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Abstract.

NASA’s Orbiting Carbon Observatory–2 (OCO-2) satellite launched in summer of 2014. Its observations could allow sci-

entists to constrain CO2 fluxes across regions or continents that were previously difficult to monitor. This study explores an

initial step toward that goal; we evaluate the extent to which current OCO-2 observations can detect patterns in biospheric

CO2 fluxes and constrain monthly CO2 budgets. Our goal is to guide top-down, inverse modeling studies and identify areas5

for future improvement. We find that uncertainties and biases in the individual OCO-2 observations are comparable to the

atmospheric signal from biospheric fluxes, particularly during northern hemisphere winter when biospheric fluxes are small. A

series of top-down experiments indicate how these errors affect our ability to constrain monthly biospheric CO2 budgets. We

are able to constrain budgets for between two and four global regions using OCO-2 observations, depending on the month, and

we can constrain CO2 budgets at the regional level (i.e., smaller than seven global biomes) in only a handful of cases (16% of10

all regions and months). The potential of the OCO-2 observations, however, is greater than these results might imply. A set of

synthetic data experiments suggests that observation or retrieval errors have a salient effect. Advances in retrieval algorithms

and to a lesser extent atmospheric transport modeling will improve the results. In the interim, top-down studies that use cur-

rent satellite observations are best-equipped to constrain the biospheric carbon balance across only continental or hemispheric

regions.15

1 Introduction

The OCO-2 satellite launched on July 2nd, 2014 and is NASA’s first mission dedicated to observing CO2 from space. The

satellite measures the absorption of reflected sunlight within CO2 and molecular oxygen (O2) bands at near infrared wave-

lengths. These measurements are analyzed with remote sensing retrieval algorithms to yield spatially-resolved estimates of

the column-averaged CO2 dry air mole fraction, XCO2. The satellite flies in a sun-synchronous orbit an average of 705 km20

above the Earth’s surface, passing each location at approximately 13:30 local time, and it collects roughly 5× 105 to 1× 106

observations or soundings per calendar day (e.g., Crisp et al., 2004; Eldering et al., 2012; Crisp et al., 2017).

Unlike previous missions, OCO-2 observations are sensitive to CO2 throughout the entire troposphere, advantageous for

estimating surface CO2 fluxes. By contrast, thermal infrared observations from existing meteorological sounders such as the
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Atmospheric Infrared Sounder (AIRS), Tropospheric Emission Spectrometer (TES), and Infrared Atmospheric Sounding In-

terferometer (IASI) can yield estimates of the CO2 concentration in the middle troposphere, but they have little sensitivity to

near-surface CO2 variations. Because OCO-2 observes in the near infrared, its observations are sensitive to CO2 variations

throughout the atmospheric column, with greatest sensitivity near the surface (e.g., Eldering et al., 2017).

A few studies comment on the possibilities of using XCO2 observations for estimating CO2 fluxes at the Earth’s surface. For5

example, Chevallier et al. (2007) and Baker et al. (2010) explain that OCO-2 observations could reduce flux uncertainties by

∼20–65% at the the model grid scale (2.5◦ by 3.75◦ and 2◦ by 5◦ latitude-longitude, respectively) and at weekly time scales.

Both studies, however, caution that biases or spatially and temporally correlated errors would cut this uncertainty reduction

in half. Chevallier et al. (2007) further explain that biases of a few tenths of a part per million in XCO2 could bias estimated

subcontinental flux totals by several tenths of a gigaton.10

Relatively few studies in the published literature use XCO2 observations from OCO-2 to estimate fluxes, primarily due to

the relatively short time since the satellite’s launch (e.g., Fischer et al., 2017; Heymann et al., 2017). This paucity of studies

will undoubtedly change in the next several years. The literature on other CO2 remote sensing efforts is more mature, and

these studies preview the opportunities and challenge that OCO-2 may present. For example, the Greenhouse Gas Observing

Satellite (GOSAT) launched in 2009 and is the first satellite dedicated to greenhouse gas monitoring (Yokota et al., 2009).15

A number of studies use GOSAT observations to estimate surface fluxes, and these studies report numerous successes and

challenges that could apply to OCO-2 (e.g., Takagi et al., 2011; Basu et al., 2013; Guerlet et al., 2013; Maksyutov et al., 2013;

Parazoo et al., 2013; Saeki et al., 2013; Basu et al., 2014; Deng et al., 2014; Houweling et al., 2015). GOSAT observations

provide new insight into fluxes in regions that are poorly sampled by in situ observations, regions like tropical Asia (Basu

et al., 2014) and the southern Amazon (Parazoo et al., 2013). These studies also identify a number of common challenges. For20

example, observations are too sparse to reliably estimate fluxes in regions with frequent cloud cover (e.g., Parazoo et al., 2013).

Furthermore, continental CO2 budgets estimated using GOSAT observations are not consistent with in situ observations in

some regions; these differences may indicate spatially and temporally correlated errors in GOSAT observations at their current

stage of development (e.g., Houweling et al., 2015). These challenges are also a concern for OCO-2. With that said, some

design features make OCO-2 even more promising than GOSAT: OCO-2 observations have a higher spatial resolution (e.g., a25

footprint or pixel size of about 3 km2 relative to GOSAT’s footprint of about 80 km2) and a higher density of observations (e.g.

Crisp et al., 2004; National Research Council, 2010).

This study evaluates the opportunities and challenges of using current OCO-2 observations to estimate biospheric CO2

fluxes. A primary goal of this work is to guide top down, inverse modeling studies on the information content of currently-

available observations. By contrast, satellite capabilities for CO2 monitoring will likely change quickly over the next ten years30

– both due to improvements in satellite retrieval algorithms and the launch of new satellites (Sect. 4). This guidance will

therefore undoubtedly change and evolve in the future.

We evaluate current OCO-2 observations using several approaches. We make an initial assessment by comparing model and

observation errors against the atmospheric signal from biospheric fluxes. The noise in individual observations is important,

but atmospheric inversions ultimately leverage broad patterns in the observations and other complex information to estimate35
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surface fluxes. We therefore construct a series of top-down simulations using OCO-2 observations to understand what these

errors mean for estimating CO2 fluxes, and we thereby evaluate the number of global regions for which we can independently

constrain CO2 budgets. Lastly, we construct a series of synthetic data simulations to diagnose the real data results. The first

synthetic simulations do not include any errors – to evaluate the inherent strengths of the observations. In subsequent synthetic

simulations, we include simulated modeling and/or retrieval errors, and evaluate how these errors affect the CO2 flux constraint.5

The synthetic and real data simulations are based upon a multiple regression combined with model selection. We use this

approach to evaluate whether spatial and temporal patterns in biospheric CO2 fluxes help describe patterns in the OCO-2 obser-

vations. These flux patterns are first input into a global atmospheric transport model (the Parameterized Chemistry Transport

Model or PCTM, Kawa et al., 2004) and are then compared against OCO-2 observations. A positive result implies that we

can detect these patterns using OCO-2 observations, and a negative result implies that we cannot. Several existing studies use10

model selection to gauge the detectability of CO2 flux patterns (Shiga et al., 2014; Fang et al., 2014; ASCENDS Ad Hoc Sci-

ence Definition Team, 2015). The term ‘patterns’ here refers to flux patterns that manifest at the resolution of an atmospheric

model, and section 2 describes this approach in more detail.

Overall, we divide the globe into different hemispheres and biomes and determine whether we can detect flux patterns within

each region and each month. We begin the analysis with very large hemispheric regions and then decrease the size of those15

regions until we are no longer able to detect any patterns beyond a mean CO2 flux. That limit or end point is the smallest scale

at which OCO-2 observations currently provide a unique constraint on CO2 budgets. OCO-2 observations must be sufficient

to detect more than a mean flux across a region and month if future inverse modeling studies are to estimate biospheric CO2

budgets at scales smaller than that region. Consequently, inverse modeling studies would generally be unable to obtain reliable

information about the fluxes across smaller regions. This result bounds the type of information one can expect from the OCO-220

retrievals in their current stage of development.

2 Methods

2.1 Simulated model and retrieval errors

We simulate different model and measurement errors and compare those errors against a modeled XCO2 signal from biospheric

fluxes. This section describes the simulated errors – both simulated atmospheric transport and observation or retrieval errors25

(Fig. 1). The SI describes these errors in greater detail.

We use estimated CO2 transport errors from Liu et al. (2011) and Miller et al. (2015) (Fig. 1a–b). The authors of those studies

run an ensemble of global meteorology simulations. CO2 is included as a passive tracer in the model, and all simulations use

the same CO2 flux estimate but have different meteorology. The authors estimate CO2 transport errors by examining the range

of CO2 mixing ratios in the ensemble of simulations. We choose one realization at random and subtract the mean of the30

ensemble from this realization to produce a set of residuals. These residuals are used as the estimated transport errors in this

study. The estimated errors are therefore a realization of plausible transport errors. As a result, the specific errors used here

have the same statistical properties as the other members of the ensemble but have different values in specific locations or at
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specific times. For example, the transport errors have a negative value across much of the Arctic in Fig. 1a. Other ensemble

members, by contrast, might have a slight positive bias in that region but will nevertheless have similar statistical properties as

the realization in Fig. 1a.

In addition to these transport errors, we simulate observation or retrieval errors. We use two different approaches to estimate

these errors and report results using both approaches. The true retrieval errors are unknown and any effort to estimate these5

errors will be uncertain; the two approaches used here provide two contrasting, plausible representations of these errors.

We generate the first set of possible retrieval errors using the parameters used to correct OCO-2 retrievals. This approach

entails several steps. We first try to reproduce the OCO-2 observations using a regression. The predictor variables in this

regression include seven different terrestrial biosphere model (TBM) estimates of net biome production and vegetation indices

that have been input into an atmospheric transport model. We also include anthropogenic, ocean, and biomass burning flux10

estimates in the regression. A subsequent section (Sect. 2.2) describes this regression in greater detail. We save the model-data

residuals from this regression. Subsequently, we regress these residuals on the parameters used in the OCO-2 bias correction.

These include aerosol optical depth and albedo, among other parameters (e.g., Wunch et al., 2011, see Sect. S1.4). Note that

these retrieval parameters are not run through an atmospheric transport model, unlike the TBMs and vegetation indices. We

estimate the observation or retrieval errors as the portion of the model-observation residuals that are described by these retrieval15

parameters. The regression considers many different TBMs and vegetation indices, and it should therefore do reasonably well

at reproducing patterns in the OCO-2 observations attributable to biospheric fluxes. Any remaining patterns in the data that

map on to retrieval parameters are likely due to retrieval errors rather than transport or flux errors.

We use a second approach to create an alternative set of simulated retrieval errors. We model XCO2 using four alternative

biospheric flux estimates (Sect. 2.2) and compute the model-data residuals for each set of simulations. We identify the grid20

cells in which all four sets of residuals have the same sign (i.e., generated using four different flux estimates) and identify all

of the model grid cells in which the residuals have variable sign. In the former case, we take the median of all four residuals as

the estimated retrieval error and, in the latter case, assign a retrieval error of zero.

2.2 Model selection overview

Model selection is a statistical approach common in regression modeling (e.g., Ramsey and Schafer, 2012, ch. 12). In many25

instances, a modeler must decide which predictor variables to include (or omit) in a multiple regression. Model selection will

identify the set of variables with the greatest power to describe the data. It also ensures that the regression does not overfit

the data. The inclusion of more predictor variables in a regression will always improve model-data fit; a regression with n

independent predictor variables will always be able to describe n data points perfectly. However, a model with n independent

predictor variables would overfit the data (for more on the dangers of overfitting, refer to Zucchini, 2000). To this end, one can30

use model selection to prevent overfitting and only include predictor variables that describe substantial variability in the data.

A number of existing top-down studies of CO2 use model selection (e.g., Gourdji et al., 2008, 2012; Shiga et al., 2014;

Fang et al., 2014; Fang and Michalak, 2015; ASCENDS Ad Hoc Science Definition Team, 2015). Several use the approach to

determine a set of environmental variables to include in a geostatistical inverse model (e.g., Gourdji et al., 2008, 2012). Other
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studies use model selection to determine whether existing CO2 observations can constrain flux patterns from the biosphere

(Fang et al., 2014) and from fossil fuel emissions (Shiga et al., 2014; ASCENDS Ad Hoc Science Definition Team, 2015). One

study uses model selection to assess the capabilities of a proposed satellite mission (ASCENDS Ad Hoc Science Definition

Team, 2015).

We use model selection to explore whether current OCO-2 observations are sufficient to detect broad spatial and temporal5

patterns in CO2 fluxes – within two large hemispheric regions, four continental regions, and seven biomes (Fig. 2). The last

goal is more challenging than the first. In each case, we use model selection to examine whether the flux patterns within each

region and each month help reproduce patterns in the OCO-2 observations.

We begin with a baseline model that has spatial and temporally constant fluxes for each region and month of interest. These

constant terms are analogous to the intercept in a multiple regression. These intercept terms are always included (e.g., Gourdji10

et al., 2008; Fang et al., 2014), and we use model selection to identify additional model outputs as necessary.

We subsequently model XCO2 using an atmospheric transport model (Sect. 2.4) and several different biospheric flux esti-

mates and vegetation indices. We then incorporate these model outputs as predictor variables in a regression and use model

selection to identify which patterns (if any) explain substantial variability in the OCO-2 observations. These patterns include

four TBMs with contrasting spatial features from MsTMIP, the Multi-scale Synthesis and Terrestrial Model Intercomparison15

Project (Huntzinger et al., 2013; Fisher et al., 2016a, b). Section S1.2 describes MsTMIP and the TBMs in greater detail. We

also include SIF (solar-induced fluorescence) from the Global Ozone Monitoring Experiment-2 (GOME-2, Joiner et al., 2013)

as well as EVI (enhanced vegetation index) and NDVI (normalized difference vegetation index) from the Moderate-Resolution

Imaging Spectroradiometer (MODIS; e.g., Huete et al., 2002). Note that we directly input these vegetation indices into an

atmospheric transport model as a surface ‘flux.’ The regression/model selection framework will adjust the magnitude of the20

transport model outputs to reproduce the OCO-2 observations, so the absolute magnitude of the vegetation indices is not im-

portant. Rather, we are interested in whether the patterns in these vegetation indices help reproduce patterns in the OCO-2

observations, potentially in combination with other indices or TBMs.

We offer up a relatively large number of flux models and vegetation indices as predictor variables, and at least some of these

products are therefore expected to correlate with real world CO2 fluxes. We should choose at least one of these variables using25

model selection if the OCO-2 observations are able to detect patterns in the surface fluxes. If we do not choose any additional

outputs with model selection, it suggests that the observations are not sufficient to detect spatial and temporal patterns in the

fluxes beyond a mean flux. We include a large number of candidate variables for a pragmatic reason. If model selection does not

pick any variable in a region, it is unlikely that there was a shortage of reasonable CO2 flux patterns available to choose from.

Rather, that result more likely reflects the maturity of current OCO-2 observations and atmospheric modeling capabilities.30

Model selection provides a convenient way to evaluate the information content of OCO-2 observations in their current state

of development. In theory, one could estimate CO2 budgets in a Bayesian inverse model. The accuracy or uncertainty in those

budgets would be indicative of the information content of the satellite observations. This approach, however, brings several

challenges. First, a modeler must choose a prior flux estimate. This choice is often subjective but will impact the final or

posterior uncertainty estimate (e.g., Chevallier et al., 2014). Second, a modeler must estimate several individual sources of35
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uncertainty as inputs to the inverse model. These uncertainties often have a complex statistical structure that is difficult to

characterize (e.g., Liu et al., 2011), and it is often challenging to account for all plausible sources of uncertainty. Third, inverse

modeling with satellite observations can be computationally intensive – both in terms of the number of atmospheric model

simulations required and the computational requirements of the statistical inverse model. Some studies have overcome the first

of these two challenges by using an ensemble of atmospheric models and/or inversion systems (e.g., Chevallier et al., 2014;5

Houweling et al., 2015). The size of the ensemble spread is indicative of the information content of the observations, and the

spread of the ensemble is usually larger than the uncertainty bounds estimated from any one inverse model. This type of study

also typically requires extensive coordination among multiple research groups. Model selection, by contrast, provides a simpler

metric to evaluate the information content of the observations.

The remainder of this sub-section describes the specific equations used for model selection. We quantitatively link the OCO-10

2 XCO2 observations with model outputs using a multiple regression:

Y = h(X) (1)

z = Yβ+ ε (2)

ε ∼ N (0,σ2V) (3)

In these equations, the vector z (dimensions n× 1) represents the XCO2 observations minus the model initial condition or15

spin-up (refer to the SI for more detail). The variable X (dimensionsm×p) is a matrix of p different flux patterns; the columns

of X can include biospheric CO2 flux estimates, remote sensing vegetation indices, an anthropogenic emissions inventory, a

biomass burning inventory, and/or an ocean flux estimate. The function h() is an atmospheric model that transports the fluxes

to the times and locations of the OCO-2 retrievals, and the resulting matrix Y has dimensions n× p. The variable ε is a n× 1

vector of residuals. These residuals are assumed to follow a multivariate normal distribution with a mean of zero, a variance of20

σ2, and a covariance structure given by V (dimensions n×n). The vector of coefficients (β, dimensions p× 1) are estimated

as part of the regression.

In this study, we choose a set of variables for X using model selection based on the Bayesian Information Criterion (BIC)

(Schwarz, 1978). We calculate a BIC score for many different candidate models. Each candidate model has a different set of

columns (X) – different combinations of flux models or remote sensing vegetation indices in different geographic regions and25

in different months.

The best model has the lowest BIC score:

BIC = L+ p ln(n∗) (4)

where L is the log likelihood of a particular candidate model (X). The log likelihood equation rewards models that improve

model-data fit, and the second term in the equation (p lnn∗) penalizes complex models; it ensures that the selected model is30
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not an over-fit. The log-likelihood has the following form:

L = n∗ ln(σ2) +
n∗

n
RSS (5)

RSS =
1
σ2
zTz− 1

σ2
zT Y(YT Y)−1YTz (6)

where RSS is the residual sum of squares and σ2 is defined above in Eq. 3.

Both the BIC and log-likelihood equations (Eq. 4 and 6) incorporate n∗, the effective number of independent observations.5

Jones (2011) discusses this concept in the context of the BIC. Just because the satellite provides n observations does not mean

there are n independent pieces of information. Accordingly, n∗ ensures that the model selection framework accurately assesses

the amount of independent information in the observations. It accounts for the fact that there are often spatial and temporally

coherent errors in the satellite observations or in the transport model. If all of the observations were independent (i.e., if V

were diagonal), then n∗ would equal n. However, we de-weight both components of Eq. 4 as the covariances in V increase.10

We could calculate n∗ directly using V−1 (Jones, 2011). In fact, several CO2 model selection studies incorporate V−1

directly into the equation for RSS (e.g., Mueller et al., 2010; Gourdji et al., 2012; Shiga et al., 2014). We use 5,079,165 obser-

vations (n) in this study, so V has 5.08× 106 rows and columns. As a result, the inverse of V is computationally intractable.

We instead estimate n∗ using an approach based on Griffith (2005), an approach that does not require computing V−1 directly:

15

n∗ =
n

1 + (
∑n

i=1
∑n

j=1,j 6=i Vi,j/n)
(7)

We estimate Vi,j in the vicinity of each observation i by fitting a local variogram model on the model-data residuals (ε) (See

Alkhaled et al. (2008) and Hammerling et al. (2012) for a description of local variogram analysis.). The SI describes this

implementation in greater detail.

2.3 OCO-2 data20

This study utilizes XCO2 observations from the OCO-2 satellite beginning with the first reported data (6 Sept. 2014) through

the end of 2015. We use the level 2 lite product, version B7.1.01; the lite product only includes good quality retrievals, unlike the

full OCO-2 level 2 product. We only include nadir and target mode retrievals in the analysis and exclude glint mode retrievals.

Recent work indicates biases in the glint retrievals relative to nadir retrievals (e.g., Wunch et al., 2017). The SI describes model

selection results with glint mode retrievals included, and the results are similar to those in the main manuscript without glint25

mode data.

2.4 Atmospheric transport model

We employ PCTM to model XCO2 using a variety of surface flux estimates and vegetation indices (Kawa et al., 2004). A

number of existing studies use this model to simulate atmospheric CO2 mixing ratios (e.g., Law et al., 2008; Gurney et al.,

2009; Baker et al., 2010; Schuh et al., 2010; Shiga et al., 2013; ASCENDS Ad Hoc Science Definition Team, 2015; Hammerling30
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et al., 2015). Several of these studies specifically use PCTM to model CO2 in the context of satellite missions (e.g., Baker et al.,

2010; ASCENDS Ad Hoc Science Definition Team, 2015; Hammerling et al., 2015). The PCTM configuration in this study

has global coverage, a spatial resolution of 1◦ latitude by 1.25◦ longitude, and 56 vertical levels. We both input the fluxes and

estimate atmospheric mixing ratios at a 3-hourly time resolution, and the model transports fluxes through the atmosphere using

winds from NASA’s Modern-Era Retrospective Analysis for Research and Applications (MERRA) (Rienecker et al., 2011).5

Section S1.1 includes more detail on the model initial condition and spin-up period.

2.5 Real and synthetic data simulations

We initially use real observations to examine whether current OCO-2 observations can detect biospheric flux patterns in each

month and each region of the globe. We consider the model selection results from 2014 part of an initial model spin-up period

and only report the results from 2015.10

We also consider non-biospheric fluxes for use in X. We include anthropogenic emissions from EDGAR v4.2 FT2010

(European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2013; Olivier

et al., 2014), climatological ocean fluxes from Takahashi et al. (2016), and biomass burning fluxes from the Global Fire

Emissions Database (GFED), version 4.1 (van der Werf et al., 2010; Giglio et al., 2013). We are not interested in anthropogenic

or marine fluxes per se. Rather, we want to account for these fluxes in the modeling framework and do not want any omissions15

to affect inferences related to biospheric fluxes. As a result, we do not separate these non-biospheric fluxes by region or month

because these sources are not the focus of this study; each of these sources is assigned a single column in X. Furthermore, we

do not include these variables by default within X, unlike the constant flux base model. Rather, they are included as candidate

variables within the model selection framework.

In the seven region case, X has a minimum of 112 columns and a maximum of 899 columns – 112 columns associated with20

the constant flux base model, 784 columns associated with biospheric flux patterns, and three columns associated with fossil

fuel, ocean, and biomass burning fluxes.

We further utilize synthetic data simulations in this study to evaluate the potential of OCO-2 observations and analyze the

effects of different model or retrieval/observation errors. In these simulations, we create synthetic XCO2 observations using

PCTM and the SiBCASA model. We then run model selection using these synthetic data. These model selection runs have the25

same setup as the real data simulations, except that the observations (z) are synthetic instead of real. Furthermore, we only

analyze the seven region case in the synthetic data experiments. This case is more stringent than the two and four region cases.

The seven biome case is also an important goal from a ecological perspective: one might want to estimate how CO2 fluxes

differ in different tropical forests or in different temperate forests (e.g., on different continents or in different climate zones).

The in-situ monitoring network in North America, for example, is able to detect flux patterns within most North American30

biomes (Fang et al., 2014), and this standard of detectability would be a rigorous goal for satellites to achieve.

The first model selection runs are an idealized case with no simulated errors (ε≈ 0). We then successively add simulated

error to the synthetic observations and evaluate how the model selection results change as the errors increase (Fig. 1). We

include three different types of errors: flux errors, transport errors, and observation or retrieval errors. Section 2.1 and the SI

8
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describe the simulated transport and retrieval errors. The flux errors further account for plausible inaccuracies in the predictor

variables within X. No TBM or vegetation index has a distribution that perfectly matches real-world CO2 fluxes. These errors

affect our ability to identify biospheric flux patterns using the OCO-2 observations and would affect inverse modeling studies;

the better the prior flux estimate in an inverse model, the more accurate and reliable the posterior flux estimate. We therefore

account for these flux errors in the synthetic data simulations. To this end, we remove SiBCASA as an option in the X matrix5

and choose among the other remaining patterns. This procedure simulates the plausible effects of imperfect TBMs or predictor

variables.

3 Results & discussion

3.1 The biospheric CO2 signal versus model and measurement noise

We compare simulated model and measurement errors against the atmospheric signal from biospheric fluxes (Fig. 3). The10

comparison provides an intuition of the ‘noise’ and the CO2 ‘signal’ given current modeling and observation capabilities. This

atmospheric CO2 signal from biospheric fluxes is marked, even when averaged across a total vertical column. Globally, the

XCO2 signal has a mean absolute value of 0.5ppm in February and 1.3ppm in July. The 10th and 90th percentiles are 0.04 and

1.4ppm in February and 0.06 and 3.8ppm in July. In July, the largest enhancements are in the northern hemisphere mid and

high latitudes while the largest enhancements during winter months are in the tropics and southern hemisphere.15

The simulated model and retrieval/observation errors are comparable to this XCO2 signal from biospheric fluxes. These

errors have a mean absolute value of 0.6ppm in both February and July. The 10th and 90th percentiles are 0.08 and 1.35ppm

in February and 0.08 to 1.25ppm in July. Using the alternative retrieval estimate, the errors and percentiles are 0.8, 0.02, and

2.1ppm in February and 1.4, 0.05, and 3.7ppm in July. Phrased differently, these errors, averaged across all nadir and target

data, equate to 115 – 122% of the mean biospheric CO2 signal in February and 43 – 107% in July, depending upon the retrieval20

error estimate. Figure 3 further indicates the spatial distribution of the atmospheric CO2 ’signal’ and ’noise.’ It is important to

note that the total number of OCO-2 observations is large (e.g., 268,671 and 343,053 nadir and target observations in February

and July, respectively, in the lite data file), but the distribution of these observations is heterogeneous across the globe. For

example, the data are concentrated in tropical and temperate regions and are sparse at high latitudes and regions with frequent

cloud cover (e.g., the Amazon).25

The relative magnitude of the errors provides an informative measure of the observations, but it does not tell the complete

story. A number of other considerations affect scientists’ ability to estimate surface fluxes using these observations. First,

inverse models leverage more than the point-wise signal to estimate surface fluxes; these models leverage complex spatial

and temporal patterns in the data to estimate surface fluxes. Second, the absolute magnitude or variance of the errors is only

one consideration. Another important factor is the spatial and temporal correlations or covariances in these errors. These30

covariances reduce the independent information in the data and can obscure patterns in XCO2 that are due to surface fluxes. As

a result, we construct real and synthetic data experiments to understand what these errors mean for estimating surface fluxes.
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3.2 Real data experiments

The model selection experiments using real data indicate the number or size of regions for which we can reliably constrain

biospheric CO2 budgets using current OCO-2 observations. We start the real data simulations with large hemispheric regions

and reduce the size of the regions until we are no longer able to detect any CO2 flux patterns or information beyond a mean

monthly flux in each region and each month. We would need to detect more than a mean flux from a given region if we are to5

reliably constrain fluxes across smaller regions.

The first real data experiment indicates whether the observations are sufficient to detect flux patterns within two large

hemispheric regions (Fig. 2). Figure 4a displays the number of months in which at least one pattern is chosen, broken down

by region. The results in Fig. 4a are grouped by season for convenience. Dark colors suggest excellent detectability for a given

region and season while light colors suggest limited detection abilities.10

Model selection identifies flux patterns in about half of all months. This outcome suggests that OCO-2 and the PCTM model

can be used to identify broad, hemispheric flux patterns. One important exception is the extra-tropics (e.g., the temperate,

boreal, and arctic region), in both spring and fall. Biospheric uptake in these seasons is less than the summer maximum, in

both the northern and southern hemispheres. As a result, flux patterns in these areas are not as heterogeneous and not readily

detectable using the satellite observations. This result also indicates that the OCO-2 observations can be used to reliably15

constrain CO2 budgets at scales smaller than hemispheric in about half of all cases.

In a second experiment, we try to identify flux patterns within four, smaller regions using OCO-2 observations and model

selection (Fig. 4b). We choose flux patterns in 29% of all regions and months using model selection. This experiment is more

demanding than the first, and it is therefore unsurprising that we choose fewer flux patterns; flux patterns within these four

continental regions are often less heterogeneous than across the two large hemispheric regions in the first experiment. This20

result suggests that inverse modeling studies would be able to constrain CO2 budgets at more detailed spatial scales in about

one third of all regions and months.

The third and final experiment includes seven biomes, and we choose relatively few flux patterns using model selection in

this final experiment (16% of all possible regions and months, Fig. 4c). This result suggests a limited ability to detect biospheric

flux patterns within each of the seven global biomes. Inverse modeling studies would thus be able to uniquely constrain CO225

budgets across smaller regions in only a small handful of cases (e.g., 16% of all possible regions and months). These results

appear similar to a recent study using current GOSAT retrievals. Houweling et al. (2015) compare an ensemble of inverse

modeling flux estimate using GOSAT. Estimates show good agreement across very large regions (e.g., within 20% for global,

annual CO2 budgets) but disagree by over 100% over subcontinental-sized TransCom regions (e.g., Gurney et al., 2002).

As part of model selection, we also estimate the effective number of independent OCO-2 observations, referred to as n∗ (Eq.30

7). Correlations or covariances in transport and retrieval errors will reduce the value of n∗. Our estimate is similar among all

of the real data experiments and is approximately 4000 (4060 for the two region case, 3600 for the four region case, and 3540

for the seven region case). By comparison, the total number of OCO-2 observations during the study period (n) is 5.08× 106.

This ratio corresponds to one independent observation per ∼1200 OCO-2 lite retrievals.
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3.3 Synthetic data experiments

The goal of the synthetic data simulations is to understand the challenges that influence the real data results. If future efforts

can mitigate these challenges, then inverse modeling studies would be able to reliably constrain flux patterns and CO2 budgets

across individual biomes or even smaller regions.

We first construct an idealized synthetic data study without any errors (Fig. 5a), and we choose a flux pattern for every biome5

in every month using model selection. This case study indicates that the OCO-2 observations are not insensitive to biospheric

fluxes at the surface. This result is not necessarily an obvious one. Some satellite instruments, particularly those that measure

in the thermal infrared, are most sensitive to mixing ratios in the upper troposphere and have limited sensitivity to the surface

(e.g., AIRS, see Chevallier et al., 2005). OCO-2, by contrast, observes in the shortwave infrared and is sensitive to CO2 mixing

ratios throughout the troposphere.10

Subsequent model selection experiments include at least one error type, and these results all look different from the first,

idealized case. We choose patterns in fewer regions and months with model selection when we include one error type (Fig. 5b-

d). Of the three different error types, observation or retrieval errors have the largest impact on the model selection results (Fig.

5d). Note that the retrieval errors used to generate Fig. 5d are those simulated in Fig. 1c-d. Section S2.2 describes the model

selection experiments using an alternative set of retrieval errors (Fig. 1e-f), and these results are similar to those presented in15

the main manuscript (Fig. 5).

Notably, the addition of any error, large or small, appears to hinder flux pattern detection in marginal biomes – biomes with

small fluxes and/or small spatial and temporal variability (e.g., tundra and deserts). Arguably, this result is unsurprising. OCO-2

observations are sparse in many cloudy, high latitude regions, and CO2 fluxes are weak at high latitudes and in deserts. Fluxes

from these regions are quickly obscured by even modest errors in the model or observations. Future CO2 remote sensing efforts20

would have difficulty detecting biospheric patterns within these areas. Other regions, like forests and grasslands, have larger

and/or more heterogeneous fluxes, and these patterns should be easier to detect with satellite observations.

The experiments in Fig. 5e-g include two different error types, and we choose fewer months and regions with model selection

relative to the previous cases. The experiment with transport and flux errors (but not retrieval errors, Fig. 5e) still show good

detectability during the summer months and in temperate and tropical forest and grassland biomes. By contrast, the experiments25

that include retrieval errors (Fig. 5f-g) show limited detectability in all biomes and seasons.

The last experiment (Fig. 5h) includes all error types. We obtain positive results in fewer regions in fewer months relative

to other cases. These results are broadly consistent with the real data experiments; we choose a similar number of regions and

seasons in both this experiment and the real data experiment (Fig. 5h). This consistency indicates that the synthetic simulations

likely mirror real-world conditions. Note that the estimate for n∗ in this final synthetic experiment is about half that of n∗ in the30

real data experiments (n∗ = 1630). These synthetic experiments may therefore slightly overestimate the spatial and temporal

covariance of the errors relative to real data.

Overall, the synthetic simulations suggest that observation or retrieval errors play a salient role relative to other error types

(e.g., transport errors or flux errors, Fig. 5). Spatial and temporal error covariances and biases may be at least partly to blame.
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The estimated transport errors are spatially and temporally correlated on synoptic time scales (e.g., Miller et al., 2015). These

scales are generally smaller than the biomes and hemispheres examined in this study. As a result, these errors will average

down over time and space, and this averaging will mitigate the impact of these errors on the results. This statement, of course,

only holds if there are no large-scale biases in the meteorology. The simulated observation or retrieval errors, by comparison,

covary across longer spatial and temporal scales. These errors correlate with retrieval parameters like aerosol optical depth5

or albedo that often change at broader seasonal or regional scales. The greater these error correlations, the less these errors

average down across space and time, and the greater impact these errors have on the utility of XCO2 observations. A reduction

in the spatial and temporal coherence of these errors would improve the model selection results.

4 Conclusions

The OCO-2 satellite offers a new, global window into atmospheric CO2 and CO2 fluxes at the Earth’s surface. This study10

explores a first step in realizing these capabilities; we evaluate the extent to which current OCO-2 observations can detect

patterns in biospheric CO2 fluxes and constrain monthly CO2 budgets.

We find that OCO-2 observations, in their current state of development, often provide a reliable constraint on CO2 budgets

across continental or hemispheric regions. By contrast, we find that current observations can provide a unique CO2 estimate

across smaller regions in only a handful of cases. As a result, inverse modeling studies are unlikely to constrain regional fluxes15

at fine spatial and temporal scales given the current maturity of the observations. Regional CO2 budgets estimated using these

observations would be highly uncertain and prone to biases.

These results do not reflect any inherent limitation in the sensitivity of the OCO-2 satellite. Rather, they are likely the product

of observation or retrieval errors and to a lesser extent atmospheric transport errors. Hence, the value or potential of the OCO-

2 observations is greater than these results might otherwise imply. For example, our simulated retrieval errors often covary20

across large regions and across a month or more. Future improvements to retrieval algorithms could reduce both the variance

and covariance of these errors, enabling confident CO2 flux constraints across smaller regions.

Even with these limitations, current OCO-2 observations provide new information on CO2 fluxes for many regions of the

globe. On one hand, in situ data appear to provide a stronger constraint on CO2 fluxes in some well-instrumented regions of

the world, like North America (e.g., Fang et al., 2014). Our results using OCO-2 and seven global biomes are less successful.25

On the other hand, in situ observations are sparse in many regions of the world, including in most of the tropics, Africa,

South America, and Asia (e.g., NOAA Global Monitoring Division, 2017). Current OCO-2 observations bring new monitoring

capabilities to these regions that are unlikely to be matched by in situ observations within the near future.

Furthermore, a number of new satellite missions will launch in the next five years. Multiple sets of observations, in tandem,

will provide a more detailed, robust constraint on CO2 fluxes. For example, the GOSAT-2 satellite will monitor atmospheric30

CO2 with better accuracy relative to the original GOSAT satellite (Japan Aerospace Exploration Agency, 2017). This im-

provement in both the quality and overall quantity of CO2 observations will enable more detailed estimates of CO2 fluxes. In

addition to GOSAT-2, the OCO-3 mission will observe CO2 from the International Space Station at a different locations and
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times of day relative to OCO-2 (NASA Jet Propulsion Laboratory, 2017). This feature will provide a stronger constraint on

spatial and temporal variations in CO2 fluxes. In addition, observation or retrieval errors appear to be a key factor in our results

and will likely be a challenge for these future missions. Work on the OCO-2 retrieval algorithm will inform these upcoming

missions, so improvements to the OCO-2 retrievals will likely improve the data capabilities of future missions as well. Further

improvements to the satellite retrieval and atmospheric transport modeling could enable OCO-2 and future missions to provide5

detailed CO2 budgets for much finer regions.
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Figure 1. This figure displays the simulated synthetic data errors (i.e., simulated ε): the simulated atmospheric transport errors (a-b), the

simulated observation/retrieval errors (c-d), and a second, alternative set of observation/retrieval errors (e-f). The left-hand panels display

the mean of the errors within each PCTM grid box across the entire 2014–2015 study period, an indication of the correlation or covariance

among the errors. By contrast, the right-hand panels display the standard deviation of the errors or residuals within each PCTM grid box.
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Figure 2. The two hemispheric regions (a), four continental regions (b), and seven biomes (c) used in this study. The biomes are based on a

world biome map by Olson et al. (2001). The two and four region maps are amalgamated versions of the biomes.

20

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-813
Manuscript under review for journal Atmos. Chem. Phys.
Discussion started: 18 September 2017
c© Author(s) 2017. CC BY 4.0 License.



−
6

0
−

2
0

2
0

6
0

a) XCO2 signal from the biosphere: February

c) Simulated errors: February

b) XCO2 signal from the biosphere: July

d) Simulated errors: July

e) Alternate simulated errors: February

−150 −100 −50 0 50 100 150

f) Alternate simulated errors: July−
6

0
−

2
0

2
0

6
0

−
6

0
−

2
0

2
0

6
0

−2 −1 0 1 2

ppm

−150 −100 −50 0 50 100 150

Figure 3. This figure compares the total column CO2 or XCO2 signal from biospheric fluxes against simulated model and observation errors.

Panels a and b display the XCO2 signal from biospheric CO2 fluxes for February and July, respectively. We estimate this signal using the

SiBCASA flux model and PCTM. Also note that the XCO2 signal for February and July includes CO2 fluxes from the months of February

and July, respectively, and no fluxes from previous or subsequent months. Panels c and d represent the sum of both simulated observation

and atmospheric transport errors (Sect. 2.1). Panels e and f show the sum of these errors using an alternate estimate for the retrieval errors.
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Figure 4. The results of the model selection experiments using real data. We select flux patterns for a greater fraction of regions/months in

the two region case (a) than in the four or seven region cases (b and c). The different colors indicate the number of months in which model

selection chooses a flux pattern for a given region.
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Figure 5. Model selection results for the synthetic data experiments. The first column (a) shows an experiment with no errors in the synthetic

observations. The results of that experiment are ideal, and we choose a flux pattern in every month and every region using model selection.

Subsequent panels (b-h) show the results with one, two, and three types of errors included. Fewer regions and seasons are selected in these

experiments. The plot signals that observation or retrieval errors likely play a key role.
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