| Observatory | correction | who           | method                   | note |
|-------------|------------|---------------|--------------------------|------|
| DEM         | yes        | data provider | Müller et al. (2011)     |      |
| BEO         | yes        | data provider | Anderson&Ogren (1998)    |      |
| BIR         | yes        | this work     | Anderson&Ogren (1998)    |      |
| CBW         | yes        | data provider | Anderson&Ogren (1998)    |      |
| FKL         | no         |               |                          | 1-λ  |
| UGR         | yes        | data provider | Anderson&Ogren (1998)    |      |
| HPB         | yes        | data provider | Anderson&Ogren (1998)    |      |
| SMR         | yes        | data provider | Anderson&Ogren (1998)    |      |
| IPR         | yes        | data provider | Anderson&Ogren (1998)    |      |
| IZO         | yes        | data provider | Anderson&Ogren (1998)    |      |
| JFJ         | yes        | data provider | Anderson&Ogren (1998)    |      |
| KPS         | yes        | data provider | Anderson&Ogren (1998)    |      |
| KOS         | yes        | this work     | Anderson&Ogren (1998)    |      |
| MHD         | yes        | this work     | Anderson&Ogren (1998)    |      |
| MAD         | yes        | data provider | Müller et al. (2011)     |      |
| MPZ         | yes        | this work     | Anderson&Ogren (1998)    |      |
| MSA         | yes        | data provider | Müller et al. (2011)     |      |
| MSY         | yes        | data provider | Müller et al. (2011)     |      |
| CHC         | yes        | data provider | Müller et al. (2011)     |      |
| CMN         | no         |               |                          | 1-λ  |
| OPE         | yes        | data provider | Müller et al. (2011)     |      |
| PAL         | yes        | data provider | Anderson&Ogren (1998)    |      |
| PLA         | yes        | this work     | Anderson&Ogren (1998)    |      |
| PUY         | yes        | this work     | Anderson&Ogren (1998)    |      |
| SIR         | no         |               |                          | 1-λ  |
| TRL         | yes        | this work     | Anderson&Ogren (1998)    |      |
| VHL         | yes        | data provider | Müller et al. (2011) (*) |      |
| ZEP         | yes        | data provider | Anderson&Ogren (1998)    |      |

Table S1: Nephelometer data correction

(\*) DMPS data and a Mie-theory code for 2008 and 2009.

|     | # of RH<br>data<br>(hourly) | # of RH data<br>>50%<br>(hourly) | % of RH data<br>>50% | period with $\sigma_{sp}$ measurements | period with RH<br>reported        | note                                                  |
|-----|-----------------------------|----------------------------------|----------------------|----------------------------------------|-----------------------------------|-------------------------------------------------------|
| SIR | 8152                        | 2306                             | 28.3                 | 2012 - 2013                            | 2012 - 2013                       | Instrument<br>internal                                |
| CMN | 16305                       | 2122                             | 13.0                 | 2007 - 2015                            | 2013 - 2015                       | Instrument<br>internal                                |
| IPR | 71092                       | 5993                             | 8.4                  | 2004 - 2014                            | 2004 - 2014                       | RH controlled<br>from 2009.<br>Instrument<br>internal |
| OPE | 22641                       | 1551                             | 6.9                  | 2012 - 2015                            | 2012 - 2015                       | Outlet                                                |
| MAD | 6578                        | 434                              | 6.6                  | 2014                                   | 2014                              | Instrument<br>internal                                |
| MSY | 37714                       | 1498                             | 3.9                  | 2010 - 2015                            | 2010 - 2015                       | Instrument<br>internal                                |
| KPS | 58558                       | 2242                             | 3.8                  | 2006 - 2014                            | 2006 - 2014                       | Instrument<br>internal                                |
| PLA | 3137                        | 116                              | 3.7                  | 2013 - 2014                            | 2013 - 2014                       | Instrument<br>internal                                |
| коѕ | 15238                       | 503                              | 3.3                  | 2013 - 2015                            | 2013 - 2015                       | Instrument<br>internal                                |
| MHD | 94405                       | 3012                             | 3.2                  | 2001 - 2013                            | 2001 - 2013                       | Instrument<br>internal                                |
| UGR | 71135                       | 2764                             | 3.1                  | 2006 - 2015                            | 2006 - 2015                       | Instrument<br>internal                                |
| НРВ | 79260                       | 2150                             | 2.7                  | 2006 - 2015                            | 2006 - 2015                       | Instrument<br>internal                                |
| PUY | 54241                       | 1426                             | 2.6                  | 2007 - 2014                            | 2007 - 2014                       | Instrument<br>internal                                |
| VHL | 9301                        | 152                              | 1.6                  | 2008 - 2014                            | 2012 - 2014                       | Inlet                                                 |
| BIR | 48845                       | 593                              | 1.2                  | 2009 - 2015                            | 2009 - 2015                       | Instrument<br>internal                                |
| CBW | 37649                       | 330                              | 0.9                  | 2008 - 2012                            | 2008 - 2012                       | Instrument<br>internal                                |
| FKL | 39269                       | 211                              | 0.5                  | 2004 - 2015                            | 2011 - 2015                       | Instrument<br>internal after<br>2011                  |
| DEM | 24256                       | 12                               | 0.1                  | 2012 - 2015                            | 2012 - 2015                       | Instrument<br>internal                                |
| MSA | 20183                       | 1                                | 0.0                  | 2013 - 2015                            | 2013 - 2015                       | Instrument<br>internal                                |
| PAL | 76330                       | 2                                | 0.0                  | 2000 - 2015                            | 2000 – 2006; 2009;<br>2012 - 2015 | Instrument<br>internal                                |
| BEO | 43718                       | 0                                | 0.0                  | 2007 - 2015                            | 2007; 2010 - 2015                 | Instrument<br>internal                                |
| SMR | 41364                       | 0                                | 0.0                  | 2006 - 2015                            | 2011 - 2015                       | Instrument<br>internal                                |
| JFJ | 131338                      | 0                                | 0.0                  | 1995 - 2014                            | 2000 - 2014                       | Instrument<br>internal                                |
| MPZ | 14464                       | 0                                | 0.0                  | 2007 - 2015                            | 2012 - 2015                       | Instrument<br>internal                                |
| CHC | 30910                       | 0                                | 0.0                  | 2012 - 2015                            | 2012 - 2015                       | Outlet                                                |
| TRL | 33309                       | 0                                | 0.0                  | 2007 - 2015                            | 2010 – 2011;<br>2014 - 2015       | Instrument<br>internal                                |
| ZEP | 34516                       | 0                                | 0.0                  | 2010 - 2014                            | 2010 - 2014                       | Instrument<br>internal                                |
| IZO | 0                           |                                  |                      | 2008 - 2015                            |                                   | RH not<br>reported                                    |

**Table S2**: Number of RH hourly data; number and % of hourly RH data >50%; periods with  $\sigma_{sp}$  and RH reported data.



Figure S1: Frequency distributions of sampled RH at ACTRIS observatories.

|                |                        | DATA COVERAGE [%] <sup>(S)</sup> |                                  |                                  |                      |                       |                      |                     |                           |  |
|----------------|------------------------|----------------------------------|----------------------------------|----------------------------------|----------------------|-----------------------|----------------------|---------------------|---------------------------|--|
| Station        | # bours <sup>(1)</sup> | <del>a</del> 1[%]                | a 2 [%]                          | <b>a</b> 2 [%]                   | <del>-</del> 1[%]    | <b>a</b> 2 [%]        | σ <sub>bsp</sub> 3   | SVE [%]             | BF and g                  |  |
| 5141011        | # 110013               | O <sub>sp</sub> ι[/o]<br>λ[nm]   | O <sub>sp</sub> 2 [/0]<br>λ [nm] | O <sub>sp</sub> 3 [/0]<br>λ [nm] | Obsp I[/o]<br>λ [nm] | Obsp Z [/0]<br>λ [nm] | [%]                  | (2)                 | <b>[%]</b> <sup>(3)</sup> |  |
|                |                        | v [iiii]                         | v [mii]                          | v [iiii]                         | v [min]              | v [iiii]              | λ [nm]               |                     | λ [nm]                    |  |
| nordic and E   | Baltic                 | 07.1                             | 07.1                             | 07.1                             | 07.1                 | 07.1                  | 07.1                 | 02.0                | FF 2                      |  |
| Birkenes II    | 56832                  | 87.1                             | 87.1                             | 87.1                             | 87.1                 | 87.1                  | 87.1                 | 83.9                | 55.Z                      |  |
| Hyytiala       | 84035                  | 93.7                             | 93.7                             | 93.7                             | 88.8                 | 88.8                  | 88.8                 | 93.1                | 71 7                      |  |
| (SMR)          | 04033                  | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  | 75.1                | 550                       |  |
| Pallas         | 140256                 | 72.5                             | 70.1                             | 70.5                             | 72.9                 | 71.6                  | 71.1                 | 54.0                | 25.8                      |  |
| (PAL)          |                        | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  |                     | 550                       |  |
| Vavihill       | 50508                  | 36.2                             | 36.2                             | 36.2                             |                      |                       |                      | 35.9 <sup>(5)</sup> |                           |  |
| (VHL)          |                        | 450                              | 520                              | 700 (4)                          |                      |                       |                      |                     |                           |  |
| Preila         | 18264                  | 16.5                             | 16.5                             | 16.5                             | 9.9                  | 9.9                   | 9.9                  | 16.5                | 9.9                       |  |
| (PLA)          |                        | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  |                     | 550                       |  |
|                |                        |                                  |                                  |                                  |                      |                       |                      |                     |                           |  |
| western        |                        |                                  |                                  |                                  |                      |                       |                      |                     |                           |  |
| Mace Head      | 109037                 | 82.5                             | 82.5                             | 82.5                             | 82.1                 | 82.1                  | 82.1                 | 81.8                | 71.9                      |  |
| (MHD)          |                        | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  |                     | 550                       |  |
| Cabauw         | 43848                  | 85.1                             | 85.1                             | 85.1                             | 85.1                 | 68.0                  | 85.0                 | 84.5                | 56.4                      |  |
| (CBW)          |                        | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  |                     | 550                       |  |
| Sirta          | 12731                  | 64.0                             |                                  |                                  |                      |                       |                      |                     |                           |  |
| (SIR)          |                        | 450                              |                                  |                                  |                      |                       |                      |                     |                           |  |
| O.Perenne      | 28956                  | 72.8                             | 72.8                             | 72.8                             | 44.3                 | 68.8                  | 68.8                 | 74.0                | 59.0                      |  |
| (OPE)          |                        | 450                              | 525                              | 635                              | 450                  | 525                   | 635                  |                     | 525                       |  |
| Puy de         | 70128                  | 70.1                             | 71.0                             | 71.1                             | 68.5                 | 68.5                  | 68.5                 | 59.3                | 42.6                      |  |
| Dome           |                        | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  |                     | 550                       |  |
| (PUY)          |                        |                                  |                                  |                                  |                      |                       |                      |                     |                           |  |
|                |                        |                                  |                                  |                                  |                      |                       |                      |                     |                           |  |
| <u>central</u> |                        |                                  |                                  |                                  |                      |                       |                      |                     |                           |  |
| Hohenpeiss     | 87648                  | 87.8                             | 87.8                             | 87.8                             | 87.8                 | 87.8                  | 87.8                 | 77.3                | 64.1                      |  |
| enberg         |                        | 450                              | 550                              | /00                              | 450                  | 550                   | /00                  |                     | 550                       |  |
| (HFB)          | 06/32                  | 71 7                             | 71.0                             | 71.8                             | 71.0                 | 71.0                  | 71.6                 | 70.4                | 60.1                      |  |
| (IPR)          | 70432                  | 450                              | 550                              | 700                              | /1.7                 | 550                   | 700                  | 70.4                | 550                       |  |
| Melnitz        | 78224                  | 94.6                             | 96.0                             | 94.7                             | 86.2                 | 86.3                  | 86.5                 | 94.5                | 85.2                      |  |
| (MPZ)          | 70224                  | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  | 74.5                | 550                       |  |
|                | 179545                 | 84.2                             | 84.2                             | 84.2                             | 83.8                 | 83.8                  | 83.8                 | 53.9                | 21.8                      |  |
| h              | 177545                 | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  | 55.7                | 550                       |  |
| (JFJ)          |                        | 100                              | 000                              | 100                              | 100                  | 000                   | 700                  |                     | 000                       |  |
| Mt. Cimone     | 72825                  | 15.1 <sup>(**)</sup>             | 75.1                             | 15.1 <sup>(**)</sup>             | 15.1 <sup>(**)</sup> | 15.1 <sup>(**)</sup>  | 15.1 <sup>(**)</sup> | 11.7 (^^)           | 8.4 (**)                  |  |
| (CMN)          |                        | 450                              | 520 <sup>(6)</sup>               | 700                              | 450                  | 550                   | 700                  |                     | 550                       |  |
| Kosetice       | 24588                  | 59.9                             | 60.0                             | 59.9                             | 54.4                 | 54.4                  | 54.4                 | 59.8                | 53.6                      |  |
| (KOS)          |                        | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  |                     | 550                       |  |
|                |                        |                                  |                                  |                                  |                      |                       |                      |                     |                           |  |
| eastern        | •                      |                                  |                                  | •                                | •                    | •                     |                      |                     | •                         |  |
| Beo            | 76764                  | 73.4                             | 73.4                             | 73.4                             | 71.3                 | 71.3                  | 71.3                 | 63.6                | 46.8                      |  |
| Moussala       |                        | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  |                     | 550                       |  |
| (BEO)          |                        |                                  |                                  |                                  |                      |                       |                      |                     |                           |  |
| K-Puszta       | 75804                  | 72.6                             | 72.6                             | 72.6                             | 72.6                 | 72.6                  | 72.6                 | 72.6                | 72.5                      |  |
| (KPS)          |                        | 450                              | 550                              | 700                              | 450                  | 550                   | 700                  |                     | 550                       |  |
|                |                        |                                  |                                  |                                  |                      |                       |                      |                     |                           |  |
| south-weste    | <u>rn</u><br>2/2022    | 7/ 5                             | 7/ 5                             | 7/ 5                             | 75 5                 | 75 5                  | 75 5                 | (2.0                | 40.1                      |  |
| IVIONTSEC      | 26280                  | /6.5                             | /6.5                             | /6.5                             | /5.5                 | /5.5                  | /5.5                 | 63.9                | 49.1                      |  |
|                | (0001                  | 450                              | 525                              | 030                              | 450                  | 525                   | 035                  | F1 7                | 525                       |  |
| izana          | 08381                  | 54.6                             | 54.6                             | 54.6                             | 40.0                 | 40.0                  | 40.0                 | 51.7                | 20.8                      |  |
|                | 07/40                  | 450                              | 550                              | /00                              | 450                  | 550                   | /00                  | (0.0                | 000                       |  |
| Granada        | 87648                  | 09.U<br>4E0                      | 09.U                             | 09.0                             | 08.1                 | 08.1                  | 08.1                 | 09.0                | 0/.X                      |  |
| (UGR)          | E0E04                  | 400                              | 000                              | /00                              | 450                  | 000                   | /00                  | (5.0                | 550                       |  |
| wontseny       | JZJ84                  | 07.X                             | 07.8                             | 07.9                             | ٥∠.४                 | ٥٢.٦                  | o2.9                 | 0.00                | 05.4                      |  |

Table S3: Percentage [%] of data coverage at the 28 ACTRIS stations included in this study

| (MSY)         |           | 450  | 525                | 635                | 450  | 525  | 635  |                      | 525  |
|---------------|-----------|------|--------------------|--------------------|------|------|------|----------------------|------|
| Madrid        | 8760      | 72.8 | 74.7               | 72.8               | 73.2 | 73.2 | 73.2 | 72.3                 | 53.3 |
| (MAD)         |           | 450  | 525                | 635                | 450  | 525  | 635  |                      | 525  |
|               |           |      |                    |                    |      |      |      |                      |      |
| south-easter  | <u>'n</u> |      |                    |                    |      |      |      |                      |      |
| Finokalia     | 102622    |      | 69.7               |                    |      |      |      |                      |      |
| (FKL)         |           |      | 532 <sup>(7)</sup> |                    |      |      |      |                      |      |
| Athens        | 35064     | 69.1 | 69.1               | 69.1               | 62.8 | 62.8 | 62.8 | 68.6 <sup>(10)</sup> | 61.5 |
| (DEM)         |           | 450  | 525 <sup>(8)</sup> | 635 <sup>(9)</sup> | 450  | 525  | 635  |                      | 525  |
|               |           |      |                    |                    |      |      |      |                      |      |
| <u>Arctic</u> | •         | •    | -                  |                    |      |      |      |                      |      |
| Zeppelin      | 38913     | 87.3 | 87.3               | 87.3               | 87.3 | 87.3 | 87.3 | 66.5                 | 19.4 |
| (ZEP)         |           | 450  | 550                | 700                | 450  | 550  | 700  |                      | 550  |
|               |           |      |                    |                    |      |      |      |                      |      |
| Antarctic     |           |      |                    |                    |      |      |      |                      |      |
| Troll         | 77712     | 72.1 | 72.1               | 72.1               | 64.5 | 64.5 | 64.5 | 21.2                 | 1.1  |
| (TRL)         |           | 450  | 550                | 700                | 450  | 550  | 700  |                      | 550  |
|               |           |      |                    |                    |      |      |      |                      |      |
| America       |           |      |                    |                    |      |      |      |                      |      |
| Mt.           | 35064     | 88.1 | 88.1               | 88.1               | 88.1 | 88.1 | 88.1 | 67.0                 | 61.9 |
| Chacaltaya    |           | 450  | 525                | 635                | 450  | 525  | 635  |                      | 525  |
| (CHC)         |           |      |                    |                    |      |      |      |                      |      |
|               |           |      |                    |                    |      |      |      |                      |      |

(\$) Data coverage referenced to # hours; The data coverage refers to scattering and backscattering measurements at RH<50%.

(\*\*) Only available for the years 2014 and 2015;

(1) Total number of hours for the periods reported for each station in Table 1 in the paper.

(2) SAE calculated from linear estimation using 3  $\lambda$ . SAE calculated from scattering data higher than 0.8 Mm<sup>-1</sup>.

(3) g calculated from scattering and backscattering data higher than 0.8 Mm<sup>-1</sup>.

(4) The scattering at 700 nm changed to scattering at 635 nm starting from 2010.

(5) The SAE was calculated as linear fit using 450-520-635 nm scattering for 2008 – 2009. Starting from 2010 SAE was calculated using 700 nm instead of 635 nm.

(6) 520 nm until March 2014. After March 2014 it changed to 550 nm.

(7) 532nm from 2004 to 2011; 550nm for 2012 – 2013. SAE and *g* not available.

(8) During 2012 the wavelengths are: 450, 520, 700 nm. From 2013 the wavelengths are: 450, 525, 635 nm.

(9) During 2012 the wavelengths are: 450, 520, 700 nm. From 2013 the wavelengths are: 450, 525, 635 nm.

(10) The SAE was calculated as linear fit using 450-520-700 nm scattering for 2012 and then using 450-525-635 nm.

|        | λ           | mean      | SD     | min   | max      | 5th pc | 25th pc | 50th pc | 75th pc | 95th pc | skewness |
|--------|-------------|-----------|--------|-------|----------|--------|---------|---------|---------|---------|----------|
| nordi  | c and l     | Baltic    | I      | l     |          |        |         |         |         |         | L        |
| BIR    | 550         | 16.61     | 23.29  | -0.01 | 417.69   | 1.58   | 4.74    | 9.80    | 19.68   | 51.70   | 5.3      |
| SMR    | 550         | 17.34     | 18.69  | 0.15  | 305.95   | 2.90   | 6.26    | 11.33   | 21.10   | 52.70   | 3.4      |
| PAL    | 550         | 7.85      | 15.66  | -2.15 | 1875.14  | 0.40   | 1.88    | 4.29    | 9.45    | 26.48   | 1.4      |
| VHL    | 520         | 33.34     | 37.48  | 0.96  | 369.50   | 5.70   | 11.79   | 19.88   | 37.80   | 111.98  | 2.8      |
| PLA    | 550         | 64.78     | 60.02  | 2.68  | 482.45   | 8.48   | 20.67   | 45.65   | 85.02   | 189.17  | 1.7      |
|        |             |           |        |       | -        |        |         |         |         |         |          |
| weste  | ern         | 1         | 1      |       |          | 1      |         |         |         |         |          |
| MHD    | 550         | 28.43     | 29.02  | 0.05  | 470.28   | 4.61   | 10.93   | 19.83   | 35.57   | 80.20   | 3.4      |
| CBW    | 550         | 31.49     | 41.34  | 0.25  | 621.13   | 2.76   | 7.35    | 17.36   | 39.46   | 105.36  | 3.7      |
| SIR    | 450         | 25.34     | 32.81  | 0.01  | 715.91   | 1.24   | 6.90    | 14.83   | 28.24   | 91.42   | 3.8      |
| OPE    | 525         | 29.04     | 38.03  | 0.01  | 386.42   | 1.17   | 6.60    | 16.01   | 33.92   | 103.72  | 3.0      |
| PUY    | 550         | 18.11     | 24.84  | -1.93 | 484.79   | 0.22   | 2.73    | 10.90   | 23.87   | 58.43   | 4.2      |
|        |             |           |        |       |          |        |         |         |         |         |          |
| centra | al          |           |        |       |          |        |         |         |         |         |          |
| HPB    | 550         | 30.17     | 35.45  | 0.12  | 522.88   | 2.30   | 8.47    | 19.07   | 37.41   | 100.47  | 2.9      |
| IPR    | 550         | 95.03     | 108.69 | 0.27  | 3239.14  | 5.76   | 22.72   | 56.12   | 126.29  | 315.54  | 2.7      |
| MPZ    | 550         | 59.07     | 67.33  | 0.23  | 784.67   | 8.62   | 19.13   | 35.46   | 72.31   | 191.41  | 3.1      |
| JFJ    | 550         | 7.35      | 11.96  | -2.38 | 308.40   | 0.15   | 0.89    | 2.41    | 8.10    | 32.18   | 3.4      |
| CMN    | 520         | 21.36     | 25.84  | -5.60 | 582.04   | 0.69   | 4.30    | 12.43   | 28.83   | 71.53   | 2.7      |
| KOS    | 550         | 46.05     | 41.30  | 0.00  | 324.27   | 7.73   | 18.02   | 32.36   | 60.52   | 129.15  | 2.0      |
|        |             |           |        |       |          |        |         |         |         |         |          |
| easte  | <u>rn</u>   |           |        |       |          |        |         |         |         |         |          |
| BEO    | 550         | 19.00     | 23.75  | -1.27 | 470.88   | 0.48   | 2.56    | 10.43   | 28.03   | 60.91   | 3.3      |
| KPS    | 550         | 74.01     | 71.95  | 2.14  | 811.46   | 11.72  | 27.11   | 48.99   | 95.24   | 219.92  | 2.4      |
|        |             |           |        |       |          |        |         |         |         |         |          |
| south  | -weste      | ern_      |        | -     |          | -      | -       | -       |         | -       | -        |
| MSA    | 525         | 20.65     | 22.35  | -2.73 | 277.06   | 0.33   | 3.53    | 13.10   | 31.02   | 66.41   | 1.8      |
| IZO    | 550         | 30.81     | 57.78  | 0.04  | 1233.41  | 0.99   | 2.85    | 7.32    | 33.80   | 131.32  | 4.8      |
| UGR    | 550         | 55.21     | 44.43  | -1.32 | 663.88   | 12.74  | 26.26   | 43.14   | 69.80   | 138.49  | 2.6      |
| MSY    | 525         | 35.95     | 32.21  | -1.48 | 539.71   | 4.06   | 14.44   | 28.27   | 47.81   | 92.55   | 2.8      |
| MAD    | 525         | 25.30     | 22.91  | -0.61 | 254.62   | 3.37   | 9.90    | 18.04   | 33.89   | 68.72   | 2.4      |
|        |             |           |        |       |          |        |         |         |         |         |          |
| south  | -easte      | <u>rn</u> |        |       |          |        |         |         |         |         | r        |
| FKL    | 532         | 33.50     | 23.24  | 0.19  | 759.50   | 7.04   | 17.30   | 28.94   | 44.55   | 74.14   | 3.4      |
| DEM    | 525         | 56.15     | 37.93  | -3.11 | 554.88   | 15.23  | 30.67   | 47.39   | 71.19   | 125.64  | 2.3      |
|        |             |           |        |       |          |        |         |         |         |         |          |
| Arctic | 2           |           | 1      |       |          |        |         |         |         |         |          |
| ZEP    | 550         | 4.42      | 5.69   | -0.83 | 81.35    | 0.17   | 1.15    | 2.82    | 5.58    | 13.99   | 4.42     |
| L      |             |           |        |       |          |        |         |         |         |         |          |
| Antar  | <u>ctic</u> | 1.0.      | 0.07   | 1.00  | <u> </u> |        | a 1-    |         |         | 1.0-    | 10.1     |
| TRL    | 550         | 1.36      | 2.88   | -1.02 | 93.93    | 0.04   | 0.48    | 0.72    | 1.31    | 4.00    | 10.6     |
|        | Ļ           |           |        |       |          |        |         |         |         |         |          |
| South  | Amer        | rica      | 46.55  | 4 50  | 005.11   | 0.07   |         |         | 40.10   | 00.01   |          |
| CHC    | 525         | 8.54      | 12.33  | -1.59 | 205.14   | 0.05   | 1.40    | 4.94    | 10.62   | 30.06   | 2.8      |

**Table S4**: Statistics of the aerosol particle scattering coefficient [Mm<sup>-1</sup>]. Statistics are reported for the whole period available at each station.



Figure S2: Frequency and cumulative frequency distributions of aerosol particle scattering coefficients.

**Table S5**: Statistics of the scattering Ångström exponent calculated as linear fit using the three nephelometer wavelengths (b-g-r). Statistics are reported for the whole period available at each station. The mean values of SAE calculated using the blue and the green wavelengths (b-g) and using the green and red wavelengths (g-r) are also reported. The reported SAE values were calculated for  $\sigma_{sp} > 0.8 \ \text{Mm}^{-1}$ .

|               |                   |          |       |      | ç     | SAF (b-a-r | <b>`</b>  |      |       |       | SAE<br>(b-a)   | SAE<br>(g-r) |
|---------------|-------------------|----------|-------|------|-------|------------|-----------|------|-------|-------|----------------|--------------|
|               |                   |          |       |      | 5th   | 25th       | ,<br>50th | 75th | 95th  | skew  | ( <b>b</b> -g) | (y⁻י/        |
|               | mean              | SD       | min   | max  | рс    | рс         | рс        | рс   | рс    | ness  | mean           | mean         |
| nordi         | c and Ba          | altic    |       |      | -     |            |           |      |       |       |                |              |
| BIR           | 1.49              | 0.60     | -1.41 | 3.97 | 0.42  | 1.02       | 1.61      | 1.96 | 2.29  | -0.41 | 1.43           | 1.53         |
| SMR           | 1.75              | 0.50     | -1.02 | 3.84 | 0.74  | 1.50       | 1.84      | 2.10 | 2.40  | -0.83 | 1.71           | 1.78         |
| PAL           | 1.63              | 0.67     | -1.91 | 3.89 | 0.30  | 1.25       | 1.78      | 2.12 | 2.47  | -0.79 | 1.58           | 1.67         |
| VHL           | 1.27              | 0.68     | -1.94 | 3.58 | 0.02  | 0.91       | 1.33      | 1.67 | 2.37  | -0.26 | 1.38           | 1.24         |
| PLA           | 1.45              | 0.56     | -0.16 | 2.72 | 0.16  | 1.21       | 1.60      | 1.82 | 2.18  | -0.97 | 1.51           | 1.41         |
|               |                   |          |       |      |       |            |           |      |       |       |                |              |
| weste         | ern               |          |       |      |       |            |           |      |       |       |                |              |
| MHD           | 0.69              | 0.74     | -1.99 | 5.80 | -0.13 | 0.13       | 0.47      | 1.22 | 1.94  | 0.91  | 0.57           | 0.78         |
| CBW           | 2.00              | 0.53     | -0.20 | 3.62 | 0.84  | 1.81       | 2.12      | 2.34 | 2.61  | -1.32 | 1.85           | 2.12         |
| OPE           | 1.66              | 0.83     | -1.71 | 4.97 | 0.21  | 1.16       | 1.70      | 2.24 | 2.85  | -0.21 | 1.60           | 1.69         |
| PUY           | 1.59              | 0.48     | -1.06 | 4.62 | 0.60  | 1.36       | 1.69      | 1.91 | 2.18  | -0.97 | 1.67           | 1.52         |
|               | Ļ                 |          |       |      |       |            |           |      |       |       |                |              |
| <u>centra</u> | <u>ai</u><br>1 05 | 0.27     | 0.00  | 2.54 | 1 1 0 | 1 / 7      | 1.00      | 2.00 | 2.20  | 0.04  | 1.00           | 1.00         |
| HPB           | 1.85              | 0.37     | -0.08 | 3.54 | 1.18  | 1.07       | 1.89      | 2.09 | 2.38  | -0.84 | 1.82           | 1.88         |
|               | 1.90              | 0.30     | -0.80 | 3.15 | 1.40  | 1.82       | 2.02      | 2.17 | 2.30  | -1.30 | 1.83           | 2.07         |
|               | 1.78              | 0.37     | -0.21 | 5.59 | 1.00  | 1.59       | 1.83      | 2.03 | 2.27  | -0.82 | 1.72           | 1.82         |
| JL]           | 1.90              | 0.70     | -1.41 | 0.79 | 0.49  | 1.37       | 2.03      | 2.30 | 2.03  | -0.74 | 1.00           | 2.06         |
| KOS           | 2.00              | 0.00     | -2.17 | 4.77 | 0.90  | 1.75       | 2.02      | 2.42 | 2.01  | -0.94 | 1.94           | 2.00         |
| KU3           | 1.79              | 0.29     | -1.19 | 3.20 | 1.27  | 1.05       | 1.02      | 1.77 | 2.17  | -1.09 | 1.00           | 1.70         |
| oasto         | rn                |          |       |      |       |            |           |      |       |       |                |              |
| BFO           | 1 72              | 0.68     | -2.48 | 3 84 | 0.27  | 1 4 2      | 1 94      | 2 18 | 2 46  | -1 22 | 1 78           | 1 67         |
| KPS           | 2.03              | 0.26     | 0.28  | 3.92 | 1.56  | 1.89       | 2.05      | 2.10 | 2.10  | -0.72 | 1.88           | 2.14         |
|               | 2.00              | 0.20     | 0.20  | 0172 |       |            | 2.00      | 2,   | 2.1.2 | 0.72  |                | 2            |
| south         | -wester           | n        |       |      | l     |            |           |      |       |       |                |              |
| MSA           | 1.59              | 0.69     | -1.48 | 5.14 | 0.26  | 1.30       | 1.65      | 1.96 | 2.58  | -0.31 | 1.65           | 1.54         |
| IZO           | 0.78              | 0.64     | -1.97 | 3.71 | -0.05 | 0.18       | 0.73      | 1.30 | 1.86  | 0.30  | 0.71           | 0.84         |
| UGR           | 1.62              | 0.41     | -1.35 | 5.96 | 0.82  | 1.39       | 1.69      | 1.91 | 2.17  | -0.79 | 1.58           | 1.65         |
| MSY           | 1.37              | 0.72     | -1.56 | 5.71 | 0.12  | 0.99       | 1.40      | 1.76 | 2.41  | 0.04  | 1.36           | 1.38         |
| MAD           | 1.43              | 0.54     | -1.26 | 5.75 | 0.40  | 1.15       | 1.47      | 1.73 | 2.28  | -0.29 | 1.56           | 1.32         |
|               |                   |          |       |      |       |            |           |      |       |       |                |              |
| south         | -easterr          | <u>1</u> | •     | •    |       | •          |           |      |       |       |                |              |
| DEM           | 1.51              | 0.72     | -2.51 | 5.13 | 0.20  | 1.12       | 1.60      | 1.99 | 2.49  | -0.50 | 1.40           | 1.68         |
|               |                   |          |       |      |       |            |           |      |       |       |                |              |
| Arctic        | 2                 |          |       |      |       |            |           |      |       |       |                |              |
| ZEP           | 1.16              | 0.62     | -1.29 | 3.21 | 0.06  | 0.73       | 1.22      | 1.64 | 2.09  | -0.28 | 1.11           | 1.20         |
|               |                   |          |       |      |       |            |           |      |       |       |                |              |
| Antar         | <u>ctic</u>       | <b>.</b> |       |      | -     | 1          | 1         |      | 1     | -     |                |              |
| TRL           | 0.78              | 0.59     | -1.40 | 3.09 | -0.23 | 0.40       | 0.81      | 1.14 | 1.72  | -0.05 | 0.94           | 0.64         |
|               | Ļ                 |          |       |      |       |            |           |      |       |       |                |              |
| South         | Americ            | <u>a</u> |       |      |       |            |           |      |       |       |                |              |
| CHC<br>(a)    | 1.71              | 0.93     | -2.92 | 5.92 | 0.26  | 1.35       | 1.72      | 2.09 | 3.05  | -0.08 | 1.71           |              |

(a) At CHC the statistics are reported for SAE calculated using the blue and green wavelengths.



**Figure S3**: Frequency and cumulative frequency distributions of scattering Ångström exponent. SAE at CHC was calculated using the blue and green wavelengths.

**Table S6**: Statistics of the asymmetry parameter (calculated for the wavelengths reported in Table S2). Statistics are reported for the whole period available at each station. The reported *g* values were calculated for  $\sigma_{sp} > 0.8$  Mm<sup>-1</sup>.

|        | mean        | SD       | min     | max   | 5th pc  | 25th pc | 50th pc | 75th pc | 95th pc | skewness |
|--------|-------------|----------|---------|-------|---------|---------|---------|---------|---------|----------|
| nordie | c and Ba    | ltic     |         |       |         |         |         |         |         |          |
| BIR    | 0.626       | 0.065    | 0.119   | 0.856 | 0.518   | 0.584   | 0.627   | 0.674   | 0.724   | -0.56    |
| SMR    | 0.546       | 0.059    | 0.000   | 0.750 | 0.448   | 0.505   | 0.547   | 0.589   | 0.639   | -0.19    |
| PAL    | 0.586       | 0.079    | -0.377  | 0.937 | 0.459   | 0.551   | 0.596   | 0.632   | 0.692   | -1.59    |
| PLA    | 0.649       | 0.035    | 0.479   | 0.711 | 0.590   | 0.626   | 0.651   | 0.677   | 0.697   | -0.69    |
|        |             |          |         |       |         |         |         |         |         |          |
| weste  | rn          |          |         |       |         |         |         |         |         |          |
| MHD    | 0.642       | 0.049    | 0.052   | 0.974 | 0.562   | 0.619   | 0.648   | 0.669   | 0.709   | -1.24    |
| CBW    | 0.568       | 0.068    | 0.292   | 0.756 | 0.454   | 0.518   | 0.571   | 0.621   | 0.675   | -0.20    |
| OPE    | 0.559       | 0.142    | -0.999  | 0.812 | 0.349   | 0.531   | 0.587   | 0.632   | 0.680   | -4.33    |
| PUY    | 0.606       | 0.054    | 0.007   | 0.869 | 0.520   | 0.574   | 0.608   | 0.639   | 0.692   | -0.83    |
|        |             |          |         |       |         |         |         |         |         |          |
| centra | al 🛛        |          |         |       |         |         |         |         |         |          |
| HPB    | 0.609       | 0.055    | 0.116   | 0.871 | 0.519   | 0.572   | 0.608   | 0.646   | 0.701   | -0.16    |
| IPR    | 0.573       | 0.057    | 0.187   | 0.793 | 0.488   | 0.532   | 0.572   | 0.614   | 0.663   | -0.36    |
| MPZ    | 0.570       | 0.068    | 0.039   | 0.912 | 0.459   | 0.523   | 0.572   | 0.619   | 0.676   | -0.27    |
| JFJ    | 0.656       | 0.079    | 0.003   | 0.845 | 0.526   | 0.613   | 0.670   | 0.712   | 0.750   | -1.76    |
| CMN    | 0.493       | 0.051    | 0.083   | 0.797 | 0.416   | 0.460   | 0.494   | 0.528   | 0.573   | -0.41    |
| KOS    | 0.563       | 0.058    | 0.109   | 0.699 | 0.466   | 0.522   | 0.562   | 0.606   | 0.656   | -0.17    |
|        |             |          |         |       |         |         |         |         |         |          |
| easter | r <u>n</u>  | -        | -       | -     |         |         |         |         |         |          |
| BEO    | 0.539       | 0.066    | -0.769  | 0.737 | 0.441   | 0.510   | 0.546   | 0.578   | 0.624   | -3.24    |
| KPS    | 0.584       | 0.050    | 0.291   | 0.732 | 0.500   | 0.551   | 0.585   | 0.618   | 0.666   | -0.16    |
|        |             |          |         |       |         |         |         |         |         |          |
| south  | -westeri    | <u>n</u> |         | -     |         |         |         |         |         |          |
| MSA    | 0.571       | 0.088    | 0.101   | 0.902 | 0.402   | 0.538   | 0.582   | 0.621   | 0.681   | -1.44    |
| IZO    | 0.607       | 0.047    | -0.378  | 0.885 | 0.520   | 0.581   | 0.618   | 0.638   | 0.666   | -1.40    |
| UGR    | 0.547       | 0.045    | -0.137  | 0.933 | 0.480   | 0.516   | 0.544   | 0.576   | 0.622   | -0.16    |
| MSY    | 0.589       | 0.062    | -0.860  | 0.938 | 0.498   | 0.558   | 0.592   | 0.625   | 0.674   | -1.73    |
| MAD    | 0.523       | 0.072    | 0.118   | 0.814 | 0.419   | 0.481   | 0.525   | 0.572   | 0.624   | -0.86    |
|        |             |          |         |       |         |         |         |         |         |          |
| south  | -eastern    | <u> </u> |         | 1     |         |         |         |         |         |          |
| DEM    | 0.643       | 0.088    | -0.858  | 0.881 | 0.505   | 0.603   | 0.649   | 0.695   | 0.767   | -1.97    |
|        |             |          |         |       |         |         |         |         |         |          |
| Arctic |             |          |         |       | 0 540   |         |         |         | 0 / 50  | 0.07     |
| ZEP    | 0.588       | 0.046    | 0.110   | 0.789 | 0.519   | 0.558   | 0.587   | 0.61/   | 0.653   | 0.07     |
|        |             |          |         |       |         |         |         |         |         |          |
| Antar  | <u>ctic</u> | 0.05/    | 0.077   | 0.7/0 | 0 5 0 0 | 0 ( 00  | 0 711   | 0.70/   | 0 740   | 2.50     |
| IKU    | 0.696       | 0.056    | 0.277   | 0.769 | 0.592   | 0.688   | 0.711   | 0.726   | 0.742   | -3.59    |
| Court  | <b>A</b>    |          |         |       |         |         |         |         |         |          |
| South  | Americ      | <u>a</u> | 0 1 1 1 | 0.051 | 0.200   | 0 470   | 0 5 2 2 | 0.500   | 0 / 01  | 0.07     |
| CHC    | 0.530       | 0.088    | 0.111   | 0.851 | 0.399   | 0.478   | 0.523   | 0.580   | 0.681   | 0.06     |



Figure S4: Frequency and cumulative frequency distributions of asymmetry parameter in the green wavelength.



**Figure S5:** Backscatter fraction (BF) divided by geographical location. Medians (horizontal lines in the boxes), percentiles 25<sup>th</sup> and 75<sup>th</sup> (lower and upper limits of the boxes, respectively) and percentiles 5<sup>th</sup> and 95<sup>th</sup> (lower and upper limits of the vertical dashed lines) are reported. For each location data are ordered from mountain sites to urban/sub-urban sites.



**Figure S6**: (a) SAE (bars) vs. *g* (dots) at all stations included in this work divided by geographical location: Nordic and Baltic (B&N), Western Europe (W), Central Europe (C), Eastern Europe (E), Southwestern Europe(SW), Southeastern Europe (SE), non-European stations (ZEP and TRL); and (b) SAE-*g* scatterplot (mean SAE and *g* values at each station used for the scatterplot). CHC not included because the SAE was calculated using the blue and green wavelengths.

**Table S7**: Statistics of the backscatter fraction (calculated for the wavelengths reported in Table S2). Statistics are reported for the whole period available at each station. The reported BF values were calculated for  $\sigma_{sp} > 0.8 \text{ Mm}^{-1}$ .

|        | mean      | SD       | min   | max   | 5th pc | 25th pc | 50th pc | 75th pc | 95th pc | skewness |
|--------|-----------|----------|-------|-------|--------|---------|---------|---------|---------|----------|
| nordi  | c and Ba  | altic    |       |       |        |         |         | 1       | 1       |          |
| BIR    | 0.115     | 0.027    | 0.036 | 0.607 | 0.077  | 0.095   | 0.113   | 0.130   | 0.160   | 1.36     |
| SMR    | 0.149     | 0.027    | 0.069 | 0.490 | 0.109  | 0.129   | 0.147   | 0.166   | 0.195   | 0.55     |
| PAL    | 0.132     | 0.038    | 0.013 | 0.645 | 0.089  | 0.111   | 0.125   | 0.145   | 0.189   | 2.76     |
| PLA    | 0.105     | 0.014    | 0.082 | 0.179 | 0.087  | 0.094   | 0.104   | 0.113   | 0.128   | 0.89     |
|        |           |          |       |       |        |         |         |         |         |          |
| weste  | ern       |          |       |       |        |         |         |         |         |          |
| MHD    | 0.108     | 0.023    | 0.004 | 0.970 | 0.083  | 0.097   | 0.105   | 0.116   | 0.140   | 7.10     |
| CBW    | 0.139     | 0.030    | 0.067 | 0.292 | 0.095  | 0.115   | 0.136   | 0.160   | 0.192   | 0.48     |
| OPE    | 0.149     | 0.086    | 0.049 | 0.998 | 0.093  | 0.111   | 0.129   | 0.154   | 0.266   | 4.98     |
| PUY    | 0.123     | 0.027    | 0.032 | 0.996 | 0.089  | 0.108   | 0.121   | 0.134   | 0.159   | 7.19     |
|        |           |          |       |       |        |         |         |         |         |          |
| centra | <u>al</u> | -        | -     |       | -      | -       | -       | 1       |         |          |
| HPB    | 0.121     | 0.023    | 0.032 | 0.418 | 0.085  | 0.105   | 0.120   | 0.135   | 0.159   | 0.52     |
| IPR    | 0.136     | 0.025    | 0.055 | 0.368 | 0.099  | 0.118   | 0.135   | 0.153   | 0.174   | 0.85     |
| MPZ    | 0.138     | 0.031    | 0.020 | 0.598 | 0.094  | 0.116   | 0.136   | 0.157   | 0.189   | 1.10     |
| JFJ    | 0.104     | 0.034    | 0.039 | 0.488 | 0.069  | 0.081   | 0.096   | 0.118   | 0.156   | 3.24     |
| CMN    | 0.173     | 0.026    | 0.054 | 0.440 | 0.135  | 0.155   | 0.171   | 0.188   | 0.213   | 1.05     |
| KOS    | 0.141     | 0.026    | 0.086 | 0.422 | 0.102  | 0.121   | 0.140   | 0.158   | 0.185   | 0.48     |
|        |           |          |       |       |        |         |         |         |         |          |
| easte  | <u>rn</u> | 0.005    | 0.070 | 0.075 | 0.444  | 0.400   | 0.4.47  | 0.4/0   | 0.400   | F ( (    |
| BEO    | 0.152     | 0.035    | 0.073 | 0.975 | 0.114  | 0.133   | 0.14/   | 0.163   | 0.199   | 5.66     |
| KPS    | 0.131     | 0.021    | 0.075 | 0.293 | 0.098  | 0.116   | 0.130   | 0.145   | 0.168   | 0.40     |
|        |           |          |       |       |        |         |         |         |         |          |
| South  | -westeri  | <u>n</u> | 0.000 | 0.400 | 0.002  | 0.115   | 0 1 2 1 | 0.151   | 0.004   | 2.00     |
| IVISA  | 0.140     | 0.048    | 0.023 | 0.489 | 0.093  | 0.115   | 0.131   | 0.101   | 0.224   | 2.90     |
|        | 0.121     | 0.020    | 0.020 | 0.043 | 0.090  | 0.100   | 0.110   | 0.131   | 0.139   | 2.17     |
| MSV    | 0.147     | 0.021    | 0.015 | 0.558 | 0.115  | 0.134   | 0.140   | 0.101   | 0.170   | 3.05     |
| MAD    | 0.129     | 0.020    | 0.013 | 0.703 | 0.095  | 0.114   | 0.127   | 0.141   | 0.109   | 1.0/     |
| IVIAD  | 0.100     | 0.030    | 0.049 | 0.417 | 0.114  | 0.135   | 0.157   | 0.176   | 0.211   | 1.04     |
| south  | -oastorn  | 1        |       |       |        |         |         |         |         |          |
| DFM    | 0.109     | 0.040    | 0.029 | 0.960 | 0.063  | 0.088   | 0.105   | 0.122   | 0.166   | 4.11     |
| DEM    | 0.107     | 0.010    | 0.027 | 0.700 | 0.000  | 0.000   | 0.100   | 0.122   | 0.100   | 1.1.1    |
| Arctic | :         |          |       |       |        |         |         |         |         |          |
| ZEP    | 0.130     | 0.019    | 0.056 | 0.422 | 0.103  | 0.117   | 0.129   | 0.142   | 0.159   | 0.84     |
|        |           | 1        |       |       |        | 1       | 1       |         |         |          |
| Antar  | ctic      | 1        | 1     | 1     | 1      | 1       | 1       | 1       | 1       | 1        |
| TRO    | 0.088     | 0.024    | 0.062 | 0.302 | 0.071  | 0.077   | 0.082   | 0.090   | 0.127   | 4.81     |
|        |           |          |       |       |        |         |         |         |         |          |
| South  | Americ    | a        |       |       |        |         |         |         |         |          |
| CHC    | 0.157     | 0.040    | 0.037 | 0.421 | 0.093  | 0.132   | 0.156   | 0.180   | 0.222   | 1.56     |



**Figure S7**: Relationships between SAE and scattering at some of the stations involved in this work. Points are colored by the number of samples in each bin. Dashed lines represent median  $\sigma_{sp}$  values at each station.



Figure S8: Scatterplots between scattering (x-axes) and backscatter fraction (bf; y-axes).

**Table S8**: Magnitude, p-value and total reduction (TR) of the trends of aerosol particle scattering coefficient ( $\sigma_{ap}$ ), scattering Ångström exponent (SAE), and backscatter fraction (BF). Trend results are reported for the whole period available at each station until 2015 (**bold**) and for the periods considered in Collaud Coen et al. (2013) and in Asmi et al. (2013) (Cf. Table 2). Trends are considered as statistically significant if p-value < 0.05. Statistically significant increasing or decreasing trends are highlighted with red and green colour, respectively. Non-statistically significant increasing or decreasing trends are highlighted with grey colour. \$: parameters removed in this work or in the work from Collaud Coen et al. (2013) because of measurement gaps, low data coverage or break points for one or more wavelengths. #: Only available for the period 2014-2015; **±** not available. **xx**: available from 2008.

|         |                | (Jan                                                |        | SAE                                             |        |                                                |        |                                                 |        | BF                                              |        |
|---------|----------------|-----------------------------------------------------|--------|-------------------------------------------------|--------|------------------------------------------------|--------|-------------------------------------------------|--------|-------------------------------------------------|--------|
| Station | period         | Ψap                                                 |        | b-g-r                                           |        | b-q                                            |        | g-r                                             |        |                                                 |        |
|         |                | Magnitude<br>( Mm <sup>-1</sup> /year)<br>[p-value] | TR (%) | Magnitude<br>(year <sup>-1</sup> )<br>[p-value] | TR (%) | Magnitude<br>(year <sup>1</sup> )<br>[p-value] | TR (%) | Magnitude<br>(year <sup>-1</sup> )<br>[p-value] | TR (%) | Magnitude<br>(year <sup>-1</sup> )<br>[p-value] | TR (%) |
| PAL     | 2000 -<br>2015 | +0.017<br>[-0.067,0.120]<br>p>0.05                  | +4.4   | -0.019<br>[-0.029,-0.009]<br>p<0.001            | -17.3  | -0.007<br>[-0.015,0.003]<br>p>0.05             | +6.6   | -0.028<br>[-0.040,-0.015]<br>p<0.001            | -24.1  | +0.0007<br>[0.0003,0.0013]<br>P<0.001           | +9.9   |
|         | 2000 -<br>2010 | -0.225<br>[-0.362,-0.094]<br>p<0.001                | -33.9  | -0.042<br>[-0.062,-0.026]<br>P<0.001            | -24.7  | \$                                             | \$     | \$                                              | \$     | +0.001<br>[0,0.002]<br>p>0.05                   | +7.6   |
|         | 2001 -<br>2010 | -0.149<br>[-0.333,+0.009]<br>p>0.05                 | -24.7  | -0.049<br>[-0.076,-0.032]<br>P<0.001            | -26.6  | \$                                             | \$     | \$                                              | \$     | +0.001<br>[0,0.002]<br>p>0.05                   | +7.8   |
| SMR     | 2006 -<br>2015 | -0.588<br>[-0.962,-0.256]<br>p<0.001                | -30.3  | +0.008<br>[-0.004,0.018]<br>p>0.05              | +4.7   | +0.012<br>[0.001,0.021]<br>P<0.05              | +7.1   | +0.004<br>[-0.008,0.017]<br>p>0.05              | +2.4   | +0.0012<br>[0.0006,0.0019]<br>p<0.001           | +8.6   |
| MHD     | 2001 -<br>2013 | -0.063<br>[-0.392,0.337]<br>p>0.05                  | -2.9   | \$                                              | \$     | \$                                             | \$     | \$                                              | \$     | \$                                              | \$     |
|         | 2001 -<br>2010 | +0.056<br>[-0.601,0.603]<br>p>0.05                  | +2.0   | \$                                              | \$     | \$                                             | \$     | \$                                              | \$     | \$                                              | \$     |
| PUY     | 2007 -<br>2014 | -0.291<br>[-0.793,0.242]<br>p>0.05                  | -13.0  | -0.031<br>[-0.050,-0.013]<br>p<0.001            | -14.9  | -0.022<br>[-0.040,-0.006]<br>P<0.05            | -9.4   | -0.022<br>[-0.043,-0.0003]<br>P<0.05            | -10.7  | +0.0013<br>[0.0003,0.0022]<br>P<0.01            | +8.7   |
| НРВ     | 2006 -<br>2015 | -1.376<br>[-2.007,-0.753]<br>p<0.01                 | -38.0  | +0.0098<br>[0.0014,0.0181]<br>p<0.05            | +5.5   | +0.0075<br>[0.0005,0.0146]<br>p<0.05           | +4.3   | +0.0104<br>[0,0.0191]<br>p>0.05                 | +5.8   | +0.0007<br>[0.0002,0.0013]<br>p<0.05            | +6.0   |
| IPR     | 2004 -<br>2014 | -5.357<br>[-7.034,-4.024]<br>p<0.001                | -48.0  | +0.0058<br>[0.0004,0.0118]<br>p>0.05            | +3.3   | 0.0003<br>[-0.0061,0.0086]<br>p>0.05           | +0.2   | +0.0079<br>[0.0004,0.0160]<br>p>0.05            | +4.2   | +0.0009<br>[0.0003,0.0016]<br>P<0.05            | +7.7   |
| MPZ     | 2007 -<br>2015 | -0.257<br>[-1.635,1.201]<br>p>0.05                  | -4.3   | -0.0001<br>[-0.0068,0.0062]<br>p>0.05           | -0.1   | -0.0039<br>[-0.0111,0.0029]<br>p>0.05          | -2.0   | -0.0004<br>[-0.0084,0.0065]<br>p>0.05           | -2.2   | 0.0009<br>[-0.0005,0.0023]<br>p>0.05            | +5.2   |
| JFJ     | 1995 -<br>2015 | -0.032<br>[-0.090,0.023]<br>p>0.05                  | -10.2  | \$                                              | \$     | \$                                             | \$     | \$                                              | \$     | \$                                              | \$     |
|         | 1995 -<br>2010 | 0.076<br>[-0.009,0.1749]<br>p>0.05                  | +20.9  | \$                                              | \$     | \$                                             | \$     | \$                                              | \$     | \$                                              | \$     |
|         | 1996 -<br>2010 | 0.083<br>[-0.005,0.1732]<br>p>0.05                  | +21.8  | \$                                              | \$     | \$                                             | \$     | \$                                              | \$     | \$                                              | \$     |
|         | 2001 -<br>2010 | -0.168<br>[-0.357,0.016]<br>p>0.05                  | -21.4  | \$                                              | \$     | \$                                             | \$     | \$                                              | \$     | \$                                              | \$     |
|         | 1997 -<br>2010 | 0.056<br>[-0.037,0.1522]<br>p>0.05                  | +12.8  | \$                                              | \$     | \$                                             | \$     | \$                                              | \$     | \$                                              | \$     |
| CMN     | 2007 -<br>2015 | -0.481<br>[-1.136,0.508]<br>p>0.05                  | -21.6  | #                                               | #      | #                                              | #      | #                                               | #      | #                                               | #      |
| BEO     | 2007 -<br>2015 | -0.093<br>[-0.055,0.396]<br>p>0.05                  | -4.9   | -0.0474<br>[-0.0675,-0.0286]<br>p<0.001         | -22.0  | -0.0201<br>[-0.0376,-0.0052]<br>P<0.05         | -9.7   | -0.0688<br>[-0.914,-0.0484]<br>P<0.001          | -31.6  | -0.0001<br>[-0.001,0.002]<br>p>0.05             | -0.2   |
| KPS     | 2006 -<br>2014 | +0.623<br>[-0.479,1.791]<br>p>0.05                  | +8.7   | -0.0034<br>[-0.0121,0.0076]<br>p>0.05           | -1.5   | -0.0155<br>[-0.0228,-0.0072]<br>P<0.001        | -7.1   | +0.0069<br>[-0.0055,0.019]<br>p>0.05            | +2.9   | +0.0001<br>[-0.0003,0.0007]<br>p>0.05           | +0.9   |
| IZO     | 2008 -<br>2015 | -2.252<br>[-3.850,-0.856]<br>p<0.01                 | -59.6  | +0.0198<br>[-0.0063,0.0476]<br>p>0.05           | +22.0  | +0.0048<br>[-0.0220,0.0325]<br>p>0.05          | +5.1   | +0.0229<br>[0,0.0561]<br>p>0.05                 | +25.4  | \$                                              | \$     |
| UGR     | 2006 -<br>2015 | -1.951<br>[-2.886,-1.141]<br>p<0.001                | -32.0  | +0.0216<br>[0.0078,0.0358]<br>p<0.001           | +14.1  | +0.0105<br>[-0.0003,0.016]<br>p>0.05           | +6.7   | +0.0305<br>[0.0135,0.0452]<br>p<0.001           | +20.1  | +0.0028<br>[0.0023,0.0033]<br>p<0.001           | +21.1  |

**Table S9**: Magnitude and p-value for the trends of aerosol particle scattering coefficient and  $PM_{10}$  and/or  $PM_{2.5}$  concentrations (PM mass concentration from www.ebas.nilu.no). Trend results are reported for common period at each station. Trends are considered as statistically significant if p-value < 0.05. Statistically significant decreasing trends are highlighted with green colour. Non statistically significant trends are highlighted with grey colour. NA: Not available for the considered period.

| Station | period         | Aerosol particle<br>scattering<br>coefficient    |        | PM <sub>10</sub>                                  |        | PM <sub>2.5</sub>                                 |        |
|---------|----------------|--------------------------------------------------|--------|---------------------------------------------------|--------|---------------------------------------------------|--------|
|         |                |                                                  |        |                                                   |        |                                                   |        |
|         |                | Magnitude<br>[Mm <sup>-1</sup> /year]<br>p-value | TR (%) | Magnitude<br>[µgm <sup>-3</sup> /year]<br>p-value | TR (%) | Magnitude<br>[µgm <sup>-3</sup> /year]<br>p-value | TR (%) |
| SMR     | 2006 -<br>2012 | -0.498<br>[-1.119,0.150]<br>p>0.05               | -18.6  | +0.023<br>[-0.198,0.256]<br>p>0.05                | +3.0   | -0.069<br>[-0.238,0.096]<br>p>0.05                | -9.8   |
| IPR     | 2004 -<br>2014 | -5.357<br>[-7.034,-4.024]<br>p<0.001             | -48.0  | NA                                                | NA     | -1.158<br>[-1.435,-0.919]<br>p<0.001              | -47.4  |
| MPZ     | 2007 -<br>2014 | +0.803<br>[-0958,2.254]<br>p>0.05                | +12.4  | +0.311<br>[-0.054,0.699]<br>p>0.05                | +12.0  | +0.313<br>[-0.036,0.706]<br>p>0.05                | +15.0  |
| JFJ     | 2006-<br>2014  | -0.116<br>[-0.294,-0.027]<br>p<0.05              | -20.7  | -0.101<br>[-0.185,-0.038]<br>p<0.01               | -30.1  | NA                                                | NA     |