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We would like to thank the reviewer for ideas and suggestions for the manuscript.
This feedback will be very helpful for updating and improving the manuscript. Below,
we have included both the reviewer’s suggestions (in bold) along with the associated
changes we plan to make.

• I found it particularly difficult to follow the logic of the paper and to evalu-

ate the soundness of the approach. As a preliminary step for publication,

the authors should seriously invest in making their study accessible to the
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broad audience of ACP.

This is very helpful feedback for framing the paper and describing the compo-
nents of the methodology. We plan to re-frame the paper logic in several ways to
make it more accessible to a broad audience. First, we plan to expand the overall
description of the paper and description of the general approach at the end of
the introduction (pg. 2, line 28 to pg. 3, line 21). We will describe the paper nar-
rative in non-technical terms to give the reader an intuitive, high-level overview
of the paper logic and flow. This description would provide better intuition for a
wide audience of readers, especially those readers who may skip over the more
technical information in the methodology (sect. 2).

Second, we will simplify the methods section (sect. 2) so that it is accessible to
a broad audience. For example, this section contains seven equations. We will
move several of these equations to the SI (e.g., Eq. 4-7) and instead expand the
non-technical portions of the description. In this way, the paper will still include
all of the technical detail for readers who want it, but the description in the main
paper will be accessible to a broader audience.

Third, we will provide more references to existing studies that use similar ap-
proaches. Readers who are interested in more details on the methodology could
gain greater context using these references. We will make this change throughout
the manuscript and particularly from pg. 6, line 10 to pg. 7, line 20.

• The paper concludes to a limited utility of OCO-2 retrievals for flux esti-

mation with current retrieval algorithms and transport model. This may be

correct, but is orthogonal to the claim made by Liu et al. (2017). The dis-

agreement should be clearly stated.

We will discuss this difference in the revised version of the manuscript. Liu et
al. (2017) was published after this ACPD manuscript, so it is only now possible
to make this comparison. Liu et al. use an atmospheric inversion to estimate
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CO2 fluxes for different tropical regions of the globe. They estimate uncertainties
in their regional budget estimates, and those uncertainties are generally smaller
than implied by the current ACPD manuscript.

Liu et al. (2017) use a 4DVAR approach and estimate the posterior uncertainties
using a small number of Monte Carlo simulations. However, these uncertainty es-
timates are likely to be underestimates – due to compromises required to make
the inversion computationally tractable. For example, most satellite-based inver-
sions like Liu et al. (2017) do not fully account for error correlations or biases in
the observations and atmospheric model; these studies typically use a diagonal
error covariance matrix. Furthermore, Liu et al. (2017) and other studies use a
small number of Monte Carlo simulations to estimate the errors (e.g., 60 simula-
tions in Liu et al. (2014)). By contrast, Ribgy et al. (2011) and Ganesan et al.
(2014) argue that 100,000 and 25,000 realizations are necessary to robustly es-
timate uncertainties for their particular inverse modeling problems. Note that it is
not always possible to generate large numbers of realizations or fully account for
error correlations in current satellite-based inverse models due to computational
constraints. In the ACPD manuscript, we do not use a 4DVAR inverse model for
this reason.

Consistent with this interpretation, results from the OCO-2 flux team ongoing
intercomparison study indicate much larger uncertainties in estimated fluxes.
The results are broadly consistent with those presented in the current ACPD
manuscript (e.g., Crowell et al. 2017); preliminary results indicate that OCO-2
observations currently provide robust constraints for hemispheric regions but pro-
vide weaker constraints for individual continents or subcontinents. More specifi-
cally, recent flux team comparisons include CO2 flux estimates from about eight
different inverse modeling groups, and the level of disagreement among these
estimates provides a measure of uncertainty in current top-down flux estimates
that use the same version of the OCO-2 retrievals as applied in the current work
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and in Liu et al. (2017). These estimates (using nadir observations) often show
relatively good agreement for total hemispheric terrestrial CO2 budgets, with the
disagreement among inverse modeling estimates being smaller than the total
CO2 budget for a given hemisphere. The opposite is often true of CO2 budgets
estimated for smaller regions (e.g., Sub-Saharan Africa or Tropical Asia), with
the disagreement among inverse modeling estimates usually being larger than
the total budget. This ongoing work is consistent with the interpretation in the
current manuscript.

• Section 3.1 and the first part of Section 3.3 reinvent the wheel. See, e.g.,

Olsen and Randerson (2004) and Worden et al. (2017). Similarly, l. 23-28 are

just an adaptation of an old argument (Rayner and O’Brien, 2001).

The studies mentioned above investigate several requirements for constraining
carbon budgets with satellite observations. Rayner and O’Brien (2001) explore
the measurement precision required for space-based constraints on surface CO2

fluxes. Olsen and Randerson (2004) model XCO2 column enhancements across
the globe due to surface CO2 fluxes and compare them with surface enhance-
ments. Lastly, Worden et al. (2017) estimate the errors in OCO-2 XCO2 obser-
vations.

As the reviewer points out, the concepts used in Sects. 3.1 and 3.3 are, in part,
built on these earlier approaches. However, the purpose of this section is not
to develop new concepts. Rather, we build on existing concepts to assess real
OCO-2 data. Rayner and O’Brien (2001) and Olsen and Randerson (2004), by
contrast, did not have any real XCO2 observations at their disposal, only sim-
ulations of possible future observations. Furthermore, we feel that these sec-
tions provide useful context and improve the manuscript narrative. Much of the
manuscript presents the results of statistical experiments. These experiments
use, as inputs, XCO2 observations from OCO-2 and estimates of atmospheric
transport and satellite retrieval errors. Sect. 3.1 provides visualizations of those
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inputs.

In the revised manuscript, we will cite the studies listed above, clarify that we
use concepts from the studies, and explain that we apply those concepts to real
observations from OCO-2. We will also compare the retrieval errors in Sect. 3.1
against those in Worden et al. (2017). Lastly, we will shorten the first part of Sect.
3.3. That section presents the synthetic study results with no errors; these results
serve as a baseline for subsequent results that do include simulated errors.

• The retrieval error simulations of Fig. 3 look overly optimistic in compari-

son to the validation results of Wunch et al. (2017).

Wunch et al. (2017) compare OCO-2 XCO2 retrievals against XCO2 observations
at TCCON sites (the Total Column Observing Network). They report an average
site bias of 0.22 ppm for comparisons between land nadir retrievals and TCCON
sites. They also report an average root mean squared error of 1.31 ppm for the
land nadir and TCCON comparisons (Table 3 in Wunch et al. 2017).

The errors in Fig. 3c-3f do appear slightly smaller than the numbers reported
above. However, the errors in Fig. 3 are the mean of individual sounding errors
in February and July, respectively – meaned within each PCTM grid box for an
entire month. Hence, the errors displayed in this plot will be somewhat smaller
than the errors on individual soundings (as reported in Wunch et al. 2017). By
contrast, Fig. 1 shows the standard deviation of the estimated retrieval errors
(instead of the mean as in Fig. 3). These standard deviations are larger than the
mean and broadly consistent with the errors estimated by Wunch et al. (2017).

In the revised manuscript, we will clarify that the errors displayed in Fig. 3 are
monthly means. Furthermore, we will compare and contrast the estimated errors
with those estimated in Wunch et al. (2017) and in Worden et al. (2017).

• Section 3.2 looks for flux patterns in XCO2. Most top-down studies from

OCO-2 would use a Bayesian approach where flux-error patterns are looked
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for. This is more challenging because the signal is even smaller (while the

paragraph in-between p. 5 and p. 6 suggests that the two approaches are

rather equivalent with respect to the measurement information content).

One should therefore discuss this limitation and further tone down the con-

clusions of the paper.

The reviewer makes a great point, and we will add a discussion of this point to
Sects. 2.2 (pgs. 5-6) and 3.2. The approach used here searches for flux patterns
as they manifest in XCO2. Phrased differently, the approach examines s as seen
through the OCO-2 observations, where s are the fluxes. A Bayesian approach,
by contrast, estimates s � sp, where sp is the prior flux estimate. This residual
flux (s � sp) is presumably smaller than the total flux (s). As a result, inversions
essentially estimate a smaller flux signal than the flux signal examined in this
study.

The reviewer’s argument could therefore imply more pessimistic results than pre-
sented in the current manuscript – that the CO2 flux constraint is weaker than
reported in the present study. This issue, however, may also be more nuanced.
If the prior estimate is poor, the residual flux (s � sp) will be large. These large
flux patterns should be relatively easy to detect using XCO2 observations, but
the inversion will need to rely heavily on the XCO2 observations (and not on the
prior) to make a robust posterior estimate. By contrast, if the prior estimate is
very accurate, the residual flux (s � sp) will be small. The inversion will need to
estimate a small flux signal, a signal that may be difficult to parse using XCO2

observations. However, the posterior flux estimate will still be relatively robust
due to the accurate prior.

Furthermore, this issue is specific to the setup of each individual inverse model.
For example, existing CO2 inversions use a wide variety of prior flux models.
Mueller et al. (2008) use a non-informative prior (i.e., a flat prior) that contributes
little information on the fluxes. In addition, many geostatistical inverse modeling
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studies use environmental driver data in place of a tradition prior flux estimate
(e.g., Gourdji et al. 2008; 2012). These studies choose environmental driver
data using a model selection approach in a manner that is somewhat akin to the
current ACPD manuscript. In the present study, we instead try to examine more
fundamental questions about the robustness of the flux constraint, questions that
are independent of subjective choices specific to each inverse model setup.
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We would like to thank the reviewer for providing ideas and suggestions. These sug-
gestions will be very helpful as we revise the manuscript. Below, we have listed each
of the reviewer’s comments (in bold) and the associated changes we plan to make to
the manuscript.

• In Figure 3 the single sounding error of OCO-2 is compared to the signal
from uncertainties in biospheric CO2 fluxes. The question is if this com-
parison makes much sense, since the error budget of OCO-2 has a large
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random component. The impact of biospheric flux uncertainties is more
coherent in space and time, i.e. has very different statistics. Because of
this the signal/noise ratio could look very different after space-time averag-
ing of the data.
Figure 3 in the current ACPD manuscript shows the mean of all soundings in each
PCTM model grid box for February and July, respectively. Reviewer 1 brought up
this question as well, and we will clarify this point in the revised manuscript.
As the reviewer points out, the signal-to-noise ratio in Fig. 3 will vary depending
on space-time averaging. With that said, many inverse modeling studies report
monthly CO2 flux totals, so the monthly averaging in Fig. 3 is particularly per-
tinent. Furthermore, the uncertainties in top-down CO2 flux estimates change
when averaged to aggregate space-times scales, so this issue is also a consid-
eration in inverse modeling, not just the analysis in Fig. 3.
We will revise the discussion of Fig. 3 in several ways to account for the reviewer’s
suggestion. First, we will explain that the signal-to-noise ratio varies depending
upon the space and time scales considered, and we will explain why this monthly
scale is a particularly useful time period to examine. Second, we will emphasize
that this signal-to-noise ratio provides a useful intuition or feel for the data, but we
will point out that top-down inverse models leverage the signal in much more so-
phisticated ways. The limitations of this signal-to-noise comparison thus motivate
subsequent analyses in the manuscript.

• It is not clear to me what fraction of the flux uncertainty space is spanned by
the flux patterns that are used in the regression. Probably many of the pat-
terns are not independent, in which case it is not a surprise that many are
not selected. This probably goes back to the question whether the range of
estimates of the underlying models provides a fair estimate of the overall
uncertainty. This is not easy to prove, but with only a single ocean pattern
and a single anthropogenic emission pattern it seems conceivable that the
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uncertainty space is underestimated (by the way, how about uncertainties
in land-use change?). Some discussion is needed of how such factors may
influence the results, and what the implication could be for the estimated
OCO-2 performance.

This factor can influence the results, and we will add a discussion of this point to
the manuscript. We explore this possibility in the synthetic data experiments (Fig.
5b in the ACPD manuscript). In that experiment, we create synthetic XCO2 obser-
vations using the SiBCASA flux model and an atmospheric transport model. We
then run model selection, but we do not include SiBCASA as a possible predictor
variable in the regression. In other words, model selection can include several
different terrestrial biosphere models (TBMs) in the regression, but it cannot in-
clude the TBM that was used to generate the synthetic data in the first place. Fig.
5b in the current ACPD manuscript shows the result. Model selection does not
select patterns in every region and every month, but it still selects flux patterns
for most regions and months.

This issue also affects Bayesian inverse models. These inversions use a prior flux
estimate as an initial guess for the fluxes. If the prior flux estimate is inaccurate,
the prior error covariance matrix will have large variances/covariances, and the
posterior uncertainties will likely be large. If the prior flux estimate is skilled,
the prior error covariance matrix will have small variances/covariances, and the
posterior uncertainties will be smaller. In other words, the availability and skill
of prior flux models (i.e., TBMs) affects the robustness and uncertainty of the
inverse modeling estimate.

• SPECIFIC COMMENTS

• page 1, line 23: ’unlike previous missions’ .. but this was the case also for
GOSAT and SCIAMACHY.

We will change the text accordingly. In the revised text, we will remove the
C3
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phrase “Unlike previous missions” and briefly explain the similarities and differ-
ences among OCO-2, GOSAT, and SCIAMACHY.

• page 2, line 12: references are needed to the recent special issue on OCO-2
in Science.

We will rewrite this paragraph and discuss studies from the new Science special
issue. This special issue was published after the present ACPD manuscript, and
it is now possible to reference these papers in the manuscript.

• page 3, line 17-20: unless ’region’ is defined more quantitatively these sen-
tences are too vague.

We will revise these sentences accordingly. In response to feedback from re-
viewer 1, we plan to re-write the second half of Sect. 1 to describe the overall
objectives and approach in a way that is more accessible to a broad audience.
To that end, we will more concisely define the word “region”.

• page 3, line 19-23: Explain the motivation for this second approach? Is one
considered to be more realistic than the other?

We will clarify the text in this paragraph. We do not consider one approach to be
more accurate than another per se. Rather, it is challenging to estimate realistic
retrieval errors because these errors are unknown (except possibly at TCCON
sites). We asked several colleagues for advice on how to estimate these errors,
and different colleagues recommended different approaches that produce differ-
ent retrieval error estimates. As a result, we decided to use two different retrieval
error estimates – to ensure that the results were not contingent upon the specific
method used.

• page 5, line 9: the constant fluxes need to be defined more quantitatively.
What did you use? The same flux for each region and month? Are they
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estimated per region? Does it mean that the regressed flux patterns have
zero mean? If so please mention.

We will clarify this topic in the manuscript, and we will define these constant terms
more quantitatively.

The constant flux is estimated for each region and each month. This constant flux
is included as a predictor variable in the regression, and the regression frame-
work scales the magnitude of the constant flux in each region and month to match
the observations.

Equations 1 and 2 in the manuscript describe the overall regression and illustrate
these relationships quantitatively:
Y = h(X)
z = Y� + ✏
where X are the predictor variables in the regression, h() is the atmospheric

transport model, z are the observations, � are the coefficients estimated by the
regression, and ✏ are the regression residuals. In this setup, the constant flux
terms are individual columns in X. Each column has a value of one in a given
region and month and has values of zero elsewhere. Phrased differently, these
constant flux terms are analogous to the y-intercept terms in the regression. Also
of note, the regression residuals ✏ have a mean of zero, but the regressed flux
patterns will not have a zero mean.

We will make several changes to clarify this topic in the manuscript. We will move
Eqs. 1-2 earlier in Sect. 2.2 and describe these equations alongside the descrip-
tion of the constant or intercept terms. In response to reviewer 1, we will move
several equations to the SI and simplify the description in Sect. 2.2. Instead,
we will dedicate more description to Eqs. 1-2 and will explain how the different
predictor variables (including the constant or intercept terms) fit into these equa-
tions.
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• page 7, line 25: should we conclude that OCO-2’s glint mode retrievals do
not provide significant independent information?

We will provide additional discussion of this point in the manuscript. The state-
ment above may be too bold to make in the manuscript, especially in context of
the reviewer’s next suggestion below. Furthermore, the OCO-2 nadir and glint ob-
servations have different biases in the version 7 OCO-2 data product (the product
used in this manuscript), and these differing biases make it difficult to use both
types of observations in the same analysis. For example, there is a step change
in the XCO2 observations at the coastline in some locations (e.g., in parts of
Africa). In these cases, the nadir mode observations may be sensitive to flux pat-
terns, and the glint mode observations might be sensitive to flux patterns. How-
ever, an inverse model that uses both observation types together might produce
unrealistic flux patterns due to the step change in XCO2 at the coastline.

• page 8, line 18: I would argue that the ocean is too strongly constraint
by allowing only a single pattern to be adjusted in the regression. If more
degrees of freedom would be assigned to the ocean, wouldn’t that influence
OCO-2’s flux resolving performance over land?

We will add this caveat to the manuscript. If there are large, unresolved CO2

fluxes from the ocean, it could influence top-down inferences of terrestrial bio-
spheric fluxes. With that said, ocean fluxes on sub-daily time scales are much
smaller than terrestrial fluxes, and the spatial patterns in these fluxes are much
more diffuse than in most terrestrial regions. As a result, small errors in the dis-
tribution of marine CO2 fluxes should not dramatically change the detectability of
terrestrial fluxes.

• page 8, line 21: this means that the biospheric flux patterns are specified
per region and month, or?

This is correct. We tag CO2 fluxes from each region and each month in the
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PCTM atmospheric transport model. In other words, we incorporate flux patterns
into PCTM at the PCTM model resolution; the model ingests CO2 fluxes at a 1�

latitude by 1.25� longitude spatial resolution and 3-hourly time resolution (Sect.
2.4 of the current ACPD manuscript). We then run the PCTM model once for
each region and each month of interest. For each of these PCTM runs, we input
flux patterns for the region and month of interest and zero out CO2 fluxes for other
regions and months. We will clarify that point in the associated paragraph of the
revised manuscript.

• page 8, line 27: ’stringent’ in what sense? (I’d say they are rather less well
contraint)

We agree that “stringent” is not be the best or most descriptive word here. We
will replace the word “stringent” with the following phrase: “This case is more
demanding of the observations than the two and four region cases; it is more
difficult to obtain a robust constraint for seven regions than for two or four global
regions.”

• page 8, line 31: Would this goal be achieved if the 7 biomes could be re-
solved by OCO- 2? Some quantitative information on how to relate surface
and satellite measurements is needed here.

We will remove this sentence from the revised manuscript. Fang et al. (2014) ex-
amine CO2 fluxes for North American biomes while the present ACPD manuscript
focuses on global biomes. Hence, the two studies are not equivalent.

• page 9, line 26-32: Should the reader conclude from this that we don’t know
whether the signal/noise analysis in figure 3 means anything?

We think that interpretation would be too bold. We feel that the signal/noise anal-
ysis provides useful context; it is useful to show the reader what the biospheric
XCO2 signal looks like, how it varies across the globe, and how it varies by month.
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The results in Sect. 3.2 and 3.3 are based on a statistical model, and we wanted
to provide an intuitive illustration of the signal and noise before presenting statis-
tical results that use those inputs.

• page 10, line 16: ’scales smaller than hemispheric in about half of the
cases’. How can you infer information about hemispheres from a split be-
tween Tropics and Extra Tropics? The way I look at it only a single pattern
is selected in 3 out of 4 seasons. Is that sufficient to resolve two pieces of
information? The text suggests that OCO-2 does better than 2 ...

The reviewer makes a good point. A pattern is selected in approximately half
of the regions and months. However, in three of the four seasons, not a single
pattern is selected for one of the two hemispheres. We will add this description
to the text to better represent the results.

• page 10, line 18: ’we choose flux patterns ...’ does this mean 1 or more?

This statement is correct. We will revise this paragraph accordingly by changing
“flux patterns” to “at least one flux pattern.”

• page 10, line 32: Why is n* going down with the number of regions?
Wouldn’t you expect the residuals to become more random when fitting
more regions? Shouldn’t that make V more diagonal?

There are more unexplained flux patterns in the 7-region case – because model
selection selects fewer variables than in the two or four region cases. As a result,
the regression residuals have large covariances, and V is less diagonal. The
variable n⇤ is smaller as a result.

A brief overview of the regression helps elucidate why this is the case. The
regression is iterative. We make an initial guess for n⇤, run the regression with
model selection, adjust n⇤, and rerun the regression with model selection. We
continue iterating until n⇤ and the regression converge – until they stop changing
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from one iteration to the next. As a result, the estimate for n⇤ depends on which
variables are included in the regression. We select a relatively small number of
variables in the 7-region case, so there are many unexplained patterns in the
residuals. The estimate for n⇤ is smaller as a result.

• page 11, line 31: Or underestimate noise? Is there a factor in the synthetic
experiments that accounts for retrieval noise?
The reviewer makes a great point; the estimated retrieval errors could overesti-
mate the covariances but underestimate the variances (i.e., white noise). We will
add a sentence to the paragraph explaining this point.

• page 11, line 33: It doesn’t really become clear what is mean by this “salient
role”. Can this be seen in the presented results?
This statement references the synthetic data experiments in Fig. 5. In the revised
manuscript, we will specifically reference the synthetic data experiments and Fig.
5.

• page 12, line 19: Does the relative role of transport and measurement un-
certainty follow from the results of this study, or is this just speculation? It
seems to me that the study should provide information on this.
We will clarify this result in the revised manuscript. We explore the relative roles
of transport and measurement/retrieval uncertainty in the synthetic data experi-
ments (e.g., Fig. 5 in the current ACPD manuscript). In the revised manuscript,
we will make reference to the figure here and explicitly tie this statement back to
the synthetic data experiments.

• page S4, line 141: ‘Consistency check’. What potential inconsistency is
checked? Do you mean sensitivity or robustness check?
We agree that it is better to use the term “sensitivity” or “robustness” instead of
“consistency.” We will change the text accordingly.
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• TECHNICAL CORRECTIONS

• page 2, line 7: ’the the’

Thank you for pointing out this typo. We will correct it in the revised manuscript.

Interactive comment on Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-813,
2017.
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Abstract.

NASA’s Orbiting Carbon Observatory–2 (OCO-2) satellite launched in summer of 2014. Its observations could allow scien-

tists to constrain CO2 fluxes across regions or continents that were previously difficult to monitor. This study explores an initial

step toward that goal; we evaluate the extent to which current OCO-2 observations can detect patterns in biospheric CO2 fluxes

and constrain monthly CO2 budgets. Our goal is to guide top-down, inverse modeling studies and identify areas for future5

improvement. We find that uncertainties and biases in the individual OCO-2 observations are comparable to the atmospheric

signal from biospheric fluxes, particularly during northern hemisphere winter when biospheric fluxes are small. A series of

top-down experiments indicate how these errors affect our ability to constrain monthly biospheric CO2 budgets. We are able

to constrain budgets for between two and four global regions using OCO-2 observations, depending on the month, and we can

constrain CO2 budgets at the regional level (i.e., smaller than seven global ecoregions) in only a handful of cases (16% of all10

regions and months). The potential of the OCO-2 observations, however, is greater than these results might imply. A set of

synthetic data experiments suggests that observation or retrieval errors have a salient effect. Advances in retrieval algorithms

and to a lesser extent atmospheric transport modeling will improve the results. In the interim, top-down studies that use cur-

rent satellite observations are best-equipped to constrain the biospheric carbon balance across only continental or hemispheric

regions.15
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1 Introduction

The OCO-2 satellite launched on July 2nd, 2014 and is NASA’s first mission dedicated to observing CO2 from space. The

satellite measures the absorption of reflected sunlight within CO2 and molecular oxygen (O2) bands at near infrared wave-

lengths. These measurements are analyzed with remote sensing retrieval algorithms to yield spatially-resolved estimates of

the column-averaged CO2 dry air mole fraction, XCO2. The satellite flies in a sun-synchronous orbit an average of 705 km5

above the Earth’s surface, passing each location at approximately 13:30 local time, and it collects roughly 5⇥ 105 to 1⇥ 106

observations or soundings per calendar day (e.g., Crisp et al., 2004; Eldering et al., 2012; Crisp et al., 2017).

Unlike previous missions, OCO-2 observations are sensitive to CO2 throughout the entire troposphere, advantageous
::::
may

::::::
provide

:::
an

:::::
ideal

::::::::::
opportunity for estimating surface CO2 fluxes. By contrast, thermal infrared observations from existing

meteorological sounders such as the Atmospheric Infrared Sounder (AIRS), Tropospheric Emission Spectrometer (TES), and10

Infrared Atmospheric Sounding Interferometer (IASI) can yield estimates of the CO2 concentration in the middle troposphere,

but they
::::::
OCO-2

:::::::
observes

::
in

:::
the

::::::::::::
near-infrared,

:::
and

::
its

:::::::::::
observations

::::::::
therefore

::::
have

:::::::::
sensitivity

:::::::::
throughout

:::
the

:::::
entire

::::::::::
troposphere

::::
with

::::::
highest

:::::::::
sensitivity

:::
near

:::
the

:::::::
surface

:::::::::::::::::::::::
(e.g., Eldering et al., 2017a).

::::
This

::::::
feature

::::::::
contrasts

::::
with

::::::
several

:::::::
existing

:::::::
satellites

::::
that

::::::
observe

::
in
::::

the
:::::::
thermal

:::::::
infrared

:::
and

:
have little sensitivity to near-surface CO2 variations. Because OCO-2 observes in the

near infrared, its observations are sensitive to CO2 variations throughout the atmospheric column, with greatest sensitivity15

near the surface (e.g., Eldering et al., 2017a).
:::
also

::::
has

:
a
:::::::
smaller

:::::::
footprint

::::
and

::::::::
improved

::::::
spatial

::::::::
coverage

:::::::
relative

::
to

:::::::
existing

::::::::::
near-infrared

:::::::::::
observations

:::
like

:::::
those

::::::::
collected

::
by

:::
the

::::::::::
Greenhouse

::::
Gas

::::::::
Observing

:::::::
Satellite

:::::::::
(GOSAT).

:::::
Each

::::::
OCO-2

::::::::::
observation

:::
has

:
a
:::::::
footprint

:::::::::
⇠2.25km

::
in

:::::
width,

:::
and

:::
the

:::::::
satellite

:::
can

::::::
collect

:::::
eight

::::::::::
observations

::::::
across

:
a
:::::
single

:::::
swath

::::::::::::::::::::
(Eldering et al., 2017a).

::::
Each

:::::::
GOSAT

::::::::::
observation,

::
by

::::::::
contrast,

:::
has

:
a
:::::::
footprint

:::::::
⇠10km

::
in

:::::
width,

::::
and

:::
the

::::::
satellite

:::::::
collects

:
a
:::::
single

::::::::
sounding

:::::
every

::::::
250km

:::::::::::::::::
(Yokota et al., 2009).

:::
As

:
a
:::::
result

::
of

:::::
these

::::::::::
differences,

:::::::
GOSAT

:::::::
provides

::::::::::::
approximately

:::::
1000

::::
high

::::::
quality

::::::::::
observations

:::
per

::::
day20

::::
while

:::::::
OCO-2

:::::::
provides

::::::::::::
approximately

::::::
65000

:::::::::::::::::::::::
(e.g., Eldering et al., 2017b).

:

A few studies comment
::::
Prior

::
to

:::
the

::::::
OCO-2

:::::::
satellite

::::::
launch,

::::::
several

::::::
studies

::::::::::
commented

:
on the possibilities of using XCO2

observations for estimating CO2 fluxes at the Earth’s surface. For example, Chevallier et al. (2007) and Baker et al. (2010)

explain that OCO-2 observations could reduce flux uncertainties by ⇠20–65% at the the model grid scale (2.5� by 3.75� and

2� by 5� latitude-longitude, respectively) and at weekly time scales. Both studies, however, caution that biases or spatially and25

temporally correlated errors would cut this uncertainty reduction in half. Chevallier et al. (2007) further explain that biases of

a few tenths of a part per million in XCO2 could bias estimated subcontinental flux totals by several tenths of a gigaton.

Relatively few studies in the published literature use XCO2 observations from OCO-2
:::::
Since

::::::
launch,

::
a
:::::::
handful

::
of

:::::::
existing

::::::
studies

::::
apply

:::
the

:::::::
satellite

:::::::::::
observations to estimate fluxes

:::
for

::::::
specific

:::::::::
problems.

::::
Most

::::::::
examine

:::
flux

:::::::::
anomalies

::::
(e.g.,

::
El

::::::
Niño)

::
or

::::::::::
anomalously

:::::
large

::::::
sources

::::
(e.g., primarily due to the relatively short time since the satellite’s launch (e.g., Fischer et al., 2017; Heymann et al., 2017).This30

paucity of studies will undoubtedly change in the next several years.The literature on other CO2 remote sensing efforts is more

mature, and these studies preview the opportunities and challenge that OCO-2 may present
:::::
power

::::::
plants). For example, the

Greenhouse Gas Observing Satellite (GOSAT) launched in 2009 and is the first satellite dedicated to greenhouse gas monitoring
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(Yokota et al., 2009).
:::::::::::::::::::
Chatterjee et al. (2017),

:::::::::::::::
Patra et al. (2017),

:::::::::::::::::::
Heymann et al. (2017),

:::
and

:::::::::::::::::::::
Liu et al. (2017) estimate

::::
flux

::::::::
anomalies

:::::
during

:::
the

:::::
most

:::::
recent

::
El

:::::
Niño,

::::
and

:::::::::::::::::::::::
Nassar et al. (2017) estimate

::::::::
emissions

:::::
from

::::::
several

::::
large

::::::
power

:::::
plants.

:

A number of studies use GOSAT observations to estimate surface fluxes, and these studies report numerous successes and

challenges that could apply to OCO-2 (e.g., Takagi et al., 2011; Basu et al., 2013; Guerlet et al., 2013; Maksyutov et al.,

2013; Parazoo et al., 2013; Saeki et al., 2013; Basu et al., 2014; Deng et al., 2014; Houweling et al., 2015). GOSAT obser-5

vations provide new insight into fluxes in regions that are poorly sampled by in situ observations, regions like tropical Asia

(Basu et al., 2014) and the southern Amazon (Parazoo et al., 2013). These studies also identify a number of common chal-

lenges. For example, observations are too sparse to reliably estimate fluxes in regions with frequent cloud cover (e.g., Parazoo

et al., 2013). Furthermore, continental CO2 budgets estimated using GOSAT observations are not consistent with in situ obser-

vations in some regions; these differences may indicate spatially and temporally correlated errors in GOSAT observations at10

their current stage of development (e.g., Houweling et al., 2015). These challenges are also
::::
may

:::
also

:::
be a concern for OCO-2.

With that said, some design features make OCO-2 even more promising than GOSAT: OCO-2 observations have a higher

spatial resolution (e.g., a footprint or pixel size of about 3 km2 relative to GOSAT’s footprint of about 80 km2) and a higher

density of observations (e.g. Crisp et al., 2004; National Research Council, 2010).

This study evaluates the opportunities and challenges of using current OCO-2 observations to estimate biospheric CO215

fluxes. A primary goal of this work is to guide top down, inverse modeling studies on the information content of currently-

available observations. By contrast, satellite capabilities for CO2 monitoring will likely change quickly over the next ten years

– both due to improvements in satellite retrieval algorithms and the launch of new satellites (Sect. 4). This guidance will

therefore undoubtedly change and evolve in the future.

We evaluate current OCO-2 observations using several approaches. We make an initial assessment by comparing
:::
first20

:::::::
compare model and observation errors against the atmospheric signal from biospheric fluxes. The noise in individual observations

is important, but atmospheric inversions ultimately leverage broad
::::
This

:::::
initial

::::::::::
comparison

:::::::
provides

:::::::
context

:::
and

::::::::
intuition

:::
for

::
the

:::::::::::::
signal-to-noise

:::::
ratio.

:::::::::
Ultimately,

::::::::::
atmospheric

:::::::::
inversions

:::
use

:::::
more

:::::::
complex patterns in the observations and other complex

information to estimate surface fluxes. We therefore construct a series of top-down simulations using OCO-2 observations to

understand what these errors mean for estimating CO2 fluxes, and we thereby evaluate the number of global regions for which25

we can independently constrain CO2 budgets. Lastly, we construct a series of synthetic data simulations to diagnose the real

data results. The first synthetic simulations do not include any errors – to evaluate the inherent strengths of the observations. In

subsequent synthetic simulations, we include simulated modeling and/or retrieval errors, and evaluate how these errors affect

the CO2 flux constraint.

The synthetic and real data simulations are based upon a multiple regression combined with model selection. We use this30

approach to evaluate whether spatial and temporal patterns in biospheric CO2 fluxes help describe patterns in the OCO-2

observations. These flux patterns are first input into a global atmospheric transport model (the Parameterized Chemistry Transport Model or PCTM, Kawa et al., 2004) and

are then compared against OCO-2 observations. A positive result implies that we can detect these patterns using OCO-2

observations, and a negative result implies that we cannot. Several existing studies use model selection to gauge the detectability

of CO2 flux patterns (Shiga et al., 2014; Fang et al., 2014; ASCENDS Ad Hoc Science Definition Team, 2015). The term ‘patterns’35
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here refers to flux patterns that manifest at the resolution of an atmospheric model, and section 2 describes this approach in

more detail.

Overall, we divide the globe into different hemispheres and ecoregions and determine whether we can detect flux patterns

within each region and each month. We begin the analysis with very large hemispheric regions and then decrease the size

of those regions until we are no longer able to detect any patterns beyond a mean CO2 flux. That limit or end point is the5

smallest scale at which OCO-2 observations currently provide a unique constraint on CO2 budgets. OCO-2 observations must

be sufficient to detect more than a mean flux across a region and month if future inverse modeling studies are to estimate

biospheric CO2 budgets at scales smaller than that region. Consequently, inverse modeling studies would generally be unable

to obtain reliable information about the fluxes across smaller regions. This result bounds the type of information one can expect

from the OCO-2 retrievals in their current stage of development.10

2 Methods

2.1
::::::

OCO-2
::::
data

::::
This

::::
study

:::::::
utilizes

:::::
XCO2:::::::::::

observations
::::
from

:::
the

:::::::
OCO-2

:::::::
satellite

::::::::
beginning

::::
with

:::
the

::::
first

:::::::
reported

::::
data

::
(6

:::::
Sept.

:::::
2014)

:::::::
through

::
the

::::
end

::
of

:::::
2015.

:::
We

:::
use

:::
the

::::
level

:
2
:::
lite

:::::::
product,

::::::
version

::::::::
B7.1.01;

::
the

:::
lite

:::::::
product

::::
only

:::::::
includes

::::
good

::::::
quality

:::::::::
retrievals,

:::::
unlike

:::
the

:::
full

::::::
OCO-2

::::
level

::
2
:::::::
product.

:::
We

::::
only

:::::::
include

::::
nadir

::::
and

:::::
target

::::
mode

::::::::
retrievals

::
in
:::
the

:::::::
analysis

::::
and

::::::
exclude

::::
glint

:::::
mode

:::::::::
retrievals.15

::::::
Recent

::::
work

::::::::
indicates

::::::
biases

::
in

:::
the

:::::
glint

::::::::
retrievals

:::::::
relative

::
to

:::::
nadir

::::::::
retrievals

::::::::::::::::::::::
(e.g., Wunch et al., 2017a).

::::
The

:::
SI

::::::::
describes

:::::
model

::::::::
selection

:::::
results

::::
with

:::::
glint

:::::
mode

:::::::
retrievals

::::::::
included,

::::
and

:::
the

:::::
results

:::
are

::::::
similar

::
to
:::::
those

::
in

:::
the

:::::
main

:::::::::
manuscript

:::::::
without

::::
glint

:::::
mode

::::
data.

2.2 Simulated model and retrieval errors

We simulate different model and measurement errors and compare those errors against a modeled XCO2 signal from biospheric20

fluxes
:::
The

::::::::
simulated

::::::
model

::::
and

:::::::
retrieval

:::::
errors

:::::::
provide

:::
an

:::::::
intuitive

::::
feel

:::
for

:::
the

:::::::::::
observations

::::
and

:::
are

::::
used

:::
as

:::::
inputs

:::
in

:::
the

::::::::
top-down

::::::::::
experiments

::::
later

:::
on

::
in

:::
the

:::::
study. This section describes the

::::
these

:
simulated errors – both simulated atmospheric

transport and observation or retrieval errors (Fig. 1). The SI describes these errors in greater detail.

We use estimated CO2 transport errors from Liu et al. (2011) and Miller et al. (2015) (Fig. 1a–b). The authors of those studies

run an ensemble of global meteorology simulations. CO2 is included as a passive tracer in the model, and all simulations use the25

same CO2 flux estimate but have different meteorology. The authors estimate CO2 transport errors by examining the range of

CO2 mixing ratios in the ensemble of simulations. We choose one realization at random and subtract the mean of the ensemble

from this realization to produce a set of residuals. These residuals are used as the estimated transport errors in this study. The

estimated errors are therefore a realization of plausible transport errors. As a result, the specific errors used here have the same

statistical properties as the other members of the ensemble but have different values in specific locations or at specific times.30

For example, the transport errors have a negative value across much of the Arctic in Fig. 1a. Other ensemble members , by
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contrast, might have a slight positive bias in that region but will nevertheless have similar statistical properties as the realization

in Fig. 1a.

In addition to these transport errors, we simulate observation or retrieval errors. We use two different approaches to estimate

these errors and report results using both approaches. The true retrieval errors are unknown and any effort to estimate these

errors will be uncertain; the two approaches used here provide two contrasting, plausible representations of these errors.5

We generate the first set of possible retrieval errors using the parameters used to correct
:
in
::::

the OCO-2 retrievals
:::::::
retrieval

::::::::
correction. This approach entails several steps. We first try to reproduce the OCO-2 observations using a regression. The pre-

dictor variables in this regression include seven different terrestrial biosphere model (TBM) estimates of net biome production

and vegetation indices that have been input into an atmospheric transport model. We also include anthropogenic, ocean, and

biomass burning flux estimates in the regression. A subsequent section (Sect. 2.3) describes this regression in greater detail.10

We save the model-data residuals from this regression. Subsequently, we regress these residuals on the parameters used in the

OCO-2 bias correction. These include aerosol optical depth and albedo, among other parameters (e.g., Wunch et al., 2011, see

Sect. S1.4). Note that these retrieval parameters are not run through an atmospheric transport model, unlike the TBMs and

vegetation indices
:::::
TBM

:::::
fluxes. We estimate the observation or retrieval errors as the portion of the model-observation residuals

that are described by these retrieval parameters. The regression considers many different TBMs and vegetation indices, and it15

should therefore do reasonably well at reproducing patterns in the OCO-2 observations attributable to biospheric fluxes. Any

remaining patterns in the data that map on to retrieval parameters are likely due to retrieval errors rather than transport or flux

errors.

We use a second approach to create an alternative set of simulated retrieval errors. We
::::::::::
Specifically,

:::
we model XCO2 using

four alternative biospheric flux estimates
:::::
fluxes

::::
from

::::
four

:::::::
different

::::::
TBMs (Sect. 2.3) and compute the model-data residuals for20

each set of simulations. We identify the grid cells in which all four sets of residuals have the same sign (i.e., generated using

four different flux estimates
:::::
TBMs) and identify all of the model grid cells in which the residuals have variable sign. In the

former case, we take the median of all four residuals as the estimated retrieval error and, in the latter case, assign a retrieval

error of zero.
:::
This

::::::::
approach

:::::
likely

::::::::
produces

::
a
::::::::::
conservative

::::::::
estimate

::
of

:::
the

::::::::
retrievals

::::::
errors

::::
(i.e.,

:
a
::::::::

possible
:::::::::::::
underestimate);

::::
there

::
is

:::::
likely

:::::
some

::::::
amount

::
of

:::::::
retrieval

:::::
error

::
at

:::::::
locations

::::::
where

:::
we

:::::
assign

:
a
::::::::
retrieval

::::
error

::
of

:::::
zero.25

2.3 Model selection overview
::::::::
Overview

::
of

:::
the

:::::::::
top-down

:::::::::::
experiments

Model selection is a statistical approach common in regression modeling (e.g., Ramsey and Schafer, 2012, ch. 12). In many

instances, a modeler must decide which predictor variablesto include (or omit) in a multiple regression . Model selection

:::
We

::::::
employ

::
a

::::::::
top-down

:::::::::
framework

::
to
::::::::
evaluate

:::
the

::::::::::
detectability

::
of

:::::::::
biospheric

:::::
CO2 :::::

fluxes
:::::
using

::::::
current

:::::::
OCO-2

:::::::::::
observations.

::::::
Overall,

::::
we

:::::
divide

:::
the

:::::
globe

::::
into

::::::::
different

:::::::::::
hemispheres

:::
and

:::::::::
ecoregions

::::
and

:::::::::
determine

:::::::
whether

:::
we

:::
can

::::::
detect

::::
flux

:::::::
patterns30

:::::
within

:::::
each

:::::::::
hemisphere

:::
or

::::::::
ecoregion

::::
and

::::
each

:::::::
month.

::::
The

::::
term

::::::::
‘patterns’

:::::
here

:::::
refers

::
to

::::
flux

:::::::
patterns

::::
that

:::::::
manifest

:::
at

:::
the

::::::::
resolution

::
of

:::
an

::::::::::
atmospheric

::::::
model.

:::
We

:::::
begin

:::
the

:::::::
analysis

::::
with

:::::
very

::::
large

::::::::::
hemispheric

:::::::
regions

:::
and

::::
then

::::::::
decrease

:::
the

:::
size

:::
of

::::
those

:::::::
regions

::::
until

:::
we

:::
are

:::
no

:::::
longer

::::
able

::
to
::::::

detect
:::
any

::::
flux

:::::::
patterns

:::::::
beyond

:
a
:::::
mean

::::
CO2::::

flux.
:::::

That
::::
limit

::
or
::::

end
:::::
point

::
is

:::
the

:::::::
smallest

::::
scale

::
at

:::::
which

:::::::
OCO-2

::::::::::
observations

::::::::
currently

:::::::
provide

:
a
::::::
unique

::::::::
constraint

:::
on

::::
CO2:::::::

budgets.
:::::::
OCO-2

::::::::::
observations

:::::
must
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::
be

::::::::
sufficient

::
to

::::::
detect

:::::
more

::::
than

:
a
:::::
mean

::::
flux

::::::
across

:
a
::::::

region
::::
and

::::::
month

::
if

:::::
future

::::::
inverse

:::::::::
modeling

::::::
studies

:::
are

::
to

::::::::
estimate

::::::::
biospheric

:::::
CO2 ::::::

budgets
::
at
::::::
scales

::::::
smaller

::::
than

::::
that

::::::
region.

::::::::::::
Consequently,

::::::
inverse

::::::::
modeling

::::::
studies

:::::
would

::::::::
generally

:::
be

::::::
unable

::
to

:::::
obtain

::::::
reliable

::::::::::
information

:::::
about

:::
the

:::::
fluxes

::::::
across

::::::
smaller

:::::::
regions.

::::
This

:::::
result

::::::
bounds

:::
the

::::
type

::
of

::::::::::
information

:::
one

:::
can

::::::
expect

::::
from

:::
the

::::::
OCO-2

::::::::
retrievals

::
in

::::
their

::::::
current

:::::
stage

::
of

:::::::::::
development.

::::
This

:::::::::
remainder

::
of

:::
this

::::::
section

:::::::
explains

::::
this

::::::::
top-down

:::::::
analysis5

::
in

::::::
greater

:::::
detail.

:

:::
We

:::::::
approach

::::
this

:::::::
problem

::::
using

::
a

::::::::
regression

::::::::::
framework.

:::
The

:::::::::
regression

:::::::
attempts

::
to

::::::::
reproduce

:::::::
OCO-2

::::::::::
observations

::
of

::::::
XCO2

::::
using

::::::::
predictor

::::::::
variables.

::::::
These

:::::::
variables

:::
are

:::
the

::::::
XCO2::::::::

estimated
:::
by

::
an

::::::::::
atmospheric

::::::
model;

:::::
each

:::::
model

::::::
output

::::::::
estimates

:::
the

:::::
XCO2:::::::::::

enhancement
::::
due

::
to

:::::
fluxes

:::
in

:
a
::::::::
particular

::::::
region

::::
and

:
a
::::::::
particular

:::::::
month,

:::
and

:::
we

::::::::
generate

:::::
many

:::::
model

:::::::
outputs

:::::
using

::::
many

::::::::
different

:::
flux

:::::::
models

:::
(see

:::::
Sect.

::::
2.6).

::::
The

::::::::
regression

:::
has

:::
the

:::::::::
following

:::::
form:10

z = h(X)�+ b+ ✏
::::::::::::::::

(1)

:::::
where

::
z

::
are

:::
the

:::::::
OCO-2

::::::::::
observations

:::::::::::
(dimensions

::::::
n⇥ 1).

:::
The

::::::
matrix

::
X

:::::::
(m⇥ p)

:::
has

::
p

:::::::
columns,

::::
and

::::
each

::::::
column

::
is

:
a
::::::::
different

::::
CO2 :::

flux
::::::::
estimate

:::
for

::::::
specific

::::::::::
geographic

:::::
region

::::
and

:
a
:::::::
specific

::::::
month.

:::::
Each

::::::
column

:::
of

::
X

:::
has

::::::::
non-zero

::::::
values

:::
for

:
a
:::::::
specific

:::::
region

::::
and

:::::
month

::::
and

::::
zeros

:::
for

:::
all

:::::
other

::::::
regions

:::
and

:::::::
months.

::::
The

:::::::
function

:::
h()

::
is
:::
an

::::::::::
atmospheric

::::::::
transport

:::::
model

::::::
(Sect.

::::
2.6),

:::
and

:::
the

::::::
model

:::::::
outputs,

:::::
h(X),

:::::
have

:::::::::
dimensions

::::::
n⇥ p.

::::
The

:::::
vector

::
b
:::::::
(n⇥ 1)

::
is

:::
the

:::::
model

:::::::
spin-up

::
or

:::::::::
estimated

::::::
XCO2 ::

at
:::
the15

::::::::
beginning

::
of

:::
the

:::::
study

::::
time

::::::
period,

::::
and

:
✏
:::::::
(n⇥ 1)

:::
are

:::
the

:::::::::
regression

::::::::
residuals.

::::::
Lastly,

::
�

::::::
(p⇥ 1)

:::
are

:::
the

:::::::::
coefficients

:::::::::
estimated

::
as

:::
part

::
of

:::
the

::::::::::
regression.

:::
The

:::::::::
regression

:::::::
provides

::
a

:::::
means

::
to
::::::::
evaluate

:::
the

::::::::::
detectability

::
of

:::::::::
biospheric

::::
CO2::::::

fluxes.
:::
At

::::
least

:::::
some

::
of

:::
the

:::::
model

:::::::
outputs

::::::
(h(X))

::::::
should

:::::::
describe

:::::::::
substantial

:::::::::
variability

::
in

:::
the

::::::
OCO-2

:::::::::::
observations

:::
(z).

:::::
Let’s

:::
say

:::
that

::::::::
modeled

:::::
XCO2:::::

using
::
a

::::::::
particular

:::
flux

::::::
model

::
in

:
a
::::::::
particular

::::::
region

:::
and

:::::
month

::::
help

:::::::::
reproduce

:::::::
patterns

::
in

::
the

:::::::
OCO-2

:::::::::::
observations.

::::
This

:::::
result

::::::
implies

:::
that

:::::::
OCO-220

::::::::::
observations

:::
are

::::
able

::
to

::::::
detect

::
or

::::::::
constrain

:::::::::
variability

::
in

::::
CO2::::::

fluxes
::::
from

::::
that

::::::
region

:::
and

::::
that

::::::
month.

:::
By

:::::::
contrast,

::::
let’s

::::
say

:::
that

:::
no

:::::
model

:::::::
outputs

:::::::::::
substantially

:::::::
improve

:::
the

:::::::::
regression

:::
fit

::::
(i.e.,

:::
no

:::::::
columns

:::
in

::::::
h(X)).

::::
This

:::::
result

:::::::
implies

::::
one

::
of

:::::
three

:::::
things.

:::::
First,

:::
the

::::::
OCO-2

:::::::::::
observations

::::
may

:::
not

::
be

::::::::
sensitive

::
to

:::::::::
biospheric

:::::
fluxes

::::
from

::::
that

::::::::
particular

:::::
region

::::
and

::::::
month.

:::::::
Second,

::::
there

::::
may

::
be

::::::
errors

::
in

::::::
current

::::::
OCO-2

::::::::
retrievals

:::
or

::
in

:::
the

::::::::::
atmospheric

::::::
model

:::
that

:::::::
obscure

::::::
surface

::::::
fluxes

::::
from

::::
that

:::::
region

::::
and

::::::
month.

::::::
Finally,

:::
all

::
of

:::
the

::::
flux

::::::::
estimates

::::
used

:::
in

::
X

::::
may

:::
be

::::::::
unskilled

:::
and

::::
may

:::
not

::::::
match

:::::::::
real-world

:::::::::
conditions.

::::
We

::::
offer

:::
up25

:
a
::::
large

:::::::
number

:::
of

:::
flux

:::::::
models

::
as

:::::::
possible

::::::::
predictor

::::::::
variables

::
in

:::
X,

::::
and

::
at

::::
least

:::::
some

::
of

:::::
these

:::::::
products

::::::
should

:::
be

::::::::
expected

::
to

:::::::
correlate

::::
with

::::
real

:::::
world

:::::
CO2 :::::

fluxes.
:::

In
:::
this

:::::
case,

:
it
::

is
::::::::

unlikely
:::
that

:::::
there

::
is

:
a
::::::::
shortage

::
of

:::::::::
reasonable

::::
CO2::::

flux
:::::::
models

::
to

::::::
choose

::::
from.

:::::::
Rather,

:::
that

:::::
result

:::::
more

:::::
likely

::::::
reflects

:::
the

:::::::::
sensitivity

::
of

:::
the

::::::::::
observations

::
to

::::::
surface

::::::
fluxes,

:::
the

:::::::
maturity

:::
of

::::::
current

::::::
OCO-2

::::::::
retrievals,

:::
or

:::
the

::::::::
accuracy

::
of

:::
the

:::::::::::
atmospheric

::::::
model.

::::::
Hence,

::::
this

::::::::
approach

:::::::
provides

::
a
::::::
means

::
to

:::::::
evaluate

:::::
when

::::
and

:::::
where

::::::
current

::::::
OCO-2

:::::::::::
observations

:::
can

::::::::
constrain

:::::::::
variability

::
in

:::::::::
biospheric

::::
CO2::::::

fluxes.30

:::
We

:::::
utilize

::
a
::::::
model

::::::::
selection

:::::::::
framework

::
to

:::::::::
determine

::::::
which

:::::
model

:::::::
outputs

::::
(i.e.,

::::::::
columns

::
of

::::::
h(X))

:::::::
describe

::::::::::
substantial

::::::::
variability

::
in

::::::
current

::::::
OCO-2

:::::::::::
observations.

::::::
Model

:::::::
selection

::
is
:
a
::::::::
statistical

::::::::
approach

:::::::
common

::
in
:::::::::
regression

::::::::
modeling

:::::::::::::::::::::::::::::::::
(e.g., Ramsey and Schafer, 2012, ch. 12).

:
It
:
will identify the set of

:::::::
predictor variables with the greatest power to describe the data. It also ensures that the regression does

not overfit the data. The inclusion of more predictor variables in a regression will always improve model-data fit; a regression

with n independent predictor variables will always be able to describe n data points perfectly. However, a model with n inde-

6



pendent predictor variables would overfit the data(for more on the dangers of overfitting, refer to Zucchini, 2000).
:
.
:::
For

:::::
more

::
on

:::
the

:::::::
dangers

::
of

:::::::::
overfitting,

::::
refer

::
to
::::::::::::::
Zucchini (2000).

:
To this end, one can use model selection to prevent overfitting and only

include predictor variables that describe substantial variability in the data
::::::::::
observations.5

:::
We

:::::::::
implement

::::::
model

:::::::
selection

::::::
based

::
on

:::
the

::::::::
Bayesian

:::::::::::
Information

:::::::
Criterion

::::::
(BIC)

::::::::::::::
(Schwarz, 1978).

:::
We

::::::::
calculate

::
a
::::
BIC

::::
score

:::
for

:::::
many

::::::::
different

:::::::::::
combinations

::
of

::::::::
predictor

:::::::::
variables,

:::
and

::::
each

:::::::::::
combination

:::
has

::
a
:::::::
different

:::
set

::
of

::::::::
columns

::::
(X).

::::
The

:::
best

:::::::::::
combination

:::
has

:::
the

::::::
lowest

:::
BIC

::::::
score:

BIC = L+ p ln(n⇤)
:::::::::::::::::

(2)

:::::
where

::
L

::
is

:::
the

:::
log

::::::::
likelihood

:::
of

:
a
::::::::
particular

:::::::::::
combination

::
of

::::::::
predictor

:::::::
variables

:::::
(i.e.,

:
a
::::::::
particular

:::::::::::
configuration

:::
of

:::
X).

::::
The

:::
log10

::::::::
likelihood

::::::::
equation

::::::
rewards

::::::::::::
combinations

:::
that

:::::::
improve

::::::::::
model-data

:::
fit,

:::
and

:::
the

::::::
second

::::
term

::
in

:::
the

::::::::
equation

:::::::
(p lnn⇤)

::::::::
penalizes

:::::::::::
combinations

::::
with

::
a

::::::
greater

:::::::
number

::
of

::::::::
predictor

::::::::
variables

::::
(i.e.,

::::::::
columns

::
in

::::
X).

::::
This

::::::
penalty

::::
also

::::::
scales

::::
with

:::
the

::::::::
effective

::::::
number

::
of

:::::::::::
independent

:::::::::::
observations

::::
from

:::::::
OCO-2

::::
(n⇤,

::::::::
described

::
in

:::
the

::::
SI),

:::
and

::
it
:::::::
ensures

:::
that

:::
the

:::::::
selected

::::::
model

::
is

:::
not

:::
an

::::::
over-fit.

:

A number of existing top-down studies of CO2 use model selection (e.g., Gourdji et al., 2008, 2012; Shiga et al., 2014; Fang15

et al., 2014; Fang and Michalak, 2015; ASCENDS Ad Hoc Science Definition Team, 2015). Several use
:::::
utilize the approach to

determine a set of environmental variables to include in a geostatistical inverse model (e.g., Gourdji et al., 2008, 2012). Other

studies use model selection to determine whether existing CO2 observations can constrain flux patterns from the biosphere

(Fang et al., 2014) and from fossil fuel emissions (Shiga et al., 2014; ASCENDS Ad Hoc Science Definition Team, 2015). One

study uses model selection to assess the capabilities of a proposed satellite mission (ASCENDS Ad Hoc Science Definition20

Team, 2015).

We use model selection to explore whether current OCO-2 observations are sufficient to detect broad spatial and temporal

patterns in CO2 fluxes – within two large hemispheric regions, four continental regions, and seven ecoregions (Fig. 2). The last

goal is more challenging than the first. In each case, we use model selection to examine whether the flux patterns within each

region and each month help reproduce patterns in the OCO-2 observations.25

We begin with a baseline model that has spatial and temporally constant fluxes for each region and month of interest.

These constant terms are analogous to the intercept in a multiple regression. These intercept terms are always included

(e.g., Gourdji et al., 2008; Fang et al., 2014), and we use model selection to identify additional model outputs as necessary.

We subsequently model XCO2 using an atmospheric transport model (Sect. ??) and several different biospheric flux estimates30

and vegetation indices. We then incorporate these model outputs as predictor variables in a regression and use model selection

to identify which patterns (if any) explain substantial variability in the OCO-2 observations. These patterns include four TBMs

with contrasting spatial features from MsTMIP, the Multi-scale Synthesis and Terrestrial Model Intercomparison Project

(Huntzinger et al., 2013; Fisher et al., 2016; ?). Section S1.2 describes MsTMIP and the TBMs in greater detail. We also

include SIF (solar-induced fluorescence) from the Global Ozone Monitoring Experiment-2 (GOME-2, Joiner et al., 2013) as

well as EVI (enhanced vegetation index) and NDVI (normalized difference vegetation index) from the Moderate-Resolution
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Imaging Spectroradiometer (MODIS; e.g., Huete et al., 2002). Note that we directly input these vegetation indices into an

atmospheric transport model as a surface ‘flux.’ The regression/model selection framework will adjust the magnitude of the

transport model outputs to reproduce the OCO-2 observations, so the absolute magnitude of the vegetation indices is not5

important. Rather, we are interested in whether the patterns in these vegetation indices help reproduce patterns in the OCO-2

observations, potentially in combination with other indices or TBMs.

We offer up a relatively large number of flux models and vegetation indices as predictor variables, and at least some of these

products are therefore expected to correlate with real world CO2 fluxes. We should choose at least one of these variables using

model selection if the OCO-2 observations are able to detect patterns in the surface fluxes. If we do not choose any additional10

outputs with model selection, it suggests that the observations are not sufficient to detect spatial and temporal patterns in the

fluxes beyond a mean flux. We include a large number of candidate variables for a pragmatic reason. If model selection does not

pick any variable in a region, it is unlikely that there was a shortage of reasonable CO2 flux patterns available to choose from.

Rather, that result more likely reflects the maturity of current OCO-2 observations and atmospheric modeling capabilities.

Model selection
:::::
Model

::::::::
selection

:
provides a convenient way to evaluate the information content of OCO-2 observations15

in their current state of development. In theory, one could estimate CO2 budgets in a Bayesian inverse model. The accuracy

or uncertainty in those budgets would be indicative of the information content of the satellite observations. This approach,

however, brings several challenges. First, a modeler must choose a prior flux estimate. This choice is often subjective but

will impact the final or posterior uncertainty estimate (e.g., Chevallier et al., 2014). Second, a modeler must estimate several

individual sources of uncertainty as inputs to the inverse model. These uncertainties often have a complex statistical struc-20

ture that is difficult to characterize (e.g., Liu et al., 2011), and it is often challenging to account for all plausible sources

of uncertainty. Third, inverse modeling with satellite observations can be computationally intensive – both in terms of the

number of atmospheric model simulations required and the computational requirements of the statistical inverse model. Some

studies have overcome the first of these two challenges by using an ensemble of atmospheric models and/or inversion systems

(e.g., Chevallier et al., 2014; Houweling et al., 2015). The size of the ensemble spread is indicative of the information content25

of the observations, and the spread of the ensemble is usually larger than the uncertainty bounds estimated from any one inverse

model. This type of study also typically requires extensive coordination among multiple research groups. Model selection, by

contrast,
:::
By

:::::::
contrast,

:::
the

:::::::::
regression

:::::::::
framework

::::
used

::::
here

:
provides a simpler metric to evaluate the information content of the

observations.

The remainder of this sub-section describes the specific equations used for model selection . We quantitatively link the30

OCO-2 XCO2 observations with model outputs using a multiple regression :

Y = h(X)

z = Y�+ ✏

✏ ⇠ N (0,�2V)

In these equations, the vector z (dimensions n⇥ 1)represents the XCO2 observations minus the model initial condition or

spin-up (refer to the SI for more detail). The variable
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2.4
:::::::::::::

Implementation
::
of

:::
the

:::::::::
top-down

:::::::::::
experiments

::::
This

::::::
section

::::::::
describes

::::
how

:::
the

::::::::
regression

::::
and

:::::
model

::::::::
selection

:::
are

:::::::::::
implemented

::
in

:::
the

::::::
present

:::::
study.

:
5

:::
The

:::::::::
regression

::::::
begins

::::
with

:::
an

::::::::
intercept.

::::
The

::::::::
intercept

::
is

::::::
always

::::::::
included

::
in

:::
the

:::::::::
regression

:::
(in

::::
X),

:::
and

::::::
model

::::::::
selection

:::
can

::::::
further

:::
add

::::
flux

:::::::
models

::
to X (dimensions m⇥ p)is a matrix of p different flux patterns; the columns of X can include

biospheric CO2 flux estimates, remote sensing vegetation indices, an anthropogenic emissions inventory, a biomass burning

inventory, and /or an ocean fluxestimate. The function h() is an atmospheric model that transports the fluxes to the times and

locations of the
::
to

::::
help

::::::::
reproduce

:::
the

:
OCO-2 retrievals, and the resulting matrix Y has dimensions n⇥ p. The variable ✏ is10

a n⇥ 1 vector of residuals. These residuals are assumed to follow a multivariate normal distribution with a mean of zero, a

variance of �2, and a covariance structure given by V (dimensions n⇥n). The vector of coefficients (�, dimensions p⇥ 1) are

estimated as part of the regression .

In this study, we choose a set of variables for
::::::::::
observations

::::
(z).

::::
This

:::::::
intercept

::
is
::
a

:::::::
constant

::::::
column

::
of

:::::
ones

::
in Xusing model

selection based on the Bayesian Information Criterion (BIC) (Schwarz, 1978). We calculate a BIC score for many different15

candidate models. Each candidate model has a different set of columns (X)
:
.
::
In

:::
the

::::::::
particular

:::::
setup

::::
here,

:::
we

::::::
include

:
a
::::::::
different

:::::::
intercept

:::
for

::::
each

::::::
region

::
of

:::
the

:::::
globe

::::
and

::::
each

::::::
month.

::
In
:::::

other
::::::
words,

:::
the

::::::::
intercept

:::::::
consists

::
of

:::::::
multiple

::::::::
columns – different

combinations of flux models or remote sensing vegetation indices in different geographic regions
:::
one

:::::::
column

:::
for

::::
each

::::::
region

:::
and

::::::
month

::
of

:::
the

:::::
study

:::::::
period.

::::
This

::::::::
intercept

::
is

:::::::::
equivalent

::
to

::
a
:::::::
spatially

::::
and

:::::::::
temporally

::::::::
constant

::::
flux

::
in

::::
each

::::::
region

::::
and

::::::
month.

:::::::::
Additional

::::::::::
atmospheric

::::::
model

::::::
outputs

:::::
h(X)

::::
will

:::
not

::
be

:::::::
selected

::::::
unless

::::
they

::::::
explain

:::::::::::
substantially

:::::
more

:::::::::
variability

::
in20

::
the

:::::::
OCO-2

::::::::::
observations

::::
than

::::
this

:::::::
intercept

:::
or

:::::::
constant

::::
flux.

::::
The

:::::::
intercept

:::::
plays

::
an

:::::::::
important

:::
role

::
in

:::
the

::::::::::
regression;

:
it
:::::::
ensures

:::
that

:::
the

::::::::
regression

::::
will

::::::
always

::
be

::::::::
unbiased

::::
when

::::::::
averaged

:::::
across

:::
the

::::::
globe.

:::::
Model

::::::::
selection

:::::
could

::::::
produce

:::::::::::
non-intuitive

::::::
results

:
if
:::::
there

::::
were

:::
no

::::::::
intercept.

:::::::::::
Furthermore,

::::::::
intercepts

:::
are

:::::::
standard

::
in

:::::::::
regression

::::::::
modeling,

:
and in different months.

The best model has the lowest BIC score:

BIC = L+ p ln(n⇤)25

where L is the log likelihood of a particular candidate model (X
::::::::
top-down,

::::
CO2::::::

studies
:::
that

::::::
utilize

:::::
model

::::::::
selection

:::
also

:::::::
include

::
an

:::::::
intercept

::::::::::::::::::::::::::::::::::::::::::
(e.g., Gourdji et al., 2008, 2012; Fang et al., 2014)

:::
We

:::::::::::
subsequently

:::
run

:::
the

:::::::::
regression

::::
with

:::::
model

::::::::
selection

:::::
three

:::::
times

::
to

:::::::
evaluate

:::::
three

:::::::
different

:::::
cases.

:::
In

:::
the

:::
first

:::::
case,

:::
we

:::::
divide

:::
the

:::
flux

:::::::
models

:::
into

::::
two

::::
large

::::::::::
hemispheric

:::::::
regions,

::::
and

::
we

:::::
select

::::::::
different

:::
flux

:::::::
models

::
for

:::::
each

::::::::::
hemispheric

:::::
region

::::
and

::::
each

::::::
month.

:::
The

::::::
second

:::
and

:::::
third

::::::::::
experiments

:::::
divide

:::
the

:::::
fluxes

::::
into

:::
four

::::::::::
continental

::::::
regions

:::
and

:::::
seven

::::::::::
ecoregions,

::::::::::
respectively30

::::
(Fig.

:
2). The log likelihood equation rewards models that improve model-data fit, and the second term in the equation (p lnn⇤)

penalizes complex models; it ensures that the selected model is not an over-fit. The log-likelihood has the following form:

L = n⇤ ln(�2)+ n⇤

n RSS

RSS = 1
�2 zTz� 1

�2 zTY(YTY)�1YTz

where RSS is the residual sum of squares and �2 is defined above in Eq. 3.
:::
last

::::::::::
experiment

:
is
:::::
more

::::::::::
challenging

::::
than

:::
the

::::
first.
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Both the BIC and log-likelihood equations (Eq. 2 and 3) incorporate n⇤, the effective number of independent observations

::::
Note

:::
that

:::
we

::::::::
consider

::
the

::::::
model

::::::::
selection

:::::
results

:::::
from

::::
2014

::::
part

::
of

::
an

::::::
initial

:::::
model

:::::::
spin-up

:::::
period

::::
and

::::
only

:::::
report

:::
the

::::::
results5

::::
from

:::::
2015.

2.5
::::::::

Synthetic
:::::

data
::::::::::
simulations

:::
We

:::::::::::
subsequently

:::::
utilize

::::::::
synthetic

::::
data

::::::::::
simulations

::
in

:::
this

:::::
study

::
to

:::::::
analyze

:::
the

::::::
effects

::
of

:::::::
different

::::::
model

::
or

:::::::
retrieval

:::::
errors

:::
on

::
the

:::::::::::
detectability

::
of

:::::::::
biospheric

::::
CO2::::::

fluxes.
::
In

:::::
these

::::::::::
simulations,

:::
we

:::::
create

::::::::
synthetic

::::::
XCO2 ::::::::::

observations
:::::
using

::
an

:::::::::::
atmospheric

:::::::
transport

::::::
model

:::::
(Sect.

::::
2.6)

:::
and

:::
the

:::::::::
SiBCASA

::::
flux

::::::
model.

:::
We

::::
then

:::
run

::::::
model

::::::::
selection

::::
using

:::::
these

::::::::
synthetic

:::::::::::
observations

::
in10

::::
place

:::
of

:::
real

:::::::
OCO-2

:::::::::::
observations

:::
(z).

::::::
These

:::::
model

::::::::
selection

::::
runs

:::::
have

:::
the

::::
same

:::::
setup

:::
as

:::
the

:::
real

::::
data

:::::::::::
simulations,

::::::
except

:::
that

:::
the

::::::::::
observations

:::
are

::::::::
synthetic

::::::
instead

::
of
::::
real.

:::::::::::
Furthermore,

:::
we

::::
only

:::::::
analyze

:::
the

:::::
seven

::::::::
ecoregion

::::
case

::
in

:::
the

::::::::
synthetic

::::
data

::::::::::
experiments.

::::
This

::::
case

::
is

::::
more

::::::::::
demanding

::
of

:::
the

::::::::::
observations

::::
than

:::
the

:::
two

::::
and

::::
four

:::::
region

:::::
cases;

::
it

::
is

::::
more

:::::::
difficult

::
to

:::::
obtain

::
a

:::::
robust

::::::::
constraint

:::
for

:::::
seven

::::::
regions

::::
than

:::
for

:::
two

::
or

::::
four

:::::
larger

::::::
global

::::::
regions.

::::
The

:::::
seven

::::::::
ecoregion

::::
case

::
is

:::
also

:::
an

::::::::
important

::::
goal

::::
from

:
a
:::::::::
ecological

::::::::::
perspective.

:::
For

::::::::
example,

:::
one

:::::
might

:::::
want

::
to

:::::::
estimate

::::
how

::::
CO2:::::

fluxes
:::::
differ

::
in

:::::::
different

:::::::
tropical

::::::
forests

::
or

::
in15

:::::::
different

::::::::
temperate

::::::
forests

::
(e.Jones (2011) discusses this concept in the context of the BIC. Just because the satellite provides

n observations does not mean there are n independent pieces of information. Accordingly, n⇤ ensures that the model selection

framework accurately assesses the amount of independent information in the observations . It accounts for the fact that there

are often spatial and temporally coherent errors in the satellite observations or in the transport model. If all of the observations

were independent (i.e., if V were diagonal), then n⇤ would equal n.However, we de-weight both components of Eq. 2 as the20

covariances in V increase
::
g.,

::
on

::::::::
different

::::::::
continents

::
or

:::
in

:::::::
different

::::::
climate

::::::
zones).

We could calculate n⇤ directly using V�1 (Jones, 2011). In fact, several
:::::
These

::::::::
synthetic

:::::::::
simulations

::::
help

::
to

::::::
isolate

:::
the

:::::
effect

::
of

:::::::
different

:::::
errors

:::
on

:::
the

:::::::::::
detectability

::
of

:::::::::
biospheric CO2 model selection studies incorporate V�1 directly into the equation

for RSS (e.g., Mueller et al., 2010; Gourdji et al., 2012; Shiga et al., 2014). We use 5,079,165 observations (n)in this study, so

V has 5.08⇥ 106 rows and columns. As a result, the inverse of V is computationally intractable. We instead estimate n⇤ using25

an approach based on Griffith (2005), an approach that does not require computing V�1 directly:

n⇤ =
n

1+ (
Pn

i=1

Pn
j=1,j 6=iVi,j/n)

We estimate Vi,j in the vicinity of each observation i by fitting a local variogram model on the model-data residuals (✏)

(See Alkhaled et al. (2008) and Hammerling et al. (2012) for a description of local variogram analysis. ). The SI describes this

implementation in greater detail.30

2.6 OCO-2 data

This study utilizes XCO
:::::
fluxes.

:::
We

::::
first

::::
run

:::
the

:::::::::
regression

:::
and

::::::
model

::::::::
selection

::::
with

:::
no

:::::
errors

::
in

:::
the

:::::::::::
atmospheric

:::::
model

:::
or

::
in

:::
the

::::::::
retrievals

:::::::
(✏⇡ 0).

:::
We

::::
then

::::::::::
successively

::::
add

::::::::
simulated

:::::
error

::
to

:::
the

::::::::
synthetic

::::::::::
observations

::::
and

:::::::
evaluate

::::
how

:::
the

::::::
model

:::::::
selection

::::::
results

::::::
change

::
as

:::
the

::::::
errors

:::::::
increase

::::
(Fig.

:::
1).

:::
We

::::::
include

:::::
three

:::::::
different

:::::
types

::
of

::::::
errors:

::::
flux

:::::
errors,

::::::::
transport

::::::
errors,
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:::
and

:::::::
retrieval

::::::
errors.

::::
The

::::::::::
simulations

::::
with

::
all

::::::
errors

:::::::
included

::::::
should

:::::::
produce

::::::
model

::::::::
selection

::::::
results

::::::
similar

::
to

:::
the

::::
real

::::
data5

::::::::::
experiments.

:::::::
Section

:::
2.2

:::
and

:::
the

::
SI

::::::::
describe

::
the

:::::::::
simulated

:::::::
transport

::::
and

:::::::
retrieval

:::::
errors.

:

:::
The

::::
flux

:::::
errors

::::::
further

:::::::
account

:::
for

:::::::
plausible

:::::::::::
inaccuracies

::
in

:::
the

::::::::
predictor

:::::::
variables

::::::
within

:::
X.

:::
No

:::::
TBM

::
or

:::::::::
vegetation

:::::
index

:::
has

:
a
::::::::::
distribution

::::
that

::::::::
perfectly

:::::::
matches

:::::::::
real-world

:::
CO2 observations from

::::::
fluxes.

:::::
These

::::::
errors

:::::
affect

:::
our

::::::
ability

::
to

::::::
detect

::::::::
biospheric

::::::
fluxes

:::::
using the OCO-2 satellite beginning with the first reported data (6 Sept. 2014) through the endof 2015. We

use the level 2 lite product, version B7.1.01; the lite product only includes good quality retrievals, unlike the full OCO-2 level10

2 product. We only include nadir and target mode retrievals in the analysis and exclude glint mode retrievals. Recent work

indicates biases in the glint retrievals relative to nadir retrievals (e.g., Wunch et al., 2017b). The SI describes model selection

results with glint mode retrievals included, and the results are similar to those in the main manuscript without glint mode

data
:::::::::::
observations,

::::
and

:::
we

::::::::
therefore

::::::
account

::::
for

::::
these

::::
flux

::::::
errors

::
in

:::
the

::::::::
synthetic

::::
data

::::::::::
simulations.

:::
To

::::
this

::::
end,

:::
we

:::::::
remove

::::::::
SiBCASA

:::
as

::
an

::::::
option

::
in

:::
the

:::
X

::::::
matrix

:::
and

:::::::
choose

::::::
among

:::
the

:::::
other

:::::::::
remaining

:::
flux

:::::::
models.

:::::
This

::::::::
procedure

:::::::::
simulates

:::
the15

:::::::
plausible

::::::
effects

::
of

::::::::
imperfect

::::
flux

::::::
models

::
or

::::::::
predictor

::::::::
variables.

2.6 Atmospheric transport model
::::::::::
simulations

We employ PCTM
:::
the

::::::::::::
Parameterized

:::::::::
Chemistry

::::::::
Transport

::::::
Model

::::::::
(PCTM) to model XCO2 using a variety of surface flux

estimates and vegetation indices
::::::
models (Kawa et al., 2004). A number of existing studies use this model to simulate atmo-

spheric CO2 mixing ratios (e.g., Law et al., 2008; Gurney et al., 2009; Baker et al., 2010; Schuh et al., 2010; Shiga et al., 2013;20

ASCENDS Ad Hoc Science Definition Team, 2015; Hammerling et al., 2015). Several of these studies specifically use PCTM

to model CO2 in the context of satellite missions (e.g., Baker et al., 2010; ASCENDS Ad Hoc Science Definition Team, 2015;

Hammerling et al., 2015). The PCTM configuration in this study has global coverage, a spatial resolution of 1� latitude by

1.25� longitude, and 56 vertical levels. We both input the fluxes and estimate atmospheric mixing ratios at a 3-hourly time

resolution, and the model transports fluxes through the atmosphere using winds from NASA’s Modern-Era Retrospective Anal-25

ysis for Research and Applications (MERRA) (Rienecker et al., 2011). Section S1.1 includes more detail on the model initial

condition and spin-up period.

2.7 Real and synthetic data simulations

We initially use real observations to examine whether current OCO-2 observations can detect biospheric flux patterns in each

month and each region of the globe. We consider the model selection results from 2014 part of an initial model spin-up30

period and only report the results from 2015.
:::::::::::
subsequently

:::::
model

::::::
XCO2:::::

using
::::::
several

::::::::
different

::::::::
terrestrial

::::::::
biosphere

:::::::
models

::::::
(TBMs)

::::
and

:::::::::
vegetation

::::::
indices,

::::
and

::::
these

::::::
model

::::::
outputs

:::
are

::::::::::
incorporated

::::
into

::::::
model

:::::::
selection

:::::::
(h(X)).

:::
We

::::::
include

::::
four

::::::
TBMs

::::
with

:::::::::
contrasting

::::::
spatial

::::::::
features

::::
from

:::::::::
MsTMIP,

:::
the

::::::::::
Multi-scale

::::::::
Synthesis

::::
and

:::::::::
Terrestrial

::::::
Model

::::::::::::::
Intercomparison

:::::::
Project

::::::::::::::::::::::::::::::::::::::
(Huntzinger et al., 2013; Fisher et al., 2016; ?).

:::::::
Section

::::
S1.2

::::::::
describes

:::::::::
MsTMIP

:::
and

::::
the

::::::
TBMs

::
in

::::::
greater

::::::
detail.

::::
We

::::
also

::::::
include

:::
SIF

::::::::::::
(solar-induced

::::::::::::
fluorescence)

::::
from

:::
the

::::::
Global

::::::
Ozone

::::::::::
Monitoring

:::::::::::
Experiment-2

::::::::::::::::::::::::::::
(GOME-2, Joiner et al., 2013) as

:::
well

:::
as

::::
EVI

::::::::
(enhanced

:::::::::
vegetation

::::::
index)

::::
and

:::::
NDVI

::::::::::
(normalized

:::::::::
difference

:::::::::
vegetation

::::::
index)

::::
from

:::
the

::::::::::::::::::
Moderate-Resolution

:::::::
Imaging

:::::::::::::::
Spectroradiometer

::::::::::::::::::::::::::::
(MODIS; e.g., Huete et al., 2002).

::::
Note

::::
that

::
we

:::::::
directly

:::::
input

::::
these

:::::::::
vegetation

::::::
indices

::::
into

::::::
PCTM
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::
as

:
a
::::::
surface

:::::
‘flux.’

::::
The

::::::::
regression

::::
will

:::::
adjust

:::
the

:::::::::
magnitude

::
of

::
the

::::::::
transport

:::::
model

:::::::
outputs

::
to

::::::::
reproduce

:::
the

::::::
OCO-2

:::::::::::
observations,5

::
so

:::
the

:::::::
absolute

:::::::::
magnitude

::
of

:::
the

:::::::::
vegetation

::::::
indices

::
is

:::
not

:::::::::
important.

::::::
Rather,

:::
we

:::
are

::::::::
interested

::
in

:::::::
whether

:::
the

:::::::
patterns

::
in

:::::
these

::::::::
vegetation

::::::
indices

::::
help

:::::::::
reproduce

:::::::
patterns

::
in

::
the

:::::::
OCO-2

:::::::::::
observations,

:::::::::
potentially

::
in

::::::::::
combination

::::
with

:::::
other

::::::
indices

::
or

::::::
TBMs.

:

We also consider non-biospheric fluxes for use in X. We include anthropogenic emissions from EDGAR v4.2 FT2010

(European Commission, Joint Research Centre (JRC)/Netherlands Environmental Assessment Agency (PBL), 2013; Olivier

et al., 2014), climatological ocean fluxes from Takahashi et al. (2016), and biomass burning fluxes from the Global Fire10

Emissions Database (GFED), version 4.1 (van der Werf et al., 2010; Giglio et al., 2013). We are not interested in anthropogenic

or marine fluxes per se. Rather, we want to account for these fluxes in the modeling framework and do not want any omissions

to affect inferences related to biospheric fluxes. As a result, we do not separate these non-biospheric fluxes by region or month

because these sources are not the focus of this study; each of these sources is assigned a single column in X. Furthermore, we

do not include these variables by default within X, unlike the constant flux base model. Rather, they are included as candidate15

variables within the model selection framework.

In the seven
::::
Note

::::
that

::
in

:::
the

:::::
seven

:::::::::
ecoregion

:
region case, X has a minimum of 112 columns and a maximum of 899

columns–
:
. 112 columns associated with the constant flux base model,

:::::::
intercept

:::
and

:::
are

::::::
always

:::::::
included

::
in
:::
X

::::
(i.e.,

::
16

:::::::
months

::
⇥

:
7
::::::::::

ecoregions
:::
per

:::::::
month).

:
784 columns associated with biospheric flux patterns

:::::
fluxes

:::
(7

::::
flux

::::::
models

::
⇥

:::
16

:::::::
months

::
⇥

::
7

:::::::::
ecoregions), and three columns associated with fossil fuel, ocean, and biomass burning fluxes.

::::
These

::::::::
columns

::::
may

::
or

::::
may

:::
not20

::
be

:::::::
included

::
in

:::
X,

:::::::::
depending

::::
upon

:::
the

::::::
results

::
of

::::::
model

::::::::
selection.

We further utilize synthetic data simulations in this study to evaluate the potential of OCO-2 observations and analyze the

effects of different model or retrieval/observation errors. In these simulations, we create synthetic XCO2 observations using

PCTM and the SiBCASA model. We then run model selection using these synthetic data. These model selection runs have the

same setup as the real data simulations, except that the observations (z) are synthetic instead of real. Furthermore, we only25

analyze the seven region case in the synthetic data experiments. This case is more stringent than the two and four region cases.

The seven ecoregion case is also an important goal from a ecological perspective: one might want to estimate how CO2 fluxes

differ in different tropical forests or in different temperate forests (e.g., on different continents or in different climate zones).

The in-situ monitoring network in North America, for example, is able to detect flux patterns within most North American

ecoregions (Fang et al., 2014), and this standard of detectability would be a rigorous goal for satellites to achieve.30

The first model selection runs are an idealized case with no simulated errors (✏⇡ 0). We then successively add simulated

error to the synthetic observations and evaluate how the model selection results change as the errors increase (Fig. 1). We

include three different types of errors: flux errors, transport errors, and observation or retrieval errors. Section 2.2 and the SI

describe the simulated transport and retrieval errors. The flux errors further account for plausible inaccuracies in the predictor

variables within X. No TBM or vegetation index has a distribution that perfectly matches real-world CO2 fluxes. These errors

affect our ability to identify biospheric flux patterns using the OCO-2 observations and would affect inverse modeling studies;

the better the prior flux estimate in an inverse model , the more accurate and reliable the posterior flux estimate. We therefore

account for these flux errors in the synthetic data simulations. To this end, we remove SiBCASA as an option in the X matrix5
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and choose among the other remaining patterns. This procedure simulates the plausible effects of imperfect TBMs or predictor

variables.

3 Results & discussion

3.1 The biospheric CO2 signal versus model and measurement noise
::::::::
retrieval

:::::
errors

We compare simulated model and measurement
::::::
retrieval

:
errors against the atmospheric signal from biospheric fluxes (Fig.10

3). The comparison provides an intuition of the ‘noise’
::::
errors

:
and the CO2 ‘signal’ given current modeling and observa-

tion capabilities. This
::::
Prior

::
to

:::
the

:::::::
OCO-2

:::::::
satellite

:::::::
launch,

::::::
several

::::::
studies

::::::::
modeled

:::
the

::::::
XCO2::::::

signal
:::::
from

::::::
surface

::::::
fluxes

::::::::::::::::::::::::::::
(e.g., Olsen and Randerson, 2004),

:::
and

:::
the

:::::::::::
measurement

::::::::
precision

:::::::
required

::
for

::::::::::
space-based

::::::::::
constraints

::
on

::::
CO2:::::

fluxes
:::::::::::::::::::::::::::
(e.g., Rayner and O’Brien, 2001).

:
It
::
is
::::
now

::::::::
possible

::
to

:::::
make

:::
this

:::::::::
evaluation

:::::
with

:::
real

:::::::
instead

::
of

::::::::
synthetic

:::::::::::
observations.

:::::
Also

::::
note

::::
that

:::
the

::::::
XCO2 :::::

signal
::::
and

::::::::
estimated

:::::
errors

:::
will

::::
vary

:::::::::
depending

:::
on

::
the

:::::::::
averaging

::::
time

::::::
period.

:::
We

:::::
report

:::::::
monthly

:::::::
averages

:::
of

::
the

:::::::::
biospheric

:::::
signal

::::
and

:::
the15

:::::
errors.

:::::
Many

:::::::::
top-down,

::::::
inverse

::::::::
modeling

::::::
studies

::::::
report

:::::::
monthly

:::
flux

::::::
totals,

::
so

::
all

:::
of

:::
the

:::::::
analysis

::::::::
presented

::::
here

:
is
::::::::::
aggregated

::
to

:::
one

::::::
month

:::::::
averages.

:

:::
The

:
atmospheric CO2 signal from biospheric fluxes is marked, even when averaged across a total vertical column . Globally,

the XCO2 signal has a
::::
(Fig.

:::
3)–

::
a

:::::
global

:
mean absolute value of 0.5ppm in February and 1.3ppm in July. The 10th and

90th percentiles are 0.04 and 1.4ppm in February and 0.06 and 3.8ppm in July. In July, the largest enhancements are in the20

northern hemisphere mid and high latitudes while the largest enhancements during winter months are in the tropics and southern

hemisphere.

The
::
By

:::::::
contrast,

:::
the

:
simulated model and retrieval /observation errors are comparable to this XCO2 signal from biospheric

fluxes. These errors have a mean absolute value of 0.6ppm in both February and July. The 10th and 90th percentiles are 0.08

and 1.35ppm in February and 0.08 to 1.25ppm in July. Using the alternative retrieval estimate, the errors and percentiles are25

0.8, 0.02, and 2.1ppm in February and 1.4, 0.05, and 3.7ppm in July. Phrased differently, these errors, averaged across all nadir

and target data, equate to 115 – 122% of the mean biospheric CO2 signal in February and 43 – 107% in July, depending upon

the retrieval error estimate. Figure 3 further indicates the spatial distribution of the atmospheric CO2 ’signal’ and ’noise.’

It is important to note that the
::::::::::
distribution

::
of

::::
these

:::::::::::
observations

::
is

::::::::::::
heterogeneous

:::::
across

:::
the

:::::
globe

:::::
(Fig.

::
3),

:::::
even

::::::
though

:::
the

total number of OCO-2 observations is large (e.g., 268,671 and 343,053 nadir and target observations in February and July,30

respectively, in the lite data file), but the distribution of these observations is heterogeneous across the globe. For example, the

data are concentrated in tropical and temperate regions and are sparse at high latitudes and regions with frequent cloud cover

(e.g., the Amazon).

:::::
These

:::::
errors

:::
are

:::
not

::::::::::
inconsistent

:::
with

:::::
those

::::::::
estimated

::
by

:::::::
existing

:::::::
studies.

::::::::::::::::::::
Wunch et al. (2017a) and

:::::::::::::::::::::::
Liang et al. (2017) compare

::::::
OCO-2

:::::::::::
observations

::::::
against

:::::::
TCCON

:::::::::::
observations.

:::::::::::::::::::::::
Wunch et al. (2017a) report

:::
an

:::::::
average

:::
site

::::
bias

::
of

::::::::
0.22ppm

:::::
when

:::::
using

:::
land

:::::
nadir

:::::::::
retrievals

:::
and

::
a
::::
root

:::::
mean

:::::::
squared

:::::
error

::
of
:::::::::

1.31ppm.
:::
By

::::::::
contrast,

:::::::::::::::::::::
Liang et al. (2017) report

::
an

:::::
error

::::::::
standard

:::::::
deviation

:::
of

:::::::
1.56ppm

:::::
(both

:::::
nadir

::::
and

:::::
glint),

::::
and

::::
find

:::
that

:::::::
OCO-2

:::::::::::
observations

:::
are

:::::
offset

:::::
from

:::::::
GOSAT

::::::::::
observations

:::
by

:::
an

::::::
average

::
of

::::::::::
1.765ppm.

::
In

:::::::
addition,

:::::::::::::::::::::::::
Worden et al. (2017) estimate

:
a
::::::::
precision

::::
and

::::::::
accuracy,

::::::::::
respectively,

::
of
:::::

0.75
:::
and

::::::::
0.65ppm
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::
for

::::
land

:::::
nadir

::::::::::::
observations.

:::::
These

::::::
studies

::::
are

:::
not

:::::::::
necessarily

:::::::
directly

::::::::::
comparable

:::::::
because

:::::
each

::::
uses

::::::::
different

::::::
metrics

::::
and5

:::::::::::
observations.

:::::::::::
Furthermore,

::::::
several

:::::::
compare

:::::::
OCO-2

::
to

:::::::
TCCON,

:::
the

:::::
same

:::::::::::
observations

::::
used

::
to

::::
bias

::::::
correct

:::::::
OCO-2.

::::
With

::::
that

::::
said,

:::
the

::::::
overall

:::::::
numbers

:::::::
reported

:::
by

:::::::
different

::::::
studies

:::
are

:::
not

::::::::::
inconsistent

::::
with

::::
one

::::::
another

:::
and

:::::
with

:::
Fig.

::
3.

:

The relative magnitude of the errors provides an informative measure of the observations, but it does not tell the complete

story. A number of other considerations affect scientists’ ability to estimate surface fluxes using these observations. First,

inverse models leverage more than the point-wise signal to estimate surface fluxes; these models leverage complex spatial10

and temporal patterns in the data to estimate surface fluxes. Second, the absolute magnitude or variance of the errors is only

one consideration. Another important factor is the spatial and temporal correlations or covariances in these errors. These

covariances reduce the independent information in the data and can obscure patterns in XCO2 that are due to surface fluxes. As

a result, we construct real and synthetic data experiments to understand what these errors mean for estimating surface fluxes.

3.2 Real data experiments15

The model selection experiments using real data indicate the number or size of regions for which we can reliably constrain

biospheric CO2 budgets using current OCO-2 observations. We start the real data simulations with large hemispheric regions

and reduce the size of the regions until we are no longer able to detect any CO2 flux patterns or information beyond a mean

monthly flux in each region and each month. We would need to detect more than a mean flux from a given region if we are to

reliably constrain fluxes across smaller regions.20

The first real data experiment indicates whether the observations are sufficient to detect flux patterns within two large

hemispheric regions (Fig. 2). Figure 4a displays the number of months in which at least one pattern
:::::
model

:::::
output

::::
(i.e.,

:::::::
column

::
of

:::
X,

:::
Eq.

::
1)

:
is chosen, broken down by region. The results in Fig. 4a are grouped by season for convenience. Dark colors

suggest excellent detectability for a given region and season while light colors suggest limited detection abilities.

Model selection identifies flux patterns in about half of all months. This outcome suggests that OCO-2 and the PCTM model25

can be used to identify broad, hemispheric flux patterns. One important exception is the extra-tropics (e.g., the temperate,

boreal, and arctic region), in both spring and fall. Biospheric uptake in these seasons is less than the summer maximum, in

both the northern and southern hemispheres. As a result, flux patterns in these areas are not as heterogeneous and not readily

detectable using the satellite observations. This result also indicates that the OCO-2 observations can be used to reliably

constrain CO2 budgets at scales smaller than hemispheric in about half of all cases.
::::
With

::::
that

::::
said,

:::
we

:::
do

:::
not

:::::
select

:
a
::::::
single30

:::
flux

::::::
pattern

::
in

:::::
three

::
of

::::
four

::::::
seasons

:::
for

::::
one

::::::::::
hemisphere.

In a second experiment, we try to identify flux patterns within four, smaller regions using OCO-2 observations and model

selection (Fig. 4b). We choose flux patterns
::
At

:::::
least

:::
one

::::
flux

::::::
pattern

::
is

:::::::
selected in 29% of all regions and monthsusing model

selection
:
,
:::
and

::::
this

:::::
result

::::::::
suggests

:::
that

:::::::
inverse

::::::::
modeling

::::::
studies

::::::
would

:::
be

::::
able

::
to

::::::::
constrain

:::::
CO2 :::::::

budgets
::
at

:::::
more

:::::::
detailed

:::::
spatial

:::::
scales

::
in
:::::
about

::::
one

::::
third

::
of

:::
all

::::::
regions

:::
and

:::::::
months. This experiment is more demanding than the first, and it is therefore35

unsurprising that we choose fewer flux patterns ; flux
::
are

::::::::
selected.

:::::
Flux patterns within these four continental regions are

often less heterogeneous than across the two large hemispheric regions in the first experiment. This result suggests that inverse

14



modeling studies would be able to constrain CO2 budgets at more detailed spatial scales in about one third of all regions and

months.

The third and final experiment includes seven ecoregions, and we choose relatively few flux patterns using model selection5

::
are

::::::::
selected in this final experiment (16% of all possible regions and months, Fig. 4c). This result suggests a limited ability

to detect biospheric flux patterns within each of the seven global ecoregions. Inverse modeling studies would thus be able to

uniquely constrain CO2 budgets across smaller regions in only a small handful of cases (e.g., 16% of all possible regions and

months). These results appear similar to a recent study using current GOSAT retrievals. Houweling et al. (2015) compare an

ensemble of inverse modeling flux estimate using GOSAT. Estimates show good agreement across very large regions (e.g.,10

within 20% for global, annual CO2 budgets) but disagree by over 100% over subcontinental-sized TransCom regions (e.g.,

Gurney et al., 2002).

As part of model selection, we also estimate
::::::
evaluate

:
the effective number of independent OCO-2 observations , referred to

as n⇤ (Eq. S7)
:::
(n⇤,

:::::
Sect.

:::::
S1.3),

::::
and

:::
we

:::::::
estimate

:::
one

:::::::::::
independent

::::::::::
observation

:::
per

::::::
⇠1200

:::::::
OCO-2

:::
lite

::::::::
retrievals. Correlations

or covariances in transport and retrieval errors will reduce the value of n⇤. Our
:::
The estimate is similar among all of the real15

data experiments and is approximately 4000 (4060 for the two region case, 3600 for the four region case, and 3540 for the

seven region case). By comparison, the total number of OCO-2 observations during the study period (n) is 5.08⇥ 106. This

ratio corresponds to one independentobservation per ⇠1200
::::
Note

::::
that

:::
the

:::::
value

::
of

:::
n⇤

::::::::
decreases

:::
as

:::
the

:::::::
number

::
of

:::::::
regions

::::::::
increases.

:::::
Fewer

::::
and

:::::
fewer

:::::
model

:::::::
outputs

::
are

:::::::
selected

:::
as

::
the

:::::::
number

::
of

:::::::
regions

::::::::
increases.

:::
As

:
a
:::::
result,

:::::
there

:::
are

::::
more

::::::::
residual,

::::::::::
unexplained

:::
flux

:::::::
patterns

::
in

:::
the

:::::
seven

::::::
region

::::
case

::::
than

::
in

:::
the

:::
two

::::::
region

::::
case.

:::
As

::
a

:::::
result,

:::
the

:::::::::
regression

:::::::
residuals

:::::
have

:::::
larger20

:::::::::
covariances

::
in
:::
the

:::::
seven

::::::
region

::::
case,

::::
and

:::
the

::::::::::
observations

:::::::
become

:::
less

:::::::::::
independent.

:

:::::
These

::::::
results

::
are

:::::::
broadly

:::::::::
consistent

::::
with

:::
the OCO-2 lite retrievals.

::::::
science

::::::
team’s

:::::::
ongoing

:::
flux

:::::::::::::::
inter-comparison

::::
study

::::
(?).

::::::
Several

:::::::
research

::::::
groups

:::
are

::::::::::
developing

::::::
inverse

::::::
models

::
to
::::::::

estimate
::::
CO2:::::

fluxes
:::::
using

:::::::
OCO-2

:::::::::::
observations,

:::
and

::
a
::::::::::
comparison

::
of

::::
these

::::::::
estimates

::::::::
provides

::::::
insight

:::
into

:::
the

:::::::::
robustness

:::
of

:::
the

:::
flux

:::::::::
estimates.

:::
To

::::
date,

:::::
these

::::::::::
comparisons

:::::
often

:::::
show

::::::::
relatively

::::
good

:::::::::
agreement

:::
for

::::
total

::::::::::
hemispheric

::::::::
terrestrial

:::::::
budgets,

::::
but

::
the

:::::::::
ensemble

::
of

::::::::
estimates

::
of

:::::::
diverges

:::
for

::::::
smaller

:::::::
regions.

::::::
Other,25

:::::
newly

::::::::
published

::::::
inverse

::::::::
modeling

:::::::
studies

:::
use

::::::
OCO-2

:::::::::::
observations

::
to

:::::::
estimate

:::::::
regional

:::::::
budgets

::::::::::::::::::
(e.g., Liu et al., 2017).

::::::
These

::::::
studies

:::::::
primarily

:::::
focus

:::
on

::::::::
questions

:::::
about

:::::
carbon

:::::
cycle

:::::::
science,

:::
and

:::::
many

::::::
employ

:::::::
4DVAR

::::::::::
frameworks

::::
that

::
are

:::
not

::::::::::
necessarily

:::::::
intended

::
to

::::::::::
exhaustively

:::::::
sample

::
all

::::::::
plausible

::::::
sources

::
of
::::::::::
uncertainty.

:

3.3 Synthetic data experiments

The goal of the synthetic data simulations is to understand the challenges that influence the real data results. If future efforts30

can mitigate these challenges, then inverse modeling studies would be able to reliably constrain flux patterns and CO2 budgets

across individual ecoregions or even smaller regions.

We first construct an idealized synthetic data study without any errors (Fig. 5a), and we choose a flux pattern for every

ecoregion in every month using model selection. This case study indicates that the OCO-2 observations are not
::::::::
inherently

:
insen-

sitive to biospheric fluxes at the surface. This result is not necessarily an obvious one. Some satellite instruments, particularly

those that measure in the thermal infrared, are most sensitive to mixing ratios in the upper troposphere and have limited
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sensitivity to the surface (e.g., AIRS, see Chevallier et al., 2005). OCO-2, by contrast, observes in the shortwave infrared and is

sensitive to CO2 mixing ratios throughout the troposphere.
:
,
:
a
:::::
result

::::::::
consistent

::::
with

::::::::
previous

::::::
studies

::::::::::::::::::::::::::::
(e.g., Olsen and Randerson, 2004).

::
In

:::
this

::::::::
idealized

::::
case,

::
a

:::
flux

::::::
pattern

::
is

:::::::
selected

:::
for

:::::
every

::::::::
ecoregion

::
in

:::::
every

::::::
month

::::
using

::::::
model

::::::::
selection.

:
5

Subsequent model selection experiments include at least one error type, and these results all look different from the first,

idealized case. We choose patterns
:::
flux

:::::::
patterns

::
are

:::::::
selected

:
in fewer regions and months with model selection when we include

one error type
:
in

:::
all

::
of

::::
these

:::::
cases

:
(Fig. 5b-d). Of the three different error types, observation or retrieval errors have the largest

impact on the model selection results (Fig. 5d). Note that the retrieval errors used to generate Fig. 5d are those simulated in

Fig. 1c-d. Section S2.2 describes the model selection experiments using an alternative set of retrieval errors (Fig. 1e-f), and10

these results are similar to those presented in the main manuscript (Fig. 5).

Notably, the addition of any error, large or small, appears to hinder flux pattern detection in marginal ecoregions – ecoregions

with small fluxes and/or small spatial and temporal variability (e.g., tundra and deserts). Arguably, this result is unsurprising.

OCO-2 observations are sparse in many cloudy, high latitude regions, and CO2 fluxes are weak at high latitudes and in deserts.

Fluxes from these regions are quickly obscured by even modest errors in the model or observations. Future CO2 remote sensing15

efforts would have difficulty detecting biospheric patterns within these areas. Other regions, like forests and grasslands, have

larger and/or more heterogeneous fluxes, and these patterns should be easier to detect with satellite observations.

The experiments in
:::
One

::
of
:::

the
:::::::::::
experiments

:::::::::
specifically

::::::::
accounts

:::
for

:::::
errors

::
in

:::::::
existing

:::
flux

::::::::
estimates

::
(Fig. 5

::
b).

::::
We

:::
find

::::
that

::::
these

:::::
errors

:::
do

::::
have

:::
an

:::::
effect

::
on

:::
the

:::::::
results,

:::
but

:::
that

:::::
effect

::
is
:::
not

::::::
nearly

::
as

:::::
large

::
as

::::
that

:::
due

::
to

:::::::
retrieval

::::::
errors.

:::
We

:::::
argue

::::
that

::::::
current

::::::
OCO-2

:::::::::::
observations

:::
can

:::::
detect

:::::::
patterns

::
in

::::
CO2::::::

fluxes
:
if
::
at

::::
least

::::
one

:::::
model

::::::
output

:::::
helps

::::::
explain

:::::::::
substantial

:::::::::
variability20

::
in

::::
those

:::::::::::
observations.

:::
We

:::::
offer

::
up

:
a
:::::::
number

::
of

:::::::
different

::::::
model

::::::
outputs

:::::
using

::::::
several

:::::::
different

::::
flux

::::::
models,

:::
but

:::::
there

:
is
::::::
always

::
a

::::::::
possibility

::::
that

::::
none

::
of

:::::
these

::::
flux

::::::
models

:::::::::
adequately

:::::::::::
approximates

::::
real

:::::
world

::::::
fluxes.

:::
The

::::::::::
experiment

::
in

:::
Fig.

:::
5b

::::::::
evaluates

::::
how

::::
these

::::
flux

:::::
errors

:::::
could

:::::
affect

:::
the

:::::
result.

:::::::::::
Furthermore,

::
if
:::::
there

:::
are

:::::
large,

:::::::::
unresolved

:::::::
patterns

::
in

::::::::::::
anthropogenic

::
or

::::::
marine

::::::
fluxes,

::::
these

:::::::::
unresolved

:::::::
patterns

:::::
could

::::
also

:::::::
influence

:::
the

::::::
results

:::
for

:::::::::
biospheric

:::::
fluxes.

:::::
Note

:::
that

:::
this

:::
set

::
of

::::::
issues

:::
also

::::::
affects

::::::::
Bayesian

::::::
inverse

::::::
models

:::
and

::::::::
therefore

:::
has

::::::::::
implications

:::::::
beyond

::
the

:::::::::::
methodology

:::::
used

::
in

:::
this

:::::
study.

::::::::::
Specifically,

:::
the

::::::::::
availability

:::
and

::::
skill25

::
of

:::
the

::::
prior

::::
flux

:::::::
estimate

::::::
affects

::
the

:::::::::
robustness

::::
and

:::::::::
uncertainty

::
of

:::
the

:::::::
inverse

::::::::
modeling

:::::::
estimate.

:

:::::::::
Subsequent

:::::::::::
experiments

::::
(Fig.

::
5e-g)

:
include two different error types, and we choose

:::
flux

:::::::
patterns

:::
are

:::::::
selected

:::
in fewer

months and regions with model selection relative to the previous cases. The experiment with transport and flux errors (but

not retrieval errors, Fig. 5e) still show good detectability during the summer months and in temperate and tropical forest and

grassland ecoregions. By contrast, the experiments that include retrieval errors (Fig. 5f-g) show limited detectability in all30

ecoregions and seasons.

The last experiment (Fig. 5h) includes all error types. We ,
::::
and

::
we

:
obtain positive results in fewer regions in fewer months

relative to other cases. These results are broadly consistent with the real data experiments; we choose a similar number of

regions and seasons
:::
are

:::::::
selected in both this experiment and the real data experiment (Fig. 5h). This consistency indicates that

the synthetic simulations likely mirror real-world conditions. Note that the estimate for n⇤ in this final synthetic experiment is

about half that of n⇤ in the real data experiments (n⇤ = 1630). These synthetic experiments may therefore slightly overestimate
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the spatial and temporal covariance
::::
error

::::::::::
correlations

::
or

::::::::::
covariances

:::
and

::::::::::::
underestimate

:::
the

:::::::
variance

::
or
:::::

white
:::::
noise

:::::::
portion of5

the errorsrelative to real data.

Overall, the synthetic simulations suggest that observation or retrieval errors play a salient role relative to other error types

(e.g., transport errors or flux errors, Fig. 5). Spatial and temporal error covariances and biases may be at least partly to blame.

The estimated transport errors are spatially and temporally correlated on synoptic time scales (e.g., Miller et al., 2015)
:::::::::::::::::::::::::::::::::
(e.g., Liu et al., 2011; Miller et al., 2015).

These scales are generally smaller than the ecoregions and hemispheres examined in this study. As a result, these errors will10

average down over time and space, and this averaging will mitigate the impact of these errors on the results. This statement,

of course, only holds if there are no large-scale biases in the meteorology. The simulated observation or retrieval errors, by

comparison, covary across longer spatial and temporal scales. These errors correlate with retrieval parameters like aerosol

optical depth or albedo that often change at broader seasonal or regional scales. The greater these error correlations, the less

these errors average down across space and time, and the greater impact these errors have on the utility of XCO2 observations.15

A reduction in the spatial and temporal coherence of these errors would improve the model selection results.

4 Conclusions

The OCO-2 satellite offers a new, global window into atmospheric CO2 and CO2 fluxes at the Earth’s surface. This study

explores a first step in realizing these capabilities; we evaluate the extent to which current OCO-2 observations can detect

patterns in biospheric CO2 fluxes and constrain monthly CO2 budgets.20

We find that OCO-2 observations, in their current state of development, often provide a reliable constraint on CO2 budgets

across continental or hemispheric regions. By contrast, we find that current observations can provide a unique CO2 estimate

across smaller regions in only a handful of cases. As a result, inverse modeling studies are unlikely to constrain regional fluxes

at fine spatial and temporal scales given the current maturity of the observations. Regional CO2 budgets estimated using these

observations would be highly uncertain and prone to biases.25

These results do not reflect any inherent limitation in the sensitivity of the OCO-2 satellite. Rather, they
:
a
:::
set

::
of

::::::::
synthetic

:::
data

::::::::::
simulations

:::::::
indicate

::::
that

:::::
these

:::::::::
limitations are likely the product of observation or

::::
result

:::
of

::::
large

::::::
errors:

:
retrieval errors

and to a lesser extent atmospheric transport errors .
::::
(Fig.

:::
5). Hence, the value or potential of the OCO-2 observations is greater

than these results might otherwise imply. For example, our simulated retrieval errors
::
the

:::::::
retrieval

:::::
errors

:::::::::
simulated

::
in

:::
this

:::::
study

often covary across large regions and across a month or more. Future improvements to retrieval algorithms could reduce both30

the variance and covariance of these errors, enabling confident CO2 flux constraints across smaller regions.

Even with these limitations, current OCO-2 observations provide new information on CO2 fluxes for many regions of the

globe. On one hand, in situ data appear to provide a stronger constraint on CO2 fluxes in some well-instrumented regions of

the world, like North America (e.g., Fang et al., 2014). Our results using OCO-2 and
::::::
Results

::::
using

:
seven global ecoregions are

less successful
::::
show

::::
only

:
a
::::::
limited

::::::
ability

::
of

::::::
current

:::::::
OCO-2

::::::::::
observations

::
to

:::::::::::
differentiate

:::::
among

:::::::
regions. On the other hand, in

situ observations are sparse in many regions of the world, including in most of the tropics, Africa, South America, and Asia
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(e.g., ?). Current OCO-2 observations bring new monitoring capabilities to these regions that are unlikely to be matched by in

situ observations within the near future.5

Furthermore, a number of new satellite missions will launch in the next five years. Multiple sets of observations, in tandem,

will provide a more detailed, robust constraint on CO2 fluxes. For example, the GOSAT-2 satellite will monitor atmospheric

CO2 with better accuracy relative to the original GOSAT satellite (?). This improvement in both the quality and overall quantity

of CO2 observations will enable more detailed estimates of CO2 fluxes. In addition to GOSAT-2, the OCO-3 mission will

observe CO2 from the International Space Station at a different locations and times of day relative to OCO-2 (NASA Jet5

Propulsion Laboratory, 2017). This feature will provide a stronger constraint on spatial and temporal variations in CO2 fluxes.

In addition, observation or
::::::::
However, retrieval errors appear to be a key factor in our results and will likely be a challenge for

these future missions. Work on the OCO-2 retrieval algorithm will inform these upcoming missions, so improvements to the

OCO-2 retrievals will likely improve the data capabilities of future missions as well. Further improvements to the satellite

retrieval and atmospheric transport modeling could enable OCO-2 and future missions to provide detailed CO2 budgets for10

much finer regions.
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Figure 1. This figure displays the simulated synthetic data errors (i.e., simulated ✏): the simulated atmospheric transport errors (a-b), the

simulated observation/retrieval errors (c-d), and a second, alternative set of observation/retrieval errors (e-f). The left-hand panels display

the mean of the errors within each PCTM grid box across the entire 2014–2015 study period, an indication of the correlation or covariance

among the errors. By contrast, the right-hand panels display the standard deviation of the errors or residuals within each PCTM grid box.
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Figure 2. The two hemispheric regions (a), four continental regions (b), and seven ecoregions (c) used in this study. The ecoregions are based

on a world biome map by Olson et al. (2001). The two and four region maps are amalgamated versions of the ecoregions.
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Figure 3. This figure compares the total column CO2 or XCO2 signal from biospheric fluxes against simulated model and observation errors.

Panels a and b display the
::::::::
monthlong

:::::
mean XCO2 signal from biospheric CO2 fluxes for February and July, respectively. We estimate this

signal using the SiBCASA flux model and PCTM. Also note that the XCO2 signal for February and July includes CO2 fluxes from the

months of February and July, respectively, and no fluxes from previous or subsequent months. Panels c and d represent the sum of both

simulated observation and atmospheric transport errors (
::::::::
monthlong

:::::
mean, Sect. 2.2). Panels e and f show the sum of these errors using an

alternate estimate for the retrieval errors.
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Figure 4. The results of the model selection experiments using real data. We select
:::
The

:::::::
different

:::::
colors

::::::
indicate

:::
the

::::::
number

::
of

::::::
months

::
in

::::
which

::
at
::::
least

:::
one flux

:::::
pattern

:
is
::::::
selected

:::
for

:
a
::::
given

::::::
region,

:::
and

::::
dark

::::
colors

::::::
suggest

:::::::
excellent

:::::::::
detectability

:::::
while

::::
light

::::
colors

::::::
suggest

::::::
limited

:::::::
detection

::::::
abilities.

::::
Flux

:
patterns

::
are

:::::::
selected for a greater fraction of regions/months in the two region case (a) than in the four or seven

region cases (b and c).The different colors indicate the number of months in which model selection chooses a flux pattern for a given region.
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Figure 5. Model selection results for the synthetic data experiments. The first column (a) shows an experiment with no errors in the synthetic

observations. The results of that experiment are ideal, and we choose a
:
at
::::
least

:::
one flux pattern

:
is
:::::::

selected in every month and every region

using model selection. Subsequent panels (b-h) show the results with one, two, and three types of errors included. Fewer regions and seasons

are selected in these experiments. The plot signals that observation or retrieval errors likely play a key role.
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S1 Additional detail on study methodology

S1.1 Details on the CO2 initial condition and model spin-up

We spin up CO2 mixing ratios in the PCTM model using outputs from NOAA’s CarbonTracker
product (Peters et al., 2007). CarbonTracker produces CO2 fluxes and atmospheric mole frac-
tions that are optimized to match available in situ CO2 observations. Our goal is to spin5

up CO2 mixing ratios within PCTM in a fashion that is both consistent with CarbonTracker
and with the PCTM model grid. To this end, we initialize CO2 simulations on 1 Jan., 2009.
We average estimated global CO2 mole fractions from CarbonTracker by hemisphere and by
model vertical level. We then use these averages as the CO2 initial condition in PCTM for
1 Jan., 2009. Subsequently, we run PCTM forward using CarbonTracker fluxes until 1 Sept.,10

2014 when the model selection simulations begin. We continue these PCTM simulations past
1 Sept., 2014 using a surface flux of zero. These simulations become the spin-up modeled CO2,
and we subtract these spin-up mole fractions from the OCO-2 retrievals (z in Eq. S1). The
resulting vector (z) represents the change in CO2 mole fractions due to fluxes that occurred
after 1 Sept., 2014.15

S1.2 Additional detail on the CO2 flux patterns used in model selection

This section provides additional detail on the terrestrial biosphere models (TBMs) and vege-
tation indices that are used in the model selection experiments. These TBMs and vegetation
indices are used as the input fluxes in the PCTM model. We generate modeled XCO2 total
columns using these PCTM outputs, and the modeled XCO2 total columns become the predic-20

tor variables in the model selection experiments (i.e., the columns of the X matrix, Eq. S1).
Note that the multiple regression will scale the magnitude of each column of X in each region
and each month to best match the observations (Eq. S1). As a result of this setup, the overall
magnitude of each TBM and of each vegetation index does not a↵ect the model selection re-
sults. Rather, this study utilizes the spatial and temporal patterns in the TBMs and vegetation25

indices.
We include four TBMs from the recent MsTMIP project (Huntzinger et al., 2013). The

selected TBMs have very di↵erent space-time patterns and therefore sample a wide range of
plausible flux patterns. These TBMs include the Dynamic Land Ecosystem Model (DLEM;
e.g., Tian et al., 2011), the Lund-Potsdam-Jena Model Wald Schnee und Landschaft version30

(LPJ; e.g., Sitch et al., 2003), the Global Terrestrial Ecosystem Carbon Model (GTEC; e.g.,
King et al., 1997), and the Simple Biosphere Model with the Carnegie-Ames-Stanford Approach
(SIBCASA; e.g., Schaefer et al., 2008). The original MsTMIP model outputs have a spatial
resolution of 0.5� latitude by 0.5� longitude and a 3-hourly temporal resolution. We regrid the
fluxes to the PCTM model grid (1� latitude by 1.25� longitude) and input the fluxes into PCTM35

at the original 3-hourly resolution. Note that the gridded, 3-hourly MsTMIP flux estimates are
available for years 2004–2010. Few TBMs have readily-available flux estimates for the 2014–
2015 time period of this study, including the TBMs in the MsTMIP study. Instead, we use a
multi-year average of the MsTMIP fluxes as inputs in the PCTM model. We average these 7
years within each separate grid box and for each separate 3-hourly time period to produce this40

multi-year average for each MsTMIP flux model.
In addition to these TBMs, we also utilize several vegetation indices (EVI, NDVI, and SIF).

Numerous studies indicate that biospheric CO2 fluxes correlate with these vegetation indices
– with EVI (e.g., Sims et al., 2008; Wu et al., 2011), NDVI (e.g., Cihlar et al., 1992; Wylie
et al., 2003), and GOME-2 SIF (e.g., Guanter et al., 2014; Yang et al., 2015). These indices45

are therefore good candidate flux patterns to use within the model selection experiments.
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We use EVI and NDVI from the MODIS Aqua product MYD13C1 (Didan, 2015a) and the
MODIS Terra product MOD13C1 (Didan, 2015b). These products are collectively available at
8-day intervals. The individual Aqua and Terra products are each available at 16-day intervals.
However, the two products are staggered, so Aqua and Terra can be combined to produce EVI50

and NDVI estimates every 8 days. These products have a 0.05� latitude by 0.05� longitude,
and we regrid them to the PCTM model grid (1� latitude by 1.25� longitude). Both of these
products are available for 2014 and 2015, the time period of this study.

We use level 2 SIF retrievals from GOME-2 (Global Ozone Monitoring Experiment-2)
(Joiner, 2014). We convert the level 2 retrievals to a gridded SIF product using a block kriging55

method described by Tadić et al. (2017). This gridded product has a daily temporal resolution
and the same spatial resolution as PCTM. We use this product as an input ‘flux’ into the
PCTM model and incorporate the PCTM outputs as candidate variables in the X matrix.

S1.3 Additional detail on model selection implementation

This
:::::::::::
sub-section

:::::::::
describes

::::
the

::::::::::
regression

::::
and

:::::::
model

:::::::::
selection

::
in

::::::::
greater

::::::
detail.

:::::
The

::::::::::
regression

::::
used

:::
in

::::
this

:::::::
paper

::::
will

::::::::::::
quantitative

:::::
link

::::::::
OCO-2

::::::
XCO2:::::::::::::

observations
:::::
with

:::::::::::::
atmospheric

::::::
model

::::::::
outputs:

:

Y
::

= h(X)
:::::::

(S1)

z
:
= Y� + ✏
::::::::::

(S2)

✏
:
⇠ N (0,�2V)
:::::::::::::

(S3)

::::::
These

::::::::::
equations

:::
are

::::
an

:::::::::
expanded

::::::
form

::
of

::::
the

:::::::::::
regression

:::::::::
equations

::::::::
present

:::
in

:::::
Sect.

:::::
2.3.

:::::
The60

::::::
vector

::
z

::::::::::::
(dimensions

::::::
n⇥ 1)

::::::::::
represents

::::
the

::::::
XCO2:::::::::::::

observations
::::::
minus

:::
the

:::::::
model

::::::
initial

:::::::::
condition

::
or

::::::::
spin-up

::::::
(Sect.

::::::::
S1.1).

:::::
The

:::::::::
variable

::
X

:::::::::::::
(dimensions

:::::::
m⇥ p)

:::
is

::
a

:::::::
matrix

:::
of

::
p

:::::::::
di↵erent

::::
flux

:::::::
models,

:::::
and

:::::
each

:::::::
column

:::
of

::
X

:::
is

::
a

::::::::
di↵erent

:::::
flux

::::::
model

::::
for

:
a
:::::::::
di↵erent

:::::::
region

::::
and

:::::::
month.

:::::
The

::::::::
function

::::
h()

::
is
::::
an

::::::::::::
atmospheric

:::::::
model

:::::
that

:::::::::::
transports

::::
the

::::::
fluxes

:::
to

::::
the

::::::
times

:::::
and

:::::::::
locations

::
of

::::
the

:::::::
OCO-2

::::::::::
retrievals,

:::::
and

::::
the

:::::::::
resulting

:::::::
matrix

:::
Y

::::
has

:::::::::::
dimensions

:::::::
n⇥ p.

:::::::::::::
Furthermore,

::::
the65

:::::::
variable

::
✏
:::
is

::
a

:::::
n⇥ 1

:::::::
vector

:::
of

:::::::::
residuals.

:::::::
These

:::::::::
residuals

::::
are

:::::::::
assumed

:::
to

::::::
follow

::
a
::::::::::::
multivariate

:::::::
normal

::::::::::::
distribution

:::::
with

:
a
::::::
mean

:::
of

:::::
zero,

::
a

::::::::
variance

:::
of

::::
�2,

::::
and

::
a

::::::::::
covariance

::::::::::
structure

:::::
given

:::
by

::
V

::::::::::::
(dimensions

::::::::
n⇥ n).

:::::
The

::::::
vector

:::
of

:::::::::::
coe�cients

::::
(�,

:::::::::::
dimensions

:::::::
p⇥ 1)

::::
are

::::::::::
estimated

::
as

:::::
part

::
of

::::
the

::::::::::
regression.

:

::
In

:::::
this

:::::::
study,

::::
we

:::::::
choose

::
a
::::
set

:::
of

::::::::::
variables

::::
for

:::
X

::::::
using

:::::::
model

:::::::::
selection

:::::::
based

:::
on

::::
the70

::::::::
Bayesian

:::::::::::::
Information

:::::::::
Criterion

:::::::
(BIC)

:::::::::::::::::
(Schwarz, 1978).

::::
We

::::::::::
calculate

::
a

:::::
BIC

::::::
score

:::
for

::::::
many

::::::::
di↵erent

::::::::::
candidate

::::::::
models.

:::::
Each

::::::::::
candidate

:::::::
model

:::
has

::
a
:::::::::
di↵erent

:::
set

::
of

:::::::::
columns

::::
(X)

::
–

::::::::
di↵erent

:::::::::::::
combinations

::
of

::::
flux

::::::::
models

::
in

:::::::::
di↵erent

:::::::::::
geographic

:::::::
regions

:::::
and

::
in

:::::::::
di↵erent

::::::::
months.

:

::::
The

:::::
best

::::::
model

::::
has

::::
the

:::::::
lowest

::::
BIC

::::::
score:

:

BIC = L+ p ln(n⇤)
::::::::::::::::::::

(S4)

::::::
where

::
L

::
is

::::
the

::::
log

::::::::::
likelihood

::
of

::
a
::::::::::
particular

::::::::::
candidate

:::::::
model

:::::
(X).

:::::
The

::::::::::::::
log-likelihood

:::
has

::::
the

:::::::::
following

:::::
form:

:

L
::
= n⇤ ln(�2) +

n⇤

n
RSS

:::::::::::::::::::::

(S5)

RSS
:::::

=
1

�2
zTz � 1

�2
zTY(YTY)�1YTz

:::::::::::::::::::::::::::::::::

(S6)
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::::::
where

::::
RSS

:::
is

:::
the

:::::::::
residual

::::
sum

:::
of

:::::::
squares

:::::
and

:::
�2

::
is

:::::::
defined

:::::::
above

::
in

::::
Eq.

::::
S3.

:
75

:::::
Both

::::
the

:::::
BIC

::::
and

::::::::::::::
log-likelihood

::::::::::
equations

:::::
(Eq.

::::
S4

::::
and

::::
S6)

::::::::::::
incorporate

::::
n⇤,

::::
the

::::::::
e↵ective

:::::::
number

:::
of

::::::::::::
independent

:::::::::::::
observations.

:::::::::::::::::::::::
Jones (2011) discusses

::::
this

::::::::
concept

::
in

::::
the

::::::::
context

:::
of

:::
the

:::::
BIC.

::::
Just

::::::::
because

::::
the

::::::::
satellite

:::::::::
provides

::
n

::::::::::::
observations

:::::
does

::::
not

::::::
mean

:::::
there

::::
are

::
n

::::::::::::
independent

::::::
pieces

::
of

:::::::::::::
information.

:::::::::::::
Accordingly,

:::
n⇤

::::::::
ensures

::::
that

::::
the

:::::::
model

:::::::::
selection

:::::::::::
framework

::::::::::
accurately

:::::::
assesses

::::
the

::::::::
amount

:::
of

:::::::::::::
independent

::::::::::::
information

::
in

::::
the

:::::::::::::
observations.

:::
It

:::::::::
accounts

::::
for

::::
the

::::
fact80

::::
that

::::::
there

::::
are

:::::
often

:::::::
spatial

:::::
and

:::::::::::
temporally

:::::::::
coherent

::::::
errors

:::
in

::::
the

::::::::
satellite

:::::::::::::
observations

:::
or

::
in

:::
the

::::::::::
transport

:::::::
model.

::
If

:::
all

::
of

::::
the

:::::::::::::
observations

:::::
were

::::::::::::
independent

:::::
(i.e.,

::
if

::
V

:::::
were

::::::::::
diagonal),

:::::
then

::
n⇤

:::::::
would

:::::
equal

:::
n.

::::::::::
However,

:::
we

::::::::::
de-weight

:::::
both

::::::::::::
components

:::
of

::::
Eq.

:::
S4

:::
as

::::
the

:::::::::::
covariances

:::
in

::
V

::::::::
increase.

:

:::
We

::::::
could

:::::::::
calculate

:::
n⇤

::::::::
directly

:::::
using

:::::
V�1

::::::::::::::
(Jones, 2011).

:::
In

::::
fact,

::::::::
several

::::
CO2:::::::

model
::::::::
selection85

:::::::
studies

:::::::::::
incorporate

:::::
V�1

:::::::
directly

:::::
into

:::
the

:::::::::
equation

:::
for

::::
RSS

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Mueller et al., 2010; Gourdji et al., 2012; Shiga et al., 2014).

:::
We

::::
use

::::::::::
5,079,165

::::::::::::
observations

::::
(n)

:::
in

::::
this

:::::::
study,

:::
so

:::
V

::::
has

::::::::::
5.08⇥ 106

::::::
rows

::::
and

:::::::::
columns.

::::
As

:
a
:::::::
result,

::::
the

::::::::
inverse

::
of

:::
V

:::
is

::::::::::::::::
computationally

::::::::::::
intractable.

:::::
We

::::::::
instead

:::::::::
estimate

:::
n⇤

::::::
using

:::
an

:::::::::
approach

::::::
based

:::
on

:::::::::::::::
Gri�th (2005),

:::
an

:::::::::
approach

:::::
that

:::::
does

::::
not

:::::::
require

:::::::::::
computing

:::::
V�1

::::::::
directly:

90

n⇤ =
n

1 + (
Pn

i=1

Pn
j=1,j 6=i Vi,j/n)

::::::::::::::::::::::::::::

(S7)

::::
This

:::::::::
equation

::::::::::
calculates

:::
n⇤

::::::
using

::::::::::
individual

:::::::::
elements

:::
of

:::
V

::::
and

:::::
does

::::
not

:::::::
require

::::::::::
inverting

:::
the

:::
full

::::::::
matrix;

::
it

::
is

:::::::::
therefore

:::
far

::::::
more

::::::::::::::::
computationally

::::::::::
tractable.

::::::::::::
Subsequent

:::::::::::
paragraphs

::::::::
describe

::::
how

:::
we

:::::::::
estimate

::::
the

:::::::::
elements

::
of

:::
V.

:

::::
The

::::::::::
remainder

:::
of

::::
this section discusses how we characterize the variances (�2) and covariance

structure (V) of the model–data residuals (✏) (Eq. S3). An estimate of the variance is required95

to calculate the residual sum of squares (RSS, Eq. S6), and an estimate of the covariance
structure is necessary to calculate the e↵ective number of independent observations (n⇤, Eq.
S7).

We first describe our approach to
:::
the

::::::::
method

::::
for

:
characterizing the covariance structure

(V). We estimate this structure by constructing empirical variograms and fitting spherical100

variogram models (for an overview of variograms, refer to Kitanidis, 1997). We use a spherical
model because it tapers o↵ to zero and is therefore faster to compute with large datasets. We fit
these variagrams locally

:::
the

::::::::::
individual

::::::::::
elements,

::::
Vi,j ,:in the vicinity of each residual

:::::::::::
observation

i , where i denotes an individual element of
::
by

:::::::
fitting

:
a
:::::
local

::::::::::
variogram

:::::::
model

::
on

::::
the

:::::::::::
model-data

::::::::
residuals

::
(✏

:
). The covariance structure likely di↵ers in di↵erent locations and at di↵erent times105

(i.e., is non-stationary). Several
:
,
::::
and

::::::::
several

:
existing studies fit variograms locally to ac-

count for this non-stationary structure (e.g., Hammerling et al., 2012; Tadić et al., 2017), and
we

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(e.g., Alkhaled et al., 2008; Hammerling et al., 2012; Tadić et al., 2017).

::::
We

:
use a similar

approach here.
:::::::::::
Specifically,

:::
we

:::::::::
estimate

::::
this

:::::::::
structure

:::
by

::::::::::::
constructing

:::::::::
empirical

:::::::::::
variograms

::::
and

::::::
fitting

:::::::::
spherical

::::::::::
variogram

:::::::
models

:::::::::::::::::::::::::::::::::::::::::::::::::::::::
(for an overview of variograms, refer to Kitanidis, 1997).

::::
We110

:::
use

::
a

:::::::::
spherical

::::::
model

::::::::
because

::
it
:::::::
tapers

:::
o↵

:::
to

::::
zero

::::
and

:::
is

:::::::::
therefore

::::::
faster

::
to

:::::::::
compute

:::::
with

:::::
large

::::::::
datasets.

:

For each i, we create a separate spatial experimental variogram and a temporal experimental
variogram. We use all residuals that lie within 3000 kilometers of i and were collected at similar
times (within 1 day) to construct the spatial variogram, and we use residuals within 75 days
of i and a similar location (within 250 km) to construct the spatial variogram. We choose
these spatial and temporal distances because they are larger than transport or retrieval errors
that might covary across an entire ecoregion. We then fit spherical models to the spatial
and temporal variograms, respectively. In our setup, the elements of Vi,j equal the spherical

3



covariance model multiplied by the temporal covariance model:

Vi,j =

8
<

:
(1� 3

2
di,j
↵d,i

+ 1
2

d3i,j
↵3
d,i
)(1� 3

2
ti,j
↵t,i

+ 1
2

t3i,j
↵3
t,i
) if d  ↵d,i and t  ↵t,i

0 if d > ↵d,i or t > ↵t,i

where di,j and ti,j are the distance and time, respectively, between points i and j. The variables
↵d,i and ↵t,i are the decorrelation length and time parameters estimated from the spatial and
temporal emperical variograms, respectively. Note that several existing top-down CO2 studies115

use a covariance model with multiplied spatial and temporal components (e.g., Mueller et al.,
2008; Gourdji et al., 2012), though other recent studies use a more advanced approach (Tadić
et al., 2017).

We then use this estimate for Vi,j to estimate n⇤ (Eq. S7). The denominator of Eq. S7
sums over each element i. For each element i in the summation, we use covariance parameters120

estimated for that element i. Note that Eq. S7 presents a computational challenge. In this
setup, i = 1...n where n = 5.08 ⇥ 106. It would be computationally prohibitive to estimate
5.08⇥106 local variogram models. Instead, we randomly choose 1000 elements of i and estimate
a variogram model for each of those elements. As a result, the i summation term Eq. S7 only
sums over 1000 elements. More precisely, Eq. S7 becomes125

n⇤ =
n

1 +
P

1in

Pn
j=1,j 6=i Vi,j

1000

(S8)

where i is a set of 1000 randomly chosen numbers between 1 and n.
The model selection equations (i.e., Eq. S6) also require an estimate for �2. We estimate a

single value for �2 using all n residuals:

�2 =
1

n� 1

nX

i=1

✏2i (S9)

This implementation of model selection is iterative. We start by estimating the covariance
parameters with all candidate variables included in X. We use these covariance parameters to130

estimate n⇤ and subsequently run model selection. We run model selection with a heuristic
branch and bound algorithm described by Yadav et al. (2013). This algorithm dramatically
reduces the computing time of the model selection step. We then re-estimate the covariance
parameters using the chosen columns of X. The covariance parameters usually change slightly
with the new, updated X matrix. We alternate between the covariance estimation and model135

selection until both the covariance parameters and columns selected for X do not change from
one iteration to the next. The estimated covariance parameters and model selection results
typically converge on a stable answer within two to three iterations.

S1.4 Additional detail on the simulated, synthetic data errors

This section provides additional information on the simulated atmospheric transport errors and140

simulated retrieval errors used in the synthetic data experiments (Sect. 2.2 and 2.5).
We use simulated transport errors from an ensemble of meteorology realizations in Miller

et al. (2015). That study follows an approach developed by Liu et al. (2011). Both studies
simulate global meteorology using the Community Atmosphere Model (CAM) in weather fore-
casting mode. The studies also include CO2 as a passive tracer in the model. Miller et al. (2015)145

and Liu et al. (2011) then run an ensemble of 64 parallel simulations to estimate the e↵ects
of atmospheric transport uncertainties on modeled CO2. At each time step of the simulations,

4



they assimilate the mean of the 64-member ensemble to match meteorological observations us-
ing a local ensemble Kalman filter (LETKF) (e.g., Hunt et al., 2007). Miller et al. (2015) also
adjust the ensemble variance to be consistent with the meteorology model-data residuals using150

an approach known as adaptive covariance inflation (e.g., Miyoshi, 2011). In the present study,
we randomly choose one of the ensemble members. We use the di↵erence in modeled CO2

mixing ratios between the chosen ensemble member and the ensemble mean as our simulated
atmospheric transport error (Fig. 1). We then interpolate these estimated transport errors from
the CAM model grid (1.9� latitude by 2.5� longitude resolution) to the locations and times of155

the GOSAT observations.
We use two di↵erent approaches to simulate satellite retrieval errors. We employ the first

approach in the synthetic data simulations in the main text. We use the second set of errors
here in the Supplement (Sect. S2.2) as a consistency check on our

::::::::::
robustness

:::
or

::::::::::
sensitivity

:::::
check

:::
on

::::
the

:
synthetic data simulations. In the first approach, we model XCO2 using PCTM160

and the SiBCASA model. We then regress the model-data residuals on the retrieval parameters
included in the OCO-2 lite data file. These parameters include retrieved surface pressure; the
H2O ratio; temperature at 700 hPa; wind speed; albedo; aerosol optical depth; the log of dust,
water, and salt aerosols; the land fraction in the OCO-2 footprint; surface altitude; the satellite
operation mode (e.g., nadir mode, target mode, etc.); footprint bias; and the change in CO2165

vertical gradient between the surface and retrieval model level 13.
We use this regression to estimate the portion of the residuals that map on to the retrieval

parameters. That result is used as the estimated retrieval error (Fig. 1):

✏ = 1�0,r +Xr�r + ⇣ (S10)

where ✏ are the model-data residuals from Eq. S1, �0,r is the intercept term in the regression,
Xr is the matrix of retrieval parameters, �r are the estimated coe�cients, and ⇣ is the portion170

the residuals (✏) not described any other terms in the equation. We use Xr�r as our estimate
of the retrieval errors.

This approach is one way to estimate the portion of the residuals that maps onto retrieval
parameters. Errors in the model output due to atmospheric transport or due to biospheric
fluxes in X are unlikely to map onto parameters like aerosol optical depth. Rather, errors that175

map onto aerosol optical depth may more likely reflect issues in the satellite retrievals. There
is always a possibility that residuals caused by inaccurate fluxes could have patterns similar
to some of the retrieval parameters. For example, errors in modeled XCO2 due to inaccurate
biospheric flux patterns might correlate weakly or modestly with surface albedo, and errors in
modeled XCO2 due to errors in CO2 fossil fuel emissions could correlate weakly or modestly180

with aerosol optical depth.
We generate an alternate set of retrieval errors using a di↵erent approach as a consistency

check. This approach, described in Sect. 2.2, assigns a non-zero retrieval error if and only if four
di↵erent flux estimates (input into PCTM) unanimously disagree with the OCO-2 observations.
There could be error in the retrievals if all of the biospheric models are in good agreement – if185

all of the model outputs disagree with the retrievals in the same direction. In that case, either
all four flux models are incorrect, there is a consistent transport bias, or there is an error in
the satellite retrievals. The four flux models chosen in this study have disparate spatial and
temporal patterns, so the first option appears unlikely. The second option (transport errors)
could play a role, but transport errors at di↵erent vertical model levels often have di↵erent signs190

or magnitudes and can cancel out across the total column (e.g., Miller et al., 2015). Hence, the
last option (retrieval errors) may be most likely when all four sets of model outputs consistently
disagree with the XCO2 retrievals. We use this alternative approach for generating retrieval
errors solely as a consistency check on our primary synthetic data results.
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S2 Sensitivity of the results to methodological choices195

S2.1 Real data results that include glint data

We re-run model selection including all retrieval modes in the observation vector (z) – glint,
nadir, and target. The results in the main manuscript (Fig. 4), by contrast, exclude glint mode
retrievals due to potential biases in these retrievals.

The model selection results that include glint retrievals are shown in Fig. S1. The
:
,
::::
and200

:::
the

:
results look similar to those without glint retrievals (Fig. 4). Several factors may explain

the similarity between these two results. The glint retrievals observe CO2 mixing ratios in
continental outflow but are not likely as sensitive to terrestrial flux patterns as nadir data over
land. The model–data residuals over the ocean (i.e., associated with glint mode) are correlated
over longer spatial and temporal scales relative to residuals over land. As a result, the glint205

mode retrievals add a limited amount of new, independent information on terrestrial fluxes in
the context of the model selection experiments.

S2.2 Synthetic data results with an alternative set of simulated retrieval

errors

Figure S2 displays the results of the synthetic data experiment using an alternate estimate210

for the retrieval errors. The results using this alternate error estimate
:
,
::::
and

::::
the

:::::::
results

:
are

consistent with those in the main text (Fig. 5). This alternate set of simulated errors displays
di↵erent characteristics from the errors used in Fig. 5, yet the model selection results are
similar. These alternative simulated errors have a larger standard deviation but a smaller mean
bias and smaller covariances (Fig. 1). Similarly, n⇤ is closer to the real data experiments215

(n⇤ = 3700). The larger standard deviation or variance increases the impact of these errors on
the model selection results. However, smaller biases or covariances decrease their e↵ect on the
results. These two e↵ects largely o↵set each other, and we therefore obtain similar results using
both sets of simulated retrieval errors.
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c) Seven global regions
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Figure S1: Results of the real data model selection experiment using all good quality OCO-2
retrievals (including glint mode retrievals). These model selection results are similar to those
in the main manuscript that exclude glint mode data (Fig. 4).
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Figure S2: Results of the synthetic data case study using an alternative estimate for the retrieval
errors (Sect. 2.2). These results are similar to those in Fig. 5, providing a consistency check
on the synthetic data simulations.
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