1	Using different assumptions of aerosol mixing state and chemical
2	composition to predict CCN concentrations based on field
3	measurements in urban Beijing
4 5	Jingye Ren ¹ , Fang Zhang ^{1, 2*} , Yuying Wang ¹ , Don Collins ³ , Xinxin Fan ¹ , Xiaoai Jin ¹ , Weiqi Xu ^{3, 4} , Yele Sun ^{3, 4} , Maureen Cribb ⁵ , Zhanqing Li ^{1, 5}
6	
7 8 9	¹ State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
10	² Joint Center for Global Change Studies (JCGCS), Beijing 100875, China
11 12	³ Department of Atmospheric Sciences, Texas A&M University, College Station, TX, USA
13 14 15	⁴ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
16	⁵ University of Chinese Academy of Sciences, Beijing 100049, China
17 18	⁶ Earth System Science Interdisciplinary Center and Department of Atmospheric and Oceanic Science, University of Maryland, College Park, Maryland, USA
19	
20	
21	
22	
23	*Correspondence to: Fang Zhang (fang.zhang@bnu.edu.cn)
24	

25 Abstract

26	Understanding the impacts of aerosol chemical composition and mixing state on
27	cloud condensation nuclei (CCN) activity in polluted areas is crucial for accurately
28	predicting the CCN number concentrations (N _{CCN}). In this study, we predict N _{CCN}
29	under five assumed schemes of aerosol chemical composition and mixing state based
30	on field measurements in Beijing during the winter of 2016. Our results show that the
31	best closure is achieved with an assumption of a size dependent chemical composition
32	for which sulfate, nitrate, secondary organic aerosols and aged black carbon (BC)
33	are internally mixed with each other but externally mixed with primary organic
34	aerosol (POA) and fresh BC (EI-SR scheme). The resulting ratios of
35	predicted-to-measured N _{CCN} ($R_{CCN_p/m}$) were 0.90–0.98 under both clean and polluted
36	conditions. Assumption of an internal mixture and bulk chemical composition
37	(INT-BK scheme) shows good closure with $R_{CCN_p/m}$ of 1.01–1.16 under clean
38	conditions, implying that it is adequate for CCN prediction in continental clean
39	regions. On polluted days, assuming the aerosol is internally mixed and has a
40	chemical composition that is size dependent (INT-SR scheme) achieves better closure
41	than the INT-BK scheme due to the heterogeneity and variations in particle
42	composition at different sizes. The improved closure achieved using the EI-SR and
43	INT-SR assumptions highlight the importance of measuring size-resolved chemical
44	composition for CCN predictions in polluted regions. N_{CCN} is significantly
45	underestimated (with $R_{CCN_p/m}$ of 0.66–0.75) when using the schemes of external
46	mixtures with bulk (EXT-BK) or size-resolved composition (EXT-SR), implying that

47	primary particles experience rapid aging and physical mixing processes in urban
48	Beijing. However, our results show that the aerosol mixing state plays a minor role in
49	CCN prediction when the $\kappa_{\rm org}$ exceeds 0.1.

1 Introduction

51	Atmospheric aerosol particles can serve as cloud condensation nuclei (CCN) and,
52	in turn, affect the optical and microphysical properties of clouds (Twomey, 1977;
53	Albrecht, 1989; Charlson et al., 1992). Additionally, an increase in the aerosol number
54	concentration may suppress precipitation in shallow clouds and promote it in deep
55	convective clouds (Rosenfeld et al., 2008; Li et al., 2011). A key challenge to
56	understanding indirect aerosol effects is quantifying CCN spectra and their spatial and
57	temporal variations.
58	The ability of particles to act as CCN mainly depends on their size, chemical
59	composition, and mixing state (McFiggans et al., 2006; Dusek et al., 2006; Ma et al.,
60	2013). The impacts of the size distribution and chemical composition on CCN activity
61	has been discussed in previous studies (Dusek et al., 2006, Ervens et al., 2007;
62	Broekhuizen et al., 2006; Yum et al., 2005, 2007; Wiedensohler et al., 2009; Deng et
63	al., 2013; Zhang et al., 2014, 2016; Kawana et al., 2016). The effect of chemical
64	composition can be represented by a hygroscopicity parameter (κ) (Petters and
65	Kreidenweis, 2007) that is often used to predict N_{CCN} (Moore et al., 2012; Zhang et al.,
66	2014). However, particle composition may vary from single species to a mixture of
67	multiple species for a given size. A description of size-resolved chemical composition

68	thus leads to a better prediction of N_{CCN} because it allows variation of κ with size
69	(Medina et al., 2007; Wang et al., 2010; Meng et al., 2014). Variations in mixing state
70	also impact N_{CCN} prediction, with the effect dependent on the hygroscopicity of the
71	organic component (Wang et al., 2010). The assumption of internal mixtures has been
72	demonstrated to predict N _{CCN} well (Ervens et al., 2007; Chang et al., 2007; Andreae
73	and Rosenfeld, 2008; Gunthe et al., 2009; Rose et al., 2008; Meng et al., 2014; Zhang
74	et al., 2014; Li et al., 2017). However, some studies have shown that detailed
75	information about the chemical composition and the mixing state is required because
76	of the complexity of the hygroscopicity of organics (Broekhuizen et al., 2006; Bhattu
77	and Tripathi, 2015) and the differences in the CCN activity between fresh and aged
78	aerosols (Gunthe et al., 2011). Therefore, the impact of different assumptions
79	concerning the mixing state and chemical composition on accurately quantifying CCN
80	concentrations needs further investigation, especially in heavily polluted regions.
81	Beijing, a typical polluted city, frequently experiences severe haze pollution
82	episodes (Sun et al., 2013; Guo et al., 2014; Zheng et al., 2015), particularly in winter.
83	Several recent studies have focused on studying particle hygroscopicity (Wu et al.,
84	2016; Wang et al., 2017) and chemical composition (Gunthe et al., 2011), and using
85	bulk κ to predict CCN in Beijing (e.g., Liu et al., 2014; Zhang et al., 2017). However,
86	to our knowledge, a comprehensive CCN closure test considering chemical
87	composition and mixing state is lacking for this polluted urban area. In particular, the
88	transformation of the particle mixing state may be very quick during severe pollution
89	conditions (Wu et al., 2016). During pollution events, the hygroscopicity of organics

90	and the CCN activity are often enhanced rapidly with the aging process (Gunthe et al.,
91	2011; Kawana et al., 2016). Therefore, the characterization and parameterization of
92	CCN activation may be more challenging in polluted regions due to the impacts of
93	organics (Wang et al., 2010; Meng et al., 2014; Che et al., 2016; Zhang et al., 2016).
94	In this study, we use size-resolved measurements of CCN activity and
95	size-resolved chemical composition information to predict N_{CCN} using field
96	measurement data collected in Beijing during the winter of 2016. The CCN closure
97	study is carried out using five schemes with different assumptions of particle mixing
98	state and chemical composition. By classifying the data into three different periods
99	(nighttime, noontime, and the evening rush hour), we also investigate the variations in
100	aerosol mixing state from fresh to relatively aged aerosols. The sensitivity of
101	predicted N_{CCN} to the particle mixing state and organic volume fraction with the aging
102	of organic particles is also presented in the last section of the study.

103 2 Measurements and data

104Data used here were measured from 15 November to 14 December 2016

105 during the Air Pollution and Human Health (APHH) field campaign at the Institute of

106 Atmospheric Physics (IAP), Chinese Academy of Sciences (39.97°N, 116.37°E),

107 which is a typical urban site with influences from traffic and cooking emissions (Sun

108 et al., 2015). The sampling instruments were placed in a container at ground level.

109 The particle number size distribution (PNSD) was measured by a Scanning

110 Mobility Partic	cle Sizer (SMPS; Wang et al., 2003). The SMPS consists of a
111 differential mo	bility analyzer (DMA; model 3081, TSI Inc.) and a condensation
112 particle counte	er (CPC; model 3772, TSI Inc.). Measurements of size-resolved CCN
113 efficiency spec	etra were made by an integrated system combining the SMPS (Wang et
114 al., 2003) and	a Droplet Measurement Technologies CCN counter (DMT-CCNc;
115 Lance et al., 20	006). The procedure to couple the SMPS and the DMT-CCNc
116 developed by l	Moore et al. (2010) was followed. Atmospheric particles were sampled
117 from an inlet le	ocated 1.5 m above the roof of the container and were then passed
118 through a silica	a gel desiccant drying tube and into the SMPS. The relative humidity
119 of the sample f	flow was below 30%. The sample flow exiting the DMA was divided
120 into 0.5 lpm fc	or the CCNc and 0.5 lpm for the CPC. Before and after the field
121 campaign amn	nonium sulfate was used to calibrate the supersaturation (SS) levels of
the CCNc with	longitudinal temperature differences of 2, 3, 5, 8, 10, 13, and 15 K as
123 shown in Fig. (S1. Based on this calibration, the five effective SS levels were 0.12,
124 0.14, 0.23, 0.4	0, and 0.76%.
125 The PNS	D spanned the size range of 10–550 nm with a measurement scan time
	particle or condensation nuclei (CN) size distributions were calculated
	ble charge correction and transfer function used in the TSI-AIM
128 software. The	

129 concentration and is obtained by integrating the PNSD over the size range of 10–550

130 nm. The full measurement cycle of the CCNc for the five SS levels took one hour (20

131 min for 0.12% and 10 min for each higher SS). Size-resolved CCN efficiency data

132	were inverted with a multiple charge correction (Moore et al., 2010). The CCN
133	number size distribution was calculated by multiplying the CCN efficiency spectrum
134	by the particle number size distribution. The total CCN concentration was then
135	calculated by integrating the size-resolved N_{CCN} . The bulk activation ratio (AR) was
136	calculated as N_{CCN}/N_{CN} . The results were stratified between polluted and background
137	conditions with an assumed threshold PM1 mass concentration of 50 μ g m ⁻³ .
138	An Aerodyne High-Resolution Time-of-Flight Aerosol Mass Spectrometer
139	(HR-ToF-AMS; DeCarlo et al., 2006) was housed in a sampling room on the rooftop
140	of a two-story building to measure size-resolved non-refractory submicron aerosols,
141	including organics, sulfate, nitrate, ammonium, and chloride with a time resolution of
142	~5 min. More details about the HR-ToF-AMS and the measurement site have been
143	described in previous studies (Sun et al., 2010; Sun et al., 2016). The organics are
144	classified by using Positive Matrix Factorization (PMF) (Paatero and Tapper, 1994),
145	considering as being composed of two components: POA representing
146	non-hygroscopic particles ($\kappa = 0$) and SOA representing hygroscopic particles. The
147	first factor is hydrocarbon-like organic aerosol (HOA) which is considered a surrogate
148	of primary OA (POA) from urban combustion sources. The size distribution of HOA
149	was calculated from the estimated size-distribution of the $C_4H_9^+$ fragment which is
150	generally dominated by HOA (Aiken et al., 2009; Zhang et al., 2005). The size
151	distribution of the SOA is estimated as the difference between those of total OA and
152	HOA.

153	The black carbon (BC) mass concentration was measured using a
154	seven-wavelength aethalometer (AE33, Magee Scientific Corp.). Zhao et al. (2017)
155	provides details about this instrument and the measurements it makes. Due to an
156	absence of size-resolved BC measurements, the BC size distribution was calculated
157	from the combination of an approximately lognormal distribution measured by a
158	single particle soot photometer (SP2, DMT) (Wu et al., 2017) and the total BC mass
159	concentration. Note that because the SP2 measures BC core diameter instead of the
160	diameter of the BC-containing particle, it would overestimate the BC mass
161	concentration of smaller particles but underestimate that of the larger ones. The
162	uncertainty of this effect is evaluated in Section 4.3.

163 **3 Theory**

164 **3.1 Calculation of CCN concentration using** *κ***-K öhler theory**

In this study, we used the critical or cutoff particle diameter (D_{cut}) and particle number size distribution to calculate N_{CCN} . The method to derive D_{cut} is based on κ -K öhler theory (Petters and Kreidenweis, 2007), with the water vapor saturation ratio over the aqueous solution droplet *S* given by:

169
$$S = \frac{D^3 - D_p^3}{D^3 - D_p^3 (1 - \kappa)} \exp(\frac{4\sigma_w M_w}{RT\rho_w D}), \qquad (1)$$

170 where *D* is the droplet diameter, D_p is the dry diameter of the particle, M_w is the 171 molecular weight of water, σ_w is the surface tension of pure water, ρ_w is the density of 172 water, *R* is the gas constant, and *T* is the absolute temperature. When $\kappa > 0.1$ it can be 173 approximately expressed as:

174
$$\kappa = \frac{4A^3}{27D_p^{-3}\ln^2 S_c},$$
(2)

$$175 \qquad A = \frac{4\sigma_w M_w}{RT\rho_w},\tag{3}$$

where S_c is the particle critical supersaturation. The other variables in the equations are: T = 298.15 K, R = 8.315 J K⁻¹ mol⁻¹, $\rho_w = 997.1$ kg m⁻³, $M_w = 0.018015$ kg mol⁻¹, and $\sigma_w = 0.072$ J m⁻² (Rose et al., 2008).

179 For internally-mixed particles, κ is calculated as follows (Petters and

180 Kreidenweis, 2007; Gunthe et al., 2009):

181
$$\kappa_{chem} = \sum_{i} \varepsilon_{i} \kappa_{i},$$
(4)

182
$$\kappa_{org} = f_{POA} \cdot \kappa_{POA} + f_{SOA} \cdot \kappa_{SOA} , \qquad (5)$$

183 where κ_i and ε_i are the hygroscopicity parameter and volume fraction for the 184 individual components in the mixture, and f_{POA} and f_{SOA} are the primary organic 185 aerosol (POA) and secondary organic aerosol (SOA) mass fractions in the mixture. 186 The Aerosol Mass Spectrometer (AMS) mainly measured the particle mass size 187 distributions of SO₄²⁻, NO₃⁻, NH₄⁺ and organic compounds, while the 188 Zdanovskii-Stokes-Robinson relation requires the volume fractions of the particle 189 chemical composition (Stokes and Robinson, 1966; Zdanovskii, 1948). A simplified

190	ion pairing scheme is used to calculate the mass concentrations of the inorganic salts,
191	which includes only NH_4NO_3 and $(NH_4)_2SO_4$ as possible salts (Gysel et al., 2007). In
192	this study, we considered five components: NH_4NO_3 , $(NH_4)_2SO_4$, SOA, POA, and BC.
193	The $\kappa_{(NH4NO3)}$ is equal to 0.67 and $\kappa_{((NH4)2SO4)}$ is equal to 0.61 (Petters and Kreidenweis,
194	2007; Gunthe et al., 2009). The $\kappa_{\rm org}$ is estimated using the linear function derived by
195	Mei et al. (2013a), namely, $\kappa_{\text{org}} = 2.10f_{44} - 0.11$, where f_{44} is dependent upon organics
196	oxidation level. The mean $\kappa_{\rm org}$ is 0.10 in our case. The organics are classified by using
197	Positive Matrix Factorization (PMF; Paatero and Tapper, 1994) , and considered to be
198	composed of two components: POA representing non-hygroscopic particles ($\kappa = 0$)
199	and SOA representing hygroscopic species. In our study, the average contributions of
200	POA and SOA to total organics were 0.53 and 0.47, respectively. On the basis of
201	equation (5), $\kappa_{(SOA)}$ is assumed to be 0.2. Also, $\kappa_{(BC)}$ is assumed to be 0.

ion pairing scheme is used to calculate the mass concentrations of the inorganic salts

100

202 **3.2 Assumptions about mixing state and chemical composition**

203 To examine the influence of the mixing state and chemical composition on CCN activation, five assumptions (Fig. 1) are used to predict N_{CCN}. Although the 204 assumption of completely internal or external mixing for ambient aerosols represents 205 206 two extremely simplified schemes and may be atmospherically unrealistic, it allows us to understand the importance of the particle mixing state for predicting N_{CCN}. In 207 addition, size independent and dependent compositions are derived from the mass 208 concentrations of different species measured by the AMS so that the impact of 209 chemical composition on CCN activity can be examined. A detailed introduction of 210

211 the five assumption schemes follows.

212 Assumption 1: internal mixture with bulk chemical composition (INT-BK)

In this scheme, submicron particles are assumed to be internally mixed with bulk 213 chemical composition, where the mass fraction of each component (e.g. NH₄NO₃, 214 215 (NH₄)₂SO₄, SOA, POA, and BC) is uniform throughout the full size range as shown in Fig. 1a. The overall κ is calculated from the bulk chemical composition measured 216 by the AMS based on the simple mixing rule (Equation 4) to obtain the critical 217 218 diameter at a given SS. For calculating N_{CCN} all (and only) particles with diameters 219 greater than D_{cut} are considered CCN-active. The total N_{CCN} is then calculated from the step-wise integration of the PNSD for $D_p > D_{cut}$. The equations used in the 220 calculations are as follows, 221

222
$$CCN_{pre} = \int_{D_{cut}}^{D_{end}} n(\log D_p) d\log D_p$$
(6)

$$D_{cut} = \sqrt[3]{\frac{4A^3}{27\sum_i \varepsilon_i \kappa_i \ln^2 S_c}}$$
(7)

where D_{cut} is the critical diameter, D_{end} is the upper size limit of the PNSD, $n (\log D_p)$ is the function of the aerosol number size distribution, *i* is the chemical component element, and the other parameters are the same as those presented in Equations (2), (3) and (4).

228 Assumption 2: internal mixture with size-resolved chemical composition

229 (INT-SR)

For this scheme submicron particles are assumed to be internally mixed and the
chemical composition is size-dependent as shown in Fig. 1d. The fractional
contributions of the components at each size bin are derived from mass size
distributions of the five species considered, i.e., NH₄NO₃, (NH₄)₂SO₄, SOA, POA, and
BC.

For this assumption, the critical diameter is derived from the total hygroscopic parameter, κ , at each size bin, *j*. For each size bin for which $D_{p,j}$ is > than the calculated $D_{cut,j}$ the activated fraction was assumed to be 1.0 and for all others it was 0.0. The N_{CCN} is calculated as follows:

$$CCN_{pre} = \int_{D_{begin}}^{D_{end}} n(\log D_p) d\log D_p$$
(8)

239

240
$$D_{cut,j} = \sqrt[3]{\frac{4A^3}{27\sum_i \varepsilon_{ij} \kappa_{ij} \ln^2 S_c}}$$
(9)

where D_{begin} and D_{end} are the first and last diameters of the PNSD, n (log D_p) is the function of the aerosol number size distribution, *i* is the chemical component element, *j* is the PNSD size bin, and the other parameters are the same as those presented in Equations (2), (3) and (4).

245 Assumption 3: external mixture with bulk chemical composition (EXT-BK)

For this scheme the submicron aerosol is treated as an external mixture. This means that there are five types of particles, i.e., NH_4NO_3 , $(NH_4)_2SO_4$, SOA, POA, and BC, and each particle consists of a single component. The volume fraction of each component, which is derived from bulk mass concentrations, does not vary with size (as shown in Fig. 1b).

At a given S, the critical diameter of each particle type is retrieved from the κ of each component. The N_{CCN} of each aerosol type is calculated as the CCN-active particle number concentration multiplied by the bulk volume fraction of the components as expressed in Equation (10). The N_{CCN} of the five particle types are finally summed to obtain the total N_{CCN}. The specific equations are as follows,

256
$$CCN_{pre} = \sum_{i} (\int_{D_{icut}}^{D_{end}} n(\log D_p) d \log D_p * V_i)$$
 (10)

$$D_{cut,i} = \sqrt[3]{\frac{4A^3}{27\kappa_i \ln^2 S_c}}$$
(11)

where $D_{cut,i}$ is calculated for each component, *i*, at a given SS, V_i is the volume fraction of each aerosol type, n (log D_p) is the function of the aerosol number size distribution, *i* is the chemical component element, and the other parameters are the same as those presented in Equations (2), (3) and (4).

262 Assumption 4: external mixture with size-resolved chemical composition

263 (EXT-SR)

As with the EXT-BK scheme the same five particle types are considered and 264 their relative concentrations selected to match the measured composition. But unlike 265 with the EXT-BK scheme the relative concentrations of the five particle types vary 266 with particle size to capture the size-dependence of the measured composition, as is 267 268 depicted in Fig. 1e. The volume fraction of each particle type at each size is first multiplied by the total particle number size distribution (PNSD) to get the $PNSD_i$ of 269 each aerosol type. The N_{CCN} of each particle type is then obtained from the step-wise 270 integration of the PNSD_{*i*} for $D_p > D_{cut,i}$, and then summed to get the total N_{CCN} as 271 described by Equation (12). Similar to EXT-BK, the critical diameter of each particle 272 type is also derived from the κ of each pure component at a given S. 273

274
$$CCN_{pre} = \sum_{i} \left(\int_{D_{begin}}^{D_{end}} (n(\log D_p) * V_{ij}) d \log D_p \right)$$
(12)

275
$$D_{cut,i} = \sqrt[3]{\frac{4A^3}{27\kappa_i \ln^2 S_c}}$$
 (13)

where V_i is the volume fraction of each particle type in a size bin, n (log D_p) is the function of the aerosol number size distribution, *i* is the chemical component element, *j* is the particle size bin, and the other parameters are the same as those presented in Equations (2), (3) and (4).

Assumption 5: sulfate, nitrate, SOA and aged BC internally mixed, and POA and
 fresh BC externally mixed, and all components with size-resolved chemical
 composition (EI-SR)

283	At each particle size sulfate, nitrate, and SOA with BC-aged are treated as
284	internally mixed, but POA and BC-fresh are present in separate particles and are
285	non-hygroscopic. As with INT-SR and EXT-SR the chemical composition is
286	size-dependent, as shown in Fig. 1c. The EI-SR scheme likely represents a case that is
287	most similar to that of actual atmospheric aerosols in locations such as Beijing. The
288	fresh and aged BC size distributions are determined from the total BC size
289	distribution measured by the SP2 (Wu et al., 2017) and from the dependence of the
290	fraction of internally mixed soot (F_{in}) on particle diameter (D_p) observed in urban
291	Beijing by Cheng et al. (2012).
292	In this assumption the fresh BC and POA particles can serve as CCN only if their
293	diameter is larger than 200 nm; otherwise they are CCN-inactive. Thus, the total N_{CCN}
294	of those externally mixed components (N_{CCN} _EXT) is calculated from the step-wise
295	integration of the product of the PNSD and the volume fraction of the fresh BC and
296	POA in each size bin larger than 200 nm.
297	The N_{CCN} of the remaining components (sulfate, nitrate, and SOA with BC-aged)
298	that are treated as an internal mixture, denoted as N_{CCN} _INT, is predicted in the same
299	way as for the INT-SR scheme, with the only difference being that the PNSD is first
300	multiplied by the volume fraction of the mixed component particles for each size bin.
301	The total N_{CCN} is thus calculated as the sum of $N_{\text{CCN}}\text{EXT}$ and $N_{\text{CCN}}\text{INT}.$ The
302	specific equations are as follows,

303
$$CCN_{pre} = \int_{D_{begin}}^{D_{200}} (n(\log D_p) * r_j) d\log D_p + \int_{D_{200}}^{D_{end}} n(\log D_p) d\log D_p$$
 (14)

$$D_{cut,j} = \sqrt[3]{\frac{4A^3}{27\sum_i \varepsilon_{ij}\kappa_{ij}\ln^2 S_c}}$$
(15)

where D_{begin} and D_{end} are the first and last diameters of the PNSD, n (log D_p) is the function of the aerosol number size distribution, *r* is the volume fraction of the internal (hygroscopic) mixture at each size, *i* is the chemical component element, *j* is the particle size bin, and the other parameters are the same as those presented in Equations (2), (3) and (4).

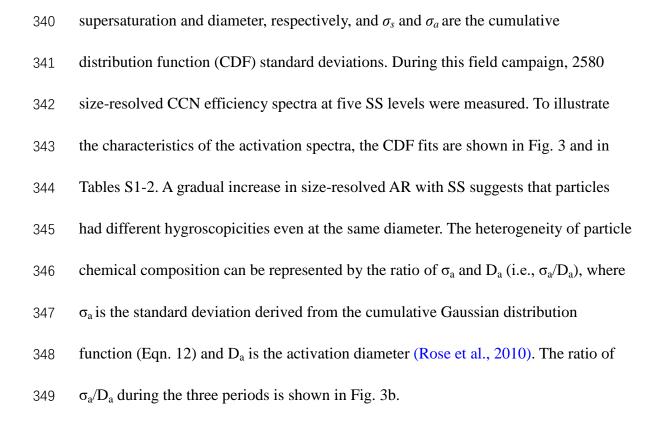
310 4 Results and discussion

311 **4.1 Diurnal variations in aerosol properties**

312	Diurnal variations in mean PNSD and bulk chemical composition under
313	polluted and background conditions are shown in Fig. 2. Significant diurnal variations
314	in PNSD are observed during the campaign. For both polluted and background cases
315	the abrupt increases in concentration of small particles ($D_p < 100 \text{ nm}$) from 1700–
316	2000 local time (LT) are likely related to fresh primary emissions from cooking and
317	traffic sources (Wang et al., 2017; Zhao et al., 2017), which is also evident in the
318	significant increase in mass concentration of non-hygroscopic POA (Fig. 2d and 2e).
319	The peak amplitude in the PNSD that occurs from about 0800 to1200 LT is probably
320	associated with secondary formation processes, which is indicated by an apparent
321	increase of nitrate, SOA and f_{44} (oxidation level of organics) in the morning (0800 LT)

322	when photochemistry becomes significant. The effect is more apparent on clean days.
323	In addition, the PNSD amplitude and BC and POA concentrations are high at
324	nighttime, suggesting an influence from the diurnal variation of the planetary
325	boundary layer (PBL) height. In particular, on polluted days the PBL plays a key role
326	in regulating the diurnal variation of primary components like POA and BC (e.g.,
327	Dzepina et al., 2009; Cross et al., 2009). While on clean days secondary formation
328	and primary sources play dominant roles in regulating diurnal variations. The PNSD
329	in clean cases has peaks at smaller D_p (~30–40 nm, Fig. 1c) compared to polluted
330	cases (~100 nm), which is associated with particle growth accompanying atmospheric
331	chemistry processes during haze evolution (Guo et al., 2014; Wang et al., 2016).

332 4.2 Cumulative Gaussian distribution function fit and parameters derived from


333 the CCN efficiency

The activation fractions measured at the five supersaturation levels were fitted using the following two functions (Rose et al., 2008; Mei et al., 2013b):

336
$$R_a(S) = \frac{E}{2} \cdot (1 + erf(\frac{\ln S - \ln S^*}{\sqrt{2\sigma_s^2}})),$$
 (16)

337
$$f_{N_{CCN}/N_{CN}} = a(1 + erf(\frac{D - D_a}{\sigma_a \sqrt{2}})),$$
 (17)

338 where Ra(S) and $f(_{NCCN/NCN})$ are the CCN activation fractions, the maximum activation 339 fraction (MAF) is equal to *E* or 2*a*, *S** and *D_a* are the midpoint activation

4.2.1 CCN activation curves and heterogeneity of chemical components

For larger particles with $D_p > 100$ nm, no significant differences were observed 351 in the CCN efficiency spectra (Fig. 3a), suggesting a similar hygroscopicity during the 352 three periods. For particles with $D_p < 100$ nm, the CCN efficiency spectrum observed 353 during the evening rush hour period showed a much more gradual increase (with 354 355 smaller slopes) in size-resolved AR than that derived for the other two periods. This is attributed to the strong influence of POA emissions, which consist of less hygroscopic 356 and externally-mixed smaller particles mainly from cooking and traffic during the 357 evening rush hour period (also indicated by the increased σ_a/D_a). Particles with $D_p <$ 358 359 100 nm emitted during the evening rush hour period require a higher SS to reach the 360 same AR. However, for $D_p > 100$ nm the slope of AR with respect to SS was steep

and near the instrumental limit obtained for a pure ammonium sulfate aerosol. Che et al. (2016) have reported that particles larger than about 150 nm have relatively uniform composition. This suggests that particles become more internally mixed with growth from the Aitken mode to the accumulation mode. This feature is also suggested by the decreasing σ_a/D_a with increasing particle diameter.

366 **4.2.2 Mean critical activation diameter**

367 The critical activation diameter at different SS levels under background and polluted conditions is shown in Fig. 4. The difference in critical diameter between 368 polluted and background cases are calculated as D_p_POL - D_p_BG. At lower SS levels, 369 the critical diameters for polluted cases were slightly smaller than those observed on 370 clean days, suggesting larger particles are more CCN-active on polluted days. This is 371 expected based on HTDMA measurements that showed that particles in the 372 373 accumulation mode on polluted days are more hygroscopic than those on clean days in urban Beijing (Wang et al., 2017). At higher SS the critical diameter on polluted 374 days was a little higher than that obtained under clean conditions, suggesting that 375 particles with D_p of ~40 nm are less CCN active. This is likely because a high 376 concentration of small and hygroscopic particles in the Aitken mode arise from the 377 photochemistry-driven nucleation process on clean days. However, in polluted cases, 378 small particles are mostly composed of hydrophobic POA from cooking and traffic 379 380 sources. This was also observed by Wang et al., (2017) who showed that 40 nm particles are less hygroscopic on polluted days. However, the differences in critical 381

diameter between polluted and background cases are small, reflecting a relativelyminor influence of hygroscopicity on CCN activity.

4.2.3 MAF

385	As shown in Fig. 5, the maximum activated fractions on clean and polluted days					
386	during the campaign are less than 1, which suggests that most sampled aerosols were					
387	externally mixed (Gunthe et al., 2011). For example, the MAF for particles with D_p of					
388	~180 nm was around 0.78 at SS = 0.12% under background conditions, indicating that					
389	~22% of the particles are non-hygroscopic. The higher MAFs under polluted					
390	conditions suggest a more internally mixed aerosol (Wu et al., 2016; Wang et al.,					
391	2017). The MAF during the 1200–1400 LT period was highest, which is likely due to					
392	strong photochemical aging processes that lead to more internal mixing of the aerosol.					
393	4.3 CCN closure study and the sensitivity of predicted N_{CCN} to assumed aerosol					
393 394	4.3 CCN closure study and the sensitivity of predicted N_{CCN} to assumed aerosol mixing state and chemical composition					
394	mixing state and chemical composition					
394 395	mixing state and chemical composition Fig. 6 shows the comparisons between predicted and measured N_{CCN} at different					
394 395 396	mixing state and chemical composition Fig. 6 shows the comparisons between predicted and measured N_{CCN} at different SS levels under background and polluted conditions. The ratios of					
394 395 396 397	mixing state and chemical composition Fig. 6 shows the comparisons between predicted and measured N _{CCN} at different SS levels under background and polluted conditions. The ratios of predicted-to-measured N _{CCN} ($R_{CCN_p/m}$) ranged from 0.66 to 1.16, suggesting					
394 395 396 397 398	mixing state and chemical composition Fig. 6 shows the comparisons between predicted and measured N_{CCN} at different SS levels under background and polluted conditions. The ratios of predicted-to-measured N_{CCN} ($R_{CCN_p/m}$) ranged from 0.66 to 1.16, suggesting significant influences of the different assumptions on CCN prediction. The EI-SR					

402	the other species (sulfate, nitrate, SOA and aged BC) are assumed to be internal
403	mixtures. The assumption is physically sound, and the result just implies that the
404	EI-SR represents well the actual mixing state and compositions of the particles. The
405	slight underestimation may due to an overestimation of fresh BC caused by the
406	method (see Section 3.1) that we used to retrieve it. Also, a slight larger
407	underestimation of N_{CCN} for BG case in EI-SR scheme showed in Figure 6 may
408	suggest that aerosols during clean periods is mostly aged and internal-mixed.
409	The INT-SR and INT-BK schemes that assume the aerosol is internally mixed also
410	predict N_{CCN} reasonably well at lower SS. The prediction is better on background
411	days, reflecting the more homogenous aerosol composition in clean conditions. With
412	increasing SS this overestimation became more pronounced, which is likely due to
413	limitations of the AMS measurements. The AMS distributions show that the mass
414	concentration was most impacted by particles with diameters near ~100-400 nm.
415	Because particles in that size range tended to be more hygroscopic than those with
416	diameters < 100 nm, this leads to an overestimation of κ (underestimation of the
417	critical diameter) and a resulting overestimation of N_{CCN} at high SS. With decreasing
418	SS the critical diameter increased and the deviation using the INT-BK and INT-SR
419	schemes decreased. Detailed explanations about this effect have been given by Wang
420	et al. (2010) and Zhang et al. (2017). Overall, the INT-BK and INT-SR schemes
421	achieve CCN closure within what is deemed here an acceptable overprediction of
422	0-16%. The EXT-BK and EXT-SR schemes underestimated N _{CCN} , with $R_{CCN_p/m}$ of
423	0.66-0.75.

424	Overall, the internal-mixing schemes achieve much better closure than do those						
425	assuming external mixtures. Our results suggest that freshly-emitted particles in						
426	urban Beijing may experience a quick conversion and mixing with pre-existing						
427	secondary particles, e.g. converting from externally mixed to internally mixed (or						
428	from hydrophobic to hydrophilic, along with a decrease in the volume of POA and BC)						
429	as reported previously (Riemer et al., 2004; Aggarwal and Kawamura, 2009; Jimenez						
430	et al., 2009; Wu et al., 2016; Peng et al., 2016). In summary, under background						
431	conditions, the INT-BK scheme achieved the best CCN closure, implying that the						
432	INT-BK assumption is likely sufficient to predict CCN in clean continental regions.						
433	However, in polluted regions, the EI-SR and INT-SR schemes may achieve better						
434	closure.						

As mentioned in Section 2.2, because the SP2 measures BC core diameter and 435 436 not the diameter of the BC-containing particle, the method would overestimate the BC mass concentration of smaller particles but underestimate that of the larger ones. This 437 effect adds uncertainty to the CCN prediction when using the EXT-SR scheme and is 438 evaluated here (Fig. 7). For the evaluation, we predict N_{CCN} with the retrieved fresh 439 BC size distribution only in the EXT-SR scheme, which represents an upper limit of 440 the overestimation of the fresh BC size distribution due to the SP2 measurement. 441 442 Therefore, the result represents the largest underestimation of N_{CCN} caused by the BC-containing particle effect. Our result shows that the underestimation of N_{CCN} is 443 reduced from 28% to 25% by changing the total BC size distribution to that of just the 444 fresh BC. That means that the overestimation of fresh BC due to the BC-containing 445

446 particle effect in the SP2 measurements would lead to a maximum underestimation of 447 3% of N_{CCN} . The minimal uncertainty contributed by uncertainty in the BC size 448 distribution could be explained by the small fractional contribution of BC to the total 449 particle concentration. In conclusion, such an effect is quite small or negligible 450 compared to the overall large underestimation of N_{CCN} with the EXT-SR assumption.

451 **4.4 Performance of the five schemes at different times of the day**

452	To investigate the performance of the five schemes at different times of the day,
453	the diurnal variations in the $R_{CCN_p/m}$ (SS = 0.23%) derived by the schemes are shown
454	in Fig. 8. In general, the INT-BK, INT-SR, and EI-SR schemes can predict $N_{\rm CCN}$
455	well during all periods of the day under polluted or background conditions. $R_{CCN_p/m}$
456	values are within the acceptable $\pm 20\%$ uncertainty range (Wang et al., 2010; Zhang
457	et al., 2017). Compared with other periods, the predicted N_{CCN} during the morning
458	and evening rush hour periods showed the most sensitivity to the different assumption
459	schemes, especially on clean days (Fig. 8b). For example, the $R_{CCN_p/m}$ derived using
460	the INT-SR schemes reaches values up to >1.2, and the $R_{CCN_p/m}$ obtained using the
461	EXT-BK scheme decreased to a minimum value of ~0.5. The INT-SR, INT-BK and
462	EI-SR assumptions overestimate N_{CCN} for the evening rush hour period by up to
463	~20%. This may be because most freshly emitted POA and BC particles during
464	evening traffic hours are hydrophobic and do not contribute to the N_{CCN} . In addition,
465	for EIS assumption, a portion of BC is assumed aged and internal-mixed with sulfate,
466	nitrate and SOA, as may reduce the actual fraction of fresh BC during rush hour

467 period and thereby lead to an overestimation of N_{CCN} .

468	Use of the EXT-BK or EXT-SR assumption for the polluted case resulted in a
469	predicted N_{CCN} that was underestimated by ~30-40% at night (0000–0600 LT).
470	Expectedly, the prediction using the two schemes improved during the daytime and
471	evening rush hours, e.g., the $R_{CCN_p/m}$ changed from about 0.6 to 0.8. This is likely
472	associated with heavy urban traffic emissions/residential cooking sources during the
473	daytime that lead to more externally-mixed particles under polluted conditions; while,
474	at night, the particles are less influenced by those local primary sources (Zhao. et al.,
475	2017). Wang et al. (2017) showed that the probability density function of κ during
476	rush hour has a bimodal distribution and a hydrophobic mode from locally-emitted
477	particles. This also leads to reasonably accurate estimates of N_{CCN} during nighttime
478	with larger error during the daytime when using the internal mixing assumptions
479	(INT-BK, INT-SR and EI-SR) for polluted cases (Fig. 8).
400	4.5 Impact of mixing state and organic volume fraction on predicted N_{CCN} and
480	4.5 Impact of mixing state and organic volume fraction on predicted N _{CCN} and
481	their variation with aerosol aging

To further examine the sensitivity of predicted N_{CCN} to the particle mixing state and organic volume fraction with the aging of organic particles, the relative deviation between N_{CCN} predicted assuming internal and external mixtures as a function of κ_{org} was calculated, with the results shown in Fig. 9. The schemes that assume internal and external mixtures use bulk composition of organics, sulfate, and nitrate, which simplifies the analysis and interpretation of the results. For the data collected

488	throughout the field campaign, the organic volume fraction is categorized as $<50\%$,
489	50-60%, and $>70\%$. The deviation between the concentrations predicted assuming
490	internal and external mixtures is calculated as [(N _{CCN.} INT-BK - N _{CCN.} EXT-BK)
491	$(N_{CCN}EXT-BK)^{-1}]$. The result shows that the relative deviation increased as the
492	organic volume fraction increased. For organic volume fractions less than 50% the
493	maximum difference can only reach up to 20% (SS=0.76%). This is consistent with
494	previous studies that reported differences less than 20% when $x_{org} < 30\%$
495	(Sotiropoulou et al., 2006; Wang et al., 2010). The maximum deviation approaches to
496	100% for x_{org} of >60% at SS = 0.76%. Overall, the deviation is largest when the
497	organics are less or non-hygroscopic, i.e., when $\kappa_{\rm org} < 0.05$. The deviation decreased
498	rapidly as $\kappa_{\rm org}$ increased to 0.05 in all cases. For $\kappa_{\rm org}$ of 0.1 the differences were less
499	than 20%, even with high organic fractions. Moreover, differences were 10% or less
500	for $\kappa_{\rm org}$ of 0.15, suggesting that the mixing state plays a minor role when $\kappa_{\rm org}$ exceeds
501	0.1.

502 5 Conclusions

503 In this study, we have investigated the importance of aerosol chemical

504 composition and mixing state on CCN activity based on measurements made during a

505 field campaign carried out in Beijing in the winter of 2016. The N_{CCN} was predicted

by applying κ -K öhler theory and using five schemes that assume different mixing

507 state and chemical composition combinations.

508 We show that there is a significant impact of the different assumptions on CCN

509	prediction, with $R_{CCN_p/m}$ ranging from 0.66 to 1.16. The best estimates of N _{CCN} under
510	both background and polluted conditions were obtained when using the EI-SR scheme,
511	with a resulting $R_{CCN_p/m}$ of 0.90–0.98. Under background conditions, the INT-BK
512	scheme also provided reasonable estimates, with $R_{CCN_p/m}$ ranging from 1.00–1.16.
513	This suggests that the INT-BK assumption is likely sufficient to predict CCN in clean
514	continental regions. On polluted days, the EI-SR and INT-SR schemes are believed to
515	achieve better closure than the INT-BK scheme due to the heterogeneity in particle
516	composition across different sizes. The improved closure obtained using the EI-SR
517	and INT-SR assumptions highlights the importance of knowing the size-resolved
518	chemical composition for CCN prediction in polluted regions. The EXT-SR and
519	EXT-BK schemes markedly underestimate N_{CCN} on both polluted and clean days,
520	with an $R_{CCN_p/m}$ of 0.66–0.75. The diurnal variations in $R_{CCN_p/m}$ show that the
521	predicted N_{CCN} during the evening rush hour period is most sensitive to the mixing
522	state assumptions. The $R_{CCN_p/m}$ ranged from ~0.5 to ~1.2, reflecting the impact from
523	evening traffic and cooking sources (both with large amounts of hydrophobic POA).
524	But we also find that the particle mixing state plays a minor role when $\kappa_{\rm org}$ exceeds
525	0.1, even with a high organic fraction.
526	Acknowledgements. This work was funded by the NSFC research project (41675141

and 91544217), the fundamental Research Funds for the Central Universities, the 527

- National Basic Research Program of China '973' (2013CB955800), the NSCF-TAMU 528
- Collaborative Research Grant Program (4141101031), and the Natural Science 529
- Foundation (NSF) (AGS1534670). We thank all participants of the field campaign for 530

531 their tireless work and cooperation.

533 **References**

- 534 Aggarwal, S. G., and Kawamura, K.: Carbonaceous and inorganic composition in long-range
- 535 transported aerosols over northern Japan: Implication for aging of water-soluble organic
- fraction, Atmos. Environ., 43, 2532–2540, doi:10.1016/j.atmosenv.2009.02.032, 2009.
- Albrecht, B. A.: Aerosols, cloud microphysics, and fractional cloudiness, Science, 245, 1227–1230,
 1989.
- Andreae, M. O., and Rosenfeld, D.: Aerosol–cloud–precipitation interactions. Part 1. The nature
 and sources of cloud-active aerosols, Earth-Science Reviews, 89, 13–41,
- 541 doi:10.1016/j.earscirev.2008.03.001, 2008.
- 542 Aiken, A. C., Salcedo, D., Cubison, M. J., Huffman, J. A., DeCarlo, P. F., Ulbrich, I. M.,
- 543 Docherty, K. S., Sueper, D., Kimmel, J. R., Worsnop, D. R., Trimborn, A., Northway, M.,
- 544 Stone, E. A., Schauer, J. J., Volkamer, R. M., Fortner, E., de Foy, B., Wang, J., Laskin, A.,
- 545 Shutthanandan, V., Zheng, J., Zhang, R., Gaffney, J., Marley, N. A., Paredes-Miranda, G.,
- 546 Arnott, W. P., Molina, L. T., Sosa, G., and Jimenez, J. L.: Mexico City aerosol analysis during
- 547 MILAGRO using high resolution aerosol mass spectrometry at the urban supersite (T0) -
- Part 1: Fine particle composition and organic source apportionment, Atmos. Chem. Phys., 9,
 6633–6653, doi:10.5194/acp-9-6633-2009, 2009.
- Bhattu, D., and Tripathi, S. N.: CCN closure study: Effects of aerosol chemical composition and
 mixing state, J. Geophys. Res. Atmos., 120, 766–783, doi:10.1002/2014jd021978, 2015.
- 552 Broekhuizen, K., Chang, R. Y. W., Leaitch, W. R., Li, S. M., and Abbatt, J. P. D.: Closure between
- 553 measured and modeled cloud condensation nuclei (CCN) using size-resolved aerosol
- compositions in downtown Toronto, Atmos. Chem. Phys., 6, 2513–2524,
- 555 10.5194/acp-6-2513-2006, 2006.
- Chang, R. Y. W., Liu, P. S. K., Leaitch, W. R., and Abbatt, J. P. D.: Comparison between measured
 and predicted CCN concentrations at Egbert, Ontario: Focus on the organic aerosol fraction at a
 semirural site, Atmos. Environ., 41, 8172–8182, 2007.
- 559 Charlson, R. J., Schwartz, S. E., Hales, J. M., Cess, R. D., Coakley, J. A., Jr., Hansen, J. E., and
- Hofmann, D. J.: Climate forcing by anthropogenic aerosols, Science, 255, 423+, 1992.
- 561 Che, H. C., Zhang, X. Y., Wang, Y. Q., Zhang, L., Shen, X. J., Zhang, Y. M., Ma, Q. L., Sun, J. Y.,
- 562 Zhang, Y. W., and Wang, T. T.: Characterization and parameterization of aerosol cloud
- 563 condensation nuclei activation under different pollution conditions, Sci. Rep, 6,
- doi:10.1038/srep24497, 2016.

- 565 Cross, E. S., Onasch, T. B., Canagaratna, M., Jayne, J. T., Kimmel, J., Yu, X. Y., Alexander, M. L.,
 566 Worsnop, D. R., and Davidovits, P.: Single particle characterization using a light scattering
 567 module coupled to a time of flight aerosol mass spectrometer, Atmos. Chem. Phys., 9, 7769–
- 568 7793, doi:10.5194/acp-9-7769-2009, 2009.
- 569 Cheng, Y. F., Su, H., Rose, D., Gunthe, S. S., Berghof, M., Wehner, B., Achtert, P., Nowak, A.,
- 570 Takegawa, N., Kondo, Y., Shiraiwa, M., Gong, Y. G., Shao, M., Hu, M., Zhu, T., Zhang, Y. H.,
- 571 Carmichael, G. R., Wiedensohler, A., Andreae, M. O., and Pöschl, U.: Size-resolved
- 572 measurement of the mixing state of soot in the megacity Beijing, China: diurnal cycle, aging
- and parameterization, Atmospheric Chemistry and Physics, 12, 4477-4491,
- 574 10.5194/acp-12-4477-2012, 2012.
- 575 Dall'Osto, M., Harrison, R. M., Coe, H., Williams, P. I., and Allan, J. D.: Real time chemical
- characterization of local and regional nitrate aerosols, Atmos. Chem. Phys., 9, 3709–3720,
 10.5194/acp-9-3709-2009, 2009.
- 578 DeCarlo, P. F., Kimmel, J. R., Trimborn, A., et al.: Field-deployable, high-resolution,
- time-of-flight aerosol mass spectrometer, Anal. Chem., 78, 8281–8289, 2006.
- Deng, Z. Z., Zhao, C. S., Ma, N., Ran, L., Zhou, G. Q., Lu, D. R., and Zhou, X. J.: An examination
 of parameterizations for the CCN number concentration based on in situ measurements of
 aerosol activation properties in the North China Plain, Atmos. Chem. Phys., 13, 6227–6237,
 10.5194/acp-13-6227-2013, 2013.
- Dusek, U., Frank, G. P., Hildebrandt, L., et al.: Size matters more than chemistry for cloud
 nucleating ability of aerosol particles, Science, 312, 1375–1378, 2006.
- 586 Dzepina, K., Volkamer, R. M., Madronich, S., Tulet, P., Ulbrich, I. M., Zhang, Q., Cappa, C. D.,
- Ziemann, P. J., and Jimenez, J. L.: Evaluation of recently proposed secondary organic aerosol
 models for a case study in Mexico City, Atmos. Chem. Phys., 9, 5681–5709,
- 589 doi:10.5194/acp-9-5681-2009, 2009.
- 590 Ervens, B., Cubison, M., Andrews, E., et al.: Prediction of cloud condensation nucleus number
- 591 concentration using measurements of aerosol size distributions and composition and light
- scattering enhancement due to humidity, J. Geophys. Res. Atmos., 112, D10S32,
- 593 doi:10.1029/2006JD007426, 2007.
- 594 Gunthe, S. S., King, S. M., Rose, D., Chen, Q., Roldin, P., Farmer, D. K., Jimenez, J. L., Artaxo, P.,
- 595 Andreae, M. O., Martin, S. T., and Pöschl, U.: Cloud condensation nuclei in pristine tropical
- rainforest air of Amazonia: size resolved measurements and modeling of atmospheric aerosol
- 597 composition and CCN activity, Atmos. Chem. Phys., 9, 7551–7575,
- 598 doi:10.5194/acp-9-7551-2009, 2009.

- Gunthe, S. S., Rose, D., Su, H., Garland, R. M., Achtert, P., Nowak, A., Wiedensohler, A., Kuwata,
 M., Takegawa, N., Kondo, Y., Hu, M., Shao, M., Zhu, T., Andreae, M. O., and Pöschl, U.: Cloud
- 601 condensation nuclei (CCN) from fresh and aged air pollution in the megacity region of Beijing,
- 602 Atmos. Chem. Phys., 11, 11023–11039, doi:10.5194/acp-11-11023-2011, 2011.
- Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L.,
 Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, P. Natl. Acad.
- 605 Sci. USA, 111, 17373–17378, doi:10.1073/pnas.1419604111, 2014.
- 606 Gysel, M., Crosier, J., Topping, D. O., Whitehead, J. D., Bower, K. N., Cubison, M. J., Williams, P.
- I., Flynn, M. J., McFiggans, G. B., and Coe, H.: Closure study between chemical composition
 and hygroscopic growth of aerosol particles during TORCH2, Atmos. Chem. Phys., 7, 6131–
 (144, 1): 10,5104/(2007,2007)
- 609 6144, doi:10.5194/acp-7-6131-2007, 2007.
- Jimenez, J. L., Canagaratna, M. R., et al.: Evolution of organic aerosols in the atmosphere,
 Science, 326, 1525–1529, 2009.
- 612 Kawana, K., Nakayama, T., and Mochida, M.: Hygroscopicity and CCN activity of atmospheric
- aerosol particles and their relation to organics: Characteristics of urban aerosols in Nagoya,
- 614 Japan, J. Geophys. Res. Atmos., 121, 4100–4121, doi:10.1002/2015jd023213, 2016.
- Lance, S., Medina, J., Smith, J., and Nenes, A.: Mapping the operation of the DMT continuous
 flow CCN counter, Aerosol Sci. Technol., 40, 242–254, 2006.
- 617 Li, Y., Zhang, F., Li, Z., Sun, L., Wang, Z., Li, P., Sun, Y., Ren, J., Wang, Y., Cribb, M., and Yuan,
- 618 C.: Influences of aerosol physiochemical properties and new particle formation on CCN activity
- from observation at a suburban site of China, Atmos. Res., 188, 80–89,
- 620 doi:10.1016/j.atmosres.2017.01.009, 2017.
- Li, Z., F. Niu, J. Fan, Y. Liu, D. Rosenfeld, and Y. Ding.: The long-term impacts of aerosols on the
 vertical development of clouds and precipitation, Nature Geosci. 4, doi: 10.1038/NGEO1313,
 2011.
- 624 Liu, H. J., Zhao, C. S., Nekat, B., Ma, N., Wiedensohler, A., van Pinxteren, D., Spindler, G.,
- 625 Müller, K., and Herrmann, H.: Aerosol hygroscopicity derived from size-segregated chemical
- 626 composition and its parameterization in the North China Plain, Atmos. Chem. Phys., 14, 2525–
- 627 2539, doi:10.5194/acp-14-2525-2014, 2014.
- Ma, Y., Brooks, S. D., Vidaurre, G., Khalizov, A. F., Wang, L., and Zhang, R..: Rapid modification
 of cloud-nucleating ability of aerosols by biogenic emissions, Geophys. Res. Lett., 40(23),
 6293–6297, 2013.

631	McFiggans, G., Artaxo, P., Baltensperger, U., Coe, H., Facchini, M. C., Feingold, G., Fuzzi, S.,					
632	Gysel, M., Laaksonen, A., Lohmann, U., Mentel, T. F., Murphy, D. M., O'Dowd, C. D., Snider,					
633	J. R., and Weingartner, E.: The effect of physical and chemical aerosol properties on warm					
634	cloud droplet activation, Atmos. Chem. Phys., 6, 2593–2649, doi:10.5194/acp-6-2593-2006,					
635	2006.					
636	Medina, J., Nenes, A., Sotiropoulou, R. E. P., Cottrell, L. D., Ziemba, L. D., Beckman, P. J., and					
637	Griffin, R. J.: Cloud condensation nuclei closure during the International Consortium for					
638	Atmospheric Research on Transport and Transformation 2004 campaign: Effects of size					
639	resolved composition, J. Geophys. Res. Atmos., 112, D10S31, doi:10.1029/2006JD007588,					
640	2007.					
641	Mei, F., Setyan, A., Zhang, Q., and Wang, J.: CCN activity of organic aerosols observed					
642	downwind of urban emissions during CARES, Atmos. Chem. Phys., 13, 12155-12169,					
643	doi:10.5194/acp-13-12155-2013, 2013a.					
644	Mei, F., Hayes, P. L., Ortega, A. M., Taylor, J. W., Allan, J. D., Gilman, J. B., Kuster, W. C., de					
645	Gouw, J. A., Jimenez, J. L., and Wang, J.: Droplet activation properties of organic aerosols					
646	observed at an urban site during CalNex-LA, J. Geophys. Res., 118, 2903-2917,					
647	10.1002/jgrd.50285, 2013b.					
648	Meng, J. W., Yeung, M. C., Li, Y. J., Lee, B. Y. L., and Chan, C. K.: Size-resolved cloud					
649	condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong,					
650	Atmos. Chem. Phys., 14, 10267–10282, doi:10.5194/acp-14-10267-2014, 2014.					
651	Moore, R. H., Nenes, A., and Medina, J.: Scanning mobility CCN analysis—A method for fast					
652	measurements of size-resolved CCN distributions and activation kinetics, Aerosol Sci. Technol.,					
653	44, 861–871, doi:10.1080/02786826.2010.498715, 2010.					
654	Moore, R. H., Cerully, K., Bahreini, R., Brock, C. A., Middlebrook, A. M., and Nenes, A.:					
655	Hygroscopicity and composition of California CCN during summer 2010, J. Geophys. Res.					
656	Atmos., 117, D00V12, doi:10.1029/2011JD017352, 2012.					
657	Paatero, P., and U. Tapper (1994), Positive matrix factorization: A non-negative factormodel with					
658	optimal utilization of error estimates of data values, Environmetrics, 5, 111–126.					
659	Peng, J., Hu, M., Guo, S., Du, Z., Zheng, J., & Shang, D., et al. (2016). Markedly enhanced					
660	absorption and direct radiative forcing of black carbon under polluted urban environments.					
661	Proceedings of the National Academy of Sciences of the United States of America, 113(16),					
662	4266.					
663	Petters, M. D., and Kreidenweis, S. M.: A single parameter representation of hygroscopic growth					

- and cloud condensation nucleus activity, Atmos. Chem. Phys., 7, 1961–1971,
- 665 doi:10.5194/acp-7-1961-2007, 2007.
- Riemer, N., Vogel, H., and Vogel, B.: Soot aging time scales in polluted regions during day and
 night, Atmos. Chem. Phys., 4, 1885–1893, doi:10.5194/acp-4-1885-2004, 2004.
- 668 Rose, D., Gunthe, S. S., Mikhailov, E., Frank, G. P., Dusek, U., Andreae, M. O., and Pöschl, U.:
- 669 Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei
- 670 counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol
- particles in theory and experiment, Atmos. Chem. Phys., 8, 1153–1179,
- 672 doi:10.5194/acp-8-1153-2008, 2008.
- 673 Rose, D., Nowak, A., Achtert, P., Wiedensohler, A., Hu, M., Shao, M., Zhang, Y., Andreae, M. O.,
- and Pöschl, U.: Cloud condensation nuclei in polluted air and biomass burning smoke near the
- 675 mega-city Guangzhou, China. Part 1: Size-resolved measurements and implications for the
- 676 modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys., 10, 3365–
- 677 3383, doi:10.5194/acp-10-3365-2010, 2010.
- 678 Rosenfeld, D., Lohmann, U., Raga, G. B., O'Dowd, C. D., Kulmala, M., Fuzzi, S., Reissell, A.,
- and Andreae, M. O.: Flood or drought: How do aerosols affect precipitation?, Science, 321,
 doi:10.1126/science.1160606, 2008.
- 681 Sotiropoulou, R.-E. P., Medina, J., and Nenes, A.: CCN predictions: Is theory sufficient for
- assessments of the indirect effect?, Geophys. Res. Lett., 33, doi:10.1029/2005gl025148, 2006.
- 683 Stokes, R. H., and Robinson, R. A.: Interactions in aqueous nonelectrolyte solutions. I.
- 684 Solute-solvent equilibria, J. Phys. Chem., 70, 2126–2130, 1966.
- 685 Sun, J., Zhang, Q., Canagaratna, M. R., Zhang, Y., Ng, N. L., Sun, Y., Jayne, J. T., Zhang, X.,
- 686Zhang, X., and Worsnop, D. R.: Highly time- and size-resolved characterization of submicron
- aerosol particles in Beijing using an Aerodyne Aerosol Mass Spectrometer, Atmos. Environ., 44,
- 688 131–140, doi:10.1016/j.atmosenv.2009.03.020, 2010.
- 689 Sun, Y. L., Wang, Z. F., Fu, P. Q., Yang, T., Jiang, Q., Dong, H. B., Li, J., and Jia, J. J.: Aerosol
- 690 composition, sources and processes during wintertime in Beijing, China, Atmos. Chem. Phys.,
- 691 13, 4577–4592, doi:10.5194/acp-13-4577-2013, 2013.
- 692 Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J., and
- 693 Worsnop, D. R.: Long-term real-time measurements of aerosol particle composition in Beijing,
- 694 China: Seasonal variations, meteorological effects, and source analysis, Atmos. Chem. Phys., 15,
- 695 10149–10165, doi:10.5194/acp-15-10149-2015, 2015.

- 696 Sun, Y., Chen, C., Zhang, Y., Xu, W., Zhou, L., Cheng, X., Zheng, H., Ji, D., Li, J., Tang, X., Fu, P.,
- and Wang, Z.: Rapid formation and evolution of an extreme haze episode in Northern China
 during winter 2015, Sci. Rep., 6, doi:10.1038/srep27151, 2016.
- 699 Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T.,
- Boucher, O., Chin, M., Dentener, F., Diehl, T., Easter, R., Feichter, H., Fillmore, D., Ghan, S.,
- Ginoux, P., Gong, S., Grini, A., Hendricks, J., Horowitz, L., Huang, P., Isaksen, I., Iversen, I.,
- Kloster, S., Koch, D., Kirkev åg, A., Kristjansson, J. E., Krol, M., Lauer, A., Lamarque, J. F., Liu,
- X., Montanaro, V., Myhre, G., Penner, J., Pitari, G., Reddy, S., Seland, Ø., Stier, P., Takemura,
- T., and Tie, X.: Analysis and quantification of the diversities of aerosol life cycles within
- 705 AeroCom, Atmos. Chem. Phys., 6, 1777–1813, doi:10.5194/acp-6-1777-2006, 2006.
- Twomey, S.: The influence of pollution on the shortwave albedo of clouds, J. Atmos. Sci., 34,
 1149–1152, doi:10.1175/1520-0469(1977)034(1149: TIOPOT)2.0.CO;2, 1977.
- Wang, J., Flagan, R. C., and Seinfeld, J. H.: A differential mobility analyzer (DMA) system for
 submicron aerosol measurements at ambient relative humidity, Aerosol Sci. Technol., 37, 46–52,
 2003.
- Wang, J., Cubison, M. J., Aiken, A. C., Jimenez, J. L., and Collins, D. R.: The importance of
 aerosol mixing state and size-resolved composition on CCN concentration and the variation of
 the importance with atmospheric aging of aerosols, Atmos. Chem. Phys., 10, 7267–7283,
 doi:10.5194/acp-10-7267-2010, 2010.
- 714 doi.10.31) 4/acp-10-7207-2010, 2010.
- 715 Wang, G., Zhang, R., Gomez, M. E., Yang, L., Zamora, M. L., Hu, M., ... & Li, J. (2016).
- Persistent sulfate formation from London Fog to Chinese haze. Proceedings of the National
- 717 Academy of Sciences, 113(48), 13630-13635.
- 718 Wang, Y., Zhang, F., Li, Z., Tan, H., Xu, H., Ren, J., Zhao, J., Du, W., and Sun, Y.: Enhanced
- hydrophobicity and volatility of submicron aerosols under severe emission control conditions in
 Beijing, Atmos. Chem. Phys., 17, 5239–5251, doi:10.5194/acp-17-5239-2017, 2017.
- 721 Wiedensohler, A., Cheng, Y. F., Nowak, A., Wehner, B., Achtert, P., Berghof, M., Birmili, W., Wu,
- 722 Z. J., Hu, M., Zhu, T., Takegawa, N., Kita, K., Kondo, Y., Lou, S. R., Hofzumahaus, A., Holland,
- F., Wahner, A., Gunthe, S. S., Rose, D., Su, H., and Pöschl, U.: Rapid aerosol particle growth
- and increase of cloud condensation nucleus activity by secondary aerosol formation and
- condensation: A case study for regional air pollution in northeastern China, J. Geophys. Res.
- 726 Atmos., 114, D00G08, doi:10.1029/2008JD010884, 2009.
- 727 Wu, Y., Wang, X., Tao, J., Huang, R., Tian, P., Cao, J., Zhang, L., Ho, K.-F., Han, Z., and Zhang,
- R.: Size distribution and source of black carbon aerosol in urban Beijing during winter haze
- episodes, Atmos. Chem. Phys., 17, 7965–7975, doi:10.5194/acp-17-7965-2017, 2017.

- 730 Wu, Z. J., Zheng, J., Shang, D. J., Du, Z. F., Wu, Y. S., Zeng, L. M., Wiedensohler, A., and Hu, M.:
- Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing,
- 732 China, during summertime, Atmos. Chem. Phys., 16, 1123–1138,
- 733 doi:10.5194/acp-16-1123-2016, 2016.
- Yum, S. S., Hudson, J. G., Song, K. Y., and Choi, B. C.: Springtime cloud condensation nuclei
- concentrations on the west coast of Korea, Geophys. Res. Lett., 32, L09814,
- 736 doi:10.1029/2005GL022641, 2005.
- 737 Yum, S. S., Roberts, G., Kim, J. H., Song, K. Y., and Kim, D. Y.: Submicron aerosol size
- distributions and cloud condensation nuclei concentrations measured at Gosan, Korea, during
- the Atmospheric Brown Clouds East Asian Regional Experiment 2005, J. Geophys. Res. Atmos.,

•

- 740 112, D22S32, doi:10.1029/2006JD008212, 2007.
- Zdanovskii, B.: Novyi Metod Rascheta Rastvorimostei Elektrolitovv Mnogokomponentnykh
 Sistema, Zh. Fiz. Khim+, 22, 1478–1495, 1948.
- 743 Zhang, F., Li, Y., Li, Z., Sun, L., Li, R., Zhao, C., Wang, P., Sun, Y., Liu, X., Li, J., Li, P., Ren, G.,
- and Fan, T.: Aerosol hygroscopicity and cloud condensation nuclei activity during the AC³Exp
 campaign: Implications for cloud condensation nuclei parameterization, Atmos. Chem. Phys.,
 14, 13423–13437, doi:10.5194/acp-14-13423-2014, 2014.
- 747 Zhang, F., Li, Z., Li, Y., Sun, Y., Wang, Z., Li, P., Sun, L., Wang, P., Cribb, M., Zhao, C., Fan, T.,
- Yang, X., and Wang, Q.: Impacts of organic aerosols and its oxidation level on CCN activity
- from measurement at a suburban site in China, Atmos. Chem. Phys., 16, 5413–5425,
- 750 doi:10.5194/acp-16-5413-2016, 2016.
- Zhang F., Wang Y., Peng J., Ren J., Zhang R., Sun Y., Don Collin., Yang X., Li Z.: Uncertainty
 in predicting CCN activity of aged and primary aerosols. Journal of Geophysical
 Research: Atmospheres. 10.1002/2017JD027058, 2017.
- 754 Zhang, Z., Engling, G., Lin, C.-Y., Chou, C. C. K., Lung, S.-C. C., Chang, S.-Y., Fan, S., Chan,
- 755 C.-Y., and Zhang, Y.-H.: Chemical speciation, transport and contribution of biomass burning
- smoke to ambient aerosol in Guangzhou, a mega city of China, Atmos. Environ., 44, 3187–3195,
 doi:10.1016/j.atmosenv.2010.05.024, 2010.
- 758 Zhao, J., Du, W., Zhang, Y., Wang, Q., Chen, C., Xu, W., Han, T., Wang, Y., Fu, P., Wang, Z., Li,
- 759 Z., and Sun, Y.: Insights into aerosol chemistry during the 2015 China Victory Day parade:
- results from simultaneous measurements at ground level and 260 m in Beijing, Atmos. Chem.
- 761 Phys., 17, 3215–3232, doi:10.5194/acp-17-3215-2017, 2017.
- 762 Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto,

763	T., Chang, D.	. Pöschl. U.,	Cheng, Y.	F., and He, K	. B.: Explor	ing the severe	winter haze in
100	1., 0	,,		,	. 2 2p.101	mg me severe	

- 764 Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos.
- 765 Chem. Phys., 15, 2969–2983, doi:10.5194/acp-15-2969-2015, 2015.
- Zhang, Q., Worsnop, D. R., Canagaratna, M. R., and Jimenez, J. L.: Hydrocarbon-like and
 oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic
 aerosols, Atmos. Chem. Phys., 5, 3289–3311, doi:10.5194/acp-5-3289- 2005, 2005.

784 Figures

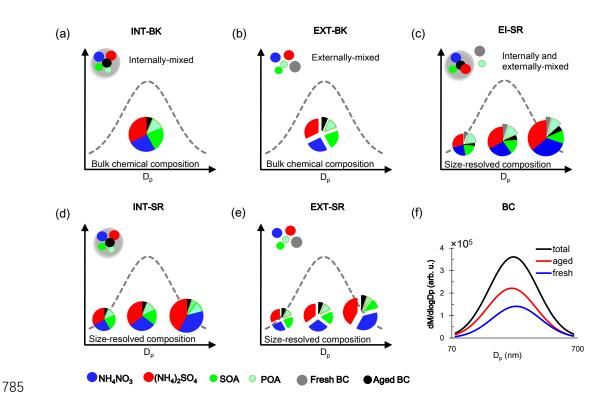


Figure 1 Schematic representation of the five different schemes: (a) INT-BK, (b) 786 EXT-BK, (c) EI-SR, (d) INT-SR, and (e) EXT-SR. And the BC size distribution (f) 787 used in this study. The fresh and aged BC size distribution are retrieved from the total 788 789 BC size distribution measured by the SP2 (Wu et al., 2017) and the dependence of the fraction of internally mixed soot (F_{in}) on particle diameter (D_p) observed in urban 790 Beijing (Cheng et al., 2012). The total BC size distribution is used in the INT-SR and 791 EXT-SR schemes, and the aged and fresh BC distributions are used in the EI-SR 792 scheme. In the EI-SR scheme, some BC particles are assumed to already be aged and 793 thus internally-mixed with sulfate, nitrate and SOA, and some of them together with 794 POA are freshly emitted and assumed not yet aged/coated by other species 795

796 (externally-mixed).

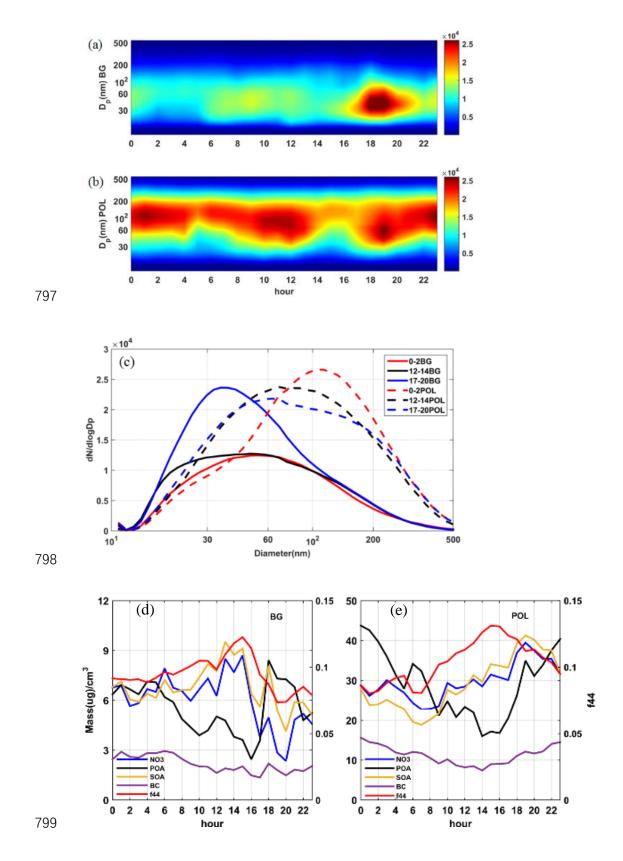


Figure 2. Diurnal variations in aerosol properties at the IAP site during the APHH
field experiment, including the particle number size distribution measured by the

- 802 SMPS under (a) background (BG) and (b) polluted (POL) conditions; (c) mean
- 803 particle number size distribution measured by the SMPS during three periods (0000–
- 804 0200 LT, 1200–1400 LT, and 1700–2000 LT) under BG and POL conditions; bulk
- chemical component mass concentrations (NO₃, POA, SOA, and BC) and f_{44} made
- 806 under (d) BG and (e) POL conditions.

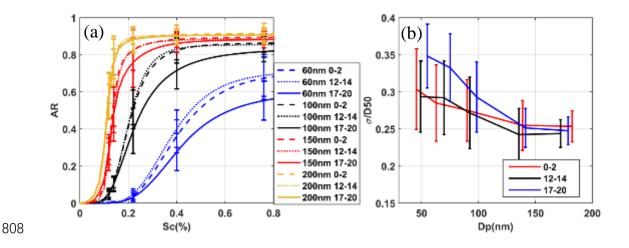
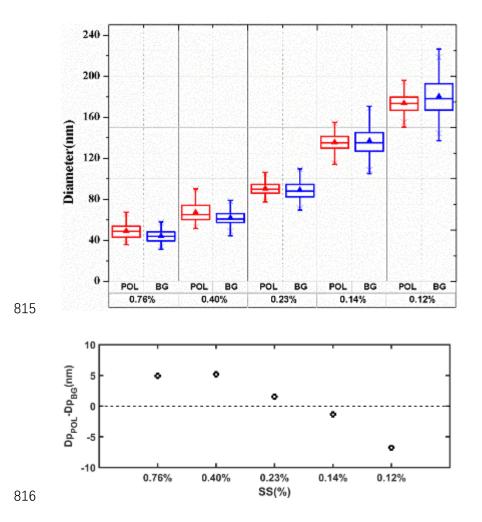


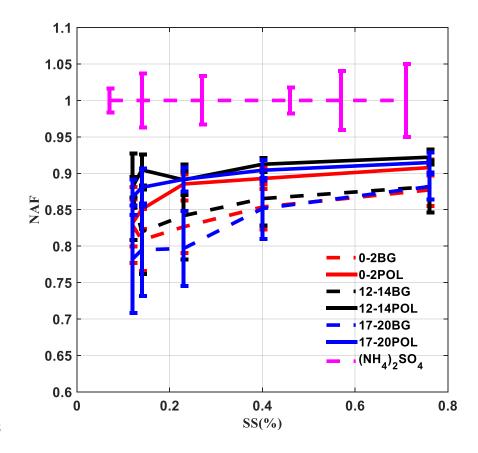
Figure 3. (a) Averaged fitted CCN efficiency spectra during the nighttime period
(0000–0200 LT, dashed lines), the noontime period (1200–1400 LT, dotted lines) and

811 the evening rush hour period (1700–2000 LT, solid lines) for different diameters (60,

812 100, 150, and 200 nm); (b) the heterogeneity of aerosol particles (σ_a/D_a) derived from

813 Equation (7) during the three selected periods.




Figure 4. Top: Retrieved mean critical activation diameters at SS = 0.12, 0.14, 0.23, 0.14, 0.24, 0.

818 0.40, and 0.76% under background (BG) and polluted (POL) conditions. The box

plots show mean critical activation diameters at the 25th, 50th, and 75th percentiles.

820 Bottom: Difference in the mean critical activation diameter between BG and POL

821 cases.

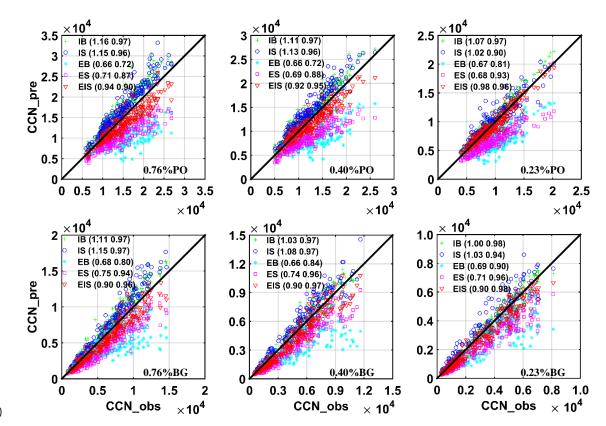
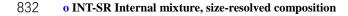

823

Figure 5. Mean maximum active fractions (MAFs) of CCN activation spectra under

polluted (POL) and background (BG) conditions during the three periods, i.e., 0000-


826 0200 LT, 1200–1400 LT, and 1700–2000 LT. The MAF of pure (NH₄)₂SO₄ particles at

the different SS levels (magenta line) is also plotted.

830

831 + INT-BK Internal mixture, bulk composition

- 833 * EXT-BK External mixture, bulk composition
- 834 DEXT-SR External mixture, size-resolved composition
- 835 V EI-SR External mixture, POA and BC externally mixed, size-resolved composition
- 836 **Figure 6.** Predicted N_{CCN} as a function of measured N_{CCN} using the five assumptions
- 837 (colored symbols) at three supersaturation levels (0.23, 0.40, and 0.76%) under
- 838 polluted (POL) and background (BG) conditions. The numbers in parentheses are the
- slope (first number) and the correlation coefficient (second number).

843

844

845

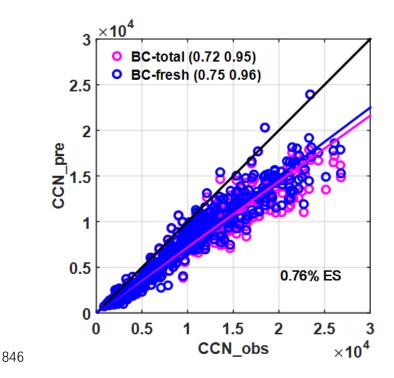
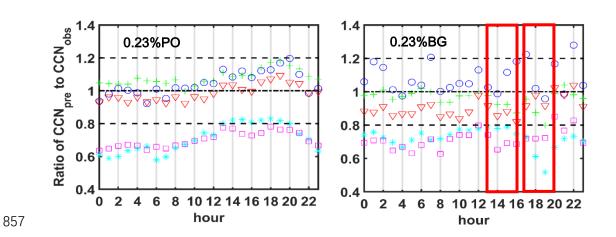
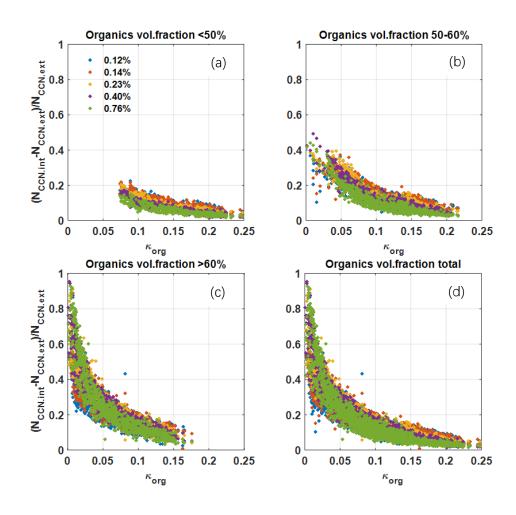



Figure 7. Predicted N_{CCN} as a function of measured N_{CCN} using the EXT-SR assumption (colored symbols) at S=0.76%. The pink and blue circles denote the results predicted by using total and fresh BC size distributions, respectively. The numbers in parentheses are the slope (first number) and the correlation coefficient (second number).


852

858 + INT-BK Internal mixture, bulk composition

o INT-SR Internal mixture, size-resolved composition

- 860 * EXT-BK External mixture, bulk composition
- **EXT-SR External mixture, size-resolved composition**
- **v** EI-SR External mixture, POA and BC externally mixed, size-resolved composition
- 863 Figure 8. Diurnal variations in the ratio of predicted-to-measured N_{CCN} at a
- supersaturation level of 0.23% under background (BG) and polluted (POL)
- 865 conditions.

868

Figure 9. Relative deviations between N_{CCN} predicted under the assumptions of internal (INT-BK) and external (EXT-BK) mixtures [(N_{CCN}.INT-BK - N_{CCN}.EXT-BK) (N_{CCN}.EXT-BK)⁻¹] as a function of κ_{org} when organic volume fractions of <50 (a), 50-60 (b), >70% (c) and all observed data points (d). The solid with different colors represent different supersaturation levels. The different colors denote the different organic fractions.

875

876