Response to reviewers: Predicting decadal trends in cloud droplet number concentration using reanalysis and satellite data Daniel T. McCoy^{1*}, Frida A.-M. Bender², Daniel P. Grosvenor¹, Johannes K. Mohrmann³, Dennis L. Hartmann³, Robert Wood³, Paul R. Field^{1,4} ¹University of Leeds, Leeds, LS2 9JT, UK, ²Stockholm University, Stockholm, 114 18, Sweden ³University of Washington, Seattle, 98195, USA ⁴MetOffice, Exeter, EX1 3PB, UK *Correspondence to*: Daniel T. McCoy (d.t.mccoy@leeds.ac.uk)

We thank the reviewers for their consideration of our manuscript and for their helpful and supportive comments. Reviewer comments are in **bold**.

REVIEWER 1

This is a fascinating paper. It is remarkable that significant relationships between sulfur and droplet number are found for daily and interannual time scales. I have just a few minor comments.

Thank you- we are hopeful that this relationship will be helpful to people looking at aerosolcloud interactions.

Minor comments

Page 2, Line 22. Replace "effective" with "numerous". Larger particles are more effec- tive in the sense that smaller supersaturations are needed to activate them.

Done. Thanks.

Page 3, line 7. Are these in-cloud values, weighted by cloud fraction?

They are in-cloud. Good point. We added a comment explaining this.

REVIEWER 2

General comments

In this paper, the authors used the filtered MODIS level 2 swath data which considered only low liquid clouds (cloud tops below 3.2 km) to calculate the daily-mean CDNC at 1°x1° resolution with the approach introduced in their previous work (McCoy et al., JGR, 2017). Then they validated their CDNC date set by comparing with aircraft mea- surements from the Antarctic Peninsula, Northern China, and the Peruvian and Cal- ifornian stratocumulus decks. The comparison shown that the correlation between aircraft and satellite observations can be high up to 0.68. With multiple linear regres- sion between MODIS CDNC and MERRA2 reanalysis masses of sulfate, black carbon, organic carbon, sea salt, and dust at 910 hPa model level, the authors found CDNC across many different regimes can be reproduced by a simple power law fit to near- surface sulfate, with smaller contributions from other aerosols. Their investigation also indicated that decadal time scale reduction of CDNC over Asia and North America is agreed with the reduction of OMI observed SO2 over the same regions due to emis- sion controls. This paper is well organized and presented. It is a good application and expansion of the work of McCoy et al., JGR, 2017.

Thank you- we appreciate your help and your time looking over our paper.

Special comments

Page1Line1: The authors filtered MODIS L2 data set with low liquid clouds assumption. Therefore, 'low cloud droplet number concentration' is better than just say 'cloud droplet number concentration'.

This is a good point, but we feel that this is discussed in the text extensively and would prefer to not over-complicate the title. We have added a note to the abstract explaining that they are low altitude, liquid-topped clouds.

Page2Line14-16: How do the authors average these daily time scale data set to the multiyear mean as shown in Figure 1?

The average is not weighted so it does potentially alias in the seasonal cycle. For instance, CDNC retrievals are not possible in the midlatitudes during local winter so those parts of the map would be empty if we weighted it by the seasonal cycle. It is intended that the figure be illustrative of the existing data set, and is not intended as a climatology. We did not express this well. We have added verbiage to explain the intent of this figure. Thanks.

Page2Line26-27: Could the authors provide brief descriptions on how the effective radius and optical depth values are retrieved by MODIS.

We have now added text to explain how MODIS retrievals of effective radius and optical depths are performed. The paragraph also gives further details on how the data is filtered after the MODIS retrievals. It now reads :-

"In this paper and in McCoy et al. (2017a) CDNC is calculated from MODIS effective radius (r_e) and optical depth (τ) retrievals using the adiabatic cloud assumption following Grosvenor and Wood (2014). MODIS simultaneously retrieves τ and r_e via a bispectral algorithm that uses

reflectances from both a non-absorbing visible wavelength (0.65 μ m over land and 0.86 μ m over the ocean) and an absorbing shortwave infrared wavelength (either 1.6, 2.1 and 3.7 μ m; Nakajima and King, 1990). In McCoy et al. (2017a) 1°x1° daily-mean MODIS (r_e) and (τ) values were used to calculate CDNC, which were then averaged to monthly resolution. The use of this CDNC dataset may be problematic in some regions for a number of reasons (also see McCoy et al. (2017a)) : 1) it is subject to high solar zenith angle biases in the individual swaths, which were averaged together to create each daily data point; 2) biases may be present due to the use of area averaged r_e and τ rather than using pixel level values for the CDNC calculation; 3) the dataset was not filtered to include low altitude clouds only, which may have led to a lack of connectivity between surface aerosol sources and cloud CDNC; 4) the CDNC was calculated using the 2.1 μ m MODIS channel r_e , which is likely to be affected more strongly by cloud heterogeneity related biases than the 3.7 μ m channel (Zhang et al., 2012).

In the present study, level-2 swath data (joint product) from MODIS collection 5.1 (King et al., 2003) is filtered to remove problematic retrievals at a pixel-level following Grosvenor and Wood (2014), including the removal of pixels with a solar zenith angle greater than 65° . The dailymean CDNC at 1°x1° resolution is calculated using filtered level 2 swath data and only low (cloud tops below 3.2 km), liquid clouds were used to calculate CDNC. Only 1°x1° regions where the cloud fraction exceeds 80% are considered valid (Bennartz et al., 2011) and the CDNC is calculated using the 3.7μ m MODIS channel r_e . In the remainder of this paper MERRA2 data is only considered for days and 1°x1° regions when and where MODIS is able to perform a retrieval of CDNC within this set of criterion. Notably, in the comparison between predicted and observed CDNC in Section 3.2 and in the comparison of long-term trends in Section 3.3. The mean CDNC over the period 2003-2015 is shown in Figure 1. It should be noted Figure 1 is intended to illustrate the mean CDNC over the existing data set and CDNC values are not weighted to equally represent the seasonal cycle, for example in midlatitude winter retrievals of CDNC are not possible and these areas would be blank in a climatologically-weighted map. Values of CDNC are in-cloud."

Page3Line5: Do the values of cloud fraction in MERRA2 also exceed 80% at the grids where MODIS cloud fractions exceed 80%?

Good point- otherwise we might be aliasing in variability in where the retrieval is performed that is driven by clouds or the seasonal cycle. We sample MERRA2 and MODIS data in the same way when we examine the covariability in daily 1°x1° data and when we look at the regionally-averaged trends. We have added a note to this effect. Thank you.

Page3Line8-10: Is MODIS AOD used for nudging MERRA2 aerosol emission or mass loading?

For the mass loading- good catch (Randles et al., 2016;Buchard et al., 2015)- thanks. We have added more explanation.

Page4Line16-19: Validation of MODIS CDNC with aircraft measurement is important. Can the authors provide the data set of aircraft measurement employed in this study? What are the major differences of CDNC from McCoy et al., JGR, 2017 and CDNC from Bennartz and Rausch, ACP, 2017 comparing to aircraft measurement?

Our study differs in that we are investigating whether the population mean agrees between in-situ and remotely-sensed CDNC as opposed to the more intensive validation performed in Bennartz and Rausch. We discuss this in the methodology. It is not possible to directly compare the two studies given their much different methodologies. We also clearly state that the goal of this analysis is not to perform an exhaustive validation of the remotely-sensed CDNC with in-situ data, which is beyond the scope of the present study given that it would require the collection and compilation of an extensive database of in-situ observations. We just used published mean CDNC from flight legs provided in the text of the literature we cite. Our hope is that this analysis will provide support for the utility of creating a GASSP-like database of CDNC. We have added additional discussion of the differences between this analysis and previous papers and the source of the in-situ data. Thank you for this comment.

Page5Line26-27: As discussed by the authors previously, the coefficients in table 1 can be varied at different regions due to different atmospheric chemistry and physics processes. It is well known that atmospheric chemistry and physics processes also be impacted by seasonal changes of emission and atmospheric environment. How do these factors impact the authors' conclusion?

We find remarkable similarity across regions and regimes. This is regardless of whether the aerosol is strongly seasonal from biogenic sources or has relatively little seasonal variability because they are anthropogenically-controlled. We also span a wide variety of meteorological regimes. Overall this seems to point toward seasonal variability not playing a controlling role in determining the relationship between CDNC and aerosol mass concentrations. We have added discussion to this effect- good point, thanks.

Page7Line8: Please add space between 'OMI' and '('.

Thanks-done.

Page7Line16-17: There are numbers of significant disagreements of OMI SO2 peaks and MODIS CDNC peaks. More detailed discussions and explanations are requested here.

We only really expect the SO2 and CDNC to roughly agree and we discuss the limitations in remotely-sensed SO2. For example, eruptions that inject significant SO2 into the free troposphere have been manually removed here as best as we can (as discussed in the text) – further, in the examination of anthropogenic trends we average SO2 over a large continental region and the CDNC in the marine outflow so it seems likely that the vagaries of oxidative capacity and circulation will introduce slight disagreement in these quantities. We provide correlations between CDNC and SO2 without the removal of seasonal variability by use of the running mean. Overall the correlation is quite high in an objective sense, despite these departures. We have added discussion as to the expectation of dissimilarities at the end of section 3.3. We also provide the correlation coefficients between the time series and discuss limitations in the data sets. Thank you.

Buchard, V., da Silva, A. M., Colarco, P. R., Darmenov, A., Randles, C. A., Govindaraju, R., Torres, O., Campbell, J., and Spurr, R.: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmos. Chem. Phys., 15, 5743-5760, 10.5194/acp-15-5743-2015, 2015. Randles, C., AM, d. S., V, B., A, D., PR, C., V, A., H, B., EP, N., X, P., A, S., H, Y., and R, G.: The MERRA-2 Aerosol Assimilation, Technical Report Series on Global Modeling and Data Assimilation, 45, 2016.

Predicting decadal trends in_cloud droplet number concentration using reanalysis and satellite data

Daniel T. McCoy^{1*}, Frida A.-M. Bender², Daniel P. Grosvenor¹, Johannes K. Mohrmann³, Dennis L. Hartmann³, Robert Wood³, Paul R. Field^{1,4}

¹University of Leeds, Leeds, LS2 9JT, UK, 5

²Stockholm University, Stockholm, 114 18, Sweden

³University of Washington, Seattle, 98195, USA ⁴MetOffice, Exeter, EX1 3PB, UK

Correspondence to: Daniel T. McCoy (d.t.mccoy@leeds.ac.uk)

Abstract. Cloud droplet number concentration (CDNC) is the key state variable that moderates the relationship between 10 aerosol and the radiative forcing arising from aerosol-cloud interactions. Uncertainty related to the effect of anthropogenic aerosol on cloud properties represents the largest uncertainty in total anthropogenic radiative forcing. Here we show that regionally-averaged time series of the Moderate-Resolution Imaging Spectroradiometer (MODIS) observed CDNC of low, liquid-topped clouds is well-predicted by MERRA2 reanalysis near-surface sulfate mass concentration over decadal timescales. A multiple linear regression between MERRA2 reanalysis masses of sulfate (SO₄), black carbon (BC), organic

- carbon (OC), sea salt (SS), and dust (DU) shows that CDNC across many different regimes can be reproduced by a simple 15 power law fit to near-surface SO₄, with smaller contributions from BC, OC, SS, and DU. This confirms previous work using a less-sophisticated retrieval of CDNC at monthly time scales. The analysis is supported by examination of remotely-sensed sulfur dioxide (SO₂) over maritime volcanoes and the east coasts of North America and Asia, revealing that maritime CDNC responds to changes in SO_2 as observed by the Ozone Monitoring Instrument (OMI). This investigation of aerosol reanalysis
- 20 and top-down remote sensing observations reveals that emission controls in Asia and North America have decreased CDNC in their maritime outflow on a decadal time scale.

1. Introduction

The degree to which anthropogenic aerosol has affected the Earth's albedo by altering cloud properties remains the largest uncertainty in our understanding of how much humans have changed the top of atmosphere energy balance, and by extension 25 what the observed trend in surface temperature tells us about the climate's sensitivity to perturbation (Forster, 2016;Boucher et al., 2014; Andreae et al., 2005). Aerosol indirect effects can be grouped into two categories: the first indirect effect, or Twomey effect (Twomey, 1977), by which enhanced concentrations of cloud condensation nuclei (CCN) enhance CDNC (for a fixed liquid water content), leading to an increase in cloud albedo; and the lifetime, or Albrecht effect (Albrecht, 1989), by which enhanced CDNC suppresses precipitation and leads to thicker or more persistent clouds and higher cloud

30

1

albedo. The first indirect effect has been supported by numerous empirical studies relating remotely-sensed aerosol

properties to remotely-sensed CDNC (Bellouin et al., 2013;Gryspeerdt et al., 2016;Patel et al., 2017;Quaas et al., 2008;Quaas et al., 2009;Matsui et al., 2006;Nakajima et al., 2001;Sekiguchi et al., 2003), although whether aerosol affects cloud lifetime is still debated (McCoy et al., 2017b;Malavelle et al., 2017;Gryspeerdt et al., 2016;Mace and Avey, 2016). Studies have utilized the natural laboratory provided by transient degassing volcanoes to study cloud responses to changes in

- 5 aerosol (Mace and Abernathy, 2016;Gassó, 2008;Yuan et al., 2011;Malavelle et al., 2017;McCoy and Hartmann, 2015). In this vein, McCoy et al. (2017a) used aerosol reanalysis to provide additional information regarding aerosol speciation and vertical structure. They found that monthly-mean CDNC and sulfate mass concentration near the surface were linked by a power law relationship that remained robust across different regions with very different aerosol properties and cloud regimes, but their analysis was hampered by remote-sensing bias leading to different regions having a different constant term
- 10 in the log-log fit between CDNC and sulfate (SO₄). This study utilizes a new CDNC data set filtered for retrieval error that rectifies these biases. We show that the power law relationship between sulfate and CDNC applies across all regimes. Further, we show that long-term trends in observed sulfur dioxide (SO₂) and reanalysis SO₄ predict trends in CDNC, indicating that changes in sulfur have the ability to influence CDNC on an inter-annual timescale that is of relevance to the aerosol-cloud radiative forcing.

15 **2. Methods**

20

The analysis performed in this study parallels the analysis in McCoy et al. (2017a). Here a much more refined data set is used to analyze the period 2003-2015 (as opposed to 2001-2013 in McCoy et al. (2017a)), expanded to a daily time scale over the entire globe (21,379,174 daily 1°x1° observations). Aerosol reanalysis from MERRA2 is used to gain insight into speciation and vertical distribution that is not provided by remote-sensing analyses that use column-integrated CCN proxies such as aerosol index (AI) or aerosol optical depth (AOD). It has been demonstrated that model-simulated AI accurately predicts changes in CDNC, in contrast to AOD (Gryspeerdt et al., 2017), but observations of AI are still subject to near-cloud retrieval artefacts (Christensen et al., 2017). The aerosol species considered in the present analysis are dust (DU), sea salt (SS), black carbon (BC), organic carbon (OC) and sulfate (SO₄). As in McCoy et al. (2017a), DU and SS masses as predicted by MERRA2 are restricted to submicron sizes because these will be more <u>numerous</u> as CCN (Ghan et al., 1998).

25 Similarly, only hydrophilic BC and OC as predicted by MERRA2 are considered. The daily-mean near-surface (~1km altitude) mass concentrations of all aerosol species are calculated by averaging the 3-hourly aerosol mass concentration at the 910 hPa model level in MERRA2 resolved at 0.5°x0.626° resolution to 1°x1° and daily resolution.

In this paper and in McCoy et al. (2017a) CDNC is calculated from MODIS effective radius (r_e) and optical depth (τ) retrievals using the adiabatic cloud assumption following Grosvenor and Wood (2014). MODIS simultaneously retrieves
 τ and r_e via a bispectral algorithm that uses reflectances from both a non-absorbing visible wavelength (0.65 µm over land and 0.86 µm over the ocean) and an absorbing shortwave infrared wavelength (either 1.6, 2.1 and 3.7 µm; Nakajima and 0.86 µm over the ocean)

2

King (1990)). In McCoy et al. (2017a) $1^{\circ}x1^{\circ}$ daily-mean MODIS (r_e) and (τ) values were used to calculate CDNC, which

were then averaged to monthly resolution. The use of this CDNC dataset may be problematic in some regions for a number of reasons (also see McCoy et al. (2017a)) : 1) it is subject to high solar zenith angle biases in the individual swaths, which were averaged together to create each daily data point; 2) biases may be present due to the use of area averaged r_e and τ rather than using pixel level values for the CDNC calculation; 3) the dataset was not filtered to include low altitude clouds only, which may have led to a lack of connectivity between surface aerosol sources and cloud CDNC; 4) the CDNC was

5 only, which may have led to a lack of connectivity between surface aerosol sources and cloud CDNC; 4) the CDNC was calculated using the 2.1μm MODIS channel r_e, which is likely to be affected more strongly by cloud heterogeneity related

biases than the 3.7µm channel (Zhang et al., 2012).

In the present study, level-2 swath data (joint product) from MODIS collection 5.1 (King et al., 2003) is filtered to remove problematic retrievals at a pixel-level following Grosvenor and Wood (2014), including the removal of pixels with a solar zenith angle greater than 65°. The daily-mean CDNC at 1°x1° resolution is calculated using filtered level 2 swath data and only low (cloud tops below 3.2 km), liquid clouds were used to calculate CDNC. Only 1°x1° regions where the cloud fraction exceeds 80% are considered valid (Bennartz et al., 2011) and the CDNC is calculated using the 3.7µm MODIS channel r_e. In the remainder of this paper MERRA2 data is only considered for days and 1°x1° regions when and where MODIS is able to perform a retrieval of CDNC within this set of criteria, notably, in the comparison between predicted and observed CDNC in Section 3.2 and in the comparison of long-term trends in Section 3.3. The mean CDNC over the period 2003-2015 is shown in Figure 1. It should be noted that Figure 1 is intended to illustrate the mean CDNC over the existing

data set and CDNC values are not weighted to equally represent the seasonal cycle, for example in midlatitude winter retrievals of CDNC are not possible and these areas would be blank in a climatologically-weighted map. Values of CDNC are retrieved only when a cloud is present and are thus in-cloud values and are not the average of cloud-free and cloudy

20 regions.

25

30

The CDNC retrieval from MODIS and the aerosol reanalysis are independent data sets. <u>The AOD observed by</u> MODIS (in addition to other instruments) is used to constrain aerosol loading in the MERRA2 reanalysis, where AOD is corrected for near-cloud aerosol swelling (Rienecker et al., 2011;Randles et al., 2016;Buchard et al., 2015). However, to develop the usefulness of MODIS CDNC as a measure of aerosol-cloud interactions and the microphysical state of liquid-topped clouds, we utilize in-situ aircraft measurements of CDNC and the sulfur dioxide (SO₂) retrieved by the ozone monitoring instrument (OMI). The data set used in this study to examine changes in SO₂ is the planetary boundary layer

(PBL) SO₂ calculated using principal component analysis to reduce artefacts and noise (Li et al., 2013). The retrieval requires a clear-sky, making the SO₂ retrievals non-coincident with CDNC retrievals. However, in this study SO₂ is only considered on a regional scale, as opposed to attempting to co-locate it with CDNC data, and so the locally non-coincident nature of these retrievals is not an issue.

We evaluated both volcanic point sources in relatively pristine maritime regions (Carn et al., 2017) and the emissions from Asia and North America (Krotkov et al., 2016). Volcanic plumes and anthropogenic emissions produce very different SO_2 signatures, and large volcanic eruptions need to be removed to examine the effect of anthropogenic sources (Krotkov et al., 2016). The 2008 eruption of Kasatochi emitted a large quantity of sulfur dioxide near 10-12km altitude

(Krotkov et al., 2010), rendering the data from August 2008 over the US east coast spurious in terms of examining the trend in anthropogenic sulfur emissions. This has been noted in previous studies (Krotkov et al., 2016) and all data for August 2008 has been removed from analysis of the long-term trend in this region.

- It is important to evaluate whether MODIS CDNC offers a useful measure of the real mean CDNC for which in-situ observations are likely to provide an accurate proxy. We take a different tack from previous studies whose goal was to evaluate whether MODIS CDNC is reliable on a pixel-by-pixel basis (Painemal and Zuidema, 2011;Bennartz and Rausch, 2017). Bennartz and Rausch (2017) showed that their CDNC data averaged over both ~0.2x0.2° and 0.5x0.5° regions correlated strongly with airborne observations from the VOCALS-REX campaign (Painemal and Zuidema, 2011). Here we reprise the analysis in Bretherton et al. (2010) and examine whether the average MODIS retrieval from the sampled cloud population is similar to an average aircraft observation. Aircraft measurements are taken from literature sources detailing systematic transects across regions with liquid-topped cloud (Lachlan-Cope et al., 2016;Ma et al., 2010;Hegg et al., 2007;Allen et al., 2011;Lu et al., 2007). <u>All in-situ CDNC values are reported in the text of the aforementioned references.</u> The flight-leg mean CDNC reported by each study is compared to the relevant MODIS CDNC. Because MODIS CDNC retrievals that are considered reliable by our methodology can be quite sparse, an average of the region within ±1.5° of the mean location of the flight-leg and one day before and after is taken to calculate the mean CDNC that MODIS would
- 15 mean location of the flight-leg and one day before and after is taken to calculate the mean CDNC that MODIS would equivalently measure during the flight leg. This broad averaging of the CDNC population is different than the more targeted analysis presented in Bennartz and Rausch (2017). We reiterate that this analysis is only provided to show that in-situ and remotely-sensed CDNC are correlated. A more in-depth evaluation of remotely-sensed CDNC using in-situ CDNC will be left to future analysis pending the creation of a database of in-situ CDNC.
- 20

Finally, in this study we subdivide our global data set into sub-regions to show sensitivity to sample. These regions are similar to the regions defined in McCoy et al. (2017a) and are shown in Figure 1. Latitude and longitude ranges are given in Table 1.

3. Results

In this section, we evaluate how closely aircraft and satellite measurements match each other in keeping with previous studies (Bretherton et al., 2010;Painemal and Zuidema, 2011;Bennartz and Rausch, 2017). We also examine how much daily variability in aerosol species influences CDNC; and how this variability is able to predict trends and interannual variability in observed CDNC.

3.1 Comparison of in-situ and observed CDNC

30 First, we establish whether our CDNC concentration data set is consistent with in-situ measurements. To evaluate the CDNC observations from our data set we compare to aircraft observations over a wide range of different regimes. Data

from aircraft campaigns were taken from published literature values detailing mean CDNC for individual flight legs. The idea underlying this methodology is that if the aircraft and MODIS are both measuring the same population, then their mean CDNC values should agree, assuming that both the aircraft and MODIS are sampling randomly. Aircraft measurements from the Antarctic Peninsula, Northern China, and the Peruvian and Californian stratocumulus decks are compared to MODIS

- 5 CDNC (Figure 2). The correlation between aircraft and satellite observations is r=0.68. This result is very near to the correlation found by Bretherton et al. (2010) using only the VOCALS-REX data, although it is worth noting that the substantial number of in-cloud transects from that study significantly contribute to the weight of data examined here. When the data from all of the flight legs are binned together most of the bin mean CDNCs from aircraft and remote-sensing observations agree within the standard error in the estimation of the bin means (σ/\sqrt{n}) (Figure 2). It is important to note
- 10 that this analysis is intended to illustrate that the CDNC measured by aircraft and the CDNC observed by MODIS are not drawing from entirely different populations and that the correlation between flight leg CDNC and remotely sensed CDNC is similar to previous analysis (Bretherton et al., 2010). A more rigorous analysis of aircraft and the MODIS CDNC dataset shown in this paper will be undertaken in a future work pending the compilation of a dataset of aircraft CDNC in the spirit of the Global Aerosol Synthesis and Science Project (GASSP) (Reddington et al., 2017).

15 **3.2** Covariability between observations of daily CDNC and MERRA2 aerosol mass

20

We have just shown that the daily-mean CDNC that MODIS observes is consistent on average with in situ observations. How then does this satellite retrieval covary with aerosol mass concentrations on a global scale? We split our global dataset into many different regions selected to focus on either particular cloud regimes or different aerosol emission sources (see discussion in McCoy et al. (2017a)). If the dependence of CDNC on aerosol is similar across these regions, then it supports the idea that this relationship is mechanistic.

We find that as in previous studies, CDNC is strongly dependent on sulfate mass (Figure 3a) and this dependence is similar across many of the regions shown in Figure 1. Notable exceptions are the North Pacific midlatitudes and Indian subcontinent. The former may relate to the challenge presented to reanalysis in predicting daily 1°x1° sulfate mass concentration after advection from Asia across the Pacific; the Indian subcontinent may represent a region where substantial

25 emissions of carbonaceous species render variability in sulfate less important, or it may relate to retrieval difficulties in distinguishing cloud from haze over the subcontinent (Ramanathan et al., 2001). We fit the following regression model

$$\log_{10} CDNC = a_1 \log_{10}(SO4) + a_2 \log_{10}(BC) + a_3 \log_{10}(OC) + a_4 \log_{10}(SS) + a_5 \log_{10}(DU) + b$$
(1)

30 which differs from the previous study (McCoy et al., 2017a) by adding organic carbon as a predictor. Several of the predictors co-vary strongly (Figure S1). We attempt to ameliorate the issue of collinearity by training separate regression models in each of the regions shown in Figure 1. For example, the correlation between BC and SO₄ will be high in regions

with significant biomass burning, but non-existent in the remote Southern Ocean. If the regression coefficient relating CDNC to SO_4 remains consistent between these regions, then it is a good indication that this relationship is robust.

The coefficients from the multiple linear regression model trained in each of the areas shown in Figure 1 are shown in Figure 3b. Because some aerosol species have little to no variability, the value of each coefficient is shown scaled by the standard deviation over all observations from 2003-2015 of the relevant term in the regression model. Correlations and unscaled regression model coefficients for each region are given in Table 1. If we only train the regression model using daily-mean data from stratocumulus decks, then the coefficient relating log₁₀ sulfate to log₁₀ CDNC remains approximately unchanged relative to McCoy et al. (2017a) (Figure 3b, and Table 1), supporting the estimate by McCoy et al. (2017a) that

the increase of CDNC caused by sulfate results in a radiative forcing of -0.97 Wm⁻². Overall, it appears that daily aerosol reanalysis has the ability to predict day-to-day variations in observed CDNC with a remarkably high degree of skill. <u>It is also</u> interesting to note that the sulfate-CDNC relation shown here seems quite similar between regions with very strong seasonal cycles in emissions (such as the Southern Ocean (McCoy et al., 2015)) and regions where emissions are primarily anthropogenic and not strongly affected by the seasonal cycle (such as East Asia (McCoy et al., 2017a;Bennartz et al., 2011)) as well as across many different meteorological regimes. Based on this it seems that seasonal variability in emissions

15 and atmospheric processes do not strongly affect this relationship.

One surprising result from this analysis is the weakly-negative to near-zero dependence of CDNC on submicron sea salt mass. Sea salt is plentiful and hygroscopic and it would seem reasonable to suspect that it would significantly affect CDNC. Analysis of the dependence of CDNC on sea salt and sulfate shows that sea salt mass is only important for very low sea salt mass (Figure 4, for values of log₁₀(SS) less than roughly -3 increasing sea salt increases CDNC). Presumably this

- 20 indicates that in situations where sea salt emissions are low it has a limiting effect on the creation of CCN. However, the effect of sea salt emissions on CDNC appears to be saturated for the majority of observations with increasing sea salt slightly decreasing CDNC (Figure 4, the distribution of MERRA2 sea salt mass over oceans is shown as white contours). This is why the linear regression model assigns it a weakly negative coefficient (Figure 3b). This reduction in CDNC for increasing SS mass may be consistent with large sea salt particles reducing the supersaturation, resulting in fewer accumulation mode
- 25 aerosol being activated (Ghan et al., 1998). It is also possible that submicron sea-salt aerosol number does not scale with mass. We have constrained the sea salt mass concentration to only include submicron sea-spray in an attempt to consider only the most CCN-relevant aerosol. However, the MERRA2 reanalysis simply uses wind speed and SST to predict sea spray flux based on a parameterization (Gong, 2003;Jaeglé et al., 2011) and in the context of the analysis presented in this paper the relation between submicron sea salt mass and CDNC is at some level the relation between near-surface wind speed
- 30

5

but it is likely that the qualitative dependence of CDNC on sea salt would remain the same.

Another interesting note is the negative dependence of CDNC on BC. This appears to only be a feature of low BC and OC load (Figure S2), but this may also reflect existing issues in the MERRA2 reanalysis of carbonaceous species in terms of representation of aerosol index and vertical distribution in relation to organic carbon (Randles et al., 2016). It is

and CDNC. The precise values of the coefficient should change if a different size distribution is used in the parameterization,

worth pointing out, however, that there are a priori physical reasons to expect black carbon to thin cloud cover via the semidirect effect (Hansen et al., 1997).

As we have seen CDNC covaries substantially with aerosol on a daily scale over the period 2003-2015 and across many different regimes. In particular, we find that sulfate aerosol covaries strongly with CDNC, which is consistent with pioneering work examining cloud-aerosol interactions (Charlson et al., 1992). Our study provides the first systematic top-down estimate of this covariability.

3.3 Decadal trends in CDNC driven by sulfur fluxes

5

15

While our results are consistent with previous work regarding aerosol-cloud indirect effects, it is important to demonstrate that the sulfate-CDNC correlation is not spuriously created by e.g., advection of pollution sources being correlated with meteorological conditions that lead to high CDNC. It is also important to show predictive capability over the timescales of years and decades that is useful for understanding the radiative forcing from the aerosol-cloud interactions during the industrial era. One way to demonstrate this is by examining known sources of sulfate whose emission flux is unrelated to seasonal or meteorological variability (in contrast to biogenic sulfate, for example).

For the analysis presented in this paper we adopt the technique used in previous studies (Gassó, 2008;Mace and Abernathy, 2016;Yuan et al., 2011;McCoy and Hartmann, 2015;Malavelle et al., 2017) and examine the response of cloud properties to volcanic sulfate sources. We support this analysis by examining the systematic change in anthropogenic sulfur emissions from Asia and North America due to emissions controls (Krotkov et al., 2016), as in previous studies (Bennartz et

- al., 2011), although our data record extends over a period of enhanced emissions controls in East Asia and thus we anticipate a decrease in CDNC in contrast to Bennartz et al. (2011). We examine systematic changes in CDNC in maritime regions
 where there is outflow from anthropogenic pollution sources because McCoy et al. (2017a) inferred a strong aerosol-cloud radiative forcing in such regions based on a power law relationship between sulfate and CDNC. Such a long-range relationship between sulfur sources and CDNC would be supportive of sulfate driving CDNC variability.
- In the analysis presented below we will examine long-term trends in CDNC as observed by MODIS and predicted by MERRA2 sulfate mass. The notion that these long-term trends originate from changes in sulfur flux from volcanism or 25 emissions controls will be supported by analysis of the boundary-layer SO₂ detected by the OMI instrument, which is an independent data set to either reanalysis sulfate mass or MODIS CDNC. Days where data over each region are missing from the time series (for example August 2008 over North America from OMI_(Krotkov et al., 2010)) are filled by linear interpolation before applying a 365-day moving average. To allow ease of comparison to trends in log₁₀ sulfate mass, log₁₀ CDNC is shown in Figure 5. To our knowledge this is the first study to show that variations in anthropogenic emissions 30 drive changes in CDNC using remotely-sensed SO₂ and CDNC.

The volcanoes on the Pacific islands of Vanuatu and Hawaii constitute the largest volcanic sources of sulfur dioxide in the data record afforded by OMI (Carn et al., 2017). Their relatively pristine remote locations and large inter-annual

variability in sulfur emissions make them ideal for examining covariation between CDNC and PBL SO₂. The average CDNC and SO₂ within 5° of the volcanoes is shown during the period 2003-2015 (Figure 5a,b).

The variances in daily PBL SO₂ detected by OMI and in CDNC detected by MODIS are correlated in the vicinity of both Vanuatu and Hawaii (Figure 5a,b). Increased volcanic activity observed in-situ at Kilauea in Hawaii during 2008-2010 (Elias and Sutton, 2012;Longo et al., 2010) translates to a strong increase in SO₂ as measured by OMI and in CDNC as measured by MODIS, with a nearly four standard deviation increase in CDNC and SO₂ at its peak. The activity near Vanuatu is less pronounced, but the MODIS-observed CDNC still covaries with long-term trends in OMI SO₂. These results suggest that variability in CDNC on the time scales of months and years is being driven by volcanism in these regions.

- Volcanic sources play an important role in determining pre-industrial CDNC (Schmidt et al., 2012), but one of the 10 central goals of the analysis presented in this work is to offer a constraint on CDNC changes due to anthropogenic activity. Emissions controls in both China and the United States have resulted in steadily decreased SO₂ emissions in these regions over the observational record from OMI (Krotkov et al., 2016). The SO₂ measured over land on the east coast of North America (30°-45°N,85°-65W) and Asia (10°-40°N,110°-120°E) is shown in Figure 5c,d. This decrease in SO₂ over continents correlates well with CDNC observed over the Pacific (10°-40°N, 110°-150°E) and Atlantic (30°-45°N, 80°-
- 15 65°W) (Figure 5c,d). Land domains were chosen to match the regions of SO₂ production in China and the US examined in Krotkov et al. (2016). As noted in Krotkov et al. (2016), the Yangtze River delta, Pearl River delta, and Sichuan Basin contribute the majority of emissions in China, while Pennsylvania and the Ohio River valley contribute strongly to North American emissions. The averages over land have been selected to capture these regions and agree with previous studies(Krotkov et al., 2016). The accompanying maritime outflow regions have been chosen to match the same latitude

20 range and capture the region of enhanced CDNC shown in Figure 1.

It is interesting to note that the trends in SO_2 over Asia and North America and related CDNC changes over the Pacific and Atlantic parallel the history of emissions controls in China and the United States (US), supporting the idea that the observed trend is related to aerosol affecting cloud properties, as opposed to some systematic change in circulation during the observational record. In the US, various federal and state-level controls on sulfur emissions such as the 1990

25 Clean Air Act, the 2010 Acid Rain Program, and the 2009 Clean Air Interstate Rule have led to a steady decrease in SO₂ over the US east coast. This trend appears in OMI observations and is corroborated by ground-based and aircraft inventories (Krotkov et al., 2016;He et al., 2016;Hand et al., 2012).

30

5

Sulfur dioxide over China does not exhibit as monotonic a behavior as the east coast of North America. SO_2 decreases substantially during the period 2008-2010, which has been suggested to result from a combination of economic recession and the emission control measures put in place before the 2008 Olympic Games in Beijing (Krotkov et al., 2016;Li et al., 2010;Lu et al., 2011;Mijling et al., 2009;Witte et al., 2009). CDNC over the Pacific decreases during this period as well, although not for as long as SO_2 (Figure 5c). Since 2012 SO_2 over eastern China has decreased substantially. This may reflect emission controls implemented as part of the 12^{th} five-year plan (Tian et al., 2013;Zhao et al., 2013), as well as cleaner coal-fired technology (Wang et al., 2015). The strong decrease in SO_2 from 2012 is mirrored in trends in CDNC

over the Pacific. Taken together, these long-term trends in maritime CDNC responding to continental emissions of sulfur dioxide underline the link between sulfate and CDNC.

In addition to the strong pollution sources in North American east coast and East Asia, we also investigated interannual variability associated with the European Union and the stratocumulus decks listed in Table 1. Interannual variability in these regions is less dramatic and SO₂ is generally below the OMI detection threshold (Krotkov et al., 2016), making interpretation of the long-term trends in SO₂ difficult. However, in the European Union, and Peruvian stratocumulus regions variability in CDNC and SO₂ agree moderately well (Figure S3 and Figure S4). <u>Overall, given the difficulties in retrieving</u> <u>boundary-layer SO₂ (as discussed in the methods section) and the large regions being averaged over, the correlations</u> <u>between time series of SO2 and CDNC are quite high across regions</u>.

5

running mean are provided in Figure 6.

- We have examined the covariability between remotely-sensed PBL SO₂ and CDNC. In both pristine and polluted regions, long-term trends in CDNC appear to be driven by changes in sulfur flux (Figure 5). This leaves us with an important question for this analysis: how well does the sulfate mass from MERRA2 replicate these decadal trends? The long-term trends in log₁₀ CDNC are well-correlated with long-term trends in log₁₀ SO₄, with the notable exception of the Australian stratocumulus region (Figure S3, Figure 5, Figure 6). This is probably because this region is dominated by biogenic sulfur produced by marine organisms (McCoy et al., 2015;Rap et al., 2013;Kloster et al., 2006;Ayers and Gras, 1991;Charlson et al., 1987;Meskhidze and Nenes, 2006). The MERRA2 reanalysis uses a climatology to inform it about fluxes of dimethyl-sulfide (Randles et al., 2016) and it has very limited ability to simulate inter-annual variability. Note that correlations provided in Figure 5 are between unsmoothed time series. The correlation between time series treated with a 365-day
- It is interesting to examine how well our predictions of the sensitivity of CDNC to SO_4 based on daily variability extend to long-term trends. The coefficient linking log_{10} SO₄ to log_{10} CDNC inferred from 1°x1° daily data in the stratocumulus regions agrees with the relation between inter-annual variations in log_{10} SO₄ and log_{10} CDNC. This is shown in Figure 6. The range of coefficients arrived at by training the regression model in the stratocumulus regions (Table 1) captures the coefficients linking inter-annual variations in log_{10} SO₄ to log_{10} CDNC (Figure 6). Most regions appear to be
 - 25 closer to the regression model trained in Australian stratocumulus, with the exception of the Hawaiian and Californian regions, which are closer to the regression model trained in Californian stratocumulus. It should be noted that the decadal trends in CDNC and SO₄ shown in Figure 5 are not driving the training of the regression model because the variance in 1°x1° daily-mean CDNC exceeds the variance in regional-mean CDNC by almost three orders of magnitude after the application of the 365-day moving average. Overall, it appears that the regression models trained in the stratocumulus 30 regimes using daily data have the capability of predicting long-term variability in a variety of different regimes.

One interesting aspect of this analysis is that, while the time series of observed and predicted CDNC are wellcorrelated (see Figure 5 for correlation between unsmoothed time series and Figure 6 for correlations between time series after the application of a 365-day running mean), uncertainty still exists in the sensitivity of CDNC to SO_4 as characterized by the coefficient relating CDNC to SO4 in Equation 1. It is unclear if this diversity is due to a real difference in the way that

clouds and aerosol interact in these regions, perhaps due to differences in the effects of nucleation on CCN concentration (Gordon et al., 2016;Dunne et al., 2016), or if it is due to shortcomings in reanalysis or retrievals.

4. Conclusions

Several studies have shown that sulfate mass concentration influences CDNC (Boucher and Lohmann, 1995;Lowenthal et

- 5 al., 2004;McCoy et al., 2017a;McCoy et al., 2015;Storelvmo et al., 2009). Previous studies relating sulfate mass to remotelysensed CDNC were hampered by significant retrieval bias, making the interpretation of their results difficult (McCoy et al., 2017a). In this study we utilize daily-mean data filtered on an individual retrieval-basis to remove known sources of remotesensing bias. The results agree with the relationship derived from monthly mean data in McCoy et al. (2017a). Based on this relationship, a first indirect radiative forcing of -0.97 Wm⁻² was derived. The forcing found in McCoy et al. (2017a) based on
- 10 the stratocumulus regions and confirmed globally by this study is stronger than found in previous empirical remote-sensing studies (Bellouin et al., 2013;Quaas et al., 2008), but not out of line with climate model studies forced to be consistent with in-situ relationships between sulfate and CDNC (Storelvmo et al., 2009). Therefore remotely-sensed CCN proxies that are not speciated are not as skillful a predictor of true CCN variability as sulfate mass, and will underestimate the radiative forcing due to aerosol-cloud interactions.
- In addition to showing the sensitivity of CDNC to SO₄, we have shown that submicron sea spray as predicted by MERRA2 does not strongly affect CDNC except at very low sea-spray mass. As noted above, the submicron sea-spray in MERRA2 is effectively dependent on wind speed, so the precise coefficient relating sea salt to CDNC should change depending on the size distribution assumed by a different parameterization of sea spray emission, but should maintain the same qualitative dependence.

20

In summary, when remote-sensing retrieval biases are accounted for carefully, sulfate mass concentration near the surface covaries with observed CDNC in the same way in highly pristine and in polluted regions. Inter-annual variability in CDNC near passively degassing volcanoes agrees with both reanalysis SO_4 and observed SO_2 . Further, the decadal trend in CDNC predicted by reanalysis aerosol in regions of maritime outflow near sources of intense anthropogenic pollution agrees with observed trends in CDNC. This shows that the relation between CDNC and SO_4 has relevance to aerosol-cloud

25 radiative forcing. To our knowledge this is the first study to use remote-sensing SO2 and CDNC to show that inter-annual variability in sulfur emissions alters CDNC. Based on this we suggest that the relation between sulfate mass and CDNC provides a constraint on aerosol-cloud interactions in GCMs.

Author contributions

DTM and FAMB planned the paper. DTM performed data analysis and calculations and wrote the text. DPG created the 30 CDNC level 3 data set from level 2 MODIS data. JKM downloaded and organized the MERRA2 aerosol data. All coauthors edited the manuscript, discussed results, and supported analysis.

Acknowledgments

The MODIS data were obtained from NASA's Level 1 and Atmosphere Archive and Distribution System (LAADS), https://ladsweb.modaps.eosdis.nasa.gov/. MERRA2 data was downloaded from the Giovanni data server. DTM and PRF acknowledge support from the PRIMAVERA project, funded by the European Union's Horizon 2020 programme, Grant

5 Agreement no. 641727.

References

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227-1230, 10.1126/science.245.4923.1227, 1989.

- 10 Allen, G., Coe, H., Clarke, A., Bretherton, C., Wood, R., Abel, S. J., Barrett, P., Brown, P., George, R., Freitag, S., McNaughton, C., Howell, S., Shank, L., Kapustin, V., Brekhovskikh, V., Kleinman, L., Lee, Y. N., Springston, S., Toniazzo, T., Krejci, R., Fochesatto, J., Shaw, G., Krecl, P., Brooks, B., McMeeking, G., Bower, K. N., Williams, P. I., Crosier, J., Crawford, I., Connolly, P., Allan, J. D., Covert, D., Bandy, A. R., Russell, L. M., Trembath, J., Bart, M., McQuaid, J. B., Wang, J., and Chand, D.: South East Pacific atmospheric composition and variability sampled along 20° S during VOCALS-REx, Atmos. Chem. Phys., 11, 5237-5262, 10.5194/acp-11-5237-2011,
- 2011.
 Andreae, M. O., Jones, C. D., and Cox, P. M.: Strong present-day aerosol cooling implies a hot future, Nature, 435, 1187, 2005.
 Ayers, G. P., and Gras, J. L.: Seasonal relationship between cloud condensation nuclei and aerosol methanesulphonate in marine air, Nature, 353, 834-835, 1991.

Bellouin, N., Quaas, J., Morcrette, J. J., and Boucher, O.: Estimates of aerosol radiative forcing from the MACC re-analysis, Atmos.
Chem. Phys., 13, 2045-2062, 10.5194/acp-13-2045-2013, 2013.

Bennartz, R., Fan, J., Rausch, J., Leung, L. R., and Heidinger, A. K.: Pollution from China increases cloud droplet number, suppresses rain over the East China Sea, Geophys. Res. Lett., 38, n/a-n/a, 10.1029/2011GL047235, 2011.
 Bennartz, R., and Rausch, J.: Global and regional estimates of warm cloud droplet number concentration based on 13 years of AQUA-MODIS observations, Atmos. Chem. Phys. Discuss., 2017, 1-32, 10.5194/acp-2016-1130, 2017.

- 25 Boucher, O., and Lohmann, U.: The sulfate-CCN-cloud albedo effect, Tellus B, 47, 281-300, 10.1034/j.1600-0889.47.issue3.1.x, 1995. Boucher, O., Randall, D. A., Artaxo, P., Bretherton, C., Feingold, G., Forster, P. M., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh, S. K., Sherwood, S. C., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols Climate Change 2013 - The Physical Science Basis, Cambridge University Press, 2014. Bretherton, C. S., Wood, R., George, R. C., Leon, D., Allen, G., and Zheng, X.: Southeast Pacific stratocumulus clouds, precipitation and
- boundary layer structure sampled along 20° S during VOCALS-REx, Atmos. Chem. Phys., 10, 10639-10654, 10.5194/acp-10-10639-2010, 2010.

Buchard, V., da Silva, A. M., Colarco, P. R., Darmenov, A., Randles, C. A., Govindaraju, R., Torres, O., Campbell, J., and Spurr, R.: Using the OMI aerosol index and absorption aerosol optical depth to evaluate the NASA MERRA Aerosol Reanalysis, Atmos. Chem. Phys., 15, 5743-5760, 10.5194/acp-15-5743-2015, 2015.

- 35 Carn, S. A., Fioletov, V. E., McLinden, C. A., Li, C., and Krotkov, N. A.: A decade of global volcanic SO2 emissions measured from space, Scientific Reports, 7, 44095, 10.1038/srep44095 <u>https://www.nature.com/articles/srep44095 - supplementary-information</u>, 2017. Charlson, R. J., Lovelock, J. E., Andreae, M. O., and Warren, S. G.: OCEANIC PHYTOPLANKTON, ATMOSPHERIC SULFUR, CLOUD ALBEDO AND CLIMATE, Nature, 326, 655-661, 10.1038/326655a0, 1987.
- 40 Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Hansen, J. E., and Hofmann, D. J.: Climate Forcing by Anthropogenic Aerosols, Science, 255, 423-430, 10.1126/science.255.5043.423, 1992. Christensen, M. W., Neubauer, D., Poulsen, C., Thomas, G., McGarragh, G., Povey, A. C., Proud, S., and Grainger, R. G.: Unveiling aerosol-cloud interactions Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate, Atmos. Chem. Phys. Discuss., 2017, 1-21, 10.5194/acp-2017-450, 2017.
- 45 Dunne, E. M., Gordon, H., Kürten, A., Almeida, J., Duplissy, J., Williamson, C., Ortega, I. K., Pringle, K. J., Adamov, A., Baltensperger, U., Barmet, P., Benduhn, F., Bianchi, F., Breitenlechner, M., Clarke, A., Curtius, J., Dommen, J., Donahue, N. M., Ehrhart, S., Flagan, R. C., Franchin, A., Guida, R., Hakala, J., Hansel, A., Heinritzi, M., Jokinen, T., Kangasluoma, J., Kirkby, J., Kulmala, M., Kupe, A., Lawler, M. J., Lehtipalo, K., Makhmutov, V., Mann, G., Mathot, S., Merikanto, J., Miettinen, P., Nenes, A., Onnela, A., Rap, A., Reddington, C.

L. S., Riccobono, F., Richards, N. A. D., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Simon, M., Sipilä, M., Smith, J. N., Stozkhov, Y., Tomé, A., Tröstl, J., Wagner, P. E., Wimmer, D., Winkler, P. M., Worsnop, D. R., and Carslaw, K. S.: Global atmospheric particle formation from CERN CLOUD measurements, Science, 354, 1119-1124, 10.1126/science.aaf2649, 2016.

Elias, T., and Sutton, A. J.: Sulfur dioxide emission rates from Kīlauea Volcano, Hawai'i, 2007–2010, Reston, VA, Report 2012-1107, i-5 25, 2012.

Forster, P. M.: Inference of climate sensitivity from analysis of Earth's energy budget, Annual Review of Earth and Planetary Sciences, 44, 85-106, 2016.

Gassó, S.: Satellite observations of the impact of weak volcanic activity on marine clouds, Journal of Geophysical Research: Atmospheres, 113, n/a-n/a, 10.1029/2007JD009106, 2008.

- 10 Ghan, S. J., Guzman, G., and Abdul-Razzak, H.: Competition between sea salt and sulfate particles as cloud condensation nuclei, Journal of the atmospheric sciences, 55, 3340-3347, 1998. Gong, S. L.: A parameterization of sea-salt aerosol source function for sub- and super-micron particles, Global Biogeochemical Cycles, 17, n/a-n/a, 10.1029/2003GB002079, 2003.
- Gordon, H., Sengupta, K., Rap, A., Duplissy, J., Frege, C., Williamson, C., Heinritzi, M., Simon, M., Yan, C., Almeida, J., Tröstl, J.,
 Nieminen, T., Ortega, I. K., Wagner, R., Dunne, E. M., Adamov, A., Amorim, A., Bernhammer, A.-K., Bianchi, F., Breitenlechner, M.,
 Brilke, S., Chen, X., Craven, J. S., Dias, A., Ehrhart, S., Fischer, L., Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Hakala, J., Hoyle, C.
 R., Jokinen, T., Junninen, H., Kangasluoma, J., Kim, J., Kirkby, J., Krapf, M., Kürten, A., Laaksonen, A., Lehtipalo, K., Makhmutov, V.,
 Mathot, S., Molteni, U., Monks, S. A., Onnela, A., Peräkylä, O., Piel, F., Petäjä, T., Praplan, A. P., Pringle, K. J., Richards, N. A. D.,
 Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Scott, C. E., Seinfeld, J. H., Sharma, S., Sipilä, M., Steiner, G., Stozhkov, Y.,
- 20 Stratmann, F., Tomé, A., Virtanen, A., Vogel, A. L., Wagner, A. C., Wagner, P. E., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Zhang, X., Hansel, A., Dommen, J., Donahue, N. M., Worsnop, D. R., Baltensperger, U., Kulmala, M., Curtius, J., and Carslaw, K. S.: Reduced anthropogenic aerosol radiative forcing caused by biogenic new particle formation, Proceedings of the National Academy of Sciences, 113, 12053-12058, 10.1073/pnas.1602360113, 2016.

Grosvenor, D. P., and Wood, R.: The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds, Atmos. Chem. Phys., 14, 7291-7321, 10.5194/acp-14-7291-2014, 2014.

Gryspeerdt, E., Quaas, J., and Bellouin, N.: Constraining the aerosol influence on cloud fraction, Journal of Geophysical Research: Atmospheres, n/a-n/a, 10.1002/2015JD023744, 2016.

Gryspeerdt, E., Quaas, J., Ferrachat, S., Gettelman, A., Ghan, S., Lohmann, U., Morrison, H., Neubauer, D., Partridge, D. G., Stier, P., Takemura, T., Wang, H., Wang, M., and Zhang, K.: Constraining the instantaneous aerosol influence on cloud albedo, Proceedings of the National Academy of Sciences, 114, 4899-4904, 10.1073/pnas.1617765114, 2017.

- Hand, J. L., Schichtel, B. A., Malm, W. C., and Pitchford, M. L.: Particulate sulfate ion concentration and SO₂ emission trends in the United States from the early 1990s through 2010, Atmos. Chem. Phys., 12, 10353-10365, 10.5194/acp-12-10353-2012, 2012. Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response, Journal of Geophysical Research: Atmospheres, 102, 6831-6864, 10.1029/96JD03436, 1997.
- 35 He, H., Vinnikov, K. Y., Li, C., Krotkov, N. A., Jongeward, A. R., Li, Z., Stehr, J. W., Hains, J. C., and Dickerson, R. R.: Response of SO2 and particulate air pollution to local and regional emission controls: A case study in Maryland, Earth's Future, 4, 94-109, 10.1002/2015EF000330, 2016.

Hegg, D. A., Nielsen, K., Jonsson, H. H., Durkee, P. A., and Covert, D. S.: Measurements of both horizontal gradients and vertical profiles of aerosols, cloud droplets and thermodynamic parameters in the cloud topped marine boundary layer off of central California are

- 40 presented. They suggest that, while aerosols can indeed modulate cloud albedo, other parameters such as sea surface temperature may similarly affect cloud albedo. Additionally, the impact of aerosols, through sedimentation and precipitation, on cloud optical depths and thus albedo is not always in accord with conventional expectations and can either enhance or decrease the albedo, depending on ambient conditions. Taken together, these results suggest that current estimates of indirect forcing by aerosols could be significantly in error, 2007. Jaeglé, L., Quinn, P. K., Bates, T. S., Alexander, B., and Lin, J. T.: Global distribution of sea salt aerosols: new constraints from in situ and
- 45 remote sensing observations, Atmos. Chem. Phys., 11, 3137-3157, 10.5194/acp-11-3137-2011, 2011. King, M. D., Menzel, W. P., Kaufman, Y. J., Tanre, D., Bo-Cai, G., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A.: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, Geoscience and Remote Sensing, IEEE Transactions on, 41, 442-458, 10.1109/TGRS.2002.808226, 2003.
- Kloster, S., Feichter, J., Reimer, E. M., Six, K. D., Stier, P., and Wetzel, P.: DMS cycle in the marine ocean-atmosphere system a global 50 model study, Biogeosciences, 3, 29-51, 2006.
- Krotkov, N. A., Schoeberl, M. R., Morris, G. A., Carn, S., and Yang, K.: Dispersion and lifetime of the SO2 cloud from the August 2008 Kasatochi eruption, Journal of Geophysical Research: Atmospheres, 115, n/a-n/a, 10.1029/2010JD013984, 2010.

Krotkov, N. A., McLinden, C. A., Li, C., Lamsal, L. N., Celarier, E. A., Marchenko, S. V., Swartz, W. H., Bucsela, E. J., Joiner, J., Duncan, B. N., Boersma, K. F., Veefkind, J. P., Levelt, P. F., Fioletov, V. E., Dickerson, R. R., He, H., Lu, Z., and Streets, D. G.: Aura OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605-4629, 10.5194/acp-16-

55 OMI observations of regional SO2 and NO2 pollution changes from 2005 to 2015, Atmos. Chem. Phys., 16, 4605-4629, 10.5194/acp-16-4605-2016, 2016.

Lachlan-Cope, T., Listowski, C., and O'Shea, S.: The Microphysics of Clouds over the Antarctic Peninsula – Part 1: Observations, Atmos. Chem. Phys. Discuss., 2016, 1-28, 10.5194/acp-2016-331, 2016.

Li, C., Zhang, Q., Krotkov, N. A., Streets, D. G., He, K., Tsay, S.-C., and Gleason, J. F.: Recent large reduction in sulfur dioxide emissions from Chinese power plants observed by the Ozone Monitoring Instrument, Geophysical Research Letters, 37, n/a-n/a, 10.1029/2010GL042594, 2010.

- Li, C., Joiner, J., Krotkov, N. A., and Bhartia, P. K.: A fast and sensitive new satellite SO2 retrieval algorithm based on principal component analysis: Application to the ozone monitoring instrument, Geophysical Research Letters, 40, 6314-6318, 10.1002/2013GL058134, 2013.
- Longo, B. M., Yang, W., Green, J. B., Crosby, F. L., and Crosby, V. L.: Acute Health Effects Associated with Exposure to Volcanic Air
 Pollution (vog) from Increased Activity at Kilauea Volcano in 2008, Journal of Toxicology and Environmental Health, Part A, 73, 1370-1381, 10.1080/15287394.2010.497440, 2010.
 - Lowenthal, D. H., Borys, R. D., Choularton, T. W., Bower, K. N., Flynn, M. J., and Gallagher, M. W.: Parameterization of the cloud droplet-sulfate relationship, Atmos. Environ., 38, 287-292, 10.1016/j.atmosenv.2003.09.046, 2004.
- Lu, M.-L., Conant, W. C., Jonsson, H. H., Varutbangkul, V., Flagan, R. C., and Seinfeld, J. H.: The Marine Stratus/Stratocumulus
 Experiment (MASE): Aerosol-cloud relationships in marine stratocumulus, Journal of Geophysical Research: Atmospheres, 112, D10209, 10.1029/2006JD007985, 2007.

Lu, Z., Zhang, Q., and Streets, D. G.: Sulfur dioxide and primary carbonaceous aerosol emissions in China and India, 1996–2010, Atmos. Chem. Phys., 11, 9839-9864, 10.5194/acp-11-9839-2011, 2011.

Ma, J., Chen, Y., Wang, W., Yan, P., Liu, H., Yang, S., Hu, Z., and Lelieveld, J.: Strong air pollution causes widespread haze-clouds over 20 China, Journal of Geophysical Research: Atmospheres, 115, n/a-n/a, 10.1029/2009JD013065, 2010.

- Mace, G. G., and Abernathy, A. C.: Observational evidence for aerosol invigoration in shallow cumulus downstream of Mount Kilauea, Geophysical Research Letters, 43, 2981-2988, 10.1002/2016GL067830, 2016.
- Mace, G. G., and Avey, S.: Seasonal Variability of Warm Boundary Layer Cloud and Precipitation Properties in the Southern Ocean as Diagnosed from A-Train Data, Journal of Geophysical Research: Atmospheres, n/a-n/a, 10.1002/2016JD025348, 2016.
- 25 Malavelle, F. F., Haywood, J. M., Jones, A., Gettelman, A., Clarisse, L., Bauduin, S., Allan, R. P., Karset, I. H. H., Kristjánsson, J. E., Oreopoulos, L., Cho, N., Lee, D., Bellouin, N., Boucher, O., Grosvenor, D. P., Carslaw, K. S., Dhomse, S., Mann, G. W., Schmidt, A., Coe, H., Hartley, M. E., Dalvi, M., Hill, A. A., Johnson, B. T., Johnson, C. E., Knight, J. R., O'Connor, F. M., Partridge, D. G., Stier, P., Myhre, G., Platnick, S., Stephens, G. L., Takahashi, H., and Thordarson, T.: Strong constraints on aerosol–cloud interactions from volcanic eruptions, Nature, 546, 485-491, 10.1038/nature22974
- 30 <u>http://www.nature.com/nature/journal/v546/n7659/abs/nature22974.html supplementary-information</u>, 2017. Matsui, T., Masunaga, H., Kreidenweis, S. M., Pielke, R. A., Tao, W. K., Chin, M., and Kaufman, Y. J.: Satellite-based assessment of marine low cloud variability associated with aerosol, atmospheric stability, and the diurnal cycle, Journal of Geophysical Research-Atmospheres, 111, D17204
- 10.1029/2005jd006097, 2006.

5

- 35 McCoy, D. T., Burrows, S. M., Wood, R., Grosvenor, D. P., Elliott, S. M., Ma, P.-L., Rasch, P. J., and Hartmann, D. L.: Natural aerosols explain seasonal and spatial patterns of Southern Ocean cloud albedo, Science Advances, 1, 2015.
 McCau, D. T., and Hartmann, D. L.: Observations of a rubetartial shared encoded indicate effect during the 2014 2015. Directory of a rubetartial shared encoded indicate effect during the 2014 2015.
- McCoy, D. T., and Hartmann, D. L.: Observations of a substantial cloud-aerosol indirect effect during the 2014–2015 Bárðarbunga-Veiðivötn fissure eruption in Iceland, Geophys. Res. Lett., n/a-n/a, 10.1002/2015GL067070, 2015.
- McCoy, D. T., Bender, F. A. M., Mohrmann, J. K., Hartmann, D. L., Wood, R., and Grosvenor, D. P.: The global aerosol-cloud first indirect effect estimated using MODIS, MERRA and AeroCom, Journal of Geophysical Research: Atmospheres, n/a-n/a, 10.1002/2016JD026141, 2017a.

McCoy, D. T., Field, P. R., Schmidt, A., Grosvenor, D. P., Bender, F. A. M., Shipway, B. J., Hill, A. A., and Wilkinson, J. M.: The aerosol-cyclone indirect effect in observations and high-resolution simulations, Atmospheric Chemistry and Physics, 2017b.

Meskhidze, N., and Nenes, A.: Phytoplankton and Cloudiness in the Southern Ocean, Science, 314, 1419-1423, 10.1126/science.1131779, 2006.

Mijling, B., van der A, R. J., Boersma, K. F., Van Roozendael, M., De Smedt, I., and Kelder, H. M.: Reductions of NO2 detected from space during the 2008 Beijing Olympic Games, Geophysical Research Letters, 36, n/a-n/a, 10.1029/2009GL038943, 2009.

Nakajima, T., and King, M. D.: Determination of the optical thickness and effective particle radius of clouds from reflected solar radiation measurements. Part I: Theory, Journal of the atmospheric sciences, 47, 1878-1893, 1990.

- 50 Nakajima, T., Higurashi, A., Kawamoto, K., and Penner, J. E.: A possible correlation between satellite-derived cloud and aerosol microphysical parameters, Geophys. Res. Lett., 28, 1171-1174, 10.1029/2000GL012186, 2001. Painemal, D., and Zuidema, P.: Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS-REx in situ measurements, Journal of Geophysical Research-Atmospheres, 116, D24206 10.1029/2011jd016155, 2011.
- 55 Patel, P. N., Quaas, J., and Kumar, R.: A new statistical approach to improve the satellite-based estimation of the radiative forcing by aerosol-cloud interactions, Atmos. Chem. Phys., 17, 3687-3698, 10.5194/acp-17-3687-2017, 2017.

Quaas, J., Boucher, O., Bellouin, N., and Kinne, S.: Satellite-based estimate of the direct and indirect aerosol climate forcing, Journal of Geophysical Research: Atmospheres, 113, n/a-n/a, 10.1029/2007JD008962, 2008.

Quaas, J., Ming, Y., Menon, S., Takemura, T., Wang, M., Penner, J. E., Gettelman, A., Lohmann, U., Bellouin, N., Boucher, O., Sayer, A. M., Thomas, G. E., McComiskey, A., Feingold, G., Hoose, C., Kristjansson, J. E., Liu, X., Balkanski, Y., Donner, L. J., Ginoux, P. A.,

- 5 Stier, P., Grandey, B., Feichter, J., Sednev, I., Bauer, S. E., Koch, D., Grainger, R. G., Kirkevag, A., Iversen, T., Seland, O., Easter, R., Ghan, S. J., Rasch, P. J., Morrison, H., Lamarque, J. F., Iacono, M. J., Kinne, S., and Schulz, M.: Aerosol indirect effects - general circulation model intercomparison and evaluation with satellite data, Atmospheric Chemistry and Physics, 9, 8697-8717, 2009. Ramanathan, V., Crutzen, P. J., Lelieveld, J., Mitra, A. P., Althausen, D., Anderson, J., Andreae, M. O., Cantrell, W., Cass, G. R., Chung, C. E., Clarke, A. D., Coakley, J. A., Collins, W. D., Conant, W. C., Dulac, F., Heintzenberg, J., Heymsfield, A. J., Holben, B., Howell, S.,
- Hudson, J., Jayaraman, A., Kiehl, J. T., Krishnamurti, T. N., Lubin, D., McFarquhar, G., Novakov, T., Ogren, J. A., Podgorny, I. A., Prather, K., Priestley, K., Prospero, J. M., Quinn, P. K., Rajeev, K., Rasch, P., Rupert, S., Sadourny, R., Satheesh, S. K., Shaw, G. E., Sheridan, P., and Valero, F. P. J.: Indian Ocean Experiment: An integrated analysis of the climate forcing and effects of the great Indo-Asian haze, Journal of Geophysical Research: Atmospheres, 106, 28371-28398, 10.1029/2001JD900133, 2001. Pandles, C. AM, d.S., Y. P. A. D., PR. C. Y. A. H. P., EP. N. Y. P. A. S. H. Y. and P. G.: The MERPA 2 Aerosol Assimilation.
- Randles, C., AM, d. S., V, B., A, D., PR, C., V, A., H, B., EP, N., X, P., A, S., H, Y., and R, G.: The MERRA-2 Aerosol Assimilation, 15 Technical Report Series on Global Modeling and Data Assimilation, 45, 2016.

Rap, A., Scott, C. E., Spracklen, D. V., Bellouin, N., Forster, P. M., Carslaw, K. S., Schmidt, A., and Mann, G.: Natural aerosol direct and indirect radiative effects, Geophys. Res. Lett., 40, 3297-3301, 10.1002/grl.50441, 2013.

Reddington, C., Carslaw, K., Stier, P., Schutgens, N., Coe, H., Liu, D., Allan, J., Pringle, K., Lee, L., and Yoshioka, M.: The Global Aerosol Synthesis and Science Project (GASSP): measurements and modelling to reduce uncertainty, 2017.

- 20 Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Julio Bacmeister, Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., Silva, A. d., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, Journal of Climate, 24, 3624-3648, doi:10.1175/JCLI-D-11-00015.1, 2011.
- Schmidt, A., Carslaw, K. S., Mann, G. W., Rap, A., Pringle, K. J., Spracklen, D. V., Wilson, M., and Forster, P. M.: Importance of tropospheric volcanic aerosol for indirect radiative forcing of climate, Atmos. Chem. Phys., 12, 7321-7339, 10.5194/acp-12-7321-2012, 2012.

Sekiguchi, M., Nakajima, T., Suzuki, K., Kawamoto, K., Higurashi, A., Rosenfeld, D., Sano, I., and Mukai, S.: A study of the direct and indirect effects of aerosols using global satellite data sets of aerosol and cloud parameters, Journal of Geophysical Research: Atmospheres, 108, n/a-n/a, 10.1029/2002JD003359, 2003.

Stevens, B.: Rethinking the Lower Bound on Aerosol Radiative Forcing, Journal of Climate, 28, 4794-4819, doi:10.1175/JCLI-D-14-00656.1, 2015.

Storelvmo, T., Lohmann, U., and Bennartz, R.: What governs the spread in shortwave forcings in the transient IPCC AR4 models?, Geophys. Res. Lett., 36, 5, L01806

35 10.1029/2008gl036069, 2009.

30

Tian, H., Qiu, P., Cheng, K., Gao, J., Lu, L., Liu, K., and Liu, X.: Current status and future trends of SO2 and NOx pollution during the 12th FYP period in Guiyang city of China, Atmospheric Environment, 69, 273-280, http://dx.doi.org/10.1016/j.atmosenv.2012.12.033, 2013.

Twomey, S.: INFLUENCE OF POLLUTION ON SHORTWAVE ALBEDO OF CLOUDS, Journal of the Atmospheric Sciences, 34, 1149-1152, 10.1175/1520-0469(1977)034<1149:tiopot>2.0.co;2, 1977.

Wang, S., Zhang, Q., Randall, V. M., Sajeev, P., Fei, L., Meng, L., Xujia, J., and Kebin, H.: Satellite measurements oversee China's sulfur dioxide emission reductions from coal-fired power plants, Environmental Research Letters, 10, 114015, 2015.
 Witte, L.C., Schecherl, M. P., Davider, A. P., Classer, L.F., Kretler, N.A., Cille, L.C., Pickering, K. F., and Liwere, N. Setellite, Schecherl, M. P., Davider, A. P., Classer, L.F., Kretler, N.A., Cille, L.C., Pickering, K. F., and Liwere, N. Setellite, Schecherl, M. P., Davider, M. B., Charles, M. B., Charles, M. B., Charles, M. B., Constant, S. S. Setellite, Schecker, M. S. Setellite, Schecker, M. S. Setellite, Schecker, M. S. Setellite, Schecker, Schecker, M. S. Setellite, Schecker, Schecker,

Witte, J. C., Schoeberl, M. R., Douglass, A. R., Gleason, J. F., Krotkov, N. A., Gille, J. C., Pickering, K. E., and Livesey, N.: Satellite observations of changes in air quality during the 2008 Beijing Olympics and Paralympics, Geophysical Research Letters, 36, n/a-n/a, 10.1029/2009GL039236, 2009.

Yuan, T., Remer, L. A., and Yu, H.: Microphysical, macrophysical and radiative signatures of volcanic aerosols in trade wind cumulus observed by the A-Train, Atmos. Chem. Phys., 11, 7119-7132, 10.5194/acp-11-7119-2011, 2011.

Zhang, Z., Ackerman, A. S., Feingold, G., Platnick, S., Pincus, R., and Xue, H. W.: Effects of cloud horizontal inhomogeneity and drizzle on remote sensing of cloud droplet effective radius: Case studies based on large-eddy simulations, Journal of Geophysical Research Atmospheres, 117, 10.1029/2012jd017655, 2012.

Zhao, B., Wang, S., Wang, J., Fu, J. S., Liu, T., Xu, J., Fu, X., and Hao, J.: Impact of national NOx and SO2 control policies on particulate matter pollution in China, Atmospheric Environment, 77, 453-463, <u>http://dx.doi.org/10.1016/j.atmosenv.2013.05.012</u>, 2013.

	SO4	DU	BC	OC	SS	b	land-	Lon	Lat	r
							sea			
Peruvian	0.3	0.09	-0.06	0.04	-0.15	1.7	Ocean	115W-65W	30S-0N	0.64
Namibian										
	0.21	0.14	0.38	-0.32	-0.12	2.27	Ocean	20W-20E	30S-0N	0.61
Australian	0.44	0.09	0.01	-0.03	-0.12	1.94	Ocean	55E-120E	35S-15S	0.57
Californian								150W-		
	0.2	0	-0.03	0.13	-0.04	2.03	Ocean	110W	10N-40N	0.43
Canarian	0.29	0.07	-0.08	0.11	-0.06	1.95	Ocean	40W-5W	10N-40N	0.53
China	0.27	0.01	0.01	0.05	-0.02	2.11	Ocean	100E-160E	10N-40N	0.63
North Atlantic	0.24	-0.03	0.15	-0.03	-0.07	2.03	Ocean	60W-0E	40N-70N	0.45
North East Pacific								180W-		
	0.08	-0.04	0.07	0.03	-0.02	1.96	Ocean	120W	40N-70N	0.24
North West Pacific	0.11	-0.05	0.18	-0.04	-0.01	2.17	Ocean	120E-180E	40N-70N	0.35
South East Pacific	0.29	0.09	-0.14	0.02	-0.1	1.64	Ocean	180W-70W	70S-30S	0.45
South Atlantic	0.29	0.03	-0.09	0.04	-0.11	1.73	Ocean	70W-60E	70S-30S	0.38
South Indian Ocean	0.3	-0.02	-0.04	0.01	-0.07	1.81	Ocean	60E-180E	70S-35S	0.37
Galapagos	0.09	0.06	0.1	-0.04	0	2.25	Ocean	120W-70W	0N-10N	0.37
Chinese Stratus	0.27	0.03	-0.16	0.11	-0.02	2.05	Land	100E-130E	10N-40N	0.42
Amazon	0.22	0	0.06	-0.03	0.01	2.37	Land	80W-30W	15S-10N	0.46
Equatorial Africa	0.06	-0.02	0.01	0.07	0.07	2.41	Land	20W-20E	15S-15N	0.37
North America	0.18	0.02	0.2	-0.13	0.02	2.55	Land	100W-75W	30N-45N	0.33
India	-0.02	-0.01	0.39	-0.24	0.05	2.71	Land	65E-90E	10N-30N	0.41
Europe	0.18	0.02	0.08	0	0.02	2.42	Land	0E-50E	25N-45N	0.37

Table 1 Details of the regions considered in this study (see also Figure 1). For each region the coefficients relating CDNC to predictors from equation 1 are shown along with the correlation coefficient of the regression model in that region. The constant term in the regression is shown under b. The latitude-longitude bounding box of each region is shown and it is noted if data is restricted to being over land or oceans.

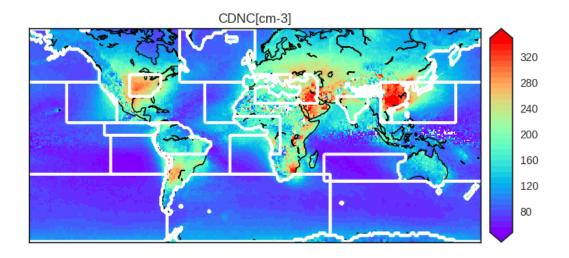


Figure 1 The mean CDNC from 2003-2015 observed by MODIS. Boxes over land and ocean used to examine different regimes in Figure 3 are shown in white.

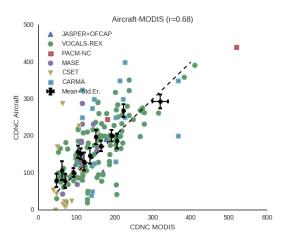


Figure 2 Aircraft-measured CDNC versus MODIS CDNC where MODIS CDNC has been averaged within 1.5 degrees of the flight leg and 1.5 days. Data from JASPER and OFCAP near the Antarctic peninsula (Lachlan-Cope et al., 2016); VOCALS-REX off the coast of Peru (Allen et al., 2011); MASE, CSET, and CARMA off the California coast (Lu et al., 2007; Hegg et al., 2007); PACM-NC refers to data from data from Northern China near Beijing and Tianjin (Ma et al., 2010). The one to one relation is shown as a dashed line and the mean of the data is shown with black dots taken over equal quantiles of the data and the standard error in the mean is shown with error bars.

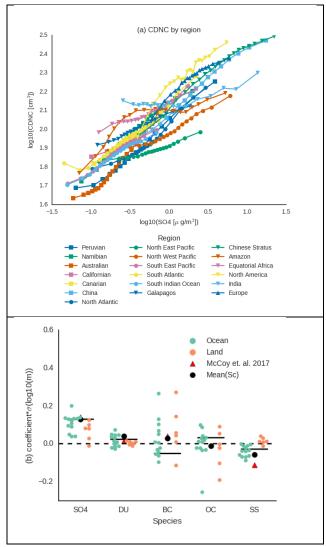


Figure 3 (a) Daily CDNC from MODIS binned by boundary layer sulfate mass from MERRA2. Regions (Figure 1) are noted in the legend. (b) The multiple linear regression coefficients relating CDNC to boundary layer aerosol mass concentrations. Each coefficient is scaled by the standard deviation of the relevant predictor in the regression model. Black lines show the coefficient values if all available data is used to train the regression model, triangles show equivalent values from McCoy et al. (2017a) derived from measurements over strateoumlus decks, black eigeles show the mean coefficient values from the present study.

5 derived from measurements over stratocumulus decks, black circles show the mean coefficient values from the present study restricted to stratocumulus decks. Note that BC and OC are the mass that is predicted by MERRA2 to be hydrophilic and sea salt (SS) and dust (DU) are the mass that is predicted to be submicron. These distinctions have been made to try and look at the most CCN-relevant aerosol mass in these species. Coefficients for each region are shown in Table 1.

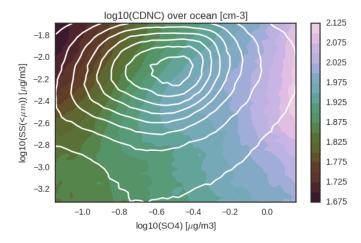


Figure 4 The dependence of CDNC on submicron sea salt and sulfate mass predicted by MERRA2. All variables are shown in \log_{10} -space. White lines show the probability distribution of sea salt and sulfate in the observations. Equivalent plots replacing sea salt with dust, black carbon, and organic carbon are shown in Figure S2.

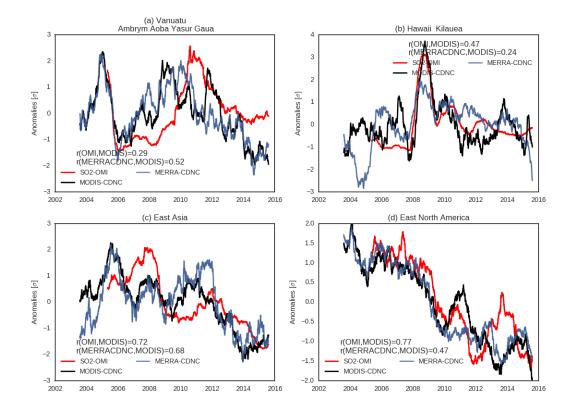


Figure 5 Sulfur dioxide (SO2) from OMI, log₁₀ CDNC from MODIS, and log₁₀ CDNC predicted by MERRA2 SO4 over Vanuatu and Hawaii (a,b) and China and the east coast of the US (c,d). A 365-day running mean is used to smooth both time series. In (a)
and (b) CDNC and SO2 are averaged within 5° of the volcano. In (c) and (d) SO2 is averaged over land and CDNC is averaged off the coast. All data are plotted in standard deviations relative to the mean of the time series. The correlation between time series of CDNC from MODIS and SO2 from OMI, and between predicted and observed CDNC are noted in the legend for each figure. Note that these correlations are taken before taking the 365-day running mean. The correlation between the time series of predicted and observed CDNC after taking the running mean is noted in Figure 6.

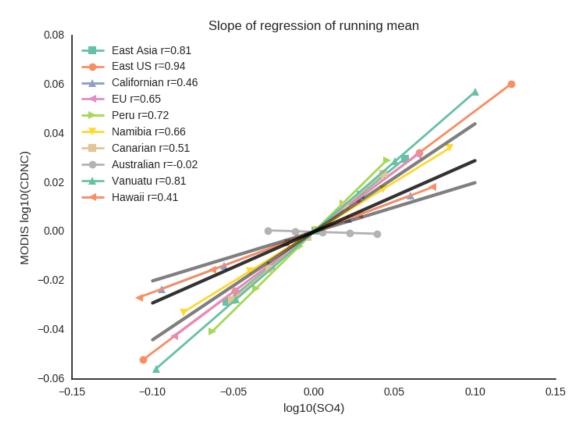


Figure 6 An illustration of the slope of the linear regression of regionally and temporally averaged $log_{10}SO4$ on $log_{10}CDNC$. Both CDNC and SO4 are averaged in each region and smoothed with a 365-day moving average (see Figure 5). Each region is noted in the legend along with the correlation between $log_{10}CDNC$ and $log_{10}SO4$. The x-range of the lines corresponds to the range of regionally- and temporally-averaged $log_{10}SO4$ in each region. Slopes derived from $1^{\circ}x1^{\circ}$ daily data in the stratocumulus regions are shown using black and grey solid lines. The mean coefficient from the stratocumulus regions (Table 1) is shown as a black line. The minimum and maximum coefficients from the stratocumulus regions (Californian and Australian, respectively) are shown as solid grey lines.