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Abstract 1 
 2 
This paper presents the light scattering properties of atmospheric aerosol particles measured over 3 

the past decade at 28 ACTRIS observatories, located mainly in Europe. The data include particle 4 

light scattering (sp) and hemispheric backscattering (bsp) coefficients, scattering Ångström 5 

exponent (SAE), backscatter fraction (BF) and asymmetry parameter (g). A large range of sp was 6 

observed across the network. Low sp values were on average measured in Nordic and Baltic 7 

countries and in Western Europe whereas the highest sp were measured at regional sites in 8 

eastern and central Europe. In these regional areas the SAE was also high indicating the 9 

predominance of fine-mode particles. On average, the SAE was lower in the Nordic and Baltic, 10 

western and southern countries suggesting a lower fraction of fine-mode particle compared to 11 

central and eastern Europe. An increasing gradient of sp was observed when moving from 12 

mountain to regional and to urban sites. Conversely, the mass-independent SAE and g parameters 13 

did not show the same gradient. At all sites, both SAE and g varied greatly with aerosol particle 14 

loading. The lowest values of g were always observed under low sp indicating a larger contribution 15 

from particles in the smaller accumulation mode. Then, g steeply increased with increasing sp 16 

indicating a progressive shift of the particle size distribution toward the larger end of the 17 

accumulation mode. Under periods of high particle mass concentrations, the variation of g was less 18 

pronounced whereas the SAE increased or decreased suggesting changes mostly in the coarse 19 

aerosol particles mode rather than in the fine mode. The station placement seemed to be the main 20 

parameter affecting the intra-annual variability. At mountain sites, higher sp was measured in 21 

summer mainly because of the enhanced boundary layer influence. Conversely, less horizontal 22 

and vertical dispersion in winter led to higher sp at all low altitude sites in central and eastern 23 

Europe compared to summer. On average, these sites also showed SAE maxima in summer (and 24 

correspondingly g minima). Large intra-annual variability of SAE and g was observed also at 25 

Nordic and Baltic countries due to seasonal-dependent transport of different air masses to these 26 

remote sites. Statistically significant decreasing trends of sp were observed at 5 out of 13 stations 27 

included in trend analyses. The total reductions of sp were consistent with those reported for PM2.5 28 

and PM10 mass concentrations over similar periods across Europe.  29 

 30 
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1. Introduction 1 

Atmospheric aerosol particles are recognized as an important atmospheric constituent with 2 

demonstrated effects on climate and health. Radiative forcing of aerosol particles, estimated as     3 

–0.9 [–1.9 to −0.1] W/m2 (IPCC, 2014), has two competing components: a cooling effect from most 4 

particle types and a partially offsetting warming contribution from black carbon (BC) particle light 5 

absorption of solar radiation. The aerosol cooling is the dominant effect; thus aerosol particles are 6 

counteracting a substantial portion of warming effect from well mixed greenhouse gases (GHGs). 7 

This process is driven by the scattering properties of most aerosol particle types (e.g. secondary 8 

sulfate and nitrate particles, mineral and organic matter), which reduces the amount of solar 9 

radiation reaching the Earth surface reflecting it back to space and modifying the Earth’s radiative 10 

balance. However, the high temporal and spatial variability of atmospheric aerosol particles, due to 11 

the wide variety of aerosol sources and sinks, their short and variable lifetime (hours to weeks in 12 

the planetary boundary layer) and spatial non-uniformity, contribute to the largest uncertainty in the 13 

estimation of the total radiative forcing. Reducing these uncertainties is mandatory in view of global 14 

warming experienced over the past 50 years. In fact, there are evidences suggesting that the 15 

observed (and projected) decrease in emissions of anthropogenic aerosol particles, in response to 16 

air quality policies, would eventually unmask the global warming (Rotstayn et al., 2013). Thus, 17 

current emission controls could increase climate warming while improving air quality (e.g. Stohl et 18 

al., 2015). The measurements of aerosol particle optical properties such as light scattering and 19 

absorption, together with measurements of physical and chemical properties, are fundamental in 20 

order to better understand the current conflict involving a trade-off between the impacts of aerosols 21 

on environmental health and Earth’s climate. Several international projects are providing in the last 22 

decades important information on the atmospheric particle properties worldwide. Near-surface in-23 

situ observations of aerosol particle properties are performed worldwide under the GAW/WMO 24 

program completed with policy-oriented programs such as IMPROVE (Interagency Monitoring of 25 

Protected Visual Environments; http://vista.cira.colostate.edu/Improve/) in USA or EMEP 26 

(European Monitoring and Evaluation Programme; http://www.emep.int/) in Europe. Additional 27 

information specifically targeting advanced aerosol particle properties are obtained in Europe using 28 

information from the European research infrastructure ACTRIS (Aerosols, Clouds, and Trace 29 

gases Research InfraStructure; http://www.actris.eu) or from short-term RTD projects such as 30 

EUCAARI (European Integrated Project on Aerosol Cloud Climate and Air Quality Interactions; 31 

http://www.cas.manchester.ac.uk/resprojects/eucaari/). The implementation of the GAW program 32 

in Europe is performed under ACTRIS for the advanced observation of aerosol particle properties. 33 

ACTRIS is providing harmonized measurement of different (physical, chemical and optical) aerosol 34 

properties in a systematic way at major observation sites in Europe. More than 60 measuring sites 35 

worldwide are currently providing ground-based in-situ aerosol particle light scattering 36 

measurements (EBAS database; www. http://ebas.nilu.no/) and the number has increased 37 

substantially in the last decade.  38 
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The objective of this work is to integrate the total aerosol light scattering coefficient (sp) and 1 

hemispheric backscattering coefficient (bsp) measurements performed over several years at the 2 

ground based in-situ ACTRIS stations. A total of 28 stations (25 European + 3 non-European) are 3 

included in order to document the variability in near-surface aerosol particle light scattering across 4 

the ACTRIS network. Moreover, at some of the ACTRIS stations more than 10 years of sp data 5 

are available allowing us to perform trends analysis. The study of the trend of sp is important given 6 

that decreasing or increasing trend of sp would mirror the effectiveness of the air quality control 7 

measures. In fact, many studies have shown that the concentrations of particulate matter (PM), 8 

and other air pollutants such as sulfur dioxide (SO2) and carbon monoxide (CO), have clearly 9 

decreased during the last 20 years in many European Countries (Barmpadimos et al., 2012; 10 

Cusack et al., 2012; EEA, 2013; Querol et al., 2014; Guerreiro et al., 2014; Pandolfi et al., 2016, 11 

Tørseth et al., 2012, among others). 12 

Previous studies presenting multi-site ground-based in-situ aerosol particle optical measurements 13 

were for example performed by Delene and Ogren (2002), Collaud Coen et al. (2013) and Andrews 14 

et al. (2011). Delene and Ogren (2002) reported the variability of aerosol particle optical properties 15 

at four North American surface monitoring sites. Collaud Coen et al. (2013) presented long term 16 

(>8-9 years) aerosol particle light scattering and absorption measurements performed at 24 17 

regional/remote observatories, among which 5 of them are located in Europe. Andrews et al. 18 

(2011) reported the aerosol particle optical measurements performed at 12 (4 located in Europe) 19 

mountain top observatories. Thus, the number of papers reporting aerosol particle optical 20 

properties measured at different sites is rather scarce and unfortunately almost inexistent outside 21 

Europe and the United States. 22 

Our work is focused mainly on European observatories aiming at a representative phenomenology 23 

of aerosol particle light scattering coefficient measured at ACTRIS stations. Thanks to the 24 

establishment of European monitoring networks and/or research projects five papers have been 25 

published related with aerosol phenomenology in Europe: Van Dingenen et al. (2004) and Putaud 26 

et al. (2004) on the physical and chemical, respectively, characteristics of particulate matter (PM) 27 

at kerbside, urban, rural and background sites in Europe; Putaud et al. (2010) on the physical and 28 

chemical characteristics of PM measured at 60 sites across Europe; Cavalli et al. (2016) on the 29 

harmonized concentrations of carbonaceous aerosol at ten regional background sites in Europe; 30 

Zanatta et al. (2016) presenting a climatology of BC optical properties at nine European regional 31 

background sites. The importance of these studies and of the present work relies on the evidence 32 

that a reliable assessment of the physical, chemical and optical properties of aerosol particles at 33 

European scale is of crucial importance for an accurate estimation of the radiative forcing of 34 

atmospheric aerosols. This work is the first European phenomenology study dedicated to the light 35 

scattering properties of aerosol particles measured in-situ at near-surface ground-based 36 

observatories. Moreover, the trend analyses presented can be used to evaluate how the European 37 

mitigation strategies adopted to improve air quality affected the aerosol particle optical properties. 38 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-826
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 13 October 2017
c© Author(s) 2017. CC BY 4.0 License.



6 
 

In fact, starting from the sp measurements performed at the ACTRIS observatories, three 1 

intensive aerosol particle optical parameters can be estimated, namely the scattering Ångström 2 

exponent (SAE), the backscattering fraction (BF), and the asymmetry parameter (g). These 3 

intensive properties do not depend on the PM mass concentration and are directly related to 4 

aerosol particles properties such as size, shape, size distribution and chemical composition. The 5 

SAE can be considered a proxy for the aerosol particle size range with higher (lower) SAE 6 

associated to predominance of fine (course) aerosol particles (e.g. Seinfeld and Pandis, 1998; 7 

Esteve et al., 2012; A. Valenzuela  et al., 2015 among others). The BF and g parameters are 8 

calculated quantities that influence the variability of the radiative forcing efficiency and that 9 

represent the angular light scattering of aerosol particles. For computational efficiency, the angular 10 

light scattering is often represented by a single value (BF, sp/bsp or g) (Ogren et al., 2006). For 11 

some of the ACTRIS data used in this work, trends of these intensive aerosol particle optical 12 

properties are investigated as well.  13 

 14 

2. Experimental 15 

2.1 Atmospheric Observatories 16 

Figure 1 shows the location of the observatories which are grouped based on their geographical 17 

location as performed in other European phenomenology studies (e.g. Putaud et al., 2010). 18 

Observatories information and measurements periods are summarized in Table 1. The 19 

observatories are also divided in five different categories depending on their placement in each 20 

geographical sector. Mountain: includes those observatories located at more than 1 km above sea 21 

level; coastal: includes observatories located close to the sea coast; regional: includes those 22 

observatories mostly affected by regional sources and closer to large pollution sources compared 23 

to continental sites; continental: comprise observatories located in remote continental areas; 24 

urban/sub-urban: includes observatories located in urban background or suburban areas.  25 

Nordic and Baltic stations are represented by Birkenes (BIR, Norway; regional), Hyytiälä (SMR, 26 

Finland; regional), Pallas (PAL, Finland; continental), Vavihill (VHL, Sweden; continental), and 27 

Preila (PLA, Lithuania; coastal). Western European sites are Puy De Dome (PUY, France; 28 

mountain), Mace Head (MHD, Ireland; coastal), Cabauw (CBW, The Netherlands; regional), SIRTA 29 

(SIR, France; suburban), and Observatory Perenne (OPE, France; regional). Central European 30 

stations are Jungfraujoch (JFJ, Switzerland; mountain), Hohenpeissenberg (HPB, Germany; 31 

mountain), Melpitz (MPZ, Germany; regional), Ispra (IPR, Italy; semi regional), Mt. Cimone (CMN, 32 

Italy; mountain) and Košetice (KOS, Czech Republic; regional). Eastern European stations are Beo 33 

Moussala (BEO, Bulgaria; mountain) and K-Puszta (KPS, Hungary; regional). South-western 34 

European stations are represented by Izaña (IZO, Spain; mountain), Montsec (MSA, Spain; 35 

mountain), Montseny (MSY, Spain; regional), Madrid (MAD, Spain; sub-urban), and Granada 36 
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(UGR, Spain; urban) whereas south-eastern European stations are Athens (DEM, Greece; sub-1 

urban) and Finokalia (FKL, Greece; coastal). Finally, Arctic and Antarctic stations are Zeppelin 2 

(ZEP) and Troll (TRL), respectively. Another non-European mountain station included is Mt. 3 

Chacaltaya (CHC, Bolivia; mountain). The altitude of the mountain stations considered here ranges 4 

between 985 m at HPB to 5240 m at CHC. Some of the mountain stations included in this 5 

investigation have been already included in the work by Andrews et al. (2011), namely IZO, JFJ, 6 

CMN, and BEO. Moreover, FKL, HPB, JFJ, MHD, and PAL stations have been included in the 7 

study by Collaud Coen et al. (2013). Both studies presented in-situ aerosol particle optical 8 

measurements performed at these stations. Main results from the previous investigation are 9 

summarized in the results section.  10 

At JFJ, HPB, IPR (Central Europe), UGR (southwestern Europe), MHD (western Europe), PAL and 11 

SMR (Nordic and Baltic), at least 10 years of data are available for trend analysis. However, in 12 

order to improve the spatial coverage, trends are also studied at CMN, MPZ (central Europe), IZO 13 

(southwestern Europe), PUY (western Europe), KPS and BEO (eastern Europe), where >8-9 years 14 

of data are available (cf. Table 1). The stations included in this work report the data to ACTRIS and 15 

GAW/EMEP, consequently the data are quality assured given that the nephelometer instruments 16 

are run following the ACTRIS/GAW standards (WMO-GAW Report, 2016) and regularly inter-17 

compared. 18 

 19 

2.2 Scattering measurements 20 

2.2.1 Instruments 21 

The measurements of sp and bsp included in this study were obtained from TSI and Ecotech 22 

integrating nephelometers (Table 1). These optical instruments measure the amount of light 23 

scattered by particles in the visible spectrum and provide sp and bsp coefficients of sampled 24 

aerosols. Most used nephelometer models are the TSI3563 and the Ecotech AURORA3000, both 25 

providing sp and bsp. Model TSI3563 measures sp and bsp at 450, 550, and 700 nm whereas the 26 

Ecotech AURORA3000 measures at 450, 525 and 635 nm. Other used models are the M9003 27 

from Ecotech (SIR and CMN) and the RR (Radiance Research) nephelometer model M903 (FKL) 28 

measuring sp at 520 nm and 532 nm, respectively. Due to the non-homogeneity of the light source 29 

of the model M9003, the light source was changed at SIR in 2013 with the AURORA3000 light 30 

source and at CMN in 2009 with an opal glass light source. The detailed description of the main 31 

characteristics and working principle of the integrating nephelometers can be found e.g. in Müller 32 

et al. (2011) for the Ecotech AURORA3000 and in Anderson and Ogren (1998) for the model TSI 33 

3563. Following the ACTRIS and WMO-GAW recommendations, the nephelometers are regularly 34 

calibrated using span gas and zero-adjusted using particle-free air. Recommended quality 35 

assurance procedures during on-site operation as described in GAW (WMO/GAW, 2016), 36 

guarantee the quality and comparability of the data. Moreover, most of the integrating 37 
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nephelometers involved in ACTRIS have undergone performance checks at scheduled times at the 1 

World Calibration Center for Aerosol Physical properties of ACTRIS/GAW. 2 

 3 

2.2.2 Data treatment 4 

2.2.2.1 Truncation correction 5 

Data from integrating nephelometers used here are corrected for non-ideal illumination of the light 6 

source (deviation from Lambertian distribution of light) and for truncation of the sensing volumes in 7 

the near-forward (around 0-10º) and near-backward direction (around 170-180º) (Müller et al., 8 

2009 and Anderson and Ogren, 1998). Correction schemes have been provided by Müller et al. 9 

(2011) for the Ecotech AURORA3000 and by Anderson and Ogren (1998) for the TSI3563. Both 10 

methods provide a simple linear correction scheme based on the scattering Ångström exponent 11 

(SAE) determined from raw nephelometer data to correct for the size distribution-dependent 12 

truncation error. It has been demonstrated that for an aerosol particle population with a single 13 

scattering albedos (SSA) greater than 0.8 this simple correction scheme provides a suitable 14 

quantification of the truncation error (Müller et al., 2011). However, for SSA < 0.8 a correction 15 

scheme based on particle number size distribution should be used (Müller et al., 2011). The 16 

aerosol particle light scattering data used here are corrected for non-ideal illumination and for 17 

truncation by the data providers or in this work. This information is reported in Table S1 of the 18 

Supporting Material. Only at SIR, FKL, and CMN, sp data are not corrected for truncation because 19 

sp at these observatories was measured at one wavelength. At CMN, the 3- TSI3563 is operative 20 

since 2014 (cf. Table 1). However, not correcting for truncation doesn’t prevent from comparing 21 

non-corrected sp with truncation corrected sp. The truncation correction increases with particle 22 

size being more important for coarse aerosol particles. For example, using the SAE calculated at 23 

CMN for the years 2014-2015 and the correction scheme provided for the TSI3563 by Anderson 24 

and Ogren (1998), the difference between non-corrected sp and corrected mean sp is lower than 25 

7% at this site. 26 

 27 

2.2.2.2 Relative humidity 28 

The integrating nephelometer measurements within ACTRIS and WMO-GAW should be performed 29 

at low relative humidity (RH) in order to avoid enhanced scattering due to water uptake of aerosol 30 

particles and to make measurements comparable. For the Ecotech integrating nephelometers the 31 

RH threshold can be set by using a processor-controlled automatic heater inside the 32 

nephelometer. At some mountain sites where whole air is sampled (cf. Table 1), the natural 33 

temperature difference between outside and inside air dries cloud droplets to the aerosol phase 34 

when a cloud is present at the station. RH is also controlled by de-humidifying in the inlet pipe as 35 
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reported in the GAW report 226 to ensure sampling RH of less than 40%. This recommendation 1 

intends to make the data comparable across the network, which otherwise would be a strong 2 

function of the highly variable sample RH. Currently, at the majority of ACTRIS observatories, the 3 

aerosol particles light scattering measurements are performed at RH lower than 40%. However, 4 

given that at some stations the 40% RH threshold is sometimes exceeded, we selected in this work 5 

a RH threshold of 50% in order to improve the data coverage. Estimating the aerosol particle light 6 

scattering enhancement due to an increase of RH from 40% to 50% is difficult using the data 7 

available here because sp measurements at RH>40% are not evenly distributed over the 8 

measurement periods. In fact, at the majority of the stations RH higher than 40% is registered 9 

mostly in summer. However, the scattering enhancement due to a change in RH between 40% and 10 

50% should be small and will not exceed around 3-5% even for more hygroscopic particles (e.g. 11 

Fierz‐Schmidhauser et al., 2010a,b). Table S2 in the Supporting Material reports the number of RH 12 

hourly data reported at each observatory and the number and % of hourly RH data >50%. The 13 

frequency distributions of measured RH are shown in Figure S1. Finally, sp and bsp data reported 14 

to EBAS and used in this work are referenced to standard T (273.15 ºC) and P (1013 hPa) 15 

conditions. 16 

2.2.2.3 Available wavelengths 17 

In this work we present and discuss the sp, BF and g measurements obtained using the green 18 

wavelength of the integrating nephelometers. The available wavelengths ranged from 520 nm (2 19 

stations, CMN and VHL) to 550 nm (18 stations). Other used wavelengths are 525 nm (6 stations), 20 

532 nm (used at FKL until 2010; cf. Table 2). An exception is SIR where only sp at 450 nm is 21 

available. The measurements of sp reported here are not adjusted to 550 nm which generally is 22 

the most used wavelength (e.g. Andrews et al., 2011) because of the different data availability of 23 

sp and SAE at the measuring stations. As discussed in the following Sections SAE is calculated 24 

for sp data higher than 0.8 Mm-1, thus leading to different data coverage for sp and SAE and thus 25 

preventing the adjustment of all measured sp to 550 nm. Moreover, SAE is not available at FKL 26 

and SIR (and at CMN until 2014) thus preventing any wavelength adjustment at these stations. 27 

Using the mean SAE calculated at those stations where sp is measured at different wavelength 28 

than 550 nm (cf. Tables S4 and S5 in Supporting material), we estimate differences in sp lower 29 

than 6% after adjusting to 550 nm. At FKL and SIR, where SAE is not available and assuming a 30 

SAE of 1.5, the difference by adjusting to 550 nm is 4.9% at FKL and 26% at SIR, respectively. 31 

The higher difference at SIR is due to the fact that measurements at this station are performed at 32 

450 nm. Finally, at CMN the effect of the adjustment of sp to 550 nm (from 520 nm) using a mean 33 

SAE of 2 (cf. Table S5) is lower than 10%.  34 

 35 

 36 
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2.2.3 Calculation of aerosol particle intensive optical properties 1 

In addition to the direct sp and bsp measurements obtained with the above detailed 2 

instrumentation, the following aerosol intensive parameters are calculated from hourly-averaged in-3 

situ data. 4 

The scattering Ångström exponent (SAE) characterizes the wavelength dependency of sp and it 5 

can be calculated as follows (with λ1 > λ2): 6 



















2

1log

log
2

1










sp

sp

SAE
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Here, the SAE is calculated as linear estimation of sp measured at the three available 8 

wavelengths. The SAE depends on particle size distribution. It takes values greater than 2 when 9 

the light scattering is dominated by fine particles (radii ≤ 0.5 m as e.g. in Schuster et al. (2006)), 10 

while it is lower than one when the light scattering is increasingly dominated by coarse particles 11 

(Seinfeld and Pandis, 1998; Schuster et al., 2006).  12 

The asymmetry parameter (g) (Andrews et al., 2006; Delene and Ogren, 2002) describes the 13 

probability that the radiation is scattered in a given radiation and it is defined as the cosine-14 

weighted average of the phase function. Thus, g gives information on the amount of radiation that 15 

a particle can scatter in the forward direction compared to the backward direction. Theoretically, 16 

the values of g can range from −1 for only back scattering to +1 for complete forward scattering 17 

(0º), with a value of 0.7 commonly used in radiative transfer models (Ogren et al., 2006). The g 18 

parameter can be estimated from the backscatter fraction (BF) which is the ratio between bspand 19 

sp (Andrews et al., 2006): 20 

9893.0)(96.3)(46.7)(14.7 23  BFBFBFg       (Eq. 2) 21 

 22 

2.2.4 Data coverage 23 

Table S3 in the Supporting Material reports the number of hours and data availability for each 24 

atmospheric observatory. The data coverage reported in Table S3, refers to scattering and 25 

backscattering measurements performed at RH<50%. The data coverage for the extensive 26 

measured aerosol particle optical properties (sp and bsp) is generally high ranging from around 27 

60% to 95%. Exception are sp measurements in the blue (450 nm) and in the red (700 nm) and 28 

bsp measurements at CMN where the three wavelengths nephelometer was implemented starting 29 

from 2014. Consequently, also SAE and g has low data coverage at CMN. Moreover, lower data 30 

coverage (< 40%) was registered at PLA and VHL. The data coverage for the intensive aerosol 31 

particle optical properties (SAE and g) is generally lower compared to the data coverage of sp and 32 
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bsp. This is because the intensive optical properties are calculated from hourly sp and bsp data 1 

higher than 0.8 Mm-1 to avoid noise in the calculations. As a consequence, the data coverage of 2 

the intensive properties is lower at those stations measuring usually low sp and bsp (e.g. mountain 3 

and remote sites). For example, at JFJ the SAE and g data coverage is of around 54% and 22%, 4 

respectively. At TRL these values are even lower, with 21% and 1%, respectively. However, as 5 

reported in Table S3, at the majority of the stations the data coverage of SAE and g is higher than 6 

60%. 7 

 8 

3. Results/Discussion 9 
 10 
3.1 Variability of sp 11 

Figure 2 shows the box-and-whiskers plots of sp measured at the stations included in this 12 

investigation. Table S4 and Figure S2 in the Supplementary Material report, respectively, the 13 

statistics of sp (mean, standard deviation, minimum and maximum values and 5th, 25th, 50th, 75th, 14 

and 95th percentiles) and frequency and cumulative frequency distributions.  15 

In Fig. 2, data are grouped based on their geographical location (cf. Fig. 1) and ordered based on 16 

their placement, from mountain sites to urban sites. In each geographical sector, an increasing 17 

gradient of sp is generally observed when moving from mountain to regional and to urban sites.  18 

Thus, sp measured at mountain sites is always lower compared to measurements performed at 19 

other placements (coastal to urban) even if exceptions are observed in some sectors. A large 20 

range of sp coefficients is observed across the network ranging from median values lower than 10 21 

Mm-1 to values higher than 40 Mm-1. The observed variation is consistent with the differences in 22 

particulate matter (PM) mass concentrations, PM chemical composition and particle number 23 

concentration observed across Europe as described for example by Putaud et al. (2010) and Asmi 24 

et al. (2011). Figure 3 shows the relationship between the mean particle number concentration 25 

measured at different stations during 2008 – 2009 reported in Asmi et al. (2011) and the mean sp 26 

measured over the same period (where available). As reported in Fig. 3, a good correlation is 27 

observed between N50 (mean/median particle number between 50 nm and 500 nm) and N100 28 

(mean/median particle number between 100 nm and 500 nm) and mean sp. Overall, the lowest sp 29 

is on average measured at remote stations either because of: a) their altitude, for example JFJ 30 

located in central Europe at more than 3500 m a.s.l. and CHC in Bolivia at around 5300 m a.s.l., or 31 

b) because their large distance from pollution sources, for example the coastal ZEP and TRL 32 

stations and some regional/continental sites in the  Nordic and Baltic sector such as BIR, SMR and 33 

PAL. The Arctic (ZEP) and Antarctic (TRL) monitoring stations are located in undisturbed 34 

environments with minimal influence from the local settlement since these are located above the 35 

inversion layers. The PAL station (Nordic and Baltic) is located in a remote continental area and 36 

the low sp measured at this site are mainly due to the absence of large local and regional pollution 37 
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sources (e.g. Aaltonen et al., 2006). Conversely, higher sp (medians > 40 Mm-1) are on average 1 

registered at more polluted sites such as some urban sites in southern Europe (UGR and DEM), 2 

some regional sites in eastern and central Europe (KPS and IPR, respectively), and one coastal 3 

site in the Nordic and Baltic sector (PLA). Finally, at all stations included in this work, the skewness 4 

of sp distributions (cf. Table S4) is higher than one and ranged between 1.4 at PLA and 10.6 at 5 

TRL (skewness calculated from hourly averaged data). Positive skewness is usually observed for 6 

positive defined parameters having a frequency distribution with a pronounced right tail indicating 7 

the presence of high positive values. Figure S2 in the Supporting Material shows the frequency 8 

and cumulative frequency distributions for sp for each station evidencing the presence of these 9 

right tails. 10 

 11 

3.1.1 sp at mountain observatories 12 

Differences can be observed among stations with similar placements but different geographical 13 

locations. Among the mountain stations higher mean sp is on average measured at HPB and IZO 14 

(cf. Table S4). HPB station is likely to be more influenced by the PBL than other mountain stations 15 

due to its lower altitude (Nyeki et al., 2012; Collaud Coen et al., 2017), whereas IZO is largely 16 

influenced by Saharan dust outbreaks transporting dust toward the station (e.g. Rodriguez et al., 17 

2011) thus increasing sp. In fact, at IZO the median value of sp is among the lowest measured at 18 

these mountain sites (around 7 Mm-1; cf. Table S4) indicating that sporadic but extremely intense 19 

pollution episodes due to Saharan mineral dust outbreaks strongly affect the mean sp at this 20 

station. The lowest median sp at mountain sites are on average measured at JFJ probably due to 21 

the higher altitude of this station compared to other mountain stations included in this work and/or 22 

the distance from important pollution sources. Moreover, Collaud Coen et al. (2017) reported a low 23 

PBL influence at this site due to the location of the station in a dominant position in the whole 24 

mountainous massif. CHC registers higher median sp compared to IZO or JFJ despite its location 25 

at around 5300 m a.s.l. likely due to the influence of the emissions from the city of La Paz (3600 m 26 

a.s.l.) located around 30 km far from CHC and the local topography which facilitates the uplift of air 27 

masses toward the CHC observatory (Collaud Coen et al., 2017).  28 

 29 

3.1.2 sp at regional/continental observatories 30 

Regional sites present a large variability in sp coefficients across Europe with the lowest values 31 

measured at BIR and SMR (Nordic and Baltic) and the highest at IPR (central Europe) and KPS 32 

(eastern Europe). At both IPR and KPS, the frequent wintertime episodes linked to strong stable air 33 

with thermal inversion strongly affect the level of pollution at these sites (e.g. Putaud et al., 2014; 34 

Molnár et al., 2016). On the other side, it is known that the IPR station, even though it lies several 35 

tens of kilometers away from large pollution sources, is located in an area (the Po Valley) which is 36 
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one of the most polluted regions in Europe (e.g. van Donkelaar et al., 2010). Among the 1 

continental sites, VHL registers on average higher sp compared to PAL and compared to BIR and 2 

SMR regional sites likely because VHL is located closer to the continent and it is consequently 3 

more affected by polluted continental air masses. Moreover, the emissions from densely populated 4 

areas of Helsingborg and Malmö and the city of Copenhagen located 25 km to the west, 50 km to 5 

the south, and 45 km to the south-east, respectively, could also explain the relatively high sp 6 

measured at VHL (Kecorius et al., 2016). The sp values at regional level in Western Europe (OPE 7 

and CBW) are on average higher compared to those measured in the Nordic and Baltic regions 8 

and lower compared to those measured at regional level in south Europe (MSY).  9 

 10 

3.1.3 sp at urban observatories  11 

Among the urban background sites, lower sp are measured at MAD and SIR compared to DEM 12 

and UGR. Low sp at MAD during the period presented here (only 2014 available for MAD) could 13 

be related to the reduced formation of secondary nitrate aerosols due to the limitation in the 14 

availability of ammonia in this urban environment (Revuelta et al., 2014). However, it should be 15 

considered that winter episodes with high secondary nitrate concentrations are not uncommon in 16 

Madrid and we are presenting here only one year of measurements for this station. On the other 17 

hand, secondary inorganic aerosol concentrations recorded at SIR sub-urban observatory can be 18 

considered as representative of a large geographical zone, given the rather flat orography of the 19 

Parisian basin. At UGR, the accumulation, mainly in winter, of fine particles from traffic, domestic 20 

heating and biomass burning explains the relatively higher sp (e.g. Lyamani et al., 2012; Titos et 21 

al., 2017). Traffic emissions, high formation of secondary sulfate and organic aerosols in summer 22 

together with the transport of dust from Africa are the main reasons explaining the high sp at DEM 23 

where high PM2.5 and PM10 are usually measured compared to other important Mediterranean 24 

cities (e.g.: Diapouli et al., 2017; Eleftheriadis et al., 2014; Karanasiou et al. 2014; Querol et al., 25 

2009). 26 

 27 

3.1.4 sp at coastal observatories 28 

The PLA coastal station registered sp values higher compared to both other Nordic and Baltic 29 

stations and other coastal sites (e.g. MHD and FKL) and amongst the highest in Europe. Kecorius 30 

et al. (2016) have shown that ship emissions in the Baltic Sea contribute strongly to pollution levels 31 

at PLA and that up to 50% of particles arriving at PLA are generated by processes and emissions, 32 

including shipping, taking place in areas upwind the station. Moreover, Asmi et al. (2011) 33 

presented some similarities in particle number concentrations measured at PLA with those 34 

measured at some central European sites such as IPR due to the influence from multiple source 35 
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areas (cf. Fig. 3). It should be noted however, that the period with available sp measurements is 1 

very short at PLA (cf. Table 1 and Figure 7) and the data coverage is also low (cf. Table S3). 2 

Consequently, more measurements at this site are needed in order to confirm the sp values 3 

reported here. The other two coastal stations (MHD and FKL) register median sp values in the 4 

upper range of sp measured across the network mostly due to the contribution of marine aerosol in 5 

winter and mineral dust in summer at MHD and FKL, respectively (cf. Paragraph 3.5).   6 

 7 

3.2 Variability of SAE  8 

Figure 4 shows the box-and-whiskers plots of SAE calculated at the different stations. Table S5 9 

and Figure S3 in the Supplementary Material report the statistics of SAE and frequency and 10 

cumulative frequency distributions, respectively. It should be noted that the comparison of SAE 11 

among the different stations could be slightly biased by the different particle size cuts upstream the 12 

integrating nephelometers used in this work (cf. Table 1). Currently, all ACTRIS integrating 13 

nephelometers measure whole air or PM10. Whole air is currently measured at mountain sites 14 

(BEO, CMN, JFJ, PUY, CHC) and one coastal (MHD), and two urban/suburban (UGR and SIR) 15 

observatories (cf. Table 1). At some stations, the inlet was changed from whole air to PM10 at a 16 

given time, namely at OPE, FKL, and TRL. Given the lower scattering efficiency of aerosol 17 

particles larger than 10 m, no important differences in the SAE should be expected between 18 

aerosol particles sampled with whole air and PM10 cut-off. At other stations the inlet was changed 19 

during the measurement period from a cut-off lower than 10 m (1 m at KPS; 2.5 m or 5 m at 20 

PAL, MSA and MAD) to PM10. For PAL (where a median SAE of around 1.8 was measured; cf. 21 

Table S5), Lihavainen et al. (2015a) assumed that the inlet changes (from PM5 to PM2.5 in 2005 22 

and from PM2.5 to PM10, cf. Table 1) had only minor effects on scattering, because the number 23 

concentration of coarse particles is very low at PAL. Similarly, KPS observatory registers among 24 

the highest SAE observed in the network (median value around 2) suggesting an aerosol particle 25 

size distribution dominated by fine particles. Consequently, the inlet change from PM1 to PM10 at 26 

KPS had probably a minor effect on SAE. Finally, two stations (MSA and MAD) changed the inlet 27 

from PM2.5 diameter cut-off to PM10. For these two Southern European stations the inlet change 28 

may have had an effect on SAE especially during Saharan dust outbreaks, which are however 29 

sporadic events. Thus, despite the differences in the particle diameter cut-off the comparison 30 

between the different stations in terms of SAE seems feasible.  31 

The SAE shows a huge variability across the geographical sectors (Fig. 4). On average, the 32 

highest median SAE, around 1.8 – 2.0, are observed at all central and eastern European 33 

observatories (cf. Table S5). These values are quite high indicating clearly the predominance of 34 

fine particles at these two geographical locations. Moreover, high PM2.5/PM10 ratios, indicative of 35 

presence of small particles, are typical for rural lowland sites in central Europe (e.g. Spindler et al., 36 

2010; EMEP, 2008). Figure S3 also shows that at central and eastern sites the SAE data have 37 

very similar unimodal delta-like distributions. Exceptions are CMN, JFJ and BEO mountain sites, 38 
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where left-tailed distributions of SAE are observed likely due to the reduced effect of fine particles 1 

from the PBL in winter and an increase in the relative importance of coarse mineral dust or sea salt 2 

particles as well as aged aerosols compared to lower altitude stations in the same geographical 3 

sector. 4 

On average, the SAE is lower at all other geographical sectors compared to central and eastern 5 

Europe even though some exceptions are observed. For example, at CBW (western Europe) the 6 

median SAE reaches values around 2.1. Indeed, both polluted air masses from industrialized 7 

zones of the Benelux countries and clean air masses from the sea contribute to the presence of 8 

aerosol particles at this site (Crumeyrolle, et al., 2010). Moreover, CBW is surrounded by several 9 

large cities at a distance of about 20 to 40 km from the station, which may have contributed to the 10 

high SAE measured in this geographical location. Asmi et al. (2011) have also shown that 11 

background particle number concentrations at CBW are much higher than for example at BIR. 12 

Median SAE close to one or lower, indicative of the fact that sp is dominated by large particles, are 13 

observed at more remote sites such as MHD, IZO, ZEP, and TRL. Low SAE at MHD was already 14 

reported by Vaishya et al. (2011, 2012) and justified by the frequent presence mainly in winter of 15 

coarse mode sea‐salt particles, since mineral dust particles can be ruled out. In fact, air masses 16 

originating from dust sources are not frequent at these sites. Similarly, the low SAE observed at 17 

ZEP and TRL can be associated with the presence of coarse sea-salt particles. Conversely, the 18 

SAE obtained at IZO is mainly due to the frequent presence of mineral dust particles from African 19 

deserts (e.g. Rodríguez et al., 2011). Very similar bi-modal frequency distributions are observed at 20 

MHD and IZO showing a pronounced left peak indicating the high probability of measuring coarse 21 

particles at these sites. BIR and PLA also show an enhanced left peak in the SAE frequency 22 

distributions. 23 

Differently from sp, the SAE does not show any clear gradient when moving from mountain to 24 

regional/urban sites. For example, at mountain sites the median SAE ranges between around 0.7 25 

at IZO to values higher than two at JFJ and CMN. As reported by Zieger et al. (2012) a SAE value 26 

around 2 prevails for most of the time at JFJ and can be regarded as the typical background under 27 

non-dusty conditions. Thus, the SAE values at JFJ and CMN can be considered as representative 28 

of central Europe free troposphere and especially in winter when the PBL emissions at these sites 29 

are reduced. This high variability of SAE at mountain sites was also reported by Andrews et al. 30 

(2011). Andrews et al. (2011) reported SAE values from 11 mountaintop stations worldwide 31 

ranging from less than one to more than two. Moreover, Bourcier et al. (2012) have shown that at 32 

mountain sites coarse particles are transported more efficiently at high altitude by higher wind 33 

speed thus probably also contributing to the observed variability of SAE at mountain sites. Also at 34 

coastal sites (PLA and MHD), the SAE shows large variability with higher SAE measured at PLA 35 

compared to MHD confirming a higher effect of anthropogenic emissions at PLA compared to 36 

MHD. Less variability in median SAE is on average observed at regional sites, with the exception 37 

of OPE where a lower SAE is observed probably due to the influence of agricultural practices in the 38 

vicinity. Among the urban sites, MAD registers the lowest median SAE (1.47) compared to UGR 39 
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(1.69) and DEM (1.60). The lower SAE at MAD could be explained, as already noted, by the 1 

reduced formation of secondary inorganic aerosols during the available measurement period. 2 

Moreover, resuspended dust from vehicles could also explain the lower SAE observed at MAD 3 

observatory.  4 

 5 

3.3 Variability of g 6 

The asymmetry parameter is widely used in radiative transfer models because it provides 7 

information about how much radiation is scattered back compared to the amount of radiation 8 

scattered in the forward direction. Figure 5 shows the box-and-whiskers plots of g calculated at the 9 

different stations. Table S6 and Figure S4 in the Supporting Material report the statistics of g and 10 

frequency and cumulative frequency distributions, respectively. Given that g is calculated from BF 11 

using Equation 2 (Section 2.2.3), we report in Figure S5 in the Supporting material the box-and-12 

whiskers plots of BF whereas Table S7 reports the statistics of BF. Figure 5 and Figure S5 are 13 

symmetrical, thus the lower BF the higher is g. As already observed for SAE, the g varies 14 

considerably among the different stations ranging between median values around 0.49 (CMN) to 15 

around 0.7 (TRL). Higher g median values are in some cases observed at mountain sites 16 

compared to regional or urban environments. This is the case for example for IZO compared to 17 

MSY, UGR and MAD in the southwestern European sector or HPB and JFJ compared to IPR, MPZ 18 

and KOS in central Europe. However, exceptions are observed for example for CMN where the 19 

median g value (only 2 years available) is the lowest in the central European sector and among the 20 

lowest observed in this study. On average, g values range between 0.49 to 0.64 at mountain sites 21 

with a mean value of 0.58±0.05. This value is consistent with the mean value of 0.61±0.05 reported 22 

by Andrews et al. (2011) at the mountain sites included in their work. Figure S6 in the Supporting 23 

material reports the mean SAE (ordered from low to high values in each geographical location) and 24 

g at each station used in this work and the SAE-g scatter plot. Figure S6 shows that no clear 25 

relationship between g and SAE can be observed. For example, TRL and MHD observatories 26 

register among the highest g observed in the network which is consistent with the very low SAE 27 

measured at these stations because of the frequent presence of coarse mode sea-salt particles (cf. 28 

Fig. 4). However, g values similar to TRL and MHD are also observed at stations such as PLA, 29 

BIR, JFJ, and DEM, which are dominated on average by fine aerosol particles (SAE similar or 30 

higher than 1.5). However, there are geographical locations (e.g. Nordic and Baltic, western and 31 

southwestern Europe) where SAE increases and correspondingly the g decreases from one station 32 

to another indicating a shift toward finer particles. However, this is not a general rule. In fact, the 33 

same relationship is not observed for example in central or eastern Europe (cf. Fig. S6). 34 

Differences in the shape of the particle number size distribution, particle shape and chemical 35 

composition (e.g. refractive index, RI) are factors likely contributing to explain the poor relationship 36 

observed between g and SAE. The Mie theory of polydisperse spherical particles predicts that BF 37 

is lower and g correspondingly higher for coarse mode aerosol particles (for which the SAE will be 38 

low) compared to fine mode particles. However, some studies deploying integrating nephelometer 39 

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-826
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 13 October 2017
c© Author(s) 2017. CC BY 4.0 License.



17 
 

have found that BF can be higher for coarse mode aerosol particles (such as mineral dust) than for 1 

fine mode aerosol particles (Carrico et al., 2003; Doherty et al., 2005). Doherty et al. (2005) 2 

suggested that an under-correction for the sp truncation of the forward-scattered radiation (which 3 

is relatively larger for coarse particles) could bias the calculated BF high. Moreover, the shape of 4 

particle number size distribution is another factor affecting BF and SAE. Thus, differences in the 5 

relative fractions of the fine and coarse modes could also drive the BF-SAE relationship. In fact, 6 

the SAE is most sensitive to the presence of coarse mode aerosol particles compared to BF which 7 

is most sensitive to small accumulation mode particles (Delene and Ogren, 2002; Collaud Coen et 8 

al., 2007). Thus, depending on the shape of the particle number size distribution, BF and SAE 9 

might or might not correlate. Moreover, the refractive index (RI), which is strongly related to the 10 

chemical composition of the particles, is another important variable, that can affect g (e.g. Marshall 11 

et al., 1995). In the work from Hansen and Travis (1974; Fig. 12) the authors showed that for a 12 

given particle diameter the g parameter did non linearly decreased with increasing real RI. Thus, 13 

coarse mode particles with a given RI could have an asymmetry parameter similar or lower to that 14 

of fine particles with lower RI. Recently, Obiso et al. (2017) confirmed the findings by Hansen and 15 

Travis (1974) showing also that a perturbation in RI of 20% has a higher effect on g compared to 16 

similar relative perturbation of particle shape. On the other side, Obiso et al. (2017) showed that a 17 

variation of RI for coarse particles can have a small effect on the mass scattering efficiency of the 18 

particle and its spectral dependence and consequently on SAE.  19 

 20 

3.4 Relationships between sp and intensive optical properties 21 

Figure 6 shows the relationships between sp and SAE and between sp and g at each station. 22 

Mean SAE and g are calculated for each sp bin and the bin size at each station is calculated 23 

following the Freedman – Diaconis rule: 24 

 25 

Bin	size = 2 ୍୕ୖ(୶)
√୬య          (Eq. 3) 26 

 27 

where IQR(x) is the interquartile range of the data and n is the number of observations in the 28 

sample x. This kind of graphs helps in understanding which aerosol type on average dominates the 29 

particle light scattering, depending on the amount of scattering measured. It should be noted that in 30 

Figure 6 the number of samples available at each station is not evenly distributed among the 31 

considered bins. Figure S7 in the Supplementary Material shows for some stations the SAE-sp 32 

pairs colored by the number of samples in each bin to highlight how samples are distributed among 33 

the bins. 34 

 35 

3.4.1 g-sp relationships 36 

The asymmetry parameter g shows the lowest values under very low sp suggesting the 37 

predominance of small fine mode particles. Andrews et al. (2011) reported similar g-sp 38 
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relationships at different mountain sites and suggested that the removal of large particles by cloud 1 

scavenging or by deposition during transport could explain the observed low g under a clean 2 

atmosphere. They also suggested that the formation of new particles followed by 3 

condensation/coagulation could generate small but optically active particles. Here, we show that 4 

this behavior of BF or g as a function of sp was observed at all sites, not only at mountain sites.  5 

The parameter g then increases with increasing sp indicating a shift of the particle number size 6 

distribution towards the larger end of the accumulation mode. Delene and Ogren (2002), Andrews 7 

et al. (2011) and Pandolfi et al. (2014) showed that BF tends to decrease with increasing aerosol 8 

loading, consistent with the observed increase of g. For comparison with previous works, Figure S8 9 

in the Supplementary Material shows the BF-sp relationships for all observatories evidencing the 10 

aforementioned BF decrease with increasing sp.  11 

The shift of the particle number size distribution towards the large end of the fine mode with 12 

increasing sp is probably the main reason causing the observed increase of g (and the decrease 13 

of BF, cf. Fig. S8). A possible explanation for this shift could be a progressive aging of atmospheric 14 

aerosol particles. Then, at the majority of stations, the variation of g is less pronounced under 15 

periods of high particle mass concentrations suggesting changes mostly in the coarse aerosol 16 

particles mode rather than in the fine mode.  17 

 18 

3.4.1 SAE-sp relationships 19 

As reported in Figure 6, at some stations the SAE progressively increases with sp in the sp range 20 

where the g parameter increases as well. The increase of both g and SAE with sp, observed for 21 

example at the Nordic and Baltic, central and eastern European observatories, could be related to 22 

the different effects that different particle sizes have on SAE and g. A progressive increase of SAE 23 

with sp would suggest an increasing relative importance of fine aerosol particles. The origin of 24 

these fine particles is probably different depending on the location of the measuring site. For the 25 

remote PAL site, for example, Lihavainen et al. (2015b) observed an increase of both sp and SAE 26 

with increasing temperature due to increasing formation of BSOA (biogenic secondary organic 27 

aerosols) with increasing ambient temperatures, thus likely driving the sp-SAE relationships 28 

reported in Fig. 6 for PAL. The BSOA from gas-to-particle formation over regions substantially 29 

lacking in anthropogenic aerosol sources such as the European boreal region (Tunved et al., 2006) 30 

are probably strongly contributing to the sp-SAE relationships observed at other Nordic and Baltic 31 

sites such as SMR. At polluted sites such as those located in central and eastern Europe the 32 

anthropogenic aerosol emission and the active secondary aerosol production in the region (e.g. Ma 33 

et al., 2014) are probably driven the sp-SAE relationships reported in Fig. 6. For higher sp, the 34 

sp-SAE relationships changed and a progressive shift toward relatively larger particles is on 35 

average observed with increasing sp. However, at the majority of northwestern, central and 36 

eastern European stations, the SAE keeps values around or higher 1.5 under high particle load 37 

indicating that high sp is dominated by fine particles. An exception is MHD where SAE increases 38 
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with increasing sp keeping values on average lower than 1.4 under high particle load (cf. Fig. 6). 1 

As already observed, low SAE at MHD is mainly due to the predominance of sea-salt coarse 2 

particles at this site (Vaishya et al., 2011). Conversely, at some sites in South Europe (e.g. MSA, 3 

MSY, IZO, DEM) the SAE reaches values around one or lower under high particle load indicating 4 

that at these stations high sp is dominated by mineral dust coarse particles mainly from African 5 

deserts. Exceptions are two urban sites in Southwestern Europe (UGR and MAD) where fine 6 

particle likely mostly from traffic (and also from biomass burning at UGR) on average dominate the 7 

highest measured sp. Similar sp-SAE relationships, as those reported in Fig. 6, were observed by 8 

Andrews et al. (2011) at mountain sites and by Delene and Ogren (2002) at marine sites. Among 9 

the lowest SAE are observed at IZO, the station closest to the African continent. Interestingly, at 10 

IZO the SAE shows the highest gradient for sp coefficients in the range of 0-50 Mm-1 whereas the 11 

gradient is much lower for sp higher than 50 Mm-1 being the SAE almost constant for sp higher 12 

than 100 Mm-1. IZO station is often in the free troposphere and high loading at this station are only 13 

registered under Saharan dust events, thus almost only mineral dust is measured at IZO. Normally 14 

the long-rang transport mineral dust particle don’t have a significant fraction above 10 µm because 15 

of the short lifetime, thus likely explaining the constant SAE observed at IZO under high aerosol 16 

loading.  17 

 18 

  19 

3.5 Seasonal variability 20 

Figures 7, 8 and 9 present the annual cycles of sp, SAE and g, respectively, at each site. Overall, 21 

strong seasonal cycles of sp and intensive aerosol particle optical parameters are observed at the 22 

majority of the stations even if exceptions are observed. Given the important role that the station 23 

placement plays in the seasonal cycles of aerosol parameters, the analysis is presented below 24 

separately for mountain observatories ad for low altitude observatories. 25 

 26 

3.5.1 Seasonal variability at mountain observatories 27 

At the mountain stations (PUY, HPB, JFJ, CMN, BEO, MSA, and IZO), sp peaks in spring/summer 28 

whereas lower sp values are measured in autumn/winter. Similar findings were for example 29 

already reported by Nyeki et al. (1998) for JFJ and summarized by Andrews et al. (2011) for many 30 

mountain top stations worldwide and by Pandolfi et al. (2014) for MSA station. Different factors 31 

contribute to the sp increase in spring/summer at the mountaintop observatories, such as the 32 

increase of the boundary layer height and stronger upslope winds during the warmest months. 33 

Moreover, specific events such as Saharan mineral dust outbreaks, may contribute to the 34 

increased sp observed at mountain stations in spring/summer, and especially in southern Europe 35 

(e.g. Pey et al., 2013; Pandolfi et al., 2014; Rodríguez et al., 2011). At IZO, sp peaks strongly in 36 

July-August because of the very high influence of African mineral dust at this station during these 37 
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months (e.g. Alastuey et al., 2005; Diaz et al., 2006). At the mountaintop CHC observatory, sp 1 

progressively increases during the dry season, from May to October, reaching lower values during 2 

the rainy season (from December to April). Moreover, during the dry season the new particle 3 

formation events, taking place at CHC with one of the highest frequency reported in the literature 4 

so far (Rose et al. 2015), can introduce very small particles that grow to the nucleation and Aitken 5 

mode. At the mountain stations, both SAE and sp are on average higher in summer compared to 6 

the winter period, thus suggesting a higher anthropogenic influence at these sites during the 7 

warmest months. The summer SAE increase is more evident at some mountain stations, e.g. HPB, 8 

CMN, and BEO, compared to other mountain stations such as JFJ and MSA. Less pronounced 9 

SAE seasonal variation at JFJ was related by Bukowiecki et al. (2016) to the rather constant 10 

composition of the JFJ aerosol. At the southern station of MSA the observed less pronounced 11 

seasonal cycle of SAE could be related with the Saharan dust outbreaks which contrast the PBL 12 

transport of fine particles observed at other mountain sites. At IZO, the SAE reaches the lowest 13 

values during July-August being the Saharan dust outbreaks very intense at this site during this 14 

period. 15 

Overall, the g parameter shows opposite seasonal cycles compared to SAE at almost all mountain 16 

stations with the exception of JFJ and BEO where g slightly increases with SAE in summer. At 17 

almost all mountain stations, the seasonal variations of SAE and g are less pronounced compared 18 

to the seasonal variation of sp indicating larger seasonal variation in the extensive aerosol optical 19 

properties than in the intensive properties. For example, the median sp values at MSA increase by 20 

around 800% during summer (JJA) compared to winter (DJF), whereas SAE and g increase by 21 

around 5-7%. Similar relative increases are observed at JFJ (660%, 16% and 11% for sp, SAE 22 

and g, respectively) whereas the relative increases are much higher at BEO, especially for sp 23 

(around 1300%) and SAE (26%). At CMN, the median sp value increases by around 400% from 24 

winter to summer, whereas SAE and g increase and decrease, respectively, by around 46% and 25 

6%, respectively. At CHC, the SAE decreases as the sp increases moving from wet to dry season, 26 

indicating an increasing effect of coarse particles on sp during the dry season. At PUY, sp peaks 27 

from March to September and this increase is accompanied by a small SAE increase. Venzac et 28 

al. (2009) and Boulon et al. (2011) have shown that PUY is more often influenced by the free 29 

troposphere or residual layers in winter and spring compared to the summer season.  30 

 31 

3.5.1 Seasonal variability at low altitude observatories 32 

At some of the low altitude observatories, the seasonal variation of particle scattering is opposite 33 

compared to the variations observed at mountain sites, sp being higher in winter and lower in 34 

summer. MHD, CBW and SIR in the western sector, IPR, MPZ and KOS in central, KPS in eastern 35 

and UGR in south-western Europe show such increase in particle mass concentration in 36 

wintertime. The reasons causing these marked seasonal cycles are probably different depending 37 

on the geographical sector considered.  38 
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3.5.1.1 Central and eastern Europe 1 

Central and eastern European observatories show marked seasonal cycles of both extensive and 2 

intensive aerosol particles optical properties. In these regions, less horizontal and vertical pollutant 3 

dispersion in winter, due to a higher frequency of stagnant conditions and temperature inversions, 4 

play an important role in accumulating aerosols. As a consequence, as reported in Figure 7, the sp 5 

is much higher in winter compared to summer. SAE and g also show marked season cycles in 6 

these regions, being the SAE (g) higher (lower) in summer compared to winter (cf. Fig. 8). Ma et al. 7 

(2014) have shown that at MPZ an increased SAE in summer is mainly explained by the variation 8 

of the particle number size distribution. Thus, high concentrations in spring and summer of small 9 

particles during new particle formation and subsequent growth cause the observed increase of 10 

SAE during warmest months. 11 

 12 

3.5.1.2 Nordic and Baltic regions 13 

At the Nordic and Baltic sites, the monthly variation of sp is on average less pronounced 14 

compared to the central or eastern European stations and especially at BIR, SMR and PAL. This is 15 

likely due to the placement of these stations located in remote areas with different meteorology 16 

(e.g. less pronounced PBL variations) and where on average much lower sp values are measured 17 

compared to other European sites. Moreover, this could also indicate the importance of 18 

anthropogenic sources like domestic heating in central and eastern Europe in winter. However, the 19 

monthly variation of SAE and g is rather pronounced at these Nordic and Baltic observatories: SAE 20 

(g) increases (decreased) in summer compared to winter indicating the predominance of relatively 21 

smaller particles during the warmest months. Similar findings were reported for the SMR and PAL 22 

observatories by Virkkula et al. (2011) and Lihavainen et al. (2015a), respectively. The observed 23 

seasonal variations in intensive aerosol optical properties were related to both the transport of 24 

different air masses at these remote sites depending on the season and the enhanced formation of 25 

BSOA in summer (e.g. Lihavainen et al., 2015a). Lihavainen et al. (2015a) and Virkkula et al. 26 

(2011) also reported a lower single scattering albedo in winter compared to summer at PAL and 27 

SMR, respectively, frequently dropping below 0.7 at SMR due to a significant contribution from light 28 

absorbing carbon, mostly from residential wood combustion. Thus, they have shown that aerosol 29 

particles observed in summer at SMR and PAL had the potential to cool the atmosphere more 30 

efficiently than those observed during winter. Similar intensive optical properties season cycles 31 

were observed at BIR. 32 

 33 

3.5.1.3 Western Europe 34 

Similarly to the Nordic and Baltic regions, differences in aerosol sources and sinks are the likely 35 

reasons explaining the seasonal variation of sp, SAE and g observed in western Europe. Marked 36 

sp seasonal cycles are observed at all low altitude western European observatories, with higher 37 

values measured in winter compared to summer. On average, at these sites, SAE (g) is higher 38 

(lower) in summer compared to winter. O’Connor et al. (2008) and Vaishya et al. (2011, 2012) 39 
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showed that the background marine aerosol measured at MHD contains a strong and significant 1 

seasonal cycle with sea-salt dominating in winter and biogenic organic aerosol dominating the 2 

submicron sizes in summer. This is consistent with the observed season cycles of SAE and g 3 

reported here for MHD.  4 

 5 

3.5.1.4 South Europe 6 

Among the southern European observatories, marked seasonal variation for sp is observed 7 

especially at UGR, MSY and FKL. At the urban UGR site, the mean aerosol type is very different in 8 

winter compared to summer. As evidenced by the seasonal cycles of SAE and g, aerosol particles 9 

are generally finer in winter at UGR compared to the summer season as already observed for 10 

example by Lyamani et al. (2010; 2012) and Titos et al. (2012). This is likely due to the 11 

accumulation of fine particles, mainly from traffic, domestic heating and biomass burning, favored 12 

by stagnant conditions and atmospheric inversions during winter. In summer, the higher frequency 13 

of Saharan mineral dust outbreaks at this site increases the mean size of the particles during the 14 

warmest months. At the MSY regional site, the higher efficiency of the sea breeze in transporting 15 

pollutants from the urbanized/industrialized coastline toward regional inland areas during the 16 

warmer season mainly explains the summer increase in aerosol particle mass concentration 17 

observed at this site (e.g. Pandolfi et al., 2011). Moreover, the enhanced formation of secondary 18 

sulfate and organic matter in summer together with frequent Saharan mineral dust outbreaks, 19 

strongly contribute to the observed seasonal cycle for sp and intensive properties at MSY site. The 20 

sp peak observed at MSY in March is due to the winter pollution episodes typical of the western 21 

Mediterranean basin (WMB) (e.g. Pandolfi et al., 2014a and references therein). During these 22 

episodes, the accumulation of pollutants close to the emission sources is favored by anticyclonic 23 

conditions coupled with strong atmospheric inversions. During such conditions, pollutants 24 

accumulate in the PBL and can subsequently reach the station when PBL height increases. On 25 

average, at MSY low SAE are measured in April and October likely due to the occurrence of 26 

Saharan dust outbreaks during these months. At FKL no intensive optical aerosol properties are 27 

available. The high sp in summer at this site is also associated with mineral dust storm events as 28 

for example reported by Vrekoussis et al. (2005). However, mineral dust storms in the 29 

Mediterranean are not the only reason for the observed increased sp in summer. In fact, as for 30 

example reported by Kalivitis et al. (2011) for FKL and Pandolfi et al. (2011) for MSY, ammonium 31 

sulfate and particulate organic matter, whose concentrations increase in summer in the 32 

Mediterranean Basin, were assumed as important contributors to sp during the warm season. At 33 

the DEM urban observatories, the high sp measured in spring are linked to Saharan dust 34 

outbreaks as also supported by the seasonal cycles of SAE and g which showed the lowest and 35 

highest, respectively, values in spring. 36 

 37 

 38 

 39 
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3.6 Trends 1 

Trends of sp, SAE and BF are studied for those stations having more than 8 years of data (13 2 

observatories). Generally, it is recommended to have more than 10 years of data for trend studies. 3 

Among the ACTRIS stations, PAL, SMR, MHD, HPB, IPR, JFJ, and UGR have more than 10 yr of 4 

data, whereas at PUY, MPZ, CMN, BEO, KPS, and IZO, 8 or 9 years are available. These stations 5 

are included in order to improve the spatial coverage, similarly as in Collaud Coen et al. (2013).  6 

The Theil Sen statistical estimator (Theil, 1950; Sen, 1968) is used here to determine the 7 

regression parameters of the data trends, including slope, uncertainty in the slope and p-value. 8 

The Theil Sen method provides similar results as the Mann-Kendall test and it is implemented for 9 

example in the Openair Package available for R space (Carslaw, 2012; Carslaw and Ropkins, 10 

2012). The applied method yields accurate confidence intervals even with non-normal data and it is 11 

less sensitive to outliers and missing values (Hollander and Wolfe, 1999). Monthly means are used 12 

for trend analysis and the data are deseasonalized. The data coverage of sp is higher than 70% at 13 

all stations included in trend analyses with the exception of IZO where the sp data coverage is 14 

55%. For SAE, the data coverage is higher than 65% at all sites with the exception of PAL (54%), 15 

PUY (59%), and IZO (52%). For BF, the data coverage is higher than 65% with the exception of 16 

PAL (26%), PUY (43%), BEO (47%) and IZO (27%). At the remote (PAL) or mountain stations 17 

(PUY, BEO, and IZO), the percentage for the intensive aerosol particle optical properties is lower 18 

because of a higher probability of measuring sp lower than the threshold (0.8 Mm-1) selected for 19 

the calculation of SAE and BF. Table 2 reports the trends observed for sp, SAE and BF at the 20 

thirteen observatories included in this analysis. Magnitude and statistical significance of the trends 21 

for these parameters are reported in Table S8 in the Supporting Material. It should be noted that 22 

changes in particle size cut-off reported for PAL and KPS (cf. Table 1) may have affected the 23 

reported trend analyses at these stations, but estimating the impact of these changes in the 24 

observed trend is not simple. However, as already noted, Lihavainen et al. (2015a) reported that at 25 

PAL the inlet changes had minor effects on scattering, because the number concentration of 26 

coarse particles is very low at this observatory. KPS is dominated by very fine particles and the 27 

change from PM1 to PM10 had probably a minor effect on sp, SAE and BF. Moreover, at KPS the 28 

inlet was changed in April 2008, less 1.5 years after the beginning of the measurements thus likely 29 

having a minor effect in the trend analysis performed at this site over the period 2006 – 2014. The 30 

FKL observatory was removed from trend analysis because the inlet was changed from whole air 31 

to PM10 in 2009, from PM10 to PM1 in 2011, and again from PM1 to PM10 in 2013 (cf. Table 1), thus 32 

likely having a major effect on the measured particle optical properties. 33 

In Table 2, a comparison with previous trends analysis results presented by Collaud Coen et al. 34 

(2013) for aerosol particle optical properties and by Asmi et al. (2013) for particle number 35 

concentrations is also reported. 36 

 37 
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3.6.1 Trends of sp 1 

Overall, sp decreases at the majority of the stations included in this work. Significantly decreasing 2 

trends for sp are observed at: the two Nordic and Baltic observatories (PAL for the period 2000 – 3 

2010 and SMR); at two observatories (HPB and IPR) out of five observatories in central Europe; 4 

and at the two observatories in southwestern Europe (IZO and UGR). The trends are not 5 

statistically significant in western (MHD and PUY) and eastern (BEO and KPS) Europe. The 6 

highest magnitude of sp trend [Mm-1/yr] (cf. Table S8 in the Supplementary Material) is observed 7 

at the polluted IPR observatory. Conversely, the lowest magnitude is observed at the remote PAL 8 

observatory. For the periods considered in this work, the total reductions (TR) for sp range 9 

between around 30% (SMR) and 60% (IZO). The high TR observed at IZO might be affected by 10 

the intensity and frequency of Saharan dust outbreaks at this site. However, estimating the effects 11 

of these events at IZO is beyond the scope of this study. Overall, the observed decreasing trends 12 

of sp are consistent with the uniform decrease in aerosol optical depth observed in Europe 13 

(AERONET data in Li et al., 2014). A statistically significant decreasing trend of sp at IPR was also 14 

reported by Putaud et al. (2014) for the period 2002 – 2010. As reported in Table 2 statistically 15 

significant decreasing trend for sp is observed at around 50% of the stations considered here. 16 

Overall, the observed statistically significant decreasing trends of sp are consistent with the 17 

demonstrated reduction of PM concentration in the atmosphere in Europe in these last decades 18 

thanks to the implementation of European/national/regional/local mitigation strategies. These 19 

decreasing trends are also consistent with trends of aerosol chemistry derived from observations in 20 

urban environments in Europe (e.g. EEA, 2013; Barmpadimos et al., 2011; Titos et al., 2014; 21 

Pandolfi et al., 2016), regional and remote environments in western Mediterranean (Cusack et al., 22 

2012; Pandolfi et al., 2016) and in general with derivation of trends for aerosol chemistry across 23 

Europe (Tørseth et al., 2012). Recently, Collaud Coen et al. (2013) showed that trends in sp are 24 

observed at most of the US continental sites and that these trends are generally consistent with the 25 

strong SO2 and PM reductions observed in the US (Asmi et al., 2013; EPA, 2011). Conversely, in 26 

Europe the strong decreasing trend observed for SO2 (e.g. Tørseth et al., 2012; Henschel et al., 27 

2013) and, with a lower spatial homogeneity and statistical significance, for PM2.5 (e.g. EEA, 2016) 28 

is not observed for aerosol optical properties. As reported in Collaud Coen et al. (2013) the 29 

reasons why at some of the European sites no significant trends are observed, might be related to 30 

the spatial inhomogeneities and under-representation of continental Europe PBL sites (e.g. Laj et 31 

al., 2009) and/or the timing of the SO2 and PM trends for the US and Europe. In Europe the 32 

emissions reductions were greater for the period 1980–2000 compared to the period 2000 – 2010 33 

(e.g. Colette et al., 2016; Tørseth et al., 2012; Manktelow et al., 2007), thus the measurements of 34 

optical particle properties in Europe may not go back far enough to reflect the time period with the 35 

largest emission reductions. Tørseth et al. (2012) reported average reductions for ambient sulfate 36 

and nitrate mass concentrations in Europe of -12% and -1%, respectively, during 2000 – 2009 37 

compared to -24% and -7%, respectively, during 1990 – 2000. They also reported statistically 38 
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significant decreases of PM10 and PM2.5 mass concentrations at around 50% of European sites 1 

with total reductions of -18% and   -27%, for PM10 (24 sites) and PM2.5 (13 sites), respectively, 2 

during 2000 – 2009. A direct comparison between the stations included in this work and those 3 

included in Tørseth et al. (2012) is not possible because of the different timing of reported sp and 4 

PM mass concentration measurements. At those stations where a significant decreasing trend for 5 

sp is observed and considering a period of 10 yr (even if not coincident for all stations), the total 6 

reduction for sp in Europe is around -35% (cf. Table S8) consistent with the trend reported by 7 

Tørseth et al. (2012) for PM in Europe. Quite good agreement, even though again likely biased by 8 

the different timings, is also observed comparing PM mass concentration and sp trends by 9 

geographical sectors. A significant total reduction around -40 ÷ -30% was reported for PM10 and 10 

PM2.5 in the Nordic and Baltic sector by Tørseth et al. (2012; cf. Fig. 7 in Tørseth et al. (2012)) in 11 

close agreement with the statistically significant total decrease of sp around -34% reported for PAL 12 

during 2000 – 2010 (cf. Table S8). In the Western sector (MHD) the decreasing trend for PM2.5 13 

during 2000 – 2009 was insignificant (-10 ÷ 0%) as reported here for sp during the period 2001 – 14 

2010. In the Central sector statistically significant decreases for PM2.5 and PM10 mass 15 

concentrations ranged between -20% and -40% during a 10 yr period (2000 – 2009) and the total 16 

reduction for sp ranged between -38% (HPB) and around -48% (IPR). In the Southwestern 17 

European sector the total reduction for sp is around -32% (at UGR) and -60% (at IZO), whereas 18 

Tørseth et al. (2012) reported around -20 ÷ -40% decrease for the PM10 mass concentration. To 19 

further confirm the observed close agreement between PM trends reported in literature and the 20 

trends of sp in this work, Table S9 in the Supporting Material reports the comparison between sp 21 

and PM10 and/or PM2.5 mass concentration trends calculated at those stations where simultaneous 22 

sp and PM mass concentration measurements are available. As reported in Table S9 both the 23 

observed total reductions and the statistical significance of the trends are very similar for sp and 24 

PM10.  25 

 26 

3.6.2 Trends of SAE and BF 27 

The trends for SAE are estimated for three different quantities, namely: the SAE calculated as 28 

linear fit using three wavelengths (b-g-r), using the blue and the green wavelengths (b-g) and using 29 

the green and red wavelengths (g-r). For the periods considered in this work (in bold in Table 2), 30 

the SAE calculated using the three wavelengths (b-g-r) shows statistically significant trends at five 31 

sites. At PAL (Nordic and Baltic), PUY (western Europe) and BEO (eastern Europe) decreasing 32 

trends are observed, whereas increasing trends are observed at HPB (central Europe) and UGR 33 

(southwestern Europe). Uniform negative trends of columnar Ångström exponent from AERONET 34 

data were reported by Li et al. (2014) across Europe and these trends were ascribed to reduced 35 

fine-mode anthropogenic emission. The positive SAE trend observed at HPB and UGR would 36 

suggest a shift of the accumulation mode particles towards smaller sizes and/or a change in the 37 
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coarse aerosol mode. For example, the SAE increase at UGR could be probably explained by a 1 

progressive relative importance of fine particles emissions driven by a progressive reduction of 2 

coarse particles for example from construction/demolition works due to the economic crisis which 3 

affected Spain from 2008 (e.g. Lyamani et al., 2011; Querol et al., 2014; Pandolfi et al., 2016). In 4 

fact, Titos et al. (2014) reported statistically significant decreasing trend for PM10 fraction during the 5 

period 2006 – 2010 whereas no trend was observed for PM1 fraction. Moreover, at UGR, 6 

statistically significant increasing trend is also observed for the SAE calculated using the green and 7 

red wavelengths (g-r), likely more sensitive to the coarser particle mode, whereas the trend was 8 

non-statistically significant for the SAE b-g. The possible change in the coarse aerosol mode at 9 

UGR is likely also causing the observed statistically significant increasing trend of BF (cf. Table 2), 10 

given that a positive trend of BF would be consistent with a shift of the accumulation mode 11 

particles towards smaller sizes. Similarly, statistically significant increasing trends for both SAE and 12 

BF are also observed at SMR (SAE b-g) and HPB. Statistically significant increasing trends of BF 13 

are also observed at the other Nordic and Baltic stations (PAL) and at PUY (western Europe), 14 

where the SAE shows statistically significant decreasing trends, and at IPR (central Europe) where 15 

the trend of SAE was insignificant. Thus, overall, the trends of BF are positive at all stations where 16 

BF measurements are available. The opposite sign of the trends of SAE and BF at PAL and PUY 17 

could be due to different effects that different particle sizes have on SAE and g or a progressive 18 

change in the mean diameter of the fine mode aerosol. Further research involving for example size 19 

distribution data and Mie calculation could help in understanding the differences observed in some 20 

cases between SAE and BF (or g). Recently, Korras-Carraca et al. (2015) have shown that the 21 

column integrated g from Modis-Terra had widely statistically significant positive trends (2002-22 

2010) with stronger increases observed in the eastern and southern Black Sea, as well as over the 23 

Baltic and Barents seas. Moreover, both Modis-Terra and Modis-Aqua produce positive trends of g 24 

in the eastern Mediterranean Sea and the eastern coast of the Iberian Peninsula. Positive trends 25 

for g would correspond to negative trends for BF. The difference observed with our work could be 26 

due to the different variability often observed between near-surface measurements and column 27 

integrated measurements which can confound the relationship between surface and column optical 28 

properties (e.g. Bergin et al., 2000; Lyamani et al., 2010). Although, it was shown that mid altitude 29 

station might be globally representative of the whole atmopheric column (Chauvigne et al., 2016). 30 

 31 

3.6.3 Comparison with previous trend analyses 32 

Table 2 shows the comparison, over the same periods, between the trend analyses performed in 33 

this work and the analyses presented by Collaud Coen et al. (2013) for aerosol particle optical 34 

properties and by Asmi et al. (2013) for particle number concentrations (NLDL-500, N20-500 and N100-35 

500). An agreement with the results from Collaud Coen et al. (2013) is observed for JFJ where 36 

consistent insignificant trends are detected for the three periods reported in Collaud Coen et al. 37 

(2013). For MHD, we calculated a non-significant increasing trend for sp during 2001 – 2010, 38 
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whereas Collaud Coen et al. (2013) reported a statistically significant increasing trend for the same 1 

period. At PAL, non-statistically significant trend for sp is observed here and in Collaud-Coen et al. 2 

(2013) for the period 2001 – 2010, whereas we observe a statistically significant decreasing trend 3 

for the period 2000 – 2010. Moreover, at PAL, we observe statistically significant decreasing trend 4 

for SAE during the two common periods which were insignificant in Collaud Coen et al. (2013). It 5 

should be noted that Collaud Coen et al. (2013) reported insignificant SAE trend at PAL using the 6 

Mann Kendall test whereas they reported statistically significant decreasing trends using the 7 

GLS/ARB and LMS methods, consistent with our work. These differences are thus likely due to the 8 

relative short period used in these trend analyses and the different sensitivity of the methods used 9 

to the presence of missing values or outliers especially at PAL where sp is very low (cf. Fig. 2). For 10 

example, in this work the SAE calculated for PAL during the year 2007 was removed from the 11 

trend analysis due to the presence of too many extreme high SAE values, thus also likely 12 

explaining the difference observed for SAE with the work from Collaud Coen et al. (2013). 13 

Moreover, here we use de-seasonalized monthly means for trend analyses whereas Collaud-Coen 14 

et al. (2013) used de-seasonalized medians with different time granularity (3 days) thus likely 15 

affecting the comparison, especially over relatively short periods.  16 

A comparison of trends analysis results between sp and the particle number concentration is not 17 

straightforward as the sp measurements are more sensitive to the particle number concentration in 18 

the upper end of the fine mode than to smaller particles. For example, Asmi et al. (2013) reported 19 

that, globally, no strong similarities were observed between sp and N trends and that the N trends 20 

are controlled by particles in the larger range of the Aitken mode and smaller range of the 21 

accumulation mode, e.g. ca. 50–150 nm diameter. In this work, as reported in Table 2, the 22 

statistically significant decreasing trend reported for N during the period 2001 – 2010 is not 23 

observed for sp. However, differences are also observed at PAL between N20 and N100 mainly 24 

because DMPS measurements at PAL had long gaps during periods with unusually low 25 

concentrations thus effectively removing low concentrations from the trend analysis (Asmi et al., 26 

2013). 27 

 28 

3.6.4 Daytime and nighttime trend analyses at mountain sites 29 

Finally, the analysis of the trends during daytime (08:00 – 16:00 GMT) and nighttime (21:00 – 30 

05:00 GMT) by season at mountain stations are also analyzed (Table 3). This analysis could 31 

provide information about changes in sp when the mountain stations are likely affected by the PBL 32 

(e.g. daytime and/or summer) or by the residual layer (e.g. nighttime in summer) or when these are 33 

representative of the free troposphere (e.g. nighttime in winter). Consistently with what reported in 34 

Table 2 for sp, the trends are insignificant at JFJ, PUY CMN, and BEO irrespective of the time of 35 

the day or season. The decreasing trends observed at HPB, also reported in Table 2, are 36 
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statistically significant only during autumn, irrespective of the time of the day. Conversely, the trend 1 

observed for sp at IZO reported in Table 2, is not observed by splitting the analysis by time of the 2 

day and/or season. 3 

 4 
Conclusions 5 
 6 
This investigation presented the near-surface in-situ sp (aerosol particle light scattering), SAE 7 

(Scattering Ångström exponent), BF (backscatter fraction), and g (asymmetry parameter) 8 

measurements obtained over the past decade at 28 measuring atmospheric observatories which 9 

are part of the ACTRIS Research Infrastructure and most of them belong to the GAW network. 10 

Results show a large variability of both extensive and intensive aerosol particle optical properties 11 

across the network, which is consistent with the previously reported variability observed for other 12 

aerosol particle properties such as particle mass concentration, particle number concentration and 13 

chemical composition. Main findings can be summarized as follows: 14 

 15 

- Overall, the highest sp are measured at low altitude observatories in central and eastern 16 

Europe and at some urban sites in south Europe whereas, the lowest sp are observed at some 17 

mountain stations and at two Arctic and Antarctic sites. Low sp levels, comparable with those 18 

measured at mountain sites, are also observed at the majority of the regional/continental 19 

Nordic and Baltic observatories. The sp values in Western Europe are on average higher 20 

compared to those measured in the Nordic and Baltic regions and lower compared to those 21 

measured at regional level in south Europe. Some exceptions to these general features are 22 

however observed. 23 

- In central and eastern Europe, independently from the station placement, the SAE (g) is among 24 

the highest (lowest) observed across the network indicating a large predominance of fine 25 

particles. In these regions, the SAE (g) is even higher (lower) in summer compared to winter 26 

suggesting the shift toward the small end of the aerosol particle size distribution likely linked to 27 

new particle formation events during the warmest months. On average SAE (g) is lower 28 

(higher) in the Nordic and Baltic, western and southern sectors compared to central and 29 

eastern Europe. 30 

- Seasonal cycles for sp are observed in all geographical sectors. These are especially marked 31 

at regional level in central and eastern Europe where wintertime episodes linked with stable air 32 

and thermal inversions favor the accumulation of pollutants. Clear annual cycles are also 33 

observed at mountain sites where sp is higher in summer because of the enhanced boundary 34 

layer influence. In some cases, SAE (g) is also high (low) in summer at mountain sites 35 

indicating a higher PBL anthropogenic influence during the warmer months. In the Nordic and 36 

Baltic regions, the seasonal variation of sp is less pronounced compared to central and 37 

eastern Europe likely due to different meteorology and less pronounced PBL variations. 38 

Despite the relatively small sp seasonal cycles in the Nordic and Baltic regions, SAE (g) 39 
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increases (decreases) in these regions in summer compared to the winter period likely due to a 1 

seasonal-dependent transport of air masses at these remote sites and an enhanced formation 2 

of secondary organic aerosols previously observed at these sites during the warmest months. 3 

At coastal sites in northwestern Europe, the presence of sea-salt particles in winter also 4 

contributes to the observed pronounced seasonal cycles of SAE and g.  5 

- The analysis of the systematic variability of SAE and g as a function aerosol loading (sp) 6 

reveals some common patterns. At all stations, g shows the lowest values under very low sp 7 

likely because the formation of new particles in a clean atmosphere followed by 8 

condensation/coagulation with consequence generation of small but optically active particles. 9 

The g then sharply increases with increasing sp indicating the shift of the particle number size 10 

distribution toward the larger and of the accumulation mode. Then, under periods of high 11 

particle mass concentrations, the variation of g is less pronounced at the majority of the 12 

stations contrary to the SAE which increases or decreases suggesting changes mostly in the 13 

coarse aerosol particles mode rather than in the fine mode. 14 

- The analyses of the trends reported in this investigation provide evidence that both extensive 15 

and intensive aerosol optical properties have significantly changed at some of the locations 16 

include here over the last 10 and 15 years. The sp decreasing trends reported here are 17 

statistically significant at 5 out of 13 stations included in the analysis. These 5 stations are 18 

located in the Nordic and Baltic, central and southwestern sectors. Conversely, sp decreasing 19 

trends are not statistically significant in western and eastern Europe. Statistically significant 20 

decreasing trends of SAE are observed at 3 out of 10 observatories included in the analysis: 21 

one site the Nordic and Baltic sector and two mountain sites in the western and eastern 22 

sectors. These negative trends could be ascribed to reduced fine mode anthropogenic 23 

emission as already observed in literature for columnar SAE in Europe. Conversely, at two 24 

stations (one mountain site in central Europe and one urban site in southwestern Europe), the 25 

SAE shows statistically significant increasing trend suggesting a shift of the accumulation mode 26 

particles towards smaller sizes and/or a change in the coarse aerosol mode. At the remaining 5 27 

observatories the reported SAE trends are not statistically significant. The backscatter fraction 28 

shows statistically significant increasing trend at 6 out of 9 sites where BF measurements are 29 

available. At three stations (the mountain site in central Europe, the urban site in southwestern 30 

Europe and one of the two sites in the Nordic and Baltic sector), both BF and SAE increase 31 

suggesting consistent evidence of a shift of the accumulation mode particles towards smaller 32 

size. Conversely, at the other site in the Nordic and Baltic sector and at one mountain site in 33 

the western sector BF increases whereas SAE decreases.  34 

 35 

In conclusion, this investigation provides a clear and useful picture of the spatial and temporal 36 

variability of the surface in-situ aerosol particle optical properties in Europe. The results presented 37 

here give a comprehensive view of the particle optical properties and provide a reliable analysis of 38 

aerosol optical parameters for model constraints. In addition, the analysis presented here suggests 39 
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findings that may need additional investigation. For example, the fact that at some of the stations 1 

the trend of sp changes in terms of both statistically significance and sign depending on the period 2 

used, suggests that trend analyses are necessary in the future when longer-duration records will 3 

be available. Moreover, the fact that at some sites BF and SAE show different sign in the trends 4 

suggests that further analysis is needed to better understand how other aerosol parameters such 5 

as particle size distribution and mean diameter affect the relationships between BF and SAE.  6 

 7 
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Tables 1 
 2 
Table 1: List of ACTRIS observatories providing aerosol particle scattering measurements 3 

Observatory 
name 

Country Observatory 
code 

Lat, Long Altitude 
[m a.s.l.] 

Placement 
(from EBAS 
metadata) 

Inlet Nephelometer 
model 

Period (a) 

nordic and Baltic 
Birkenes II 

(BIR) 
Norway NO0002R 58.3885 N, 

8.252 E 
219 regional PM10 TSI3563 07/2009 –12/2015 

Hyytiälä 
(SMR) 

Finland FI0050R 61.85N, 
24.2833 E 

181 regional PM10  TSI3563 05/2006 –12/2015 

Pallas 
(PAL) 

Finland FI0096G 67.97 N, 
24.12 E 

565 continental PM5; 
PM2.5; 

PM10 (b) 

TSI3563 02/2000 –12/2015 

Vavihill 
(VHL) 

Sweden SE0011R 56.0167 N, 
13.15 E 

175 continental PM10 ECOTECH 
Aurora3000 

03/2008 –04/2014 

Preila 
(PLA) 

Lithuania LT0015R 55.35 N, 
21.0667 E 

5 coastal/marin
e 

PM10 TSI3563 12/2012 –04/2014 

         
western 
Mace Head 

(MHD) 
Ireland IE0031R 53.3258 N, 

-9.8994 E 
5 coastal/marin

e 
whole 

air 
TSI3563 07/2001 –12/2013 

Cabauw 
(CBW) 

The 
Netherlands 

NL0011R 51.9703 N, 
4.9264 E 

1 regional PM10 TSI3563 01/2008 –12/2012 

SIRTA 
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680 urban whole 
air 

TSI3563 01/2006 –12/2015 
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669 sub-urban PM2.5; 
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e 
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Zeppelin 
(ZEP) 

Svalbard 
(Norway) 

NO0042G 78.9067 N, 
11.8883 E 

474 arctic 
environment 

PM10 TSI3563 07/2010 –12/2014 

         
Antarctic 

Troll 
(TRL) 

Antarctica NO0058G -72.0167 N, 
2.5333 E 

1309 antarctic 
environment 

whole 
air; 

PM10 (j) 

TSI3563 02/2007 –12/2015 

         
South America 

Mt. 
Chacaltaya 

(CHC) 

Bolivia BO0001R -16.2000 N, 
-68.09999 E 

5240 mountain whole 
air 

ECOTECH 
Aurora3000 

01/2012 – 12/2015 
(k) 

(a) Start-end of measurements; Total aerosol particle scattering was used as reference for measurement period; (b) PM5 (2000-2005), 1 
PM2.5 (2005-2008) and PM10 (2008-2015); (c) whole air (2012-2013) and PM10 (2014-2015); (d) ECOTECH Aurora M9003 during 2007-2 
2013 and TSI 3563 (2014-2015); (e) PM1 (2006-04/2008) and PM10 (05/2008-2014); (f) PM2.5 (2013) and PM10 (2014-2015); (g) PM10 from 3 
03/2014; (h) whole air (2004-2008), PM10 (2009-2011), PM1 (2011-2012), PM10 (2013-2015); (i) RR M903 during 2004-2011, Ecotech 4 
AURORA1000 during 2012-2015; (j) whole air (2007-2009) and PM10 (2010-2015); (k) Only measurements performed during the year 5 
2012 were used in this investigation. 6 
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Table 2: Trends of aerosol particle scattering coefficient (sp), scattering Ångström exponent (SAE), 1 
and backscatter fraction (BF). Three trends for SAE are reported: SAE calculated as linear fit using 2 
three wavelengths (b-g-r); using the blue and the green wavelengths (b-g) and using the green and 3 
red wavelengths (g-r). Trend results are reported for the whole period available at each station until 4 
2015 (bold) and for the periods reported in Collaud Coen et al. (2013) and in Asmi et al. (2013). 5 
Trends are considered as statistically significant if p-value < 0.05. Statistically significant increasing 6 
or decreasing trends are highlighted with up (  ) and down (  ) red and green arrows, respectively. 7 
Non-statistically significant increasing or decreasing trends are highlighted with up (  ) and down (  ) 8 
grey arrows, respectively. Grey colored table cells highlight stations included in this work but not 9 
included in the works from Collaud Coen et al. (2013) or Asmi et al. (2013). $: parameters removed 10 
in this work and in the work from Collaud Coen et al. (2013) because of measurement gaps, low 11 
data coverage or break points for one or more wavelengths.  #: Only available for 2014-2015; ± not 12 
available.  13 

 
  Trend 

(This work) 
 MK Trend 

(Collaud Coen et al., 2013) 
MK Trend 

(Asmi et al., 2013) 

Station period sp 
SAE 

BF sp 
SAE 

BF 
Particle number 

b-g-r b-g g-r b-r b-g g-r N N20  
(20-500 nm) 

N100 
(100-500 nm) 

Nordic and Baltic 

 PAL 

2000 - 2015            
  

2000 - 2010   $ $    $ $   
  

2001 - 2010   $ $    $ $   (10-500 nm)                         

1996 - 2010           
(10-500 nm)   

 SMR 

2006 - 2015            
  

1996 - 2011            
  

2001 - 2010            
  

western 

 MHD 

2001 - 2013  $ $ $ $       
  

2000 - 2010              (3-500 nm)   

2001 - 2010  $ $ $ $  $ $ $ $    (3-500 nm)   

PUY 2007 - 2014            
  

central 

HPB 

2006 - 2015            
  

2001 - 2010       $ $ $ $  
  

2002 - 2010       $ $ $ $  
  

1995 - 2011              (15-500 nm)   

 IPR 2004 - 2014            
  

MPZ 

2007 - 2015            
  

1997 – 1998 
and 

2004 - 2010 
           

  

 JFJ 

1995 - 2015  $ $ $ $       
  

1995 - 2010  $ $ $ $  $ $ $ $  
  

1996 - 2010  $ $ $ $  $ $ $ $  
  

2001 - 2010  $ $ $ $  $ $ $ $    (10-500 nm)   

1997 - 2010  $ $ $ $         (10-500 nm)   

CMN 2007 - 2015  # # # #       
  

eastern 

BEO  2007 - 2015              
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KPS 2006 - 2014              

south-western 

IZO 2008 - 2015     $         

UGR 2006 - 2015              

  1 

 2 

 3 

 4 

Table 3: Daytime (08:00 – 16:00 GMT) and nighttime (21:00 – 05:00 GMT) of sp trends by season calculated 5 
for the periods considered in this work. Sp: Spring; Su: Summer; Au: Autumn; Wi: Winter. Trends are 6 
considered as statistically significant if p-value < 0.05. Statistically significant increasing or decreasing trends 7 
are highlighted with up (  ) and down (  ) red and green arrows, respectively. Non statistically significant 8 
increasing or decreasing trends are highlighted with up (  ) and down (  ) grey arrows, respectively.  9 

Station period 

SCATTERING 

daytime nighttime 24h 

Sp Su Sp Su Sp Su 

Au Wi Au Wi Au Wi 

JFJ 1995 - 2015 

      

      

HPB 2006 - 2015 
      
      

PUY 2006 - 2014 
      
      

CMN 2007 - 2015 
      
      

BEO  2007 - 2015 
      

      

IZO 2008 - 2015 
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Figures 1 
 2 
 3 
 4 

 5 

Figure 1:  Location of the 28 ACTRIS stations included in this work. 6 
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 1 

Figure 2: Total aerosol scattering coefficients in the green divided by geographical location. At SIR aerosol 2 
scattering was available only at 450 nm. Medians (horizontal lines in the boxes), percentiles 25th and 75th 3 
(lower and upper limits of the boxes, respectively) and percentiles 5th and 95th (lower and upper limits of the 4 
vertical dashed lines) are reported. Hourly data were used for the statistic. For each location data are ordered 5 
from mountain sites (1) to urban/sub-urban sites (5).  6 
 7 
 8 
 9 
 10 
 11 

 12 

Figure 3: Relationship between N50 (mean particle number concentration between 50 nm and 500 nm) and 13 
N100 (mean particle number concentration between 100 nm and 500 nm) and mean aerosol particle 14 
scattering coefficient averaged over the period 2008 – 2009. For ZEP, BIR, KOS and PLA aerosol particle 15 
scattering measurements were not available during 2008 – 2009 and different period were used. R2 16 
highlighted in red were obtained using the median values. 17 
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 1 
Figure 4: Scattering Ångström exponent divided by geographical location. Medians (horizontal lines in the 2 
boxes), percentiles 25th and 75th (lower and upper limits of the boxes, respectively) and percentiles 5th and 95th 3 
(lower and upper limits of the vertical dashed lines) are reported. For each location data are ordered from 4 
mountain sites to urban/sub-urban sites. At CHC, the SAE was calculated using the blue and green 5 
wavelengths.  6 
 7 
 8 
 9 

 10 
Figure 5: Asymmetry parameter in the green divided by geographical location. Medians (horizontal lines in the 11 
boxes), percentiles 25th and 75th (lower and upper limits of the boxes, respectively) and percentiles 5th and 95th 12 
(lower and upper limits of the vertical dashed lines) are reported. For each location data are ordered from 13 
mountain sites to urban/sub-urban sites. 14 
 15 
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 1 
 2 
Figure 6: Scatterplots between sp (x-axes) and SAE (right y-axes; red lines) and g (left y-axes; black lines). 3 
Dashed lines represent median sp values at each station. At CHC, SAE was calculated using the blue and 4 
the green wavelengths. 5 
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 1 
Figure 7: Seasonal cycles of sp [Mm-1] measured in the green nephelometer wavelength. 2 
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 1 
Figure 7: (Continued) Seasonal cycles of sp [Mm-1] measured in the green nephelometer wavelength. 2 
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 1 
Figure 8: Seasonal cycles of SAE (calculated as linear fit using three nephelometer wavelengths) 2 
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 1 
Figure 8: (Continued) Seasonal cycles of SAE (calculated as linear fit using three nephelometer wavelengths). 2 
At CHC the SAE was calculated using the blue and the green wavelengths. 3 
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 1 
Figure 9: Seasonal cycles of g (calculated for the green wavelength). 2 
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 1 
Figure 9: (Continued) Seasonal cycles of g (calculated for the green wavelength). 2 
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