.93	
Hopanes							
17α(H)-22,29,30-trishopane	0.61 ± 0.28	0.65±0.44	0.63±0.36	0.88±0.55	0.93±0.52	0.90±0.53	
$17\beta(H)-21\alpha(H)$ -norhopane	1.42±0.48	1.66±0.97	1.55±0.70	1.93 ± 1.24	1.79±0.96	1.86 ± 1.09	
$17\alpha(H)-21\beta(H)$ -hopane	0.80±0.32	0.95±0.59	0.88 ± 0.47	1.12±0.64	1.16±0.55	1.14±0.58	
PAHs							
benzo(b)fluoranthene	0.64 ± 0.45	2.45 ± 1.68	1.57 ± 1.53	0.53±0.47	1.07 ± 1.00	0.81 ± 0.82	
benzo(k)fluoranthene	0.50±0.25	1.42±0.73	0.98±0.72	0.50±0.38	0.69±0.54	0.60±0.47	
benzo(e)pyrene	0.38±0.22	1.09±0.67	0.74±0.61	0.59±0.39	0.70±0.40	0.65±0.39	
benzo(ghi)perylene	0.71±0.40	2.48 ± 1.63	1.81 ± 1.56	1.15±0.43	1.84±0.80	1.54±0.73	
indeno(1,2,3-cd)pyrene	0.76±0.52	2.78±2.24	2.01 ± 2.03	0.79±0.26	2.02±0.97	1.48±0.96	

		0								
Species	Tracer	IITB	СН	YL	CL	RTP	Yufa	PKUERS	PKUERS	СР
	$(ng m-^3)$						2008	2008	2016	2016
	I-1	0.4±0.4	0.3±0.2	1.0±1.3	-	26.5±20.9	29.9±19.9	21.0±19.5	1.2±0.7	1.4±1.7
Isoprene	I-2	-	0.2±0.1	8.3±12.9	11.2±5.8	63.4±19.2	63.6±46.8	42.2±28.2	7.7±4.7	9.9±4.6
	I-3	-	0.5±0.3	20.3±20.3	24.1±13.4	85.7±27.6	121.5 ± 101.4	77.2±60.2	16.8±6.3	10.5±5.7
	∑isoprene	1.9±2.0	1.0±0.6	29.6±34.5	35.3±19.2	175.6±49.7	215.0±160.3	140.4 ± 100.9	25.7±11.7	18.8±12.0
	A-1	-	-	8.4±10.7	17.2±6.3	1.8±0.7	9.6±7.2	8.7±7.1	7.0±2.7	9.2±5.5
	A-2	-	-	5.9 <u>±</u> 4.9	17.1±5.4	16.3±7.3	5.3±2.8	6.8±7.1	4.8±2.8	4.2±2.4
	A-3	-	-	-	-	25.9±13.9	4.3±6.9	4.6±4.0	15.6±8.3	11.8±6.3
α-pinene	A-4	-	-	4.6±3.6	-	46.1±18.9	7.7±5.5	8.3±5.8	4.8±1.2	4.4±1.3
	A-5	2.0±1.2	-	10.2±7.0	-	53.5±17.9	57.5±27.4	51.7±31.3	16.8±6.3	10.5±5.7
	A-6	-	-	9.7±15.1	-	12.0±1.0	8.3±6.7	9.9±9.1	13.0±4.8	13.6±8.0
	A-7	0.3±0.2	-	8.0±7.5	2.2±1.0	4.7±1.3	6.1±5.5	8.5±10.1	12.4±6.0	13.6±8.0
	PA	0.6±0.3	0.2±0.5	-	4.4±3.5	9.2±3.6	3.4±5.7	3.2±6.4	10.0±4.5	9.5±12.7
	PNA	5.5±3.9	0.1±0.1	-	6.7±1.9	-	21.9±9.2	11.9±6.3	11.9±3.3	15.4±8.1
	∑α-pinene	8.4±5.6	0.3±0.6	46.8±56.3	47.6±18.1	169.5±64.6	124.1 ±47.8	113.5±63.3	96.4±39.9	92.2±58.0
β-caryophyllene	C-1	0.7±0.3	0.2±0.5	12.5±16.9	1.4±0.4	25.3±4.2	3.6±2.3	5.1±4.5	6.0±2.8	6.1±3.5
Toluene	T-3	0.1±0.1	-	1.7±1.8	8.3±2.8	4.1±1.9	11.7±6.9	13.3±7.7	11.0±3.7	9.7±7.3

Table S3 Comparison of SOA tracers for the biogenic and anthropogenic sources in different regions

I-1 represented 2-methylglyceric acid, I-2 represented 2-Methylthreitol, I-3 represented 2-methylerythritol, A-1 represented 3-Isopropylpentanedioic acid, A-2 represented 3-Acetylpentanedioic acid, A-3 represented 2-Hydroxy-4-isopropyladipic acid, A-4 represented 3-Acetyl hexanedioic acid, A-5 represented 3-Hydroxyglutaric acid, A-6 represented 2-Hydroxy-4,4-dimethylglutaric acid, A-7 represented 3-(2-Hydroxy-ehyl)-2,2-dimethyl-cyclobutane-carboxylic acid, PA represented pinic acid, PNA represented pinonic acid, T-3 represented 2,3-dihydroxy-4-oxopentanoic acid, C-1 represented β-caryophyllinic acid.