- 1 Impacts of absorbing aerosol deposition on snowpack and hydrologic
- 2 cycle in the Rocky Mountain region based on variable-resolution
- 3 CESM (VR-CESM) simulations
- 4 Chenglai Wu^{1,2}, Xiaohong Liu^{1,*}, Zhaohui Lin^{2,3}, Stefan R. Rahimi-Esfarjani¹, and
- 5 Zheng Lu¹
- 6 ¹Department of Atmospheric Science, University of Wyoming, Laramie, Wyoming,
- 7 USA
- 8 ²International Center for Climate and Environment Sciences, Institute of Atmospheric
- 9 Physics, Chinese Academy of Sciences, Beijing, China
- 10 ³University of Chinese Academy of Sciences, Beijing, China

- 12 **Corresponding to:*
- 13 Xiaohong Liu
- 14 Department of Atmospheric Science
- 15 University of Wyoming
- 16 Dept. 3038, 1000 East University Avenue
- 17 Laramie, WY 82071
- 18 Email: <u>xliu6@uwyo.edu</u>.
- 19
- 20

21 Abstract

22	Deposition of light-absorbing aerosols (LAAs) such as black carbon (BC) and dust
23	onto snow cover has been suggested to reduce the snow albedo, and modulate the
24	snowpack and consequent hydrologic cycle. In this study we use the
25	variable-resolution Community Earth System Model (VR-CESM) with a regionally
26	refined high-resolution (0.125°) grid to quantify the impacts of LAAs in snow in the
27	Rocky Mountain region during the period of 1981-2005. We first evaluate the model
28	simulation of LAA concentrations both near the surface and in snow, and then
29	investigate the snowpack and runoff changes induced by LAAs in snow. The model
30	simulates similar magnitudes of near-surface atmospheric dust concentrations as
31	observations in the Rocky Mountain region. Although the model underestimates
32	near-surface atmospheric BC concentrations, the model overestimates BC-in-snow
33	concentrations by 35% on average. Regional mean surface radiative effect (SRE) due
34	to LAAs in snow reaches up to 0.6-1.7 W m^{-2} in spring, and dust contributes to about
35	21-43% of total SRE. Due to positive snow-albedo feedbacks induced by the LAAs'
36	SRE, snow water equivalent reduces by 2-50 mm and snow cover fraction by 5-20%
37	in the two regions around the mountains (Eastern Snake River Plain and Southwestern
38	Wyoming), corresponding to an increase of surface air temperature by 0.9-1.1°C.
39	During the snow melting period, LAAs accelerate the hydrologic cycle with monthly
40	runoff increases of 0.15-1.00 mm day ⁻¹ in April-May and reductions of 0.04-0.18 mm
41	day ⁻¹ in June-July in the mountainous regions. Of all the mountainous regions,

42	Southern Rockies experience the largest reduction of total runoff by 15% during the
43	later stage of snow melt (i.e., June and July). Compared to previous studies based on
44	field observations, our estimation of dust-induced SRE is generally one-order of
45	magnitude smaller in the Southern Rockies, which is ascribed to the omission of
46	larger dust particles (with the diameter $>10\mu m$) in the model. This calls for the
47	inclusion of larger dust particles into the model to reduce the discrepancies. Overall
48	these results highlight the potentially important role of LAA interactions with
49	snowpack and subsequent impacts on the hydrologic cycles across the Rocky
50	Mountains.
51	
52	1. Introduction
53	Water resources are essential to human society and economic development as
53 54	Water resources are essential to human society and economic development as well as ecosystems in the western United States. Most primary water resources in the
54	well as ecosystems in the western United States. Most primary water resources in the
54 55	well as ecosystems in the western United States. Most primary water resources in the inland western U.S. come from the Rocky Mountains' snowpack (Serreze et al., 1999).
54 55 56	well as ecosystems in the western United States. Most primary water resources in the inland western U.S. come from the Rocky Mountains' snowpack (Serreze et al., 1999). Therefore, to develop a water resource management strategy, it is necessary to have
54 55 56 57	well as ecosystems in the western United States. Most primary water resources in the inland western U.S. come from the Rocky Mountains' snowpack (Serreze et al., 1999). Therefore, to develop a water resource management strategy, it is necessary to have information on snow accumulation and snowmelt timing. Climate change is an
54 55 56 57 58	well as ecosystems in the western United States. Most primary water resources in the inland western U.S. come from the Rocky Mountains' snowpack (Serreze et al., 1999). Therefore, to develop a water resource management strategy, it is necessary to have information on snow accumulation and snowmelt timing. Climate change is an important factor influencing the snowpack in the Rocky Mountain region, as has been
54 55 56 57 58 59	well as ecosystems in the western United States. Most primary water resources in the inland western U.S. come from the Rocky Mountains' snowpack (Serreze et al., 1999). Therefore, to develop a water resource management strategy, it is necessary to have information on snow accumulation and snowmelt timing. Climate change is an important factor influencing the snowpack in the Rocky Mountain region, as has been shown in many previous studies (e.g., Abatzoglou, 2011; Pederson et al., 2011;

63	have shown that LAAs in snow can significantly reduce the surface albedo (often
64	known as snow darkening effect (SDE)), modify the surface energy budget and
65	snowmelt, and lead to the modification of hydrologic cycles (e.g., Warren and
66	Wiscombe, 1980; Hansen and Nazarenko, 2004; Flanner et al., 2007, 2009; Painter et
67	al., 2007, 2010; Qian et al., 2009, 2011; Yasunari et al., 2015). Moreover, the
68	LAAs-induced snow albedo reduction may initiate positive feedback processes, which
69	can amplify the reduction of snowpack (e.g., Flanner et al., 2009; Qian et al., 2009).
70	In past decades modeling studies have been undertaken to quantify the impacts
71	of SDE by LAAs (e.g., Flanner et al., 2007; Qian et al., 2009; Oaida et al., 2015;
72	Yasunari et al., 2015). Generally the models they developed have the ability to
73	simulate the temporal evolution of snow albedo under the influence of LAAs in snow.
74	These studies have enhanced our understanding of the spatial and temporal variations
75	of climate forcings and responses due to LAAs in snow from regional scales (e.g.,
76	Qian et al., 2009; Oaida et al., 2015) to global scales (e.g., Flanner et al., 2007;
77	Yasunari et al., 2015). For example, the impacts of LAA in snow are stronger in
78	regions with considerable snow cover and sufficient LAAs deposition (e.g., Arctic,
79	Northeast China, Tibetan Plateau, and western U.S.), and they are largest during the
80	snowmelt period due to the positive snow-albedo feedback. However, as also
81	mentioned in these studies, reliable quantification of impacts of LAAs in snow is
82	hindered by the model deficiencies in simulating the snowpack and aerosol cycles,

83 with additional uncertainties induced by the parameterization of

84 snow-aerosol-radiation interactions.

85	In particular, previous studies have used coarse-resolution global climate
86	models (GCMs) or high-resolution regional climate models (RCMs) to quantify the
87	impacts of LAAs in snow. However, there are weaknesses both in coarse-resolution
88	GCMs and in RCMs. Both snowfall and snow accumulation depend on temperature
89	and precipitation, and thus the distribution of snowpack depends strongly on
90	topographic variablility. Current GCMs with a typical horizontal resolution of 1° to 2°
91	cannot resolve the snowpack over the regions with complex terrains (e.g., Rocky
92	Mountains) due to the coarse resolution (Rhoades et al., 2016; Wu et al., 2017), which
93	impedes the reliable quantifications of SDE by LAAs in mountainous regions (e.g.,
94	Flanner et al., 2007; Yasunari et al., 2015). RCMs can simulate the snowpack more
95	accurately than coarse-resolution GCMs, but they are not able to simulate the global
96	transport of aerosols to the focused region except when aerosol transport along the
97	boundary is prescribed (e.g., Qian et al., 2009). Moreover, LAAs in snow may also
98	influence the climate beyond the focused region (e.g., Yasunari et al., 2015), which
99	cannot be accounted for in RCMs. Variable resolution GCMs (VR-GCMs) can
100	overcome these weaknesses of either coarse-resolution GCMs or RCMs and serve as a
101	better tool to quantify the impacts of LAAs in snow. Although GCMs with globally
102	uniform high resolutions (10-30 km) may be an ideal tool to simulate the snowpack
103	and snow-aerosol-radiation interactions, they are not widely applied due to the

104	constraints of computational resources (e.g., Haarsma et al., 2016). Instead, using
105	VR-GCMs is a more economic approach and has gained increasing utility in recent
106	years (e.g., Zarzycki et al, 2014a, b; Sakaguchi et al., 2015).
107	A variable-resolution version of the Community Earth System Model
108	(VR-CESM) has been developed (Zarzycki et al., 2014a, b). With a refined high
109	resolution, VR-CESM has shown significant improvements of the Atlantic tropical
110	storms (Zarzycki and Jablonowski, 2014) and South America orographic precipitation
111	(Zarzycki et al., 2015). The model has also been used in the regional climate
112	simulations over the western U.S., and results show the VR-CESM is capable of
113	reproducing the spatial patterns and the seasonal evolution of temperature,
114	precipitation, and snowpack in the Sierra Nevada (Huang et al., 2016; Rhoades et al.,
115	2016) and Rocky Mountains (Wu et al., 2017). In particular, VR-CESM simulates
116	reasonably the magnitude of snow water equivalent, the timing of snow water
117	equivalent peaks, and the duration of snow cover in the Rocky Mountains, as shown
118	in comparison with Snow Telemetry (SNOTEL) and MODIS (Moderate Resolution
119	Imaging Spectroradiometer) snow cover observations (Wu et al., 2017).
120	Following the evaluation study of Wu et al. (2017), here we use VR-CESM to
121	investigate the impacts of LAAs in snow (BC and dust) on the snowpack and
122	hydrologic cycles over the Rocky Mountains. By comparing the two VR-CESM
123	simulations with and without LAAs in snow, we examine the impacts on surface
124	radiative transfer, temperature, snowpack, and runoff induced by LAAs in snow. To

125	our knowledge, it is the first time that VR-CESM is applied for the study of LAAs in
126	snow. Our results will demonstrate that VR-CESM is skillful for this kind of research.
127	The remainder of the paper is organized as follows. Section 2 introduces the
128	model and experimental design. Section 3 describes the observation data used for
129	validation of model simulations of aerosol fields in the surface air and in snow.
130	Section 4 presents the evaluation of aerosols fields, followed by their surface radiative
131	effect (SRE), as well as the change of surface temperature, snowpack, and runoff
132	induced by LAAs in snow. Discussion and conclusions are given in section 5.
133	2. Model and experimental design
134	The model used in this study is VR-CESM, a version of CESM (version 1.2.0)
135	with the variable-resolution capability (Zarzycki et al., 2014a, b). CESM is a
136	state-of-the-art Earth system modeling framework that allows for investigation of a
137	diverse set of Earth system interactions across multiple time and space scales (Hurrell
138	et al., 2013). CESM uses the Community Atmosphere Model version 5 (CAM5) for
139	the atmospheric component (Neale et al., 2010). The variable-resolution capability is
140	implemented into the Spectral Element (SE) dynamic core of CAM5. The SE
141	dynamic core uses a continuous Galerkin spectral finite-element method designed for
142	fully unstructured quadrilateral meshes, and has demonstrated near-optimal (close to
143	linear) parallel scalability on tens of thousands of cores (Dennis et al., 2012). This
144	enables the model to run efficiently on decadal to multi-decadal time scales. For the
145	land component, CESM uses the Community Land Model version 4 (CLM4). CLM4

146 can be run at the same horizontal resolutions as CAM5 and thus can also benefit from147 the variable-resolution capability of CAM5.

148	CESM also includes advanced physics for CAM5 (Neale et al., 2010) and
149	CLM4 (Oleson et al., 2010). The CAM5 physics suite consists of shallow convection
150	(Park and Bretherton, 2009), deep convection (Zhang and McFarlane, 1995; Richter
151	and Rasch, 2008), cloud microphysics (Morrison and Gettelman 2008) and
152	macrophysics (Park et al. 2014), radiation (Iacono et al. 2008), and aerosols (Liu et al.,
153	2012). For aerosols, a modal aerosol module (MAM) is adopted to represent the
154	internal and external mixing of aerosol components such as BC, OC, sulfate,
155	ammonium, sea salt, and mineral dust (Liu et al., 2012). Here, we use the 3-mode
156	version of MAM (MAM3). These three modes are aitken, accumulation, and coarse
157	modes. In MAM3, BC is treated in the accumulation mode. BC particles are
158	instantaneously mixed with sulfate and other components in the accumulation mode
159	once emitted. Dust particles with the diameter range of 0.1-1 μ m and 1-10 μ m are
160	emitted into the accumulation mode and coarse mode, respectively. Airborne aerosol
161	particles are then transported by winds and delivered back to the land surface by both
162	dry and wet deposition, as described in Liu et al. (2012).
163	CLM4 physics includes a suite of parameterizations for land-atmosphere
164	exchange of water, energy and chemical compounds. In particular, CLM4 explicitly
165	represents the snowpack (accumulation due to snowfall and frost, loss due to
166	sublimation, and melt) by a snow model and its coupling with the SNow, Ice and

167	Aerosol Radiation (SNICAR) model for snow-aerosol-climate interactions (Flanner et
168	al., 2007). SNICAR incorporates a two-stream radiative transfer solution of Toon et
169	al. (1989) to calculate the snow albedo and the vertical absorption profile from solar
170	zenith angle, albedo of the substrate underlying snow, mass concentrations of
171	atmospheric-deposited aerosols (BC and dust), and ice effective grain size (r_e). r_e is
172	simulated with a snow aging routine (Oleson et al., 2010). SNICAR is compatible
173	with the new modal aerosol module of CAM5 in the treatment of aerosol deposition
174	(Liu et al., 2012). It should be mentioned that SNICAR includes the effects of
175	feedbacks to the snowpack (grain size, melt) that are driven by the snow albedo
176	reduction due to LAA deposition. As our knowledge of OC optical properties is
177	limited, the impact of absorbing OC on snow albedo is not included in the standard
178	CLM4 and thus not considered in this study. Note that the SNICAR model we use
179	assumes spherical snow grains and aerosol-snow external mixing for the calculation
180	of snowpack optical properties (Flanner et al., 2007; Oleson et al., 2010). Recent
181	studies have shown that non-spherical snow grains play a critical role in snow albedo
182	calculations and reduce the snow albedo reductions included by LAAs compared with
183	spherical snow grains (e.g., Liou et al., 2014; Dang et al., 2016; He et al., 2014,
184	2017). Nonetheless, the knowledge of snow grain shape evolution is limited and thus
185	spherical snow grains are assumed. Studies have also shown the significant
186	enhancement of solar radiation absorption with larger snow albedo reductions by
187	aerosol-snow internal mixing compared to aerosol-snow external mixing (e.g.,

188	Flanner et al., 2012; He et al., 2014; Liou et al., 2014). However, although without
189	considering aerosol-snow internal mixing, the SNICAR model we use assumes
190	absorption-enhancing sulfate coatings to hydrophilic BC, which can mimic BC
191	coatings by snow and compensate the neglect of absorption-enhancement by
192	aerosol-snow internal mixing (Flanner et al., 2007; Flanner et al., 2012). Therefore,
193	the impacts of BC in snow shown in this study (section 4) are not necessarily biased
194	low. Despite this, assuming dust-snow external mixing this study may underestimate
195	the impacts of dust in snow.
196	For the high-resolution modeling, we have designed a variable-resolution grid
197	that transits from global quasi-uniform 1° resolution to a refined 0.125° resolution in
198	the Rocky Mountains (Figure 1a). The variable-resolution grid is the same as that
199	used in Wu et al. (2017), and is generated by the open-source software package called
200	SQuadGen (Ullrich, 2014). A topographical dataset for this variable-resolution grid is
201	also generated accordingly by the National Center for Atmospheric Research (NCAR)
202	global model topography generation software called NCAR_Topo (v1.0) (Lauritzen et
203	al., 2015) as described in Wu et al. (2017). Figure 1b shows the spatial variations of
204	terrain height for the variable resolution grid used in VR-CESM. Compared to United
205	States Geological Survey (USGS) 3km topography data (Lauritzen et al., 2015), the
206	topography data used in VR-CESM resolve well the variations of terrain in the Rocky
207	Mountains (see Figure 2 of Wu et al. (2017)). In Wu et al. (2017), we have shown that
208	VR-CESM performs well in the simulation of regional climate patterns, including

209	spatial distributions and seasonal evolution of temperature, precipitation, and
210	snowpack in the Rocky Mountain region. In this study, we further apply VR-CESM to
211	simulate the SDE of LAAs and its impacts on snowpack and hydrologic cycles in the
212	Rocky Mountains.
213	VR-CESM is run in the coupled land-atmosphere mode with prescribed
214	observed monthly 1°×1° sea surface temperature and sea ice coverage (Hurrell et al.,
215	2008), following the Atmospheric Model Intercomparison Project (AMIP) protocols
216	(Gates, 1992). The simulation period is from 1979 to 2005, and the results for the last
217	25 years (1981-2005) are used for the analysis shown below. Historical greenhouse
218	gas concentrations, and anthropogenic aerosol and precursor gas emissions are
219	prescribed from the datasets of Lamarque et al. (2010). In particular, the BC
220	emissions consist of various sources, including domestic, energy, transportation,
221	waste, shipping, and wildfire (forest and grass fires) emissions. The horizontal
222	resolution for BC emission used in this study is $1.9 \times 2.5^{\circ}$. We note that BC emission
223	data is natively at a resolution of $0.5^{\circ} \times 0.5^{\circ}$ (Lamarque et al, 2010). However, it is
224	processed to be at a relatively coarse resolution of $1.9^{\circ} \times 2.5^{\circ}$ for adoption in standard
225	CESM, which is used in this study. The relatively coarse resolution of BC emission
226	may partly explain the model's bias in the simulation of BC concentrations near the
227	surface and in snow across regions where local BC sources can contribute
228	significantly to the observed BC concentrations, as will be discussed in section 4. It is
229	desirable to adopt BC emission at its native resolution for our high-resolution

simulation. The sensitivity of our simulation results to the resolution of BC emissionwill be analyzed in a separate study.

For dust aerosol, the emission flux is calculated interactively in the model at 232 each time step by a dust emission scheme (Oleson et al., 2010). The dust emission 233 234 flux is calculated from the friction velocity, threshold friction velocity, atmospheric 235 density, clay content in the soil, areal fraction of exposed bare soil, and source 236 erodibility (Oleson et al., 2010; Wu et al., 2016). Due to the large uncertainty in 237 modeled dust emission, the dust emission scheme also adopts a tuning factor (T) to 238 simulate the reasonable dust emission amount. Our test simulation shows that with the 239 increase of model resolution, VR-CESM produces much higher dust concentrations compared to the observations (section 3) in North America if T used in the standard 240 CESM with quasi-uniform 1° resolution is used. Therefore, for VR-CESM simulation 241 242 in this study, T is reduced by a factor of 2.6 to produce the similar magnitudes of 243 near-surface dust concentrations as the observations, as will be shown in section 4.1. 244 Note that such a reduction of T is only applied in North America, since other 245 continents have a resolution of quasi-uniform 1°, the same as in the standard CESM. In addition to the control experiment with the impacts of LAAs (BC and dust) 246 247 in snow included (CTL), we conduct a sensitivity experiment that turns off the impact of LAAs in snow (NoSDE). Through the comparison of these two simulations (CTL 248 and NoSDE), the impacts of SDE by LAAs on the snowpack and hydrologic cycles 249 can be identified. To facilitate the analysis of SDE, we also calculate the surface 250

251	radiative effect (SRE) by BC in snow in the control experiment from the difference of
252	absorbed radiation with all aerosols (i.e., the standard radiation call) and with all
253	aerosols except BC (i.e., only dust in this case) as in Flanner et al. (2007) (a
254	diagnostic radiation call). SRE by dust and by BC and dust are calculated similarly.
255	To quantify the impacts of LAAs in snow, we mainly focus on five regions.
256	Three of these regions are in the high mountains: Northern Rockies, Greater
257	Yellowstone region, and Southern Rockies. The elevation is higher in Greater
258	Yellowstone region and Southern Rockies (>2250 m) than in Northern Rockies (>750
259	m). The other two regions are over the plains near the mountains: Snake River Basin
260	and Southwestern Wyoming. These two regions are selected because they are close to
261	the source regions of BC and dust and also have considerable snow cover (>50%) in
262	winter. These five regions are shown in Figure 1c.
263	3. Observations
264	We will use various observations to validate the model simulation of aerosol
265	(BC and dust) concentrations near the surface and in snow.
266	First, we use the observations of near-surface atmospheric BC and dust
267	concentrations from the Interagency Monitoring of PROtected Visual Environments
268	(IMPROVE) network (Malm et al., 1994). Observed mass concentrations of
269	Elemental Carbon (EC) are used for the comparison with model simulation of BC
270	concentrations. Although EC can be somewhat different from BC (Andreae and
271	Gelencser, 2006), EC concentrations have been widely used for the validation of BC

272	concentrations in previous studies (e.g., Koch et al., 2009; Liu et al., 2012). For dust,
273	simulated dust concentration accounts for dust particles with diameters below 10 μ m.
274	To compare, observed mass concentrations of fine soil (FS, with the diameter <2.5
275	$\mu m)$ and coarse mass (CM, with the diameter between 2.5 μm and 10 $\mu m)$ from
276	IMPROVE are combined, following the approach of Kavouras et al. (2007) and Wells
277	et al. (2007). In reality, in addition to dust, CM may also contain other aerosols such
278	as sulfate, nitrate, organic and elemental carbon, and sea salt. However, according to
279	the study of Malm et al. (2007), who analyzed the speciation of coarse particles
280	collected at nine selected rural IMPROVE stations in 2004, the contributions of dust
281	to CM are above 70% (74-90%) at the three stations in inland western U.S. In their
282	study, lower contributions of dust to CM (34% and 65%) were found in the two
283	stations near the coast. We caution that these two stations were <150 km away from
284	the metropolitan regions indicating that urban emissions may also contribute to CM
285	there. Additional contributions may result from sea salt or sodium nitrate resulting
286	from reactions of nitric acid with sea salt, as mentioned in their study (Malm et al.,
287	2007). Therefore, to minimize the contributions of other aerosols to CM, we do not
288	use the stations in or near the metropolitan regions or near the coast for the validation
289	of dust concentration. Nonetheless, we acknowledge that there may be small
290	contributions from other aerosols to CM and the estimated dust concentration by
291	summing FS and CM may represent an upper limit of dust concentrations (with the
292	diameter $<10 \ \mu m$) from the observations. Note that the observation period of

IMPROVE varies with the stations; some stations started collecting data in the 1980s, and some more recently (2000s). To derive a climatological dataset for model 294 comparisons, we only select the stations with more than 5 years of dust observations. 295 In total 80 and 94 stations are selected for BC and dust observations, respectively, in 296 297 the western U.S. (Figure 2).

293

298 Second, we use field measurements of BC mass mixing ratio in snow (C_{BC}) 299 from previously published studies. Although field observations of C_{BC} in snow extended back to 1980s, they were made mostly in the polar regions, Alps Mountains, 300 Cascade Mountains, eastern Canada, and West Texas/New Mexico (see Qian et al. 301 302 (2015) and references therein). Recently, Doherty et al. (2014) made valuable measurements of the vertical profiles of LAAs in seasonal snow from January to 303 March of 2013 in the western U.S. They used an Integrating Sphere integrating 304 305 SandWich (ISSW) Spectrophotometer to estimate the C_{BC} over 67 sites in North America (including 17 sites in the Rocky Mountain region). Observed C_{BC} by 306 307 Doherty et al. (2014) was recorded on a single day. Doherty et al. (2016) further 308 provided the temporal variations of C_{BC} at four stations, three in Idaho (January to March of 2014) and one in Utah (February to March of 2013 and 2014). Doherty et al. 309 310 (2016) also calibrated the ISSW measurements using an incandescence technique (the Single Particle Soot Photometer, SP2) in a subset of the observations, which was 311 312 supposed to capture C_{BC} more accurately, and derived a ratio of C_{BC} by ISSW to C_{BC} by SP2 based on their linear relationship for the estimation of real C_{BC}. This 313

calibration is applied to the dataset of Doherty et al. (2014) in our study, and thus the
observations of Doherty et al. (2014) and Doherty et al. (2016) used here are
comparable.

317	In addition, Skiles and Painter (2016b) made daily measurements of
318	BC-in-snow with an SP2 in the Senator Beck Basin Study Area (SBBSA) in the San
319	Juan Mountains during a period of two months (late March to middle May) in 2013.
320	The locations and sample dates as well as the measurements for these stations are
321	given in Table 1. For comparison with model simulations, we derive observed BC
322	mass mixing ratios (C_{BC}) in the whole snow column at sites #1-12 and #16-17 by
323	dividing total BC mass throughout the snow column by total snow mass throughout
324	the snow column. At sites #13-15, the averages of C_{BC} for all the aged snow samples
325	(from various depths and columns) were reported by Doherty et al. (2016) and are
326	used here. If measurements of C_{BC} on multiple days were made, the means and
327	standard deviations of C_{BC} are given. As our simulation period (1981-2005) does not
328	encompass the years 2013 and 2014, we will use the daily simulation results of C_{BC}
329	on the same month/day (or months/days; Table 1) when the observations were made
330	(i.e., we will ignore the exact year) and compare them (means and standard deviations)
331	with the observations. At each station, simulated daily simulation results are used
332	only when snow is present (i.e., daily mean snow water equivalent \geq 1mm). 1 mm is
333	chosen to be consistent with the minimum snow-layer thickness in observations.

334	There are few observations of dust mass mixing ratio in snow (C_{dust}) in the
335	Rocky Mountain region. To our best knowledge, the only published observations
336	were conducted at two sites in Southern Rockies: one in the Senator Beck Basin Study
337	Area (SBBSA) in the San Juan Mountains with at least 9-year (2005-2013) records
338	(Painter et al., 2012; Skiles et al., 2015; Skiles and Painter, 2016a, 2016b); the other
339	in the Grand Mesa (~150 km to the north of SBBSA) with at least 4-year (2010-2013)
340	records (Skiles et al., 2015). Snow samples in the top 30 cm of the snow column were
341	collected at irregular time intervals from March to June. Here we will use the
342	end-of-year (EOY) C_{dust} , which was reported from the samples collected just prior to
343	snow depletion and consisted of the majority of dust in the snow column (Skiles et al.,
344	2015; Skiles and Painter, 2016a). For the simulation, we will calculate mean C_{dust} for
345	May-June from daily C _{dust} on the days when snow is present (i.e., snow water
346	equivalent \geq 10 mm). Another consideration is that observed C _{dust} contains all the dust
347	particles while simulated C _{dust} only accounts for the dust particles with diameters
348	smaller than 10 μ m. According to the observations by Reynolds et al. (2016), the
349	mass concentration of total suspended particles (TSP) both in the atmosphere and in
350	snow is mainly from particles with diameters larger than 10 μ m in the Utah-Colorado
351	region. This will affect the model comparison with the observations, which will be
352	discussed in section 4.
252	4 Desults

353 4. Results

354 4.1 Spatial patterns of near-surface aerosol concentrations

355	Before we examine the impacts of aerosol deposition onto snow, we will first
356	evaluate the aerosol simulations by the model. Figure 2 shows the spatial patterns of
357	cold season (winter and spring) mean emission fluxes and near-surface concentrations
358	of BC and dust in the western U.S. from the VR-CESM simulation. The IMPROVE
359	stations are also denoted by circles with larger circle sizes indicating higher observed
360	near-surface BC/dust concentrations. In the model, the BC emission flux is prescribed
361	and is largest in the Pacific Coast and southern Arizona. BC emission fluxes are
362	relatively large in central-northern Colorado and Northwestern Utah, where large
363	metropolises are located. Corresponding to the patterns of BC emission flux,
364	simulated near-surface BC concentrations (>100 ng m ⁻³) are also higher in these
365	regions. A band with relatively high near-surface BC concentrations around 50-100
366	ng m ⁻³ is also found in southern Idaho, to the west of the Greater Yellowstone region
367	and to the south of Northern Rockies, indicating the transportation of BC around the
368	mountains. Near-surface BC concentrations decrease at higher elevations. The spatial
369	patterns simulated by the model are generally consistent with observations, e.g.,
370	higher BC concentrations in the source regions and lower in the mountains.
371	Dust sources are located in the dry regions with exposed bare soils, such as the
372	southwestern U.S. (southern California, western Arizona, and southern New Mexico),
373	the northern Mexico, the Great Basin, and the Colorado Plateau. Dust emissions are
374	also found in the Great Plains, although they are much weaker. In the Great Plains
375	agricultural activities can disturb the soil, making it vulnerable to wind erosion

376 (Ginoux et al., 2012). Simulated cold season mean dust concentrations are higher (10-500 μ g m⁻³) in the source regions, but decrease dramatically (0.1-5 μ g m⁻³) to the 377 mountains. Compared to the observations, the model reproduces the spatial patterns of 378 near-surface dust concentrations with higher concentrations in the southwestern part 379 380 of US. However, the model tends to overestimate the dust concentrations in Utah, 381 indicating that dust emission may be overestimated there. 382 Comparisons of modeled and observed near-surface BC/dust concentrations at 383 the IMPROVE stations are further shown in Figure 3. The modeled concentrations are generally within a factor of 5 of the observed concentrations, and the two are 384 385 moderately correlated (the correlation coefficients (R) being 0.56 and 0.47 for BC and dust concentrations, respectively). Averaged across all comparison stations, the 386 387 modeled BC concentration is a factor of 1.8 lower than the observed concentrations, 388 and the modeled dust concentration a factor of 1.4 higher. The model tends to systematically underestimate observed near-surface BC concentrations in 389 390 Utah–Nevada regions, the Rocky Mountains, and the Great Plains, where the stations 391 are located downwind of source regions (Figure 2b). In particular, observed near-surface BC concentrations are underestimated mostly by a factor of 1.5-5 in the 392 393 Rocky Mountains. The underestimation of near-surface BC concentrations in these regions may suggest that transport of BC in our simulations is too weak. This 394 395 deficiency may also be ascribed to local BC sources (e.g., Doherty et al., 2014) not resolved by the prescribed BC emission in the model (e.g., at 1.9×2.5° resolution). For 396

397	dust, although the model overestimates near-surface dust concentrations for most of
398	the stations near the dust sources (southwestern U.S., Utah, and Nevada), the model
399	simulates reasonably the magnitude of near-surface dust concentrations in the Rocky
400	Mountains. This may also be associated with underestimated transport in the model,
401	consistent with the low bias in near-surface BC concentrations in downwind regions.
402	Note that although only the BC and dust emission fluxes over the western U.S.
403	are shown in Figure 2, long-range transport of these aerosols from other regions (e.g.,
404	Asia and Africa) can also contribute to BC (e.g., Zhang et al., 2015) and dust (Wells
405	et al., 2007) concentrations in the western U.S. In addition, there are substantial
406	variations of aerosol emission in the western U.S. As mentioned in section 2, although
407	we adopt VR-CESM with a refined high resolution (0.125°) in the Rocky Mountains,
408	we use a coarse resolution gridded emission dataset (i.e., $1.9^{\circ} \times 2.5^{\circ}$) for BC. For dust,
409	the small-scale variations of dust emissions can be represented in the model as it is
410	calculated online in the model. However, dust emission depends on many variables
411	such as near-surface winds, soil moisture, vegetation cover, and soil texture (Oleson
412	et al., 2010; Wu et al., 2016), which may themselves be biased. In particular, in Utah
413	and Nevada, simulated near-surface dust concentrations are about 2-3 times as large
414	as observed, indicating significant overestimation of dust emissions in the region.

415 4.2 Aerosol-in-snow concentrations

416 Figure 4 shows the spatial distributions of BC and dust mass mixing ratios in417 snow in winter and spring from VR-CESM simulations. BC-in-snow mass mixing

418	ratio in the Rocky Mountains ranges from 2-50 ng g ⁻¹ , which is consistent with a
419	previous study (Qian et al., 2009). The dust-in-snow mass mixing ratio (0.1-50 μ g g ⁻¹)
420	is about 2-3 orders of magnitude higher than that of BC-in-snow. The spatial pattern
421	of BC-in-snow mixing ratios is consistent with that of near-surface atmospheric BC
422	concentration, which features higher values in northern Utah and southern Idaho and
423	lower values in the higher mountains (Figure 2b). Dust-in-snow mixing ratios are
424	higher in Utah and downwind regions (western Colorado and southern Idaho), which
425	is consistent with the distribution of near-surface atmospheric dust concentrations.
426	Dust-in-snow mixing ratio is also higher in the northern Great Plains, where dust
427	emission is also evident (Figure 2c). In addition, BC and dust mixing ratios are larger
428	(10-100 ng g ⁻¹ and 2-50 μ g g ⁻¹ , respectively) in the Southern Rockies than in Northern
429	Rockies and Greater Yellowstone region. BC and dust mass mixing ratios are smaller
430	in the Greater Yellowstone region with ranges from 10-50 ng $g^{\text{-1}}$ and from 0.2-2 μg
431	g ⁻¹ , respectively, and are smallest in the Northern Rockies with the values below 20
432	ng g ⁻¹ and below 2 μ g g ⁻¹ , respectively. BC and dust mixing ratios in snow are larger
433	in spring than in winter in most of the Rocky Mountain region. This is due to larger
434	deposition of BC/dust in spring than in winter, resulting from larger northward
435	transport of BC/dust in spring (Figure not shown). Larger dust deposition in spring
436	can also be partly explained by the larger dust emission in this season.
437	The comparison of BC mass mixing ratios in the snow column at the 17 sites
438	from VR-CESM simulations and observations is shown in Figure 5. Observed

439	BC-in-snow mass mixing ratios range from 5.5 ng g^{-1} to 33.6 ng g^{-1} at the 17 sites.
440	Simulated BC mixing ratios range from 8.3 ng g^{-1} to 30.6 ng g^{-1} at these sites, which
441	are in the range of observations. Despite this, simulated BC-in-snow mass mixing
442	ratios differ from the observations by a factor of up to 4 at some stations. Averaged
443	across all the 17 sites, the simulated BC mass mixing ratio is 35% larger than the
444	observed value. Note that there is a large interannual variability of BC-in-snow mass
445	mixing ratios, such as at site #16, as shown in Doherty et al. (2016). Therefore, the
446	observation period was not long enough for the derivation of a climatological mean as
447	in the simulation, which may partly explain the inconsistency between the
448	observations and simulations
449	Note that although near-surface BC concentrations in the atmosphere are
450	underestimated in the Rocky Mountains in the model (section 4.1), BC mass mixing
451	ratios in the snow are not overall underestimated. In our study, we calibrate the
452	observational data of Doherty et al. (2014) by using the correction factor based on the
453	comparison of ISSW and SP2, assuming that SP2 can more accurately measure the
454	mass mixing ratio of BC compared to ISSW (Doherty et al., 2016). However,
455	although SP2 can provide a direct measurement of BC, SP2 may underestimate the
456	real amount of BC-in-snow mass when BC is attached to larger particles (e.g., dust
457	and sea salt) or aggregates to large sizes in snow due to the size range (e.g., $\sim 0.08-0.7$
458	μ m) limitations in SP2 (Qian et al., 2015). Because of this, the real amount of
459	BC-in-snow mass may be higher than that measured by SP2. Another reason for the

460	inconsistency of BC mass mixing ratios in snow and near-surface BC concentrations
461	in the atmosphere may be related to the compensating errors in BC deposition and
462	snowfall. This inconsistency may also be related to the snow aging/melting and
463	BC-in-snow accumulation and flushing-out, which are associated with large
464	uncertainties (Flanner et al., 2007; Qian et al., 2014).
465	For dust in snow, the simulated mean dust mass mixing ratio in snow in
466	May-June is 31.0 (27.8) μ g g ⁻¹ in the San Juan Mountains (Grand Mesa), with the
467	standard deviation, minimum, and maximum being 20.4 (10.0) μ g g ⁻¹ , 8.9 (14.8) μ g
468	g ⁻¹ , and 81.4 (50.4) μ g g ⁻¹ , respectively. These values are one to two orders of
469	magnitude smaller compared to the observed mixing ratios from Skiles et al. (2015),
470	which showed that, at the end of the snow season, the total dust-in-snow mass mixing
471	ratios range from 0.2 to 4.8 mg g^{-1} and from 0.6-1.7 mg g^{-1} , respectively, in the San
472	Juan Mountains and Grand Mesa. Much smaller dust-in-snow mass mixing ratios in
473	the simulations may be ascribed to the fact that the model only accounts for dust
474	particles with diameters smaller than 10 μ m, while the observations include all the
475	sizes of dust particles in the snow. Observation by Reynolds et al. (2016) in the
476	Colorado region showed that mass concentrations of dust particles in snow are mostly
477	from larger particles with diameters larger than 10 μ m. Therefore, the model may
478	underestimate the impacts of dust deposition into snow. Dust impacts calculated in
479	this study, which will be discussed below, should be regarded as those from the dust
480	particles with diameters smaller than 10 µm.

4.3 Surface radiative effect (SRE) by aerosol-in-snow

482	Figure 6 shows the spatial distribution of instantaneous surface radiative effect
483	(SRE) due to BC- and dust-induced snow albedo change, respectively, in winter
484	(December-January-February) and spring (March-April-May). Due to the decrease of
485	surface albedo, surface net shortwave radiation is increased. The spatial patterns of
486	SRE are determined by both the amount of aerosol in snow and the snowpack
487	distribution (snow depth and snow cover fraction). Finer-scale structures of SRE in
488	the Rocky Mountains and the adjacent regions are simulated by VR-CESM with a
489	higher horizontal resolution compared to previous simulations by coarse-resolution
490	GCMs (e.g., Flanner et al., 2009; Yasunari et al., 2015). The SRE is generally above
491	0.2 W m^{-2} over the mountains especially in the Greater Yellowstone region and
492	Southern Rockies. SRE can reach similar magnitudes on the southern periphery of
493	Northern Rockies and west side of the Greater Yellowstone region, where higher
494	near-surface atmospheric BC/dust concentrations and BC/dust-in-snow mass mixing
495	ratios are simulated (Figures 2 and 4). SRE is stronger in spring than in winter for
496	both BC and dust, which is consistent with previous studies (Flanner et al., 2009;
497	Yasunari et al., 2015). This is because of the stronger solar insolation and larger
498	albedo reduction due to snow aging, aerosol accumulation within snow, and
499	feedbacks in spring. Dust emissions, and consequent dust transport and deposition, are
500	higher in spring than in winter, which may also partly contribute to the larger
501	dust-induced SRE in spring than in winter. BC-induced SRE is somewhat larger than

dust-induced SRE in both winter and spring. BC-induced SRE is mostly below 1 W 502 m^{-2} in winter, but reaches up to 2-5 W m^{-2} in spring. Dust-induced SRE is mostly 503 below 0.5 W m⁻² in winter and increases to 1-5 W m⁻² in spring. 504 Compared to the Greater Yellowstone region and Southern Rockies, SRE in 505 the Northern Rockies is much smaller (mostly below 0.05 and 0.5 W m^{-2} in winter 506 and spring), because of smaller aerosol-in-snow mixing ratios in this region (Figure 4). 507 Note that BC-induced SRE is still significant (mostly around 0.2-2 W m^{-2} and 2-5 W 508 m⁻² in some local regions) in the northern Great Plains, eastern U.S., southern Canada, 509 510 and eastern Canada. This was also shown in previous studies using coarse-resolution GCMs (e.g., Flanner et al., 2009; Yasunari et al., 2015). In addition, the model also 511 simulates non-negligible dust-induced SRE (mostly around 0.05-0.2 W m⁻² and up to 512 $0.2-0.5 \text{ W m}^{-2}$ in some local regions) near the dust sources in southern Canada and the 513 514 northern Great Plains.

Figure 7 shows the monthly variations of SRE induced by BC and dust SDE in 515 the five regions (Northern Rockies, Greater Yellowstone region, Southern Rockies, 516 517 Eastern Snake River Plain, and Southwestern Wyoming). Table 2 gives the regional averaged winter and spring SRE in these five regions. Consistent with the spatial 518 519 distributions shown in Figure 6, aerosol-induced SRE averaged in Northern Rockies is about half to one-fourth of that in the Greater Yellowstone region and Southern 520 Rockies. Compared to that in winter, SRE is much larger in spring, which is a result 521 of aerosol accumulation in snow and relatively strong solar insolation. Maxima in the 522

523	monthly SRE occur in April-May in the three mountainous regions (Northern Rockies,
524	Greater Yellowstone region, and Southern Rockies), consistent with the progress of
525	snowmelt after the peaks of snow water equivalent (early to middle April; see figure
526	11 of Wu et al. (2017)). In the Eastern Snake River Basin and Southwestern Wyoming,
527	maxima in monthly SRE occur in March, which is different from the three
528	mountainous regions because the snowmelt period begins earlier (in February to
529	March) in these two regions (section 4.4). Regional mean total SRE in spring induced
530	by BC and dust can reach up to 1.58-1.7 W m^2 with peaks around 2.0 W m^{-2} in
531	Greater Yellowstone region and Southern Rockies. In the Eastern Snake River Plain
532	and Southwestern Wyoming regions, regional mean total SRE in winter and spring is
533	around 0.4-0.6 W m ⁻² and 0.7-0.8 W m ⁻² , respectively. Dust-induced springtime SRE
534	can contribute to about 20-30% of total springtime SRE in the northern part of Rocky
535	Mountains (Northern Rockies, Greater Yellowstone region and Eastern Snake River
536	Plain). In the southern part of Rocky Mountains (Southwestern Wyoming and
537	Southern Rockies), dust-induced springtime SRE contributes more significantly
538	(about 30-40%) to total springtime SRE. Note that dust-induced SRE shown here
539	doesn't take into account dust particles larger than 10 μ m, which may constitute the
540	majority of dust-in-snow mass (Reynolds et al., 2016). Therefore, our estimations of
541	dust-induced SRE may be biased low.
542	4.4 Impacts of aerosol SDF on the surface temperature and snownack

542 4.4 Impacts of aerosol SDE on the surface temperature and snowpack

543	Figure 8 shows surface air temperature, snow water equivalent, and snow
544	cover fraction changes due to the aerosol SDE in winter and spring, respectively.
545	Snow water equivalent is defined as the amount of water contained within the
546	snowpack, measured kg m ⁻² which is equivalent to mm after divided by the density of
547	water (1000 kg m ⁻³). Snow cover fraction is defined as the fraction of surface area
548	covered by snow. These changes are derived from the difference between the two
549	simulations (CTL and NoSDE). The crosses in the figure denote the regions where
550	changes are statistically significant at the 0.1 level. Although SRE is largest over the
551	mountains, surface air temperature change is largest in the regions adjacent to the
552	mountains, such as over the Eastern Snake River Plain, Northern Utah, and
553	Central-Southwestern Wyoming, where surface air temperatures are increased by
554	around 0.5-2 °C due to the aerosol SDE. The large surface air temperature increase
555	corresponds well to the significant reductions of snow water equivalent (by 2-50 mm)
556	and snow cover fraction (by 5-20%) in these regions. This indicates a pronounced
557	positive feedback between snow albedo, radiation, and surface temperature in the
558	regions adjacent to the mountains, where snow water equivalent values are relatively
559	lower and snow cover fractions are smaller than those over the mountains. The
560	positive feedback amplifies the surface warming and snow melting, as was also found
561	in a previous study using the Weather Research and Forecasting (WRF) model (Qian
562	et al., 2009). We note, however, both snow water equivalent and snow cover fraction
563	are larger over the mountains. For example, winter and spring snow water equivalent

is mostly above 50 mm on the high mountains (see Figure 8 of Wu et al. (2017)).

Local aerosol SDE may also induce substantial impacts on the surface temperature and snowpack on the high mountains, but these impacts may be canceled out by the increase of snowfall (Figure 9f). As shown in Figure 8, the smaller change of surface air temperature over the mountains corresponds well with the increase of snow water equivalent and snow cover fraction (especially in the Northern Rockies and Greater Yellowstone region).

The increase of snowfall in Figure 9 is likely related to the large-scale 571 572 circulation change due to aerosol SDE. Figure 10 shows wintertime tropospheric 573 temperature and zonal winds in CTL and NoSDE simulations and their difference. In 574 the NoSDE simulation, we have turned off the SDE not only in the Rocky Mountain 575 region, but also in other regions of the globe. Due to aerosol SDE, temperature is 576 increased in the high-latitudes of northern hemisphere (Figure 10c), which can reduce the meridional temperature gradient, thus leading to the weakening polar jet stream 577 north of 50 °N (Figure 10f). This suggests a shift to a more meridional wind pattern in 578 579 winter, which can enhance the broader meanders and thus the formation of winter storms (Wu et al., 2017). Enhanced winter storm activity further reduces surface 580 581 temperature to the north of Rocky Mountain region as well as in the northern part of Rocky Mountain region (Figures 8a and 10c). This, together with the increased 582 temperature in the southwestern U.S. and southern part of Rocky Mountain region, 583 increases meridional temperature gradient and leads to stronger westerly at 30-45°N 584

585	(Figure 10f). Stronger westerly at 30-45 °N favors the water vapor transport from the
586	Pacific Ocean. The enhance of winter storm activity and water vapor transport may
587	lead to the increase of precipitation (mainly in terms of snowfall in winter). In spring,
588	the change in temperature and zonal winds is similar to that in winter, but with a
589	northward shift of the patterns as a result of northward movements of the polar jet
590	stream and westerlies in spring (Figure not shown). Therefore, the change of snowfall
591	is likely a result of circulation change induced by SDE from both the Rocky Mountain
592	region and remote regions. It is worth isolating the impacts of SDE from the Rocky
593	Mountain region and remote regions (e.g., high-latitudes) in the future. Note that
594	increases of snow water equivalent and snow cover fraction in the Northern Rockies
595	and Greater Yellowstone region due to aerosol SDE do not pass the significant test at
596	0.1 level because of the large interannual variability in these regions.
597	Table 2 gives the winter and spring surface air temperature changes due to
598	LAAs in snow averaged over the five regions. Seasonal mean surface air temperature
599	change is around 0.9-1.1 °C in the Eastern Snake River Plain in winter and spring,
600	while this change is around 0-0.2 °C (winter) and around 0.3-0.5 °C (spring) in the
601	mountainous regions (Northern Rockies, Greater Yellowstone region, and Southern
602	Rockies). In Table 2, we also show the efficacy of snow albedo forcing, which is
603	defined as the ratio of local surface air temperature change to SRE over a specific
604	region. The efficacy is mostly around 0.1-0.5 in the three mountainous regions, but it

605	is 1.3-2.2 in the Eastern Snake River Plain and Southwestern Wyoming. This
606	indicates that stronger snow albedo feedbacks exist in the latter two regions.
607	Figures 11-12 show the monthly evolution of regional mean surface air
608	temperature, snow water equivalent, and snow cover fraction, and their changes due
609	to aerosol SDE in the Eastern Snake River Plain and Southwestern Wyoming,
610	respectively. Monthly variations of surface air temperature, snow water equivalent,
611	and snow cover fraction are similar between the two regions: lowest surface air
612	temperature and largest snow cover fraction in January, and highest snow water
613	equivalent in February-March. Significant changes of these variables from the aerosol
614	SDE occur in both regions. The largest surface air temperature increase is 1.5 °C in
615	the Eastern Snake River Plain and 1.6 °C in Southwestern Wyoming, occurring in
616	April and December, respectively. In the Eastern Snake River Plain (Southwestern
617	Wyoming), aerosol SDE leads to the reduction of snow water equivalent by 6-28 mm
618	(6-16 mm) and snow cover fraction by 5-15% (6-19%) from December to March. In
619	April (late snowmelt period) when snow water equivalent and snow cover fraction are
620	both relatively small, the aerosol SDE is more significant, which reduces snow water
621	equivalent values and snow cover fractions by about half.
622	4.5 Runoff change induced by aerosol SDE

In the model, the total runoff includes the surface runoff and sub-surface
runoff. Our simulations show that the spatial distribution and seasonal evolution of
surface runoff and sub-surface runoff are generally similar to total runoff (Figure not

626	shown), and surface runoff and subsurface runoff accounts for 30-40% and 60-70%,
627	respectively, of annual total runoff in the mountains. Here we only show the
628	simulation results of total runoff, as both surface runoff and sub-surface runoff will
629	flow to rivers and become discharge. Runoff is mainly from rainfall and snowmelt.
630	The change of rainfall is shown in Figures 9c-9d, and the snowmelt change is shown
631	in Figure 13. Aerosol SDE increases the snowmelt by 0.1-2 mm/day in the mountains
632	during the snow accumulation and early snowmelt period (in autumn, winter and
633	spring). In the late snowmelt period, aerosol SDE reduces the snowmelt due to there
634	being less snowpack available for melting in the plains (in spring) and in the
635	mountains (in summer). Note that snowmelt is slightly reduced by the aerosol SDE in
636	autumn in the Southern Rockies, which is a result of less snowpack available for
637	melting due to the reduced snowfall in this region (Figure not shown).
638	Because of the change in rainfall and snowmelt due to aerosol SDE, runoff
639	changes too. Figure 14 shows the runoff change induced by aerosol SDE in four
640	seasons. In winter, runoff is barely modified by the aerosol SDE in the Rocky
641	Mountains, except in the Northern Rockies where runoff is increased by 0.1-2 mm
642	day ⁻¹ , associated with increased rainfall (Figure 9c) and increased snowmelt (Figure
643	13a). In spring, runoff changes the most compared to all of the other seasons, with the
644	runoff increased by up to 0.5-2 mm day ⁻¹ in the mountainous regions. This is mainly
645	due to the increase of snowmelt resulting from surface warming (Figure 13b) as well
646	as due to more snow available for melt resulting from snowfall increase (Figure 9f).

647	The changes in runoff are statistically significant at 0.1 level in most of the
648	mountainous regions in spring. Absolute runoff increases are stronger in the Northern
649	Rockies and Greater Yellowstone regions than in the Southern Rockies in terms of the
650	area and magnitude, probably due to the smaller snow water equivalent in Southern
651	Rockies (Wu et al., 2017). As more snowmelt occurs in spring, less snowpack is
652	available for melt in summer and thus surface runoff is reduced by about 0.1-1 mm
653	day ⁻¹ . There is little runoff change in autumn, as there is less runoff generated from
654	rainfall and snowmelt than in other seasons. Overall, BC and dust residing in snow
655	accelerate the hydrologic cycles by increasing the runoff in spring and reducing the
656	runoff in summer. Surface warming also increases the ratio of rainfall to total
657	precipitation, which can accelerate the generation of runoff. Note that in some regions
658	of the plains, such as the central-eastern Montana, Southwestern Wyoming, and the
659	Snake River Basin, the snowmelt changes by 0.1-1 mm/day due to the aerosol SDE,
660	but the runoff changes little. This is because the water generated from snowmelt is
661	mainly stored in soil or transformed into evapotranspiration in these regions. Also
662	note that there are statistically significant increases of runoff in the southern Great
663	Plains in spring, but the change is small (around 0.05-0.1 mm/day; Figure 13b). This
664	change is a result of slight increases in both rainfall (Figure 9d) and snowmelt (Figure
665	13b).

Figure 15 shows the monthly evolution of runoff and its change due to the 666 667 aerosol SDE in the three mountainous regions (Northern Rockies, Greater

668	Yellowstone region, and Southern Rockies). In the three regions, runoff peaks in the
669	late spring and early summer (in May in Northern Rockies and Southern Rockies, and
670	in June in Greater Yellowstone region) when snow melting progresses after the peak
671	of snow water equivalent in early-to-middle April (Wu et al., 2017). This indicates the
672	significant contribution of snowmelt to runoff. Overall, runoff changes are larger in
673	the Northern Rockies and Greater Yellowstone region than in Southern Rockies,
674	which is consistent with the spatial distribution of runoff changes shown in Figure 14.
675	Runoff is significantly increased in spring and decreased in June and July, indicating
676	the acceleration of the local hydrologic cycle by aerosol SDE. In the Northern
677	Rockies, runoff is also increased from October to March but in much smaller
678	magnitudes (below 0.2 mm day ⁻¹) compared to April and May. In April (May), runoff
679	is increased by 0.39 (0.56), 0.22 (1.00), and 0.17 (0.15) mm day ⁻¹ in the the Northern
680	Rockies, Greater Yellowstone region, and Southern Rockies, respectively. This
681	increase contributes to 26% (13%), 42% (27%), and 29% (7%) of the runoff from the
682	NoSDE simulation in April (May) for the three regions, respectively. The reduction of
683	runoff in June is relatively small (0.06 and 0.11 mm day ⁻¹ , respectively) in the
684	Northern Rockies and Greater Yellowstone, only accounting for 2% of runoff from
685	the NoSDE simulation. However, it reaches up to 0.18 mm day ⁻¹ in the Southern
686	Rockies, which accounts for 15% of runoff. In addition, due to the reduction of snow
687	available for melting later in July, the runoff is further reduced. Runoff is relatively
688	smaller in July versus in previous months, and aerosol SDE can reduce the runoff by

689	0.04 (8%), 0.17 (23%), and 0.06 mm day ⁻¹ (16%) in the three regions, respectively.
690	Note that due to increase of precipitation, the annual mean runoff is increased by 0.12
691	(12%), 0.09 (10%), and 0.01 mm day ⁻¹ (2%) in these three regions, respectively.
692	5. Conclusions
693	In this study, we use VR-CESM to quantify the impacts of LAA (BC and dust)
694	deposition to the snowpack and hydrologic cycles and to surface air temperatures in
695	the Rocky Mountains. Our previous study has shown that VR-CESM reproduces
696	reasonably the spatial distributions and seasonal evolution of snowpack in the Rocky
697	Mountains (Wu et al., 2017). Here we show that the model simulates similar
698	magnitude of near-surface dust concentrations at most stations in the Rocky Mountain
699	region compared to IMPROVE observations. The model tends to underestimate
700	near-surface atmospheric BC concentrations mostly by a factor of 1.5-5 in the Rocky
701	Mountain region. The underestimation of near-surface BC concentrations may be due
702	to the absence of local sources in the BC emissions dataset used and too weak
703	transport in the model. Simulated aerosol-in-snow concentrations are closely related
704	to the distributions of both snowpack and near-surface atmospheric aerosol
705	concentrations. Simulated BC-in-snow concentrations ranges from 2 to 50 ng g^{-1} in
706	the Rocky Mountain region, and they are 35% larger than the observations for the
707	average at the 17 sites.
708	Due to the deposition of LAAs to snow, surface net shortwave radiation is

increased. Regional- and seasonal- averaged SRE induced by LAAs in snow is 0.1-0.5

710	W m ⁻² in winter in the three mountainous regions (Northern Rockies, Greater
711	Yellowstone region, and Southern Rockies) and 0.4-0.6 W m^{-2} in the two regions
712	around the mountains (Eastern Snake River Plain and Southwestern Wyoming).
713	Seasonal average SRE is much larger in spring and reaches up to 0.6-1.7 W m^{-2} in
714	these five regions (Table 2). Dust contributes 21-43% to the total SRE induced by
715	LAAs in snow in spring, indicating the important role of dust residing in snow. Of the
716	five regions, dust contributes the most (43%) to the total SRE in the Southern Rockies.
717	This is not unexpected as this region is close to dust sources in the Colorado Plateau.
718	As a result of SRE induced by LAAs in snow, surface air temperature
719	increases in most of the Rocky Mountain region. The surface air temperature increase
720	is largest over the Eastern Snake River Plain and Southwestern Wyoming, with winter
721	and spring surface air temperature increased by 0.9-1.1°C. Significant reductions of
722	snow water equivalent (by 2-50 mm) and snow cover fraction (by 5-20%) occur in
723	these two regions, indicating a strong positive snow-albedo feedback there.
724	Aerosol SDE accelerates the hydrologic cycle in the mountainous regions. In
725	April and May, monthly mean runoff is increased by 7%-42% in the three
726	mountainous regions (Northern Rockies, Greater Yellowstone region, Southern
727	Rockies). This is because of the accelerated snowmelt resulting from surface warming
728	as well as the increased snowfall resulting from enhanced winter storm activity and
729	water vapor transport from the Pacific Ocean. This enhancement may be related to
730	large-scale circulation changes. In the later stage of snowmelt, monthly runoff is

731	reduced by 2-15% in June and 8-23% in July in the three mountainous regions. In
732	particular, aerosol SDE leads to a reduction of total runoff by about 15% in June and
733	July in the Southern Rockies. This highlights the important role of aerosol SDE in
734	modulating the hydrologic cycle in these mountainous regions.
735	We note that VR-CESM still underestimates the near-surface BC
736	concentrations, however, overestimates BC-in-snow concentrations by 35% for the
737	average across the 17 observational sites. For dust in snow, the model used in this
738	study only accounts for dust particles smaller than 10 $\mu m,$ while observations made by
739	Reynolds et al. (2016) suggest that most airborne and in-snow dust mass
740	concentrations are characterized by dust particles with diameters larger than 10 μm in
741	the Utah-Colorado region. Therefore, our simulations may significantly underestimate
742	the impacts of dust in snow especially over Southern Rockies. In the Southern
743	Rockies, our simulations suggest SRE induced by dust-in-snow can reach up to 2-5 W
744	m ⁻² in the Southern Rockies, which is nearly an order of magnitude smaller than
745	values given by Painter et al. (2007) and Skiles et al. (2015) based on observed
746	dust-in-snow particles in the same region. Note that such bias in SRE may become
747	smaller in the Greater Yellowstone region and Northern Rockies as these regions are
748	farther from the dust source regions than Southern Rockies. Future observations of
749	LAAs in snow, particularly for the temporal evolution of LAAs in different snow
750	layers, as well as detailed size distribution measurements of dust particles in snow

will help reduce the uncertainties in the model quantification of the impacts of LAAsin snow.

753	Although uncertainties still exist, our results show LAAs in snow can
754	significantly affect the snowpack and consequent hydrologic cycle in the Rocky
755	Mountains. Previous studies have demonstrated that snowpack on the Rocky
756	Mountains has declined significantly in the second half of 20th century (e.g.,
757	Pederson et al., 2011). The role of LAAs in this decrease of snowpack is still
758	unknown. It would be interesting to investigate the role of LAAs and compare it with
759	those of other climate factors (such as natural climate variability and greenhouse gas
760	concentrations). Moreover, BC and dust emissions may also be subject to changes in
761	the future. Therefore, for better projections of future changes in Rocky Mountain
762	snowpack, the impacts of LAAs in snow under future emissions scenarios need to be
763	taken into account.
764	
765	Acknowledgement
766	This research is supported by National Key Research and Development Program of
767	China (grant 2016YFC0402702) and the University of Wyoming Tier-1 Engineering
768	Initiative (High-Performance Computational Science and Engineering Cluster) funded
769	by the State of Wyoming. Z. Lin was jointly supported by the Special Scientific

770 Research Fund of the Meteorological Public Welfare Profession of China (grant

771 GYHY01406021), the National Natural Science Foundation of China (grant

41575095), and Chinese Academy of Sciences "The Belt and Road Initiatives"

- 773 Program on International Cooperation: Climate Change Research and Observation
- Project (grant 134111KYSB20160010). We thank the team for maintaining the
- 775 Interagency Monitoring of PROtected Visual Environments (IMPROVE) network and
- 776 making the observation dataset available to use
- 777 (http://vista.cira.colostate.edu/Improve/improve-data/). We also thank Dr. Sarah
- 778 Doherty from the University of Washington and Dr. S. McKenzie Skiles from Jet
- 779 Propulsion Laboratory, California Institute of Technology for providing the
- observations of absorbing aerosols in snow and helpful suggestions on use of the data.
- 781 We thank Alan M. Rhoades and Paul A. Ullrich from University of California, Davis
- as well as Colin M. Zarzycki from NCAR for helpful discussions during this study.
- 783 We would like to acknowledge the use of computational resources by conducting the
- model simulations (ark:/85065/d7wd3xhc) at the NCAR-Wyoming Supercomputing
- 785 Center provided by the NSF and the State of Wyoming, and supported by NCAR's
- 786 Computational and Information Systems Laboratory. The simulation results can be
- 787 obtained by contacting the corresponding author X. Liu (xliu6@uwyo.edu).
- 788

789 References

- Abatzoglou, J. T.: Influence of the PNA on declining mountain snowpack in the
 Western United States, International Journal of Climatology, 31, 1135-1142,
 10.1002/joc.2137, 2011.
- Andreae, M. O., and Gelencsér, A.: Black carbon or brown carbon? The nature of
 light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131-3148,

- Dang, C., Fu, Q., and Warren, S. G.: Effect of Snow Grain Shape on Snow Albedo, J
 Atmos Sci, 73, 3573-3583, 10.1175/jas-d-15-0276.1, 2016.
- Dennis, J. M., Edwards, J., Evans, K. J., Guba, O., Lauritzen, P. H., Mirin, A. A.,
 St-Cyr, A., Taylor, M. A., and Worley, P. H.: CAM-SE: A scalable spectral
 element dynamical core for the Community Atmosphere Model, The
 International Journal of High Performance Computing Applications, 26, 74-89,
 doi:10.1177/1094342011428142, 2012.
- BO3 Doherty, S. J., Dang, C., Hegg, D. A., Zhang, R., and Warren, S. G.: Black carbon
 and other light-absorbing particles in snow of central North America, Journal of
 Geophysical Research: Atmospheres, 119, 12,807-812,831,
 BO6 10.1002/2014JD022350, 2014.
- Doherty, S. J., Hegg, D. A., Johnson, J. E., Quinn, P. K., Schwarz, J. P., Dang, C., and
 Warren, S. G.: Causes of variability in light absorption by particles in snow at
 sites in Idaho and Utah, Journal of Geophysical Research: Atmospheres, 121,
 2015JD024375, 10.1002/2015JD024375, 2016.
- Flanner, M. G., Zender, C. S., Randerson, J. T., and Rasch, P. J.: Present-day climate
 forcing and response from black carbon in snow, Journal of Geophysical
 Research: Atmospheres, 112, D11202, 10.1029/2006JD008003, 2007.
- Flanner, M. G., Zender, C. S., Hess, P. G., Mahowald, N. M., Painter, T. H.,
 Ramanathan, V., and Rasch, P. J.: Springtime warming and reduced snow cover
 from carbonaceous particles, Atmos. Chem. Phys., 9, 2481-2497,
 10.5194/acp-9-2481-2009, 2009.
- Flanner, M. G., Liu, X., Zhou, C., Penner, J. E., and Jiao, C.: Enhanced solar energy
 absorption by internally-mixed black carbon in snow grains, Atmos. Chem. Phys.,
 12, 4699-4721, 10.5194/acp-12-4699-2012, 2012.
- Gates, W. L.: AMIP: The Atmospheric Model Intercomparison Project, Bulletin of
 the American Meteorological Society, 73, 1962-1970,
 10.1175/1520-0477(1992)073<1962:atamip>2.0.co;2, 1992.
- Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., and Zhao, M.: Global-Scale
 Attribution of Anthropogenic and Natural Dust Sources and Their Emission
 Rates Based on Modis Deep Blue Aerosol Products, Rev Geophys, 50, Artn
 Rg3005, doi 10.1029/2012rg000388, 2012.
- 828 Haarsma, R. J., Roberts, M. J., Vidale, P. L., Senior, C. A., Bellucci, A., Bao, Q.,

^{795 10.5194/}acp-6-3131-2006, 2006.

Chang, P., Corti, S., Fučkar, N. S., Guemas, V., von Hardenberg, J., Hazeleger,
W., Kodama, C., Koenigk, T., Leung, L. R., Lu, J., Luo, J. J., Mao, J.,
Mizielinski, M. S., Mizuta, R., Nobre, P., Satoh, M., Scoccimarro, E., Semmler,
T., Small, J., and von Storch, J. S.: High Resolution Model Intercomparison
Project (HighResMIP v1.0) for CMIP6, Geosci. Model Dev., 9, 4185-4208,
10.5194/gmd-9-4185-2016, 2016.

- Hansen, J., and Nazarenko, L.: Soot climate forcing via snow and ice albedos,
 Proceedings of the National Academy of Sciences of the United States of
 America, 101, 423-428, 10.1073/pnas.2237157100, 2004.
- He, C., Li, Q., Liou, K.-N., Takano, Y., Gu, Y., Qi, L., Mao, Y., and Leung, L. R.:
 Black carbon radiative forcing over the Tibetan Plateau, Geophys Res Lett, 41,
 7806-7813, 10.1002/2014GL062191, 2014.
- He, C., Takano, Y., Liou, K.-N., Yang, P., Li, Q., and Chen, F.: Impact of Snow Grain
 Shape and Black Carbon–Snow Internal Mixing on Snow Optical Properties:
 Parameterizations for Climate Models, J Climate, 30, 10019-10036,
 10.1175/jcli-d-17-0300.1, 2017.
- Huang, X., Rhoades, A. M., Ullrich, P. A., and Zarzycki, C. M.: An evaluation of the
 variable-resolution CESM for modeling California's climate, Journal of
 Advances in Modeling Earth Systems, 8, 345-369, 10.1002/2015MS000559,
 2016.
- Hurrell, J. W., Hack, J. J., Shea, D., Caron, J. M., and Rosinski, J.: A New Sea
 Surface Temperature and Sea Ice Boundary Dataset for the Community
 Atmosphere Model, J Climate, 21, 5145-5153, 10.1175/2008jcli2292.1, 2008.
- Hurrell, J. W., Holland, M. M., Gent, P. R., Ghan, S., Kay, J. E., Kushner, P. J.,
- Lamarque, J. F., Large, W. G., Lawrence, D., Lindsay, K., Lipscomb, W. H.,
- 854 Long, M. C., Mahowald, N., Marsh, D. R., Neale, R. B., Rasch, P., Vavrus, S.,
- 855 Vertenstein, M., Bader, D., Collins, W. D., Hack, J. J., Kiehl, J., and Marshall, S.:
- The Community Earth System Model: A Framework for Collaborative Research,
 Bulletin of the American Meteorological Society, 94, 1339-1360,
 10.1175/BAMS-D-12-00121.1, 2013.
- Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and
 Collins, W. D.: Radiative forcing by long-lived greenhouse gases: Calculations
 with the AER radiative transfer models, Journal of Geophysical Research:
 Atmospheres, 113, D13103, 10.1029/2008JD009944, 2008.

- Kavouras, I. G., Etyemezian, V., Xu, J., DuBois, D. W., Green, M., and Pitchford, M.:
 Assessment of the local windblown component of dust in the western United
 States, Journal of Geophysical Research: Atmospheres, 112, n/a-n/a,
 10.1029/2006JD007832, 2007.
- Koch, D., Schulz, M., Kinne, S., McNaughton, C., Spackman, J. R., Balkanski, Y.,
 Bauer, S., Berntsen, T., Bond, T. C., Boucher, O., Chin, M., Clarke, A., De Luca,
 N., Dentener, F., Diehl, T., Dubovik, O., Easter, R., Fahey, D. W., Feichter, J.,
- 870 Fillmore, D., Freitag, S., Ghan, S., Ginoux, P., Gong, S., Horowitz, L., Iversen,
- 871 T., Kirkev, aring, g, A., Klimont, Z., Kondo, Y., Krol, M., Liu, X., Miller, R.,
- 872 Montanaro, V., Moteki, N., Myhre, G., Penner, J. E., Perlwitz, J., Pitari, G.,
- 873 Reddy, S., Sahu, L., Sakamoto, H., Schuster, G., Schwarz, J. P., Seland, Ø., Stier,
- P., Takegawa, N., Takemura, T., Textor, C., van Aardenne, J. A., and Zhao, Y.:
- Evaluation of black carbon estimations in global aerosol models, Atmos. Chem.
 Phys., 9, 9001-9026, 10.5194/acp-9-9001-2009, 2009.
- Lamarque, J. F., Bond, T. C., Eyring, V., Granier, C., Heil, A., Klimont, Z., Lee, D.,
 Liousse, C., Mieville, A., Owen, B., Schultz, M. G., Shindell, D., Smith, S. J.,
 Stehfest, E., Van Aardenne, J., Cooper, O. R., Kainuma, M., Mahowald, N.,
 McConnell, J. R., Naik, V., Riahi, K., and van Vuuren, D. P.: Historical
 (1850–2000) gridded anthropogenic and biomass burning emissions of reactive
 gases and aerosols: methodology and application, Atmos. Chem. Phys., 10,
 7017-7039, 10.5194/acp-10-7017-2010, 2010.
- Lauritzen, P. H., Bacmeister, J. T., Callaghan, P. F., and Taylor, M. A.: NCAR_Topo
 (v1.0): NCAR global model topography generation software for unstructured
 grids, Geosci. Model Dev., 8, 3975-3986, 10.5194/gmd-8-3975-2015, 2015.
- Liou, K. N., Takano, Y., He, C., Yang, P., Leung, L. R., Gu, Y., and Lee, W. L.:
 Stochastic parameterization for light absorption by internally mixed BC/dust in
 snow grains for application to climate models, Journal of Geophysical Research:
 Atmospheres, 119, 7616-7632, 10.1002/2014JD021665, 2014.
- 891 Liu, X., Easter, R. C., Ghan, S. J., Zaveri, R., Rasch, P., Shi, X., Lamarque, J. F., 892 Gettelman, A., Morrison, H., Vitt, F., Conley, A., Park, S., Neale, R., Hannay, C., 893 Ekman, A. M. L., Hess, P., Mahowald, N., Collins, W., Iacono, M. J., Bretherton, C. S., Flanner, M. G., and Mitchell, D.: Toward a minimal representation of 894 aerosols in climate models: description and evaluation in the Community 895 896 Atmosphere Model CAM5, Geosci. Model Dev., 5, 709-739,

897 10.5194/gmd-5-709-2012, 2012.

- Malm, W. C., Sisler, J. F., Huffman, D., Eldred, R. A., and Cahill, T. A.: Spatial and
 seasonal trends in particle concentration and optical extinction in the United
 States, Journal of Geophysical Research: Atmospheres, 99, 1347-1370,
 10.1029/93JD02916, 1994.
- Malm, W. C., Pitchford, M. L., McDade, C., and Ashbaugh, L. L.: Coarse particle
 speciation at selected locations in the rural continental United States, Atmos
 Environ, 41, 2225-2239, http://doi.org/10.1016/j.atmosenv.2006.10.077, 2007.
- Morrison, H., and Gettelman, A.: A New Two-Moment Bulk Stratiform Cloud
 Microphysics Scheme in the Community Atmosphere Model, Version 3 (CAM3).
 Part I: Description and Numerical Tests, J Climate, 21, 3642-3659,
 10.1175/2008JCLI2105.1, 2008.
- 909 Neale, R. B., and Coauthors: Description of the NCAR Community Atmosphere
 910 Model (CAM5). *NCAR Tech. Note. NCAR/TN-485+STR*, Natl. Cent. for Atmos.
 911 Res., Boulder, CO, 2010.
- Oaida, C. M., Xue, Y., Flanner, M. G., Skiles, S. M., De Sales, F., and Painter, T. H.:
 Improving snow albedo processes in WRF/SSiB regional climate model to assess
 impact of dust and black carbon in snow on surface energy balance and
 hydrology over western U.S, Journal of Geophysical Research: Atmospheres,
 120, 3228-3248, 10.1002/2014JD022444, 2015.
- 917 Oleson, K. W., D. M. Lawrence, B. Gordon, M. G. Flanner, E. Kluzek, J. Peter, S.
 918 Levis, S. C. Swenson, E. Thornton, and J. Feddema: Technical description of
 919 version 4.0 of the Community Land Model (CLM), NCAR Tech. Note
 920 NCAR/TN-4781STR, Natl. Cent. for Atmos. Res., Boulder, CO, 2010.
- Painter, T. H., Barrett, A. P., Landry, C. C., Neff, J. C., Cassidy, M. P., Lawrence, C.
 R., McBride, K. E., and Farmer, G. L.: Impact of disturbed desert soils on
 duration of mountain snow cover, Geophys Res Lett, 34, n/a-n/a,
 10.1029/2007GL030284, 2007.
- Painter, T. H., Deems, J. S., Belnap, J., Hamlet, A. F., Landry, C. C., and Udall, B.:
 Response of Colorado River runoff to dust radiative forcing in snow,
 Proceedings of the National Academy of Sciences, 107, 17125-17130,
 10.1073/pnas.0913139107, 2010.
- Painter, T. H., Skiles, S. M., Deems, J. S., Bryant, A. C., and Landry, C. C.: Dust
 radiative forcing in snow of the Upper Colorado River Basin: 1. A 6 year record

- 931 of energy balance, radiation, and dust concentrations, Water Resources Research,
 932 48, W07521, 10.1029/2012WR011985, 2012.
- Park, S., and Bretherton, C. S.: The University of Washington Shallow Convection
 and Moist Turbulence Schemes and Their Impact on Climate Simulations with
 the Community Atmosphere Model, J Climate, 22, 3449-3469,
 10.1175/2008JCLI2557.1, 2009.
- Park, S., Bretherton, C. S., and Rasch, P. J.: Integrating Cloud Processes in the
 Community Atmosphere Model, Version 5, J Climate, 27, 6821-6856,
 10.1175/JCLI-D-14-00087.1, 2014.
- Pederson, G. T., Gray, S. T., Woodhouse, C. A., Betancourt, J. L., Fagre, D. B., Littell,
 J. S., Watson, E., Luckman, B. H., and Graumlich, L. J.: The Unusual Nature of
 Recent Snowpack Declines in the North American Cordillera, Science, 333,
 332-335, 10.1126/science.1201570, 2011.
- Qian, Y., Gustafson, W. I., Leung, L. R., and Ghan, S. J.: Effects of soot-induced
 snow albedo change on snowpack and hydrological cycle in western United
 States based on Weather Research and Forecasting chemistry and regional
 climate simulations, Journal of Geophysical Research: Atmospheres, 114, n/a-n/a,
 10.1029/2008JD011039, 2009.
- Qian, Y., Flanner, M. G., Leung, L. R., and Wang, W.: Sensitivity studies on the
 impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle
 and monsoon climate, Atmos. Chem. Phys., 11, 1929-1948,
 10.5194/acp-11-1929-2011, 2011.
- Qian, Y., Wang, H., Zhang, R., Flanner, M. G., and Rasch, P. J.: A sensitivity study
 on modeling black carbon in snow and its radiative forcing over the Arctic and
 Northern China, Environmental Research Letters, 9, 064001, 2014.
- Qian, Y., Yasunari, T. J., Doherty, S. J., Flanner, M. G., Lau, W. K. M., Ming, J.,
 Wang, H., Wang, M., Warren, S. G., Zhang, R.: Light-absorbing Particles in
 Snow and Ice: Measurement and Modeling of Climatic and Hydrological impact,
 Adv. Atmos. Sci., 32, 64-91, 10.1007/s00376-014-0010-0, 2015.
- Reynolds, R. L., Munson, S. M., Fernandez, D., Goldstein, H. L., and Neff, J. C.:
 Concentrations of mineral aerosol from desert to plains across the central Rocky
 Mountains, western United States, Aeolian Res, 23, 21-35,
 http://doi.org/10.1016/j.aeolia.2016.09.001, 2016.
- 964 Rhoades, A. M., Huang, X., Ullrich, P. A., and Zarzycki, C. M.: Characterizing Sierra

- 965 Nevada Snowpack Using Variable-Resolution CESM, Journal of Applied
 966 Meteorology and Climatology, 55, 173-196, 10.1175/jamc-d-15-0156.1, 2016.
- 967 Rhoades, A. M., Ullrich, P. A., and Zarzycki, C. M.: Projecting 21st century
 968 snowpack trends in western USA mountains using variable-resolution CESM,
 969 Climate Dynamics, 1-28, doi:10.1007/s00382-017-3606-0, 2017.
- 970 Richter, J. H., and Rasch, P. J.: Effects of Convective Momentum Transport on the
 971 Atmospheric Circulation in the Community Atmosphere Model, Version 3, J
 972 Climate, 21, 1487-1499, 10.1175/2007JCLI1789.1, 2008.
- Sakaguchi, K., Leung, L. R., Zhao, C., Yang, Q., Lu, J., Hagos, S., Rauscher, S. A.,
 Dong, L., Ringler, T. D., and Lauritzen, P. H.: Exploring a Multiresolution
 Approach Using AMIP Simulations, J Climate, 28, 5549-5574,
 10.1175/jcli-d-14-00729.1, 2015.
- 977 Serreze, M. C., Clark, M. P., Armstrong, R. L., McGinnis, D. A., and Pulwarty, R. S.:
 978 Characteristics of the western United States snowpack from snowpack telemetry
 979 (SNOTEL) data, Water Resources Research, 35, 2145-2160,
 980 10.1029/1999WR900090, 1999.
- 981 Skiles S. M. and Painter T. H.: A 9-yr record of dust on snow in the Colorado River
 982 Basin. 12th Biennial Conference of Science and Management on the Colorado
 983 Plateau, 3-11, 2016a.
- 984 Skiles, S. M., and Painter, T.: Daily evolution in dust and black carbon content, snow
 985 grain size, and snow albedo during snowmelt, Rocky Mountains, Colorado,
 986 Journal of Glaciology, 63, 118-132, 10.1017/jog.2016.125, 2016b.
- 987 Skiles, S. M., Painter, T. H., Belnap, J., Holland, L., Reynolds, R. L., Goldstein, H. L.,
 988 and Lin, J.: Regional variability in dust-on-snow processes and impacts in the
 989 Upper Colorado River Basin, Hydrological Processes, 29, 5397-5413,
 990 10.1002/hyp.10569, 2015.
- Toon, O. B., McKay, C. P., Ackerman, T. P., and Santhanam, K.: Rapid calculation of
 radiative heating rates and photodissociation rates in inhomogeneous multiple
 scattering atmospheres, Journal of Geophysical Research: Atmospheres, 94,
 16287-16301, 10.1029/JD094iD13p16287, 1989.
- 995 Ullrich, P. A.: SQuadGen: Spherical quadrilateral grid generator. University of
 996 California, Davis, Climate and Global Change Group software, available online
 997 at <u>https://github.com/ClimateGlobalChange/squadgen</u> (last access: 24 April
 998 2017), 2014.

- Warren, S. G., and Wiscombe, W. J.: A Model for the Spectral Albedo of Snow. II:
 Snow Containing Atmospheric Aerosols, J Atmos Sci, 37, 2734-2745,
 1001 10.1175/1520-0469(1980)037<2734:amftsa>2.0.co;2, 1980.
- Wells, K. C., Witek, M., Flatau, P., Kreidenweis, S. M., and Westphal, D. L.: An
 analysis of seasonal surface dust aerosol concentrations in the western US
 (2001–2004): Observations and model predictions, Atmos Environ, 41,
 6585-6597, http://doi.org/10.1016/j.atmosenv.2007.04.034, 2007.
- Wu, C., Lin, Z., He, J., Zhang, M., Liu, X., Zhang, R., and Brown, H.: A
 process-oriented evaluation of dust emission parameterizations in CESM:
 Simulation of a typical severe dust storm in East Asia, Journal of Advances in
 Modeling Earth Systems, 8, 1432-1452, 10.1002/2016MS000723, 2016.
- 1010 Wu, C., Liu, X., Lin, Z., Rhoades, A. M., Ullrich, P. A., Zarzycki, C. M., Lu, Z., and Rahimi-Esfarjani, S. R.: Exploring a Variable-Resolution Approach for 1011 1012 Simulating Regional Climate in the Rocky Mountain Region Using the 1013 VR-CESM. Journal Geophysical Research: Atmospheres, of 122. 1014 10,939-910,965, 10.1002/2017JD027008, 2017.
- Yasunari, T. J., Koster, R. D., Lau, W. K. M., and Kim, K.-M.: Impact of snow
 darkening via dust, black carbon, and organic carbon on boreal spring climate in
 the Earth system, Journal of Geophysical Research: Atmospheres, 120,
 2014JD022977, 10.1002/2014JD022977, 2015.
- Zarzycki, C. M., and Jablonowski, C.: A multidecadal simulation of Atlantic tropical
 cyclones using a variable-resolution global atmospheric general circulation
 model, Journal of Advances in Modeling Earth Systems, 6, 805-828,
 1022 10.1002/2014MS000352, 2014.
- Zarzycki, C. M., Jablonowski, C., and Taylor, M. A.: Using Variable-Resolution
 Meshes to Model Tropical Cyclones in the Community Atmosphere Model, Mon
 Weather Rev, 142, 1221-1239, 10.1175/mwr-d-13-00179.1, 2014a.
- Zarzycki, C. M., Levy, M. N., Jablonowski, C., Overfelt, J. R., Taylor, M. A., and
 Ullrich, P. A.: Aquaplanet Experiments Using CAM's Variable-Resolution
 Dynamical Core, J Climate, 27, 5481-5503, 10.1175/jcli-d-14-00004.1, 2014b.
- Zarzycki, C. M., Jablonowski, C., Thatcher, D. R., and Taylor, M. A.: Effects of
 Localized Grid Refinement on the General Circulation and Climatology in the
 Community Atmosphere Model, J Climate, 28, 2777-2803,
 10.1175/jcli-d-14-00599.1, 2015.

Zhang, G. J., and McFarlane, N. A.: Sensitivity of climate simulations to the
parameterization of cumulus convection in the Canadian Climate Centre general
circulation model, Atmosphere-Ocean, 33, 407-446, 1995.

- 1036 Zhang, R., Wang, H., Hegg, D. A., Qian, Y., Doherty, S. J., Dang, C., Ma, P. L.,
 1037 Rasch, P. J., and Fu, Q.: Quantifying sources of black carbon in western North
- 1038 America using observationally based analysis and an emission tagging technique
- in the Community Atmosphere Model, Atmos. Chem. Phys., 15, 12805-12822,
 1040 10.5194/acp-15-12805-2015, 2015.

1041

Table 1. Observations of BC mass concentration in snow column (C_{BC}, ng g⁻¹, i.e., ng
gram BC per g snow) in the Rocky Mountain region compiled from previously
published literature.

No.	Latitude	Longitude	Elevation	Date sampled	$C_{BC} (ng g^{-1})^a$	Source	
	(°N)	(°W)	(m)				
1	40.9014	115.8910	1949	2/1/13	7.6	Site 8 of Doherty et al. (2014)	
2	42.2767	116.0115	1772	2/1/13	5.6	Site 9 of Doherty et al. (2014)	
3	43.3495	115.3968	1538	2/3/13	6.0	Site 10 of Doherty et al. (2014)	
4	43.5927	113.5894	1942	2/3/13	5.8	Site 11 of Doherty et al. (2014)	
5	43.4010	111.2053	1727	2/4/13	6.8	Site 12 of Doherty et al. (2014)	
6	42.9357	109.8576	2274	2/4/13	6.3	Site 13 of Doherty et al. (2014)	
7	41.7297	109.3668	2223	2/5/13	29.1	Site 14 of Doherty et al. (2014)	
8	40.7464	109.4776	2583	2/5/13	9.3	Site 15 of Doherty et al. (2014)	
9	40.1316	109.4711	1538	2/7/13	14.3	Site 16 of Doherty et al. (2014)	
10	40.4929	107.8994	1962	2/8/13	9.5	Site 17 of Doherty et al. (2014)	
11	40.6695	106.4158	2512	2/9/13	11.4	Site 18 of Doherty et al. (2014)	
12	48.2318	105.0949	648	2/17/13	10.9	Site 24 of Doherty et al. (2014)	
13	44.9475	116.0813	1528	1/27/14-3/24/14	9.8 (5.4)	Site McCall of Doherty et al.	
						(2016)	
14	44.4224	115.9899	1450	2/1/14-3/4/14	13.3 (9.5)	Site Cascade Valley of Dohert	
						et al. (2016)	
15	44.0949	115.9771	960	2/1/14-3/4/14	14.9 (8.9)	Site Garden Valley of Doherty	
						et al. (2016)	
16	40.143	109.467	1620	1/28/13-2/21/13	33.6 (25.4)	Site Vernal of Doherty et al.	
				1/17/14-2/13/14		(2016)	
17	37.9069	107.7113	3368	3/25/13-5/18/13	5.5 (1.7)	At Senator Beck Basin Study	
						Area (SBBSA) (Skiles and	
						Painter, 2016b)	

1047 ^a: If multi-measurements of C_{BC} are made during the observation period, the mean C_{BC} is given

1048 with the standard deviation of C_{BC} shown in parenthesis next to the mean C_{BC} .

Table 2. Winter (December-January-February) and spring (March-April-May) mean
surface shortwave radiative effect (SRE; W m⁻²) due to BC alone, dust alone and BC
and dust together in snow, as well as surface air temperature (SAT; °C) change and
the efficacy of SRE in SAT change in the five regions (see Figure 1c). Note that SRE
induced by BC and dust together is slightly larger than the sum of SRE induced by
BC and SRE by dust separately.

1057

1050

Season	SRE by BC ^a	SRE by dust ^a	SRE by BC & dust	SAT change	Efficacy ^b			
			Northern Rockies					
Winter	0.13 (92%)	0.01 (8%)	0.14	0.08	0.57			
Spring	0.42 (79%)	0.11 (21%)	0.57	0.32	0.56			
	Greater Yellowstone region							
Winter	0.24 (88%)	0.03 (12%)	0.28	0.004	0.014			
Spring	1.11 (71%)	0.45 (29%)	1.70	0.50	0.29			
			Southern Rockies					
Winter	0.36 (77%)	0.11 (23%)	0.50	0.17	0.34			
Spring	0.79 (58%)	0.58 (42%)	1.58	0.30	0.19			
		1	Eastern Snake River Pla	ain				
Winter	0.50 (84%)	0.09 (16%)	0.62	0.93	1.5			
Spring	0.54 (73%)	0.20 (27%)	0.80	1.13	1.41			
			Southwestern Wyomir	ıg				
Winter	0.33 (81%)	0.08 (19%)	0.43	0.93	2.16			
Spring	0.43 (67%)	0.22 (33%)	0.70	0.90	1.29			

^a: The fraction of SRE by BC (dust) to the sum of SRE by BC and SRE by dust is given in

1059 parenthesis next to SRE by BC (dust).

1060 ^b: Efficacy of snow/ice albedo forcing (°C increase per 1 W m⁻²) is defined as the ratio of SAT

1061 change to SRE.

1063 Figure captions:

Figure 1. (a) Model meshes for variable resolution (uniform 1° with refined 0.125° in 1065 the Rocky Mountains) used in VR-CESM. Note that each element shown contains 1066 1067 additional 3×3 collocation gridcells. (b) Terrain height (m) in the western US for the 1068 variable resolution grid used in VR-CESM (section 2). The refined region at a resolution of 0.125° is surrounded by dashed lines. (c) Five regions identified for the 1069 1070 analysis in this study, including three mountainous region (1, Northern Rockies; 2, Greater Yellowstone region; 3, Southern Rockies) and two regions in the plains 1071 1072 around the mountains (4, Eastern Snake River Plain; 5, Southwestern Wyoming). 1073 Figure 2. Spatial distribution of cold season (winter and spring) mean (a) BC 1074 emission flux and (b) near-surface BC concentration from the VR-CESM simulation; 1075 (c) and (d) for dust emission flux and near-surface dust concentration, respectively. 1076 Also shown are the IMPROVE stations (blue open circle) selected for model 1077 validation, with the size of the circles from small to large indicating the magnitude of 1078 observed near-surface BC/dust concentrations. The black rectangles in (b) and (d) 1079 denotes the five regions (A, West Coast; B, Rocky Mountains; C, Utah and Nevada; 1080 D, Southwestern US; E, Great Plain), which will be used to classify the stations in Figure 3. Note that units for BC and dust concentrations are ng m⁻³ and μ g m⁻³, 1081 1082 respectively. Figure 3. Comparison of cold season (winter and spring) mean near-surface (a) BC 1083 and (b) dust concentrations at IMPROVE stations from VR-CESM simulation and 1084 IMPROVE observations. Also given are the mean results at all the stations from 1085 1086 simulation and observations and their correlation coefficient (R). The 1:1 (solid) and

1087 1:5/5:1 (dash) lines are plotted for reference.

1088 Figure 4. Winter (December-January-February (DJF); left) and spring

- 1089 (March-April-May (MAM); right) mean BC (upper row) and dust (bottom row) mass
- 1090 mixing ratios in snow column. Also shown are the stations for observations of BC
- 1091 mass in snow column (a, b) and for observations of dust mass in snow column in the
- 1092 San Juan Mountains and Grand Mesa (denoted by the diamond and square,
- 1093 respectively; c, d). Note that the units for BC and dust mass mixing ratios are given in

1094 different units, i.e., ng g^{-1} and $\mu g g^{-1}$, respectively.

- **1095** Figure 5. Comparison of BC mass concentrations in the snow column (C_{BC}) at the 17
- sites (see Table 1) from VR-CESM simulations and observations with the error bars

- 1097 denoting the corresponding standard deviations. The observations are compiled from
- the previously published studies (Table 1). If multiple observations are recorded at a
- 1099 certain site, the observed standard deviations are calculated from these multiple
- 1100 observations (section 3). Simulated BC mass concentration in the snow column and
- 1101 its standard deviation are calculated from the 25-year mean and standard deviation of
- simulation on the same month/day as the observations (section 3). The 1:1 (solid) and
- 1103 1:5/5:1 (dash) lines are plotted for reference.
- 1104 Figure 6. Winter (December-January-February (DJF), left) and spring
- 1105 (March-April-May (MAM), right) mean surface shortwave radiative effect (SRE, W
- 1106 m^{-2}) induced by BC (top) and dust (bottom).

Figure 7. Monthly variations of surface radiative effect (SRE; W m⁻²) during the

- 1108 water year (October 1st to September 30th) averaged over the Northern Rockies,
- 1109 Greater Yellowstone region, Southern Rockies, Eastern Snake River Basin, and
- 1110 Southwestern Wyoming, respectively.
- 1111 Figure 8. Changes in surface air temperature (upper row; °C), snow water equivalent
- 1112 (middle row; mm), and snow cover fraction (bottom row; %) in winter (left) and
- spring (right) induced by BC- and dust-in-snow. The crosses denote the regions where
- 1114 changes are statistically significant at 0.1 level.
- Figure 9. As Figure 8, but for total precipitation change (top), rainfall change (center),
 and snowfall change (bottom). The unit is mm day⁻¹.
- **Figure 10.** (a–c) Wintertime temperature (°C) and (e-f) zonal winds (m s⁻¹) averaged
- 1118 at 102–125°W from CTL and NoSDE simulations and their difference. Note that
- 1119 zonal winds are averaged for a range of longitudes, which correspond to the
- east-western boundary of western U.S. including the Rocky Mountains and upwindregions (Figure 1).
- **Figure 11.** Seasonal evolution of (a) surface air temperature, (c) snow water
- equivalent, and (e) snow cover fraction and their changes due to SDE (b, d, and f)
- 1124 averaged over the Eastern Snake River Plain.
- **Figure 12.** As Figure 11, but for Southwestern Wyoming.
- **Figure 13.** Snowmelt change (mm day⁻¹) due to SDE of BC and dust in four seasons:
- 1127 (a) December-January-February (DJF), (b) March-April-May (MAM), (c)
- 1128 June-July-August (JJA), and (d) September-October-November (SON). The crosses
- denote the regions where changes induced by SDE are statistically significant at 0.1
- 1130 level.

- **1131** Figure 14. As Figure 13, but for runoff change (mm day⁻¹).
- **Figure 15.** Seasonal evolution of total runoff including surface and subsurface runoff
- 1133 (left) and their change (right) in the Northern Rockies (top), the Greater Yellowstone
- 1134 region (center), and Southern Rockies (bottom). The unit is $mm day^{-1}$.
- 1135
- 1136

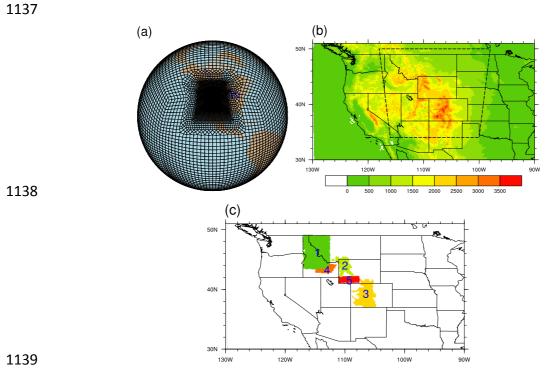
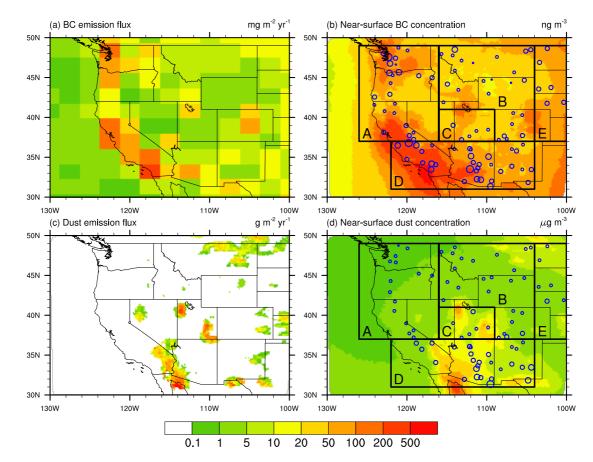



Figure 1. (a) Model meshes for variable resolution (uniform 1° with refined 0.125° in 1141 the Rocky Mountains) used in VR-CESM. Note that each element shown contains 1142 additional 3×3 collocation gridcells. (b) Terrain height (m) in the western US for the 1143 variable resolution grid used in VR-CESM (section 2). The refined region at a 1144 1145 resolution of 0.125° is surrounded by dashed lines. (c) Five regions identified for the 1146 analysis in this study, including three mountainous region (1, Northern Rockies; 2, 1147 Greater Yellowstone region; 3, Southern Rockies) and two regions in the plains around the mountains (4, Eastern Snake River Plain; 5, Southwestern Wyoming). 1148 1149

1152

1153 Figure 2. Spatial distribution of cold season (winter and spring) mean (a) BC 1154 emission flux and (b) near-surface BC concentration from the VR-CESM simulation; 1155 (c) and (d) for dust emission flux and near-surface dust concentration, respectively. Also shown are the IMPROVE stations (blue open circle) selected for model 1156 1157 validation, with the size of the circles from small to large indicating the magnitude of 1158 observed near-surface BC/dust concentrations. The black rectangles in (b) and (d) 1159 denotes the five regions (A, West Coast; B, Rocky Mountains; C, Utah and Nevada; D, Southwestern US; E, Great Plain), which will be used to classify the stations in 1160 Figure 3. Note that units for BC and dust concentrations are ng m⁻³ and μ g m⁻³, 1161 respectively. 1162 1163

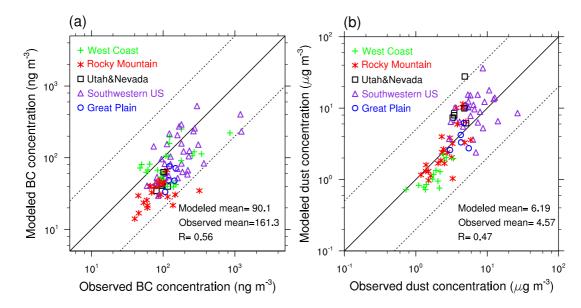
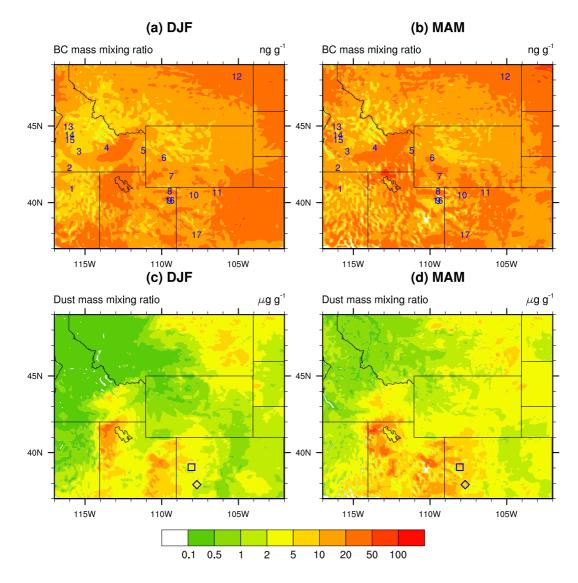
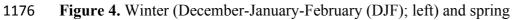




Figure 3. Comparison of cold season (winter and spring) mean near-surface (a) BC
and (b) dust concentrations at IMPROVE stations from VR-CESM simulation and
IMPROVE observations. Also given are the mean results at all the stations from
simulation and observations and their correlation coefficient (*R*). The 1:1 (solid) and
1:5/5:1 (dash) lines are plotted for reference.


```
1177 (March-April-May (MAM); right) mean BC (upper row) and dust (bottom row) mass
```

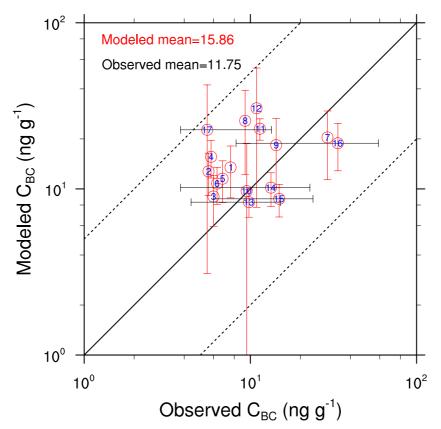
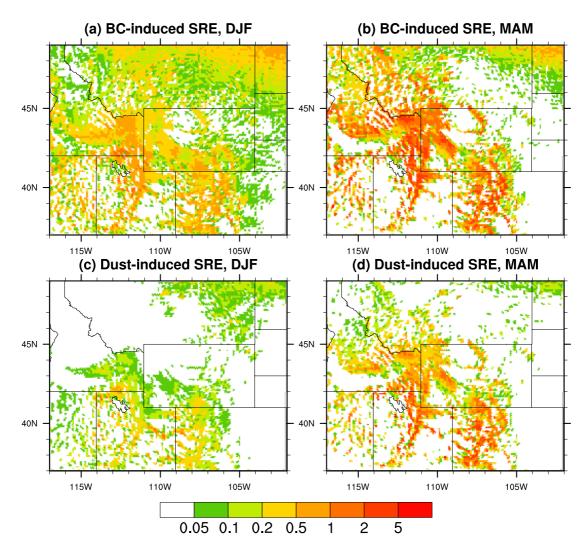
1178 mixing ratios in snow column. Also shown are the stations for observations of BC

1179 mass in snow column (a, b) and for observations of dust mass in snow column in the

1180 San Juan Mountains and Grand Mesa (denoted by the diamond and square,

1181 respectively; c, d). Note that the units for BC and dust mass mixing ratios are given in

- **1182** different units, i.e., ng g^{-1} and $\mu g g^{-1}$, respectively.
- 1183

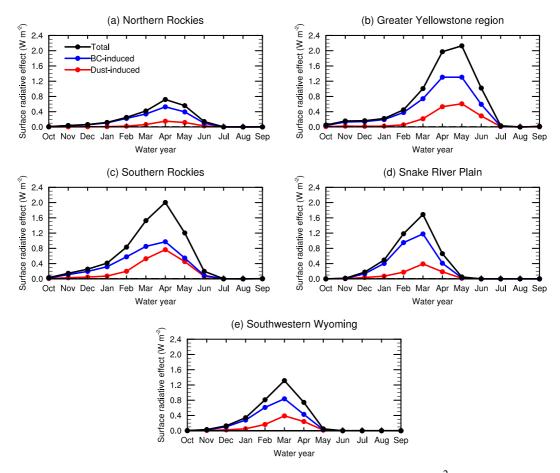
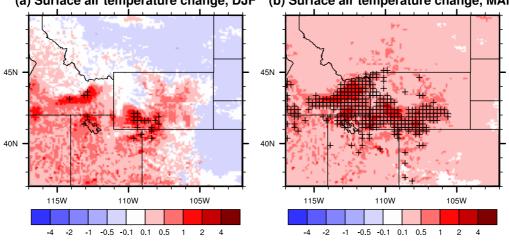

Figure 5. Comparison of BC mass concentrations in the snow column (C_{BC}) at the 17 sites (see Table 1) from VR-CESM simulations and observations with the error bars denoting the corresponding standard deviations. The observations are compiled from the previously published studies (Table 1). If multiple observations are recorded at a certain site, the observed standard deviations are calculated from these multiple observations (section 3). Simulated BC mass concentration in the snow column and its standard deviation are calculated from the 25-year mean and standard deviation of simulation on the same month/day as the observations (section 3). The 1:1 (solid) and 1:5/5:1 (dash) lines are plotted for reference.

Figure 6. Winter (December-January-February (DJF), left) and spring

1201 (March-April-May (MAM), right) mean surface shortwave radiative effect (SRE, W

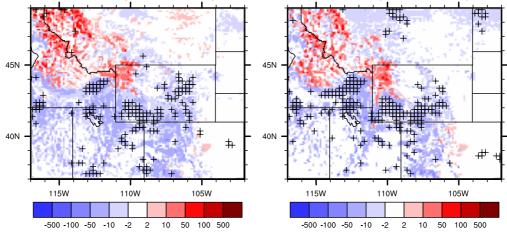
 m^{-2}) induced by BC (top) and dust (bottom).



1205

Figure 7. Monthly variations of surface radiative effect (SRE; W m⁻²) during the
water year (October 1st to September 30th) averaged over the Northern Rockies,

1208 Greater Yellowstone region, Southern Rockies, Eastern Snake River Basin, and


- 1209 Southwestern Wyoming, respectively.
- 1210

(a) Surface air temperature change, DJF (b) Surface air temperature change, MAN

(c) Snow water equivalent change, DJF

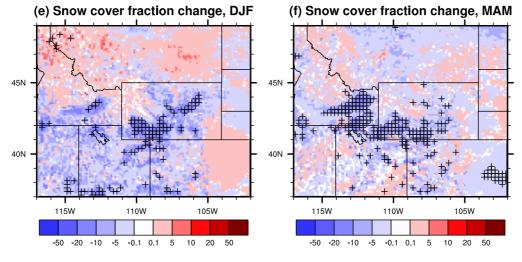


Figure 8. Changes in surface air temperature (upper row; °C), snow water equivalent
(middle row; mm), and snow cover fraction (bottom row; %) in winter (left) and
spring (right) induced by BC- and dust-in-snow. The crosses denote the regions where
changes are statistically significant at 0.1 level.

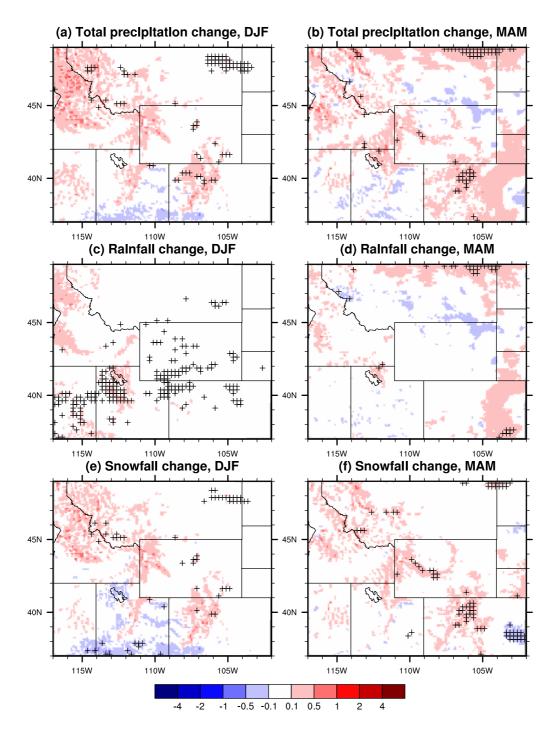
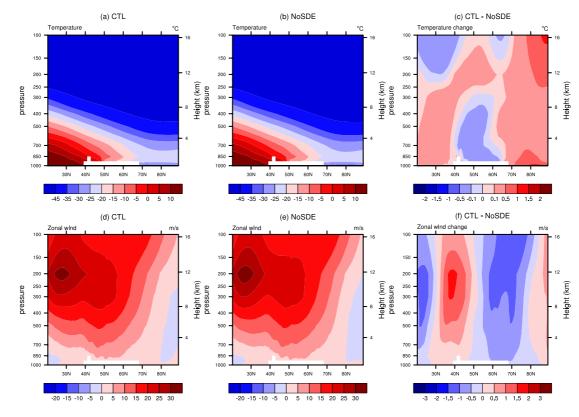
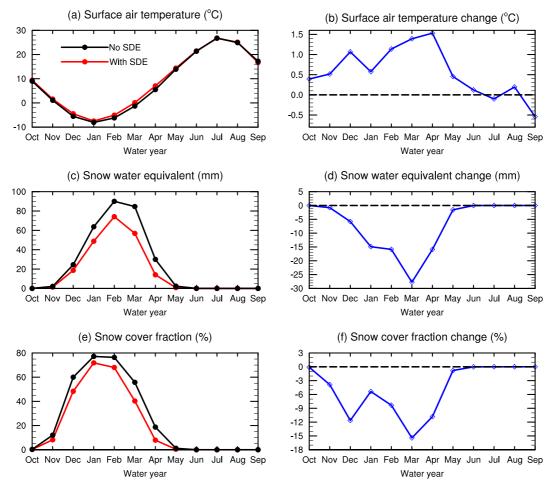
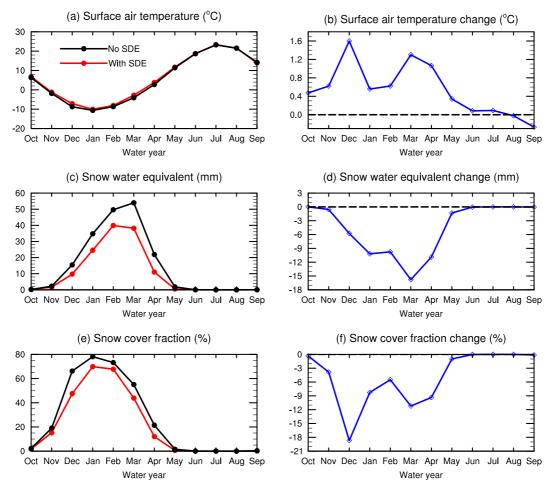
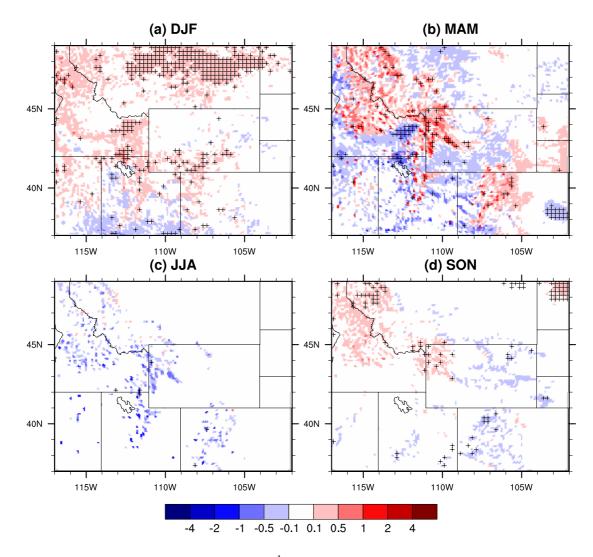


Figure 9. As Figure 8, but for total precipitation change (top), rainfall change (center),

1219 and snowfall change (bottom). The unit is mm day⁻¹.


Figure 10. (a–c) Wintertime temperature (°C) and (e-f) zonal winds (m s⁻¹) averaged
at 102–125°W from CTL and NoSDE simulations and their difference. Note that
zonal winds are averaged for a range of longitudes, which correspond to the
east-western boundary of western U.S. including the Rocky Mountains and upwind
regions (Figure 1).


1232 Figure 11. Seasonal evolution of (a) surface air temperature, (c) snow water

1233 equivalent, and (e) snow cover fraction and their changes due to SDE (b, d, and f)

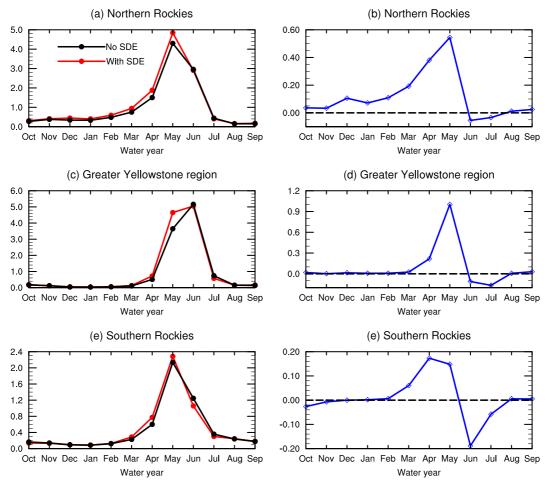
- 1234 averaged over the Eastern Snake River Plain.
- 1235

1237 Figure 12. As Figure 11, but for Southwestern Wyoming.

1239

Figure 13. Snowmelt change (mm day⁻¹) due to SDE of BC and dust in four seasons:

1241 (a) December-January-February (DJF), (b) March-April-May (MAM), (c)


1242 June-July-August (JJA), and (d) September-October-November (SON). The crosses

denote the regions where changes induced by SDE are statistically significant at 0.1level.

- 1245
- ____
- 1246
- 1247

1249 Figure 14. As Figure 13, but for total runoff change (mm day⁻¹).

1252 Figure 15. Seasonal evolution of total runoff including surface and sub-surface runoff

- 1253 (left) and their change (right) in the Northern Rockies (top), the Greater Yellowstone
- 1254 region (center), and Southern Rockies (bottom). The unit is mm day⁻¹.