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We would like to thank the reviewer for ideas and suggestions for the manuscript.
This feedback will be very helpful for updating and improving the manuscript. Below,
we have included both the reviewer’s suggestions (in bold) along with the associated
changes we plan to make.

• I found it particularly difficult to follow the logic of the paper and to evalu-
ate the soundness of the approach. As a preliminary step for publication,
the authors should seriously invest in making their study accessible to the
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broad audience of ACP.

This is very helpful feedback for framing the paper and describing the compo-
nents of the methodology. We plan to re-frame the paper logic in several ways to
make it more accessible to a broad audience. First, we plan to expand the overall
description of the paper and description of the general approach at the end of
the introduction (pg. 2, line 28 to pg. 3, line 21). We will describe the paper nar-
rative in non-technical terms to give the reader an intuitive, high-level overview
of the paper logic and flow. This description would provide better intuition for a
wide audience of readers, especially those readers who may skip over the more
technical information in the methodology (sect. 2).

Second, we will simplify the methods section (sect. 2) so that it is accessible to
a broad audience. For example, this section contains seven equations. We will
move several of these equations to the SI (e.g., Eq. 4-7) and instead expand the
non-technical portions of the description. In this way, the paper will still include
all of the technical detail for readers who want it, but the description in the main
paper will be accessible to a broader audience.

Third, we will provide more references to existing studies that use similar ap-
proaches. Readers who are interested in more details on the methodology could
gain greater context using these references. We will make this change throughout
the manuscript and particularly from pg. 6, line 10 to pg. 7, line 20.

• The paper concludes to a limited utility of OCO-2 retrievals for flux esti-
mation with current retrieval algorithms and transport model. This may be
correct, but is orthogonal to the claim made by Liu et al. (2017). The dis-
agreement should be clearly stated.

We will discuss this difference in the revised version of the manuscript. Liu et
al. (2017) was published after this ACPD manuscript, so it is only now possible
to make this comparison. Liu et al. use an atmospheric inversion to estimate
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CO2 fluxes for different tropical regions of the globe. They estimate uncertainties
in their regional budget estimates, and those uncertainties are generally smaller
than implied by the current ACPD manuscript.

Liu et al. (2017) use a 4DVAR approach and estimate the posterior uncertainties
using a small number of Monte Carlo simulations. However, these uncertainty es-
timates are likely to be underestimates – due to compromises required to make
the inversion computationally tractable. For example, most satellite-based inver-
sions like Liu et al. (2017) do not fully account for error correlations or biases in
the observations and atmospheric model; these studies typically use a diagonal
error covariance matrix. Furthermore, Liu et al. (2017) and other studies use a
small number of Monte Carlo simulations to estimate the errors (e.g., 60 simula-
tions in Liu et al. (2014)). By contrast, Ribgy et al. (2011) and Ganesan et al.
(2014) argue that 100,000 and 25,000 realizations are necessary to robustly es-
timate uncertainties for their particular inverse modeling problems. Note that it is
not always possible to generate large numbers of realizations or fully account for
error correlations in current satellite-based inverse models due to computational
constraints. In the ACPD manuscript, we do not use a 4DVAR inverse model for
this reason.

Consistent with this interpretation, results from the OCO-2 flux team ongoing
intercomparison study indicate much larger uncertainties in estimated fluxes.
The results are broadly consistent with those presented in the current ACPD
manuscript (e.g., Crowell et al. 2017); preliminary results indicate that OCO-2
observations currently provide robust constraints for hemispheric regions but pro-
vide weaker constraints for individual continents or subcontinents. More specifi-
cally, recent flux team comparisons include CO2 flux estimates from about eight
different inverse modeling groups, and the level of disagreement among these
estimates provides a measure of uncertainty in current top-down flux estimates
that use the same version of the OCO-2 retrievals as applied in the current work

C3

and in Liu et al. (2017). These estimates (using nadir observations) often show
relatively good agreement for total hemispheric terrestrial CO2 budgets, with the
disagreement among inverse modeling estimates being smaller than the total
CO2 budget for a given hemisphere. The opposite is often true of CO2 budgets
estimated for smaller regions (e.g., Sub-Saharan Africa or Tropical Asia), with
the disagreement among inverse modeling estimates usually being larger than
the total budget. This ongoing work is consistent with the interpretation in the
current manuscript.

• Section 3.1 and the first part of Section 3.3 reinvent the wheel. See, e.g.,
Olsen and Randerson (2004) and Worden et al. (2017). Similarly, l. 23-28 are
just an adaptation of an old argument (Rayner and O’Brien, 2001).

The studies mentioned above investigate several requirements for constraining
carbon budgets with satellite observations. Rayner and O’Brien (2001) explore
the measurement precision required for space-based constraints on surface CO2

fluxes. Olsen and Randerson (2004) model XCO2 column enhancements across
the globe due to surface CO2 fluxes and compare them with surface enhance-
ments. Lastly, Worden et al. (2017) estimate the errors in OCO-2 XCO2 obser-
vations.

As the reviewer points out, the concepts used in Sects. 3.1 and 3.3 are, in part,
built on these earlier approaches. However, the purpose of this section is not
to develop new concepts. Rather, we build on existing concepts to assess real
OCO-2 data. Rayner and O’Brien (2001) and Olsen and Randerson (2004), by
contrast, did not have any real XCO2 observations at their disposal, only sim-
ulations of possible future observations. Furthermore, we feel that these sec-
tions provide useful context and improve the manuscript narrative. Much of the
manuscript presents the results of statistical experiments. These experiments
use, as inputs, XCO2 observations from OCO-2 and estimates of atmospheric
transport and satellite retrieval errors. Sect. 3.1 provides visualizations of those
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inputs.

In the revised manuscript, we will cite the studies listed above, clarify that we
use concepts from the studies, and explain that we apply those concepts to real
observations from OCO-2. We will also compare the retrieval errors in Sect. 3.1
against those in Worden et al. (2017). Lastly, we will shorten the first part of Sect.
3.3. That section presents the synthetic study results with no errors; these results
serve as a baseline for subsequent results that do include simulated errors.

• The retrieval error simulations of Fig. 3 look overly optimistic in compari-
son to the validation results of Wunch et al. (2017).

Wunch et al. (2017) compare OCO-2 XCO2 retrievals against XCO2 observations
at TCCON sites (the Total Column Observing Network). They report an average
site bias of 0.22 ppm for comparisons between land nadir retrievals and TCCON
sites. They also report an average root mean squared error of 1.31 ppm for the
land nadir and TCCON comparisons (Table 3 in Wunch et al. 2017).

The errors in Fig. 3c-3f do appear slightly smaller than the numbers reported
above. However, the errors in Fig. 3 are the mean of individual sounding errors
in February and July, respectively – meaned within each PCTM grid box for an
entire month. Hence, the errors displayed in this plot will be somewhat smaller
than the errors on individual soundings (as reported in Wunch et al. 2017). By
contrast, Fig. 1 shows the standard deviation of the estimated retrieval errors
(instead of the mean as in Fig. 3). These standard deviations are larger than the
mean and broadly consistent with the errors estimated by Wunch et al. (2017).

In the revised manuscript, we will clarify that the errors displayed in Fig. 3 are
monthly means. Furthermore, we will compare and contrast the estimated errors
with those estimated in Wunch et al. (2017) and in Worden et al. (2017).

• Section 3.2 looks for flux patterns in XCO2. Most top-down studies from
OCO-2 would use a Bayesian approach where flux-error patterns are looked
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for. This is more challenging because the signal is even smaller (while the
paragraph in-between p. 5 and p. 6 suggests that the two approaches are
rather equivalent with respect to the measurement information content).
One should therefore discuss this limitation and further tone down the con-
clusions of the paper.

The reviewer makes a great point, and we will add a discussion of this point to
Sects. 2.2 (pgs. 5-6) and 3.2. The approach used here searches for flux patterns
as they manifest in XCO2. Phrased differently, the approach examines s as seen
through the OCO-2 observations, where s are the fluxes. A Bayesian approach,
by contrast, estimates s − sp, where sp is the prior flux estimate. This residual
flux (s − sp) is presumably smaller than the total flux (s). As a result, inversions
essentially estimate a smaller flux signal than the flux signal examined in this
study.

The reviewer’s argument could therefore imply more pessimistic results than pre-
sented in the current manuscript – that the CO2 flux constraint is weaker than
reported in the present study. This issue, however, may also be more nuanced.
If the prior estimate is poor, the residual flux (s − sp) will be large. These large
flux patterns should be relatively easy to detect using XCO2 observations, but
the inversion will need to rely heavily on the XCO2 observations (and not on the
prior) to make a robust posterior estimate. By contrast, if the prior estimate is
very accurate, the residual flux (s − sp) will be small. The inversion will need to
estimate a small flux signal, a signal that may be difficult to parse using XCO2

observations. However, the posterior flux estimate will still be relatively robust
due to the accurate prior.

Furthermore, this issue is specific to the setup of each individual inverse model.
For example, existing CO2 inversions use a wide variety of prior flux models.
Mueller et al. (2008) use a non-informative prior (i.e., a flat prior) that contributes
little information on the fluxes. In addition, many geostatistical inverse modeling
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studies use environmental driver data in place of a tradition prior flux estimate
(e.g., Gourdji et al. 2008; 2012). These studies choose environmental driver
data using a model selection approach in a manner that is somewhat akin to the
current ACPD manuscript. In the present study, we instead try to examine more
fundamental questions about the robustness of the flux constraint, questions that
are independent of subjective choices specific to each inverse model setup.
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