Supplementary data for "Lower than expected volatility of secondary organic aerosols formed during α-pinene ozonolysis"

Kei Sato¹, Yuji Fujitani¹, Satoshi Inomata¹, Yu Morino¹, Kiyoshi Tanabe¹, Sathiyamurthi Ramasamy¹, Toshihide Hikida², Akio Shimono,² Akinori Takami¹, Akihiro Fushimi¹, Yoshinori Kondo¹, Takashi Imamura¹, Hiroshi Tanimoto¹, Seiji Sugata¹

¹National Institute for Environmental Studies, Ibaraki, 305-8506, Japan ²Shoreline Science Research, Inc., Tokyo, 192-0045, Japan

Correspondence to: Kei Sato (kei@nies.go.jp)

monomers			dimers		
formula	m/z	carbon oxidation state	formula	m/z	carbon oxidation state
C ₈ H ₁₂ O ₄	195.0628	-0.50	C ₁₆ H ₂₄ O ₆	335.1465	-0.75
C8H12O5	211.0577	-0.25	C ₁₆ H ₂₄ O ₇	351.1414	-0.63
$C_{8}H_{12}O_{6}$	227.0526	0.00	$C_{16}H_{24}O_8$	367.1363	-0.50
C8H12O7	243.0475	0.25	C17H26O6	349.1622	-0.82
C8H14O5	213.0733	-0.50	C17H26O7	365.1571	-0.71
C8H14O6	229.0683	-0.25	C ₁₇ H ₂₆ O ₈	381.152	-0.59
C8H14O7	245.0632	0.00	C17H26O9	397.1469	-0.47
C9H14O3	193.0835	-0.89	C ₁₇ H ₂₆ O ₁₀	413.1418	-0.35
C9H14O4	209.0784	-0.67	C17H26O11	429.1367	-0.24
C9H14O5	225.0733	-0.44	C17H28O6	351.1778	-0.94
C9H14O6	241.0683	-0.22	C17H28O7	367.1727	-0.82
C9H14O7	257.0632	0.00	C17H28O8	383.1676	-0.71
C9H14O8	273.0581	0.22	C17H28O9	399.1626	-0.59
C9H16O5	227.089	-0.67	C17H28O10	415.1575	-0.47
C9H16O6	243.0839	-0.44	C17H30O5	337.1985	-1.18
C9H16O7	259.0788	-0.22	C17H30O6	353.1935	-1.06
C9H16O8	275.0737	0.00	C17H30O7	369.1884	-0.94
C10H14O5	237.0733	-0.40	C17H30O8	385.1833	-0.82
C10H14O6	253.0683	-0.20	C17H32O5	339.2142	-1.29
C10H14O7	269.0632	0.00	C17H32O6	355,2091	-1.18
C10H16O2	207 0992	-1.00	C17H22O7	371 204	-1.06
C10H16O4	223 0941	-0.80	C17H32O9	387 1989	-0.94
CioHisOs	239 089	-0.60	C17H22O0	403 1939	-0.82
CuHieOs	255 0839	-0.40	CieHaeOs	347 1829	-1 00
C10H16O2	271 0788	-0.20	C10H20Os	363 1778	-0.89
CioHicOo	287 0737	0.00	C10H20O2	379 1727	-0.78
CioHicOo	303 0687	0.20	C10H20O0	395 1676	-0.67
CioHioOs	241 1046	-0.80	C10H2000	411 1626	-0.56
CioHioOs	257 0996	-0.60	C10H20C10	427 1575	-0.44
CioHioOz	273 0945	-0.40	C10H20C11	443 1574	-0.33
CioHioOo	289 0894	-0.20	C10H20O0	397 1833	-0.78
CioHioCo	305 0843	0.00	C10H20O0	413 1782	-0.67
C10H18O9	565.0015	0.00	C10H20O4	335 2193	-1 33
			C10H22O4	351 2142	-1.22
			C10H20C6	367 2091	-1 11
			C18113206	353 22021	-1.11
			CiaHarOs	360 2248	1.22
			C181134O6	401 2146	1.00
			CisH34Os	250 1920	-1.00
			C191128O6	201 1727	0.04
			C191128Oy	407 1676	-0.74
			C19H28O8	407.1070	-0.05
			C19H28O9	423.1020	-0.55
			C19H28O10	437.1373	-0.42
			C19H28U12	4/1.14/3	-0.21
			C19H30US	301.1965	-1.05
			C19H30O6	202 1994	-0.95
			C19F130U7	1004 1022	-0.04
			C19H30U8	407.1000	-0.74
			C 19 H 30 U 9	425.1782	-0.03
			C20H30U6	389.1935	-0.90
			C20H30O8	421.1833	-0.70
			C20H30O9	437.1782	-0.60
			C ₂₀ H ₃₀ O ₁₀	453.1731	-0.50
			C ₂₀ H ₃₂ O ₅	375.2142	-1.10
			C ₂₀ H ₃₂ O ₇	407.204	-0.90
			C ₂₀ H ₃₂ O ₈	423.1989	-0.80
			ConHaoOo	439 1939	-0.70

Table S1. Molecules detected as sodium adduct ions during offline positive electrospray ionization analysis of

 α -pinene ozonolysis SOA samples.

	\log_{10} (saturation concentration / μg m ⁻³)			
compound	SPARC (Sato et al., 2016)	1D fit for α-pinene oxidation products (Shiraiwa et al., 2014)	2D fit for oxygenated organic compounds (Li et al., 2016)	
pinonic acid	2.25	3.3	4.3	
pinic acid	-0.75	3.2	3.81	
10-hydroxypinonic acid	-0.82	2.44	3.5	
MBTCA	-0.43	2.24	1.97	
$C_{10}H_{16}O_5$	-	1.59	2.59	
$C_{10}H_{16}O_{6}$	-	0.74	1.58	
$C_{10}H_{16}O_7$	-	-0.11	0.50	
dimer of MW 348 (isomer 1)	-6.31	-5.45	-0.84	
dimer of MW 348 (isomer 2)	-7.4	-5.45	-0.84	

Table S2. Saturation concentrations determined for α -pinene oxidation products by SPARC calculations and two previous parameterization methods.

Figure S1: Schematic diagram of the chamber system and analytical instruments used for the experiments at RH <1%; a Teflon bag was used instead of the reaction chamber with the pump system for the experiments at RH ~40%.

Figure S2: MW plotted as a function of saturation concentration: Results of PTR-MS measurements, SPARC calculations, and EVAPORATION calculations.

Figure S3: Mass fraction remaining (MFR) measured for SOA and pinonic acid particles as a function of thermodenuder temperature.

References

- Sato, K., Jia, T., Tanabe, K., Morino, Y., Kajii, Y., and Imamura, T.: Terpenylic acid and nine-carbon multifunctional compounds formed during the aging of b-pinene ozonolysis secondary organic aerosol. Atmos. Environ., 130, 127-135, 2016.
- Shiraiwa, M., Berkemeier, T., Schilling-Fahnestock, K. A., Seinfeld, J. H., and Pöschl, U.: Molecular corridors and kinetic regimes in the multiphase chemical evolution of secondary organic aerosol. Atmos. Chem. Phys., 14, 8323-8341, 2014.
- Li, Y., Pöschl, U., and Shiraiwa, M.: Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols. Atmos. Chem. Phys., 16, 3327-3344, 2016.