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Abstract. Changes induced by perturbed aerosol conditions in moderately deep (cloud top at about 5 km) mixed-phase con-

vective clouds developing along sea-breeze convergence lines are investigated with high-resolution numerical model simula-

tions (grid spacing of 250 m). The simulations utilise the newly developed Cloud-AeroSol Interacting Microphysics module

(CASIM) for the Unified Model, which allows for the representation of the two-way interaction between cloud and aerosol

fields. Simulations are evaluated against observations collected during the COPE field campaign over the southwestern penin-5

sula of the UK in 2013. The simulations compare favourably with observed thermodynamic profiles, cloud-base cloud droplet

number concentrations (CDNC), cloud depth, and radar reflectivity statistics. Including the modification of aerosol fields by

cloud microphysical processes in the simulations improves the match to observed cloud-base CDNC, increases the CDNC

variability and leads to a larger decrease of CDNC with height above cloud base. However, it also reduces the average cloud

size and cloud top height, which is less compatible with observations.10

Before clouds become organised along the sea-breeze convergence lines, precipitation is suppressed by increasing aerosol due

to less efficient precipitation production by warm-phase microphysics. The precipitation suppression is less evident if aerosol

processing is taken into account. After the sea breeze convergence zone is established, accumulated precipitation from the

on average deeper and wider clouds increases with aerosol concentrations as long as cloud top heights are not limited by an

upper level stable layer. The precipitation enhancement is controlled by changes in condensate production and precipitation15

efficiency. Enhanced condensate production in high aerosol scenarios is related to higher vertical velocities in the convective

cores, i.e., convective invigoration, and stronger latent heating below the 0 ◦C level, while changes in latent heating in the

mixed-phase region are negligible. Perturbed aerosol concentrations alter the cloud field structure with fewer larger cells de-

veloping in high aerosol environments, but inducing only small changes in cloud fraction. It is hypothesised that the stronger

latent heating from convection is related to the changes in the cloud field structure reducing the mixing of environmental air20

into the convective core. For very high aerosol concentrations, the translation of convective invigoration into deeper clouds and

enhanced precipitation is limited by thermodynamic constraints.

The aerosol-induced changes in shallow warm-phase clouds prior to the development of a strong convergence zone is con-

sistent with ideas based on parcel models. However, the precipitation response of the deeper mixed-phase clouds along well-

established convergence lines suggest that when clouds begin to interact with the pre-existing thermodynamic environment25
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and modifications to the cloud field structure occur, i.e., processes other than microphysics effect the cloud evolution, and the

precipitation behaviour can be opposite to predictions from parcel models.

Copyright statement. TEXT

1 Introduction

The aerosol-induced changes to the climate system, in particular the radiation budget, are thought to be important to understand5

changes between present-day and pre-industrial radiative forcing (Stocker et al., 2013). A large and poorly constrained aspect

is the impact of aerosols on clouds and precipitation formation (Stocker et al., 2013). Numerous studies have tried to isolate

the aerosol effect on clouds and precipitation using observational data or investigated the aerosol effect in numerical models

of varying complexity. Recent reviews by Khain (2009), Tao et al. (2012), Altaratz et al. (2014) and Rosenfeld et al. (2014)

provide a good overview.10

The concept of aerosol-induced changes to clouds is based on the well-established link between the number of aerosols avail-

able and the number of cloud droplets that form under a specific supersaturation. This initial change in cloud droplet number

should have knock-on effects on radiative and cloud microphysical processes, which are directly dependent on the number and

size of involved hydrometeors. These impacts can have further ramifications by altering the precipitation formation in clouds,

their geometry and lifetime, anvil properties, thermodynamic properties of the environment and the spatial pattern of energy15

and moisture transport. In the real atmosphere, a multitude of other processes such as interactions between different clouds,

aerosol physics, aerosol-radiation interactions, larger-scale dynamics and surface fluxes can further complicate the picture.

While the first link in this chain, the relation between aerosol concentration and cloud droplet number at cloud base, is un-

controversial and can be confirmed with observational data (e.g., Andreae, 2009), the subsequent impacts on the temporal and

spatial evolution of the cloud field are more controversial and difficult to observe. Perhaps, unsurprisingly given the complexity,20

highly non-linear nature and our partial quantitative understanding of many of the processes involved, different studies do not

necessarily agree on the amplitude or sign of the impacts. Some attempts have been made to assess more systematically the

impact of specific model parameters (e.g., Johnson et al., 2015) or to stratify responses according to crucial meteorological

parameters (e.g., Khain and Lynn, 2009; Altaratz et al., 2014). Khain and Lynn (2009) use the concept of expressing changes in

precipitation as the result of modified condensation production by lifting (∆G) and modified evaporation losses of condensate25

(∆L). With this approach they are able to classify aerosol-induced precipitation changes documented in various observational

and modelling studies. According to their analysis the balance between ∆G and ∆L is dependent on the cloud regime and en-

vironmental conditions. For example, ∆L dominates in stratocumulus and ∆G in deep tropical clouds, while deep convective

clouds transition from ∆L to ∆G dominated with increasing environmental relative humidity.

The increased short-wave reflectance (e.g., Twomey, 1977) and decreased efficiency of collision-coalescence as a consequence30

of higher cloud droplet number concentrations are thought to dominate aerosol-cloud interactions in shallow warm-phase
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clouds. The reduced collision-coalescence delays or suppresses precipitation formation and extends the cloud lifetime (e.g.,

Albrecht, 1989; Lohmann and Feichter, 2005). For deep convective clouds with partially or completely glaciated cloud tops, it

has been hypothesised that precipitation can be enhanced or invigorated through feedbacks on the cloud dynamics (Khain et al.,

2005; Koren et al., 2005; Rosenfeld et al., 2008). The main idea is that a slower growth of cloud droplets into precipitation-sized

particles in the warm-phase section of the cloud enhances the transport of cloud condensate into the mixed-phase region. The5

additional latent heat release from the subsequent freezing of this additional condensate leads to a higher cloud top, a larger to-

tal condensate content, a larger anvil and a longer cloud lifetime. These changes, together with accompanying modifications of

the precipitation production pathways (e.g., Wang, 2005; Fan et al., 2007; Li et al., 2009; Cui et al., 2011), are hypothesised to

lead to a precipitation enhancement under high aerosol conditions. This conceptual idea has been developed using simulations

of individual clouds under idealised conditions. Several studies have highlighted that this may not apply to less idealised or very10

polluted conditions due to a number of factors including an increased importance of evaporation and stronger downdrafts (Lebo

and Seinfeld, 2011). A further important aspect that may impede such a mechanism is a weakening of the updraft core by the

increased water loading (e.g., Seifert and Beheng, 2006; Lebo and Seinfeld, 2011). Also, Johnson et al. (2015) demonstrated

that the precipitation signal is dependent on the values of uncertain parameters within the cloud microphysics parameterisation

(parameter uncertainty). Changes in cloud properties and precipitation are also subject to systematic differences between and15

biases in different model formulations including the formulation of parameterisations, dynamics and spatial resolution (e.g.,

Lebo and Seinfeld, 2011; Lebo et al., 2012; Fan et al., 2012; Morrison, 2012; Hill et al., 2015; White et al., 2016).

Precipitation enhancement and/or associated changes in the cloud structure are not always predicted consistently for different

cases even within the same modelling framework. This illustrates that different environmental conditions and interactions be-

tween different clouds (direct or indirect via modification of the environment) can influence, impede or allow for precipitation20

enhancement (e.g., van den Heever et al., 2006; Tao et al., 2007; Fan et al., 2009; Khain and Lynn, 2009; Fan et al., 2012; Lebo

and Morrison, 2014). Aerosol-induced changes of cloud properties can impact the thermodynamic and aerosol environment

(e.g., Lee and Feingold, 2010; Cui et al., 2011; Morrison and Grabowski, 2011) and storm-scale (e.g., Lebo and Morrison,

2014) or even large-scale dynamics (e.g., Lee, 2012), which are then often found to modify the aerosol impact on the entire

cloud system. The precipitation feedback is typically less clear and more sensitive to the particular microphysical scheme used25

than changes in cloud radiative properties. For example, in a study of convective precipitation during three summer seasons

over Germany Seifert et al. (2012) found that the aerosol induced modification of surface precipitation by aerosols were negli-

gible, but the modifications to cloud radiative properties were not.

Given the hypothesised importance of aerosol-cloud interactions for radiative forcing estimates and quantitative precipitation

forecasts and the uncertainties and deficiencies of numerical models, it is important to test any model derived hypothesis with30

observational data. A number of observational studies have tried to identify an aerosol-signal in the properties of deep convec-

tive systems, including systematic changes in cloud top height, cloud fraction or precipitation (e.g., Devasthale et al., 2005;

Koren et al., 2010; Gryspeerdt et al., 2014). These studies are based on satellite data, which provide a relatively large temporal

and spatial sample. Studies based on satellite data necessarily rely on correlations between bulk parameters such as aerosol op-

tical depth and cloud top height or fraction, which raises the question of causality, coincidence and co-variability (e.g., Stevens35
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and Feingold, 2009). The need to better understand and incorporate the existence of co-variability between aerosol and mete-

orological fields in analysis methods has recently been highlighted by Feingold et al. (2016). In this context, it is important to

consider how similar, in a meteorological sense, different instances must be for a meaningful analysis and whether the analysis

of a sufficiently large sample (how large?) provides a robust cloud-aerosol signal. One approach to address the questions of the

implications of co-variability from modelling standpoint is to use an ensemble forecasting system.5

In this study we use a convection-permitting numerical weather prediction model (the Unified Model) with a multi-moment

bulk microphysics scheme to investigate the aerosol-cloud interactions in an observed case of mixed-phase convective clouds

forming along a sea-breeze convergence zone. Sea-breeze convergence zones provide a predictable location for convective

initiation, which aids the comparison to observations and also provided a good basis for planning observational campaigns.

Convective clouds and precipitation are associated with sea-breeze systems at many coastal regions on the globe, including10

e.g., the southwest peninsula of the UK (e.g., Golding et al., 2005), the Salento Peninsula in Italy (e.g., Comin et al., 2015),

the Hainan Island in China (e.g., Liang and Wang, 2016), coastal Cameroon (e.g., Grant and van den Heever, 2014) and many

others (e.g., Miller et al., 2003).

The case being considered is from the COPE campaign, which took place in July and August 2013 over the southwestern

peninsula of UK (Leon et al., 2016; Blyth et al., 2015). The selected case (3rd August 2013) has been previously analysed from15

an observational viewpoint with a focus on cloud glaciation (Taylor et al., 2016b) and aerosol concentrations, composition,

and sources (Taylor et al., 2016a). Isolated shallow cumulus clouds were scattered across most of the southwestern UK in the

early morning. Two sea-breeze fronts developed along the northern and southern coastlines of the peninsula and propagated

inland. After about 11 UTC clouds organised along convergence lines, which were located roughly along the major axis of

the peninsula. The organisation proceeds with the development of larger and on average deeper clouds and cloud clusters.20

Clouds were arranged in two lines with a latitudinal offset of about 20-30 km. New, isolated cells generally developed close to

the south-western tip of the peninsula and subsequently developed or merged into larger clouds clusters as they move north-

eastwards. The band like cloud feature remained intact until about 18 UTC with its axis gradually migrating northward.

The aerosol-cloud interaction modelling for this case is presented case in two parts. First, described in this paper, the simula-

tions with a novel microphysics scheme are evaluated against observational data from the COPE campaign and the physical25

mechanism of the aerosol-cloud interactions. Part 2 extends this analysis to all simulations in the meteorological ensemble and

addresses questions related to the observability of the aerosol induced changes in cloud properties. For part 1, the next section

provides a detailed description of our modelling system, the microphysics scheme and the observations used for evaluation.

In section 3 the modelled cloud field is compared to observations, aerosol-induced changes are described in section 4, and

the mechanisms responsible for these changes are discussed in section 5. The results are finally discussed and summarised in30

section 6.
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2 Data and Methods

2.1 Model set-up

The Unified Model (UM, version 10.3) is used for the simulations presented in this study. The UM is developed by the Met

Office for operational forecasting over the UK and a range of different geographical locations (e.g., New Zealand and Aus-

tralia). A global model run (UM vn8.5, GA6 configuration, N512 resolution, Walters et al. (2017)) starting from the Met Office5

operational analysis for 18 UTC 02. 08. 2013 provides the initial and boundary conditions for a regional simulation with a

grid-spacing of 1 km (500 by 500 grid-points) over the southwestern peninsula of the UK (Fig. 1a). Simulations with a grid-

spacing of 250 m (900 by 600 grid-points) are nested within the 1 km simulations. A stretched vertical coordinate system is

used with 120 vertical levels between the surface and 40 km altitude. The level spacing is about 40 m in the boundary layer

and 500 m at 5 km altitude. The nested simulations are started at 00 UTC 03. 08. 2013 and run for 24 h. Only results from the10

highest resolution simulations (grid spacing ∆x= 250 m) will be discussed in this article.

Moisture conservation in the regional model domain is enforced using the scheme by Aranami et al. (2014) and Aranami et al.

(2015). Conservation of moisture is an important physical constraint and impacts the precipitation response to aerosol pertur-

bations (not shown). Mass conservation is also a requirement for the condensate budget analysis conducted in section 5.

In addition to the standard model code we replaced the operational microphysics with the newly developed Cloud-AeroSol15

Interacting Microphysics (CASIM) module, which is described in more detail in section 2.2. The CASIM module provides

options for one- or two-way coupling between aerosol and cloud properties and simulations are performed in both modes.

Aerosol initial and boundary conditions are prescribed based on aerosol size distributions derived from aircraft observations

(see section 2.3). A profile of aerosol mass and number densities has been derived based on aircraft observations taken from

a below cloud base flight leg carried out in the morning and from various cloud free flight segments at higher altitude: Mass20

mixing ratio and number concentration that are constant with height are used for each aerosol mode in the boundary layer

and the free troposphere (Fig. 1b, Table 2). A linear transition between the two concentrations is assumed in a 500 m vertical

slice centred at the mean boundary layer top of the model (1.15 km). 10 % of the observed accumulation mode aerosol is

considered to be insoluble and acts as ice-nucleating particles. No surface sources of aerosol have been included. Neglecting

surface source is not expected to have a large impact on the simulations, because: (i) the chosen aerosol profiles are based on25

observational data over the peninsula and therefore are representative of the environment in which the clouds form; and (ii),

the residence time of air in the model domain is only several hours. According to the National Atmospheric Emissions Inven-

tory data for 2014 (NAEI, 2014) the average PM2.5 (PM1) emission flux over the model domain is 5.30 · 10−12 kgm−2s−1

(2.75 · 10−12 kgm−2s−1). Assuming the emitted aerosol is evenly distributed over the boundary layer and with a mean flow

velocity of 7.5 ms−1, the resulting change in aerosol mass mixing ratio is 1.75 · 10−10 kgkg−1 (9.1 · 10−11 kgkg−1). This30

corresponds to about 1 % (0.5 %) of the total aerosol mass or 5 % (2 %) of the accumulation mode aerosol mass in the bound-

ary conditions. The aerosols replenishment by advection is sufficient to avoid a too strong depletion by scavenging inside the

domain (see section 4.1).

For the perturbed aerosol simulations, the aircraft derived aerosol profiles are multiplied by factors of 10 and 0.1, while conserv-
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ing the mean diameter of each mode. These simulations are referred to as “high” aerosol and “low” aerosol runs, respectively.

For additional tests on the thermodynamic limitations of the precipitation response, simulations with aerosol concentrations

increased by a factor 30 were conducted (“very high”). The simulation with the unperturbed aircraft derived profile is named

“standard” aerosol run.

The regional simulations are run without a convection parameterisation. Subgrid-scale variability of relative humidity is not5

considered for droplet activation and condensation. Boundary layer processes, including surface fluxes of moisture and heat,

are parameterised with the blended boundary layer scheme (Lock et al., 2015) and sub-grid scale turbulent processes are rep-

resented with a 3D Smagorinsky-type turbulence scheme (Halliwell, 2015; Stratton et al., 2015). Radar reflectivity has been

calculated from the model fields assuming Rayleigh scattering only and neglecting extinction. Phase mixtures of hydrometeors,

i.e., partly liquid particles, are not considered.10

2.2 CASIM microphysics and aerosol processing

For the representation of cloud microphysical processes and their interaction with the aerosol environment we use the newly

developed CASIM module for the Unified Model (Shipway and Hill, 2012; Hill et al., 2015; Grosvenor et al., 2016). The

CASIM module is a double-moment, five hydrometeor class microphysics scheme. The hydrometeor size distribution for each

category is described by a gamma distribution, of which the first two moments, i.e., mass mixing ratio and number concentra-15

tion, are prognostic variables. In addition a fixed density, diameter-mass and diameter-fall speed relations are assumed for all

categories. The simulated precipitation rate and reflectivity distributions are particularly sensitive to the assumed graupel den-

sity and diameter-fall speed relation. We have chosen to use the diameter-fall speed relation for medium density graupel from

Locatelli and Hobbs (1974) with a graupel density of 250 kgm−3, since this results in the closest agreement between modelled

reflectivity and surface precipitation rates and those derived from radar observations. Details on the assumed mass-diameter20

and diameter-fall speed relation, hydrometeor shapes and size distributions are provided in Table 1. Represented transfer rates

between the different hydrometeor categories and the water vapour include droplet activation (Abdul-Razzak et al., 1998;

Abdul-Razzak and Ghan, 2000), condensation (using saturation adjustment), primary ice formation from cloud droplets (De-

Mott et al., 2010), freezing of rain drops (Bigg, 1953), secondary ice formation from rime-splintering in the Hallet-Mossop

temperature zone, vapour deposition, evaporation and sublimation, collision-coalescence between all hydrometeor categories25

and sedimentation of all hydrometeor categories except cloud droplets.

Aerosols are represented by three soluble modes and one in-soluble mode, each of which is described by a log-normal distribu-

tion with a prescribed width (Table 2) and two prognostic variables (mass mixing ratio and number density). The chemical and

physical particle properties (density, solubility, etc.) are prescribed for each mode separately. The aerosol fields are initialised

from a spatially homogeneous aerosol profile, which is also used for the lateral boundary conditions throughout the simula-30

tions. The aerosol field is subject to advection.

For the aerosol-cloud interaction two different modes are available within CASIM: (i) one-way coupling of aerosols and cloud

properties (passive mode), and (ii) two-way interaction between aerosols and clouds (processing mode). In the passive mode,

aerosol fields are considered in the droplet activation and primary ice nucleation, but the aerosol fields are not modified by any

6
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cloud microphysical process. In the processing mode, aerosol fields are modified consistently with the cloud microphysical

processes. The interstitial aerosols are depleted by nucleation scavenging (droplet activation and primary ice nucleation). Im-

paction scavenging is currently not represented. Previous work suggests that in-cloud scavenging is the dominant wet aerosol

removal processes and that impaction scavenging is only important below cloud-base (e.g., Flossmann et al., 1985; Yang et al.,

2015). Therefore omitting impaction scavenging should have no major implications for the present study. Droplet activation5

takes into account the different soluble aerosol modes according to Abdul-Razzak and Ghan (2000), while a small constant

fraction of the insoluble aerosol mode is activated in water supersaturated conditions. For the ice nucleation all insoluble

aerosols are used (not separating between interstitial and CCN activated insoluble aerosol) for the computation of ice crystal

number concentrations to be consistent with the formulation in DeMott et al. (2010). Upon evaporation or sublimation of hy-

drometeors, the interstitial aerosols are replenished. For this purpose additional tracers for the soluble and insoluble aerosol10

mass and insoluble aerosol number in liquid and frozen hydrometeors are included. These tracers are subject to advection

and sedimentation fluxes of the respective hydrometeors. During evaporation and sublimation, aerosols are released into the

interstitial modes according to their diagnosed effective radius and the effective radius of the interstitial aerosol modes. One

soluble aerosol particle is released for each evaporating hydrometeor. Thereby, hydrometeor collision-coalescence result in

fewer, but larger interstitial aerosols, if the hydrometeors subsequently evaporate. For insoluble aerosols, the activated number15

and mass are traced. The number of insoluble aerosols released upon evaporation or sublimation of the hydrometeor is identical

to the number of insoluble aerosol particles in the hydrometeor. Thereby the number of insoluble aerosols is retained and is not

impacted by collision-coalescence processes.

Simulations are conducted with passive and processing aerosol treatments and the impact on the model performance and the

simulated hydrometeor and aerosol fields are discussed in the sections 3 and 4.1, respectively.20

2.3 Observational data from COPE

For the evaluation of the model simulations we make use of the observational data gathered from various platforms during the

COPE campaign. The details of the experiment design are outlined in Blyth et al. (2015), while Leon et al. (2016) presents

an overview of the campaign results. This study utilises radiosonde data and observations made with the Facility for Airborne

Atmospheric Measurements (FAAM) BAe-146 research aircraft . Radiosondes were launched at roughly two-hourly intervals25

from Davidstow (50.64 ◦N, −4.61 ◦E) between 8 UTC and 15 UTC. These provide profiles of air temperature, dewpoint tem-

perature and wind vectors.

The aerosol initial conditions are provided by data collected by the FAAM BAe-146 aircraft. Three instruments, with over-

lapping size ranges were utilised. A scanning mobility particle sizer (SMPS) for measurements from 0.01 − 0.3 µm diameter,

with a 30 s scan time. A wing mounted Passive Cavity Aerosol Spectrometer Probe (PCASP) for measurements from 0.1 to30

3 µm and a wing mounted Cloud Droplet Probe (CDP) for measurements from 2 µm and above. The PCASP and CDP were

calibrated using the methods of Rosenberg et al. (2012). The data was split into out-of-cloud straight and level legs spanning an

integer number of SMPS scans. For each of these legs a three mode lognormal distribution was fitted to the data. No refractive

index corrections were made to account for the potential different compositions of the aerosol. However, as we use just a single
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average profile for each of the boundary layer and the free troposphere, any refractive index correction is much smaller than

the variability in the measurements.

Cloud droplet number was also provided by the CDP. The sensitive sample area of this instrument was calibrated using a

droplet generator and found to be approximately twice the nominal sample area in the manufacturer’s specification. Vertical

wind measurements were provided by a 5-port turbulence probe on the aircraft nose, combined with Pitot tube airspeed mea-5

surements and GPS/inertial navigation unit aircraft altitude information (Petersen and Renfrew, 2009).

In addition to the campaign specific data, we use a 3D radar composite provided by the Met Office (Scovell and al Sakka,

2016). The composite data used here has a horizontal resolution of 1 km, a vertical resolution of 500 m over the study area and

a temporal resolution of 10 min. In addition, we use the Radarnet 4 rainfall retrieval (Harrison et al., 2009; MetOffice, 2003),

which is also based on the operational radar network. The horizontal resolution is 1 km and the temporal resolution 5 min.10

3 Evaluation of model simulations with unperturbed aerosol fields

3.1 Radar reflectivity and surface precipitation

The model simulations capture the general evolution of the cloud band and the major structural features as described in the

introduction (SI Fig. 1 and 2): The first larger clouds (maximum dimension of areas with column maximum reflectivity larger

than 25 dBZ exceeding 10 km) appear after 11 UTC and these are organised along a line roughly in the centre of the penin-15

sula. In the subsequent hours, clouds cluster along the convergence line with cells remaining more isolated and smaller over

the western half of the peninsula and larger clusters developing further east. While the majority of clouds develop along the

convergence lines, some more isolated clouds develop in other parts of the domain. A double-line feature also appears in model

simulations, but is not as well defined as in the observational radar and satellite data. In agreement with observations, the mod-

elled cloud line slowly assumes a more north-westerly orientation throughout the day and starts to dissipate at around 17 UTC,20

i.e., slightly earlier than in the observations.

The domain-average surface precipitation rates from the operational radar network (Harrison et al., 2009; MetOffice, 2003)

and the model simulations with the standard aerosol profile are compared in Fig 2a. In the model, surface precipitation occurs

from about 11 UTC onwards, which coincides with the appearance of the first larger clouds along the convergence lines. The

radar shows some precipitation earlier originating from isolated convective cells. The model also produces isolated cells be-25

fore 11 UTC, however, they remain much smaller and produce scarcely any surface precipitation, although column maximum

reflectivity reaches values comparable to the observations. The smaller domain average precipitation in the model is mainly

due to the overall smaller cell sizes. Domain-mean precipitation rapidly increases between 11 UTC and 13 UTC in the radar

observations and between 11 UTC and 14 UTC in the simulations. During the afternoon both data-sets show consistently high

surface precipitation rates until about 17 UTC (model) and 18 UTC (observations). The cessation of precipitation is linked30

to the dissolution of the convergence lines. While the model captures the main evolution of the precipitation linked with the

convergence lines, the peak domain-mean precipitation rate occurs about an hour later than in the radar data. The model under-

estimates the domain-mean surface precipitation relative to the radar derived precipitation irrespective of the chosen aerosol

8
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treatment. The underestimation of domain average precipitation is related to a smaller extent of weakly precipitating areas

(< 4 mmh−1, SI Fig. 3a). High precipitation rates are overestimated by a factor 2 (SI Fig. 3a).

Quantitative estimates of precipitation rates from radar reflectivity can exhibit biases due to different assumptions of hydrom-

eteor properties and evolution between the model and the algorithm used to derive rain rate from radar observations. Also

beam blocking can significantly affect low-level radar reflectivity. We therefore compare diagnosed radar reflectivity from the5

simulations with a 3D radar composite (Fig. 2b and SI Fig. 3b). The distribution of column maximum reflectivity, also known

as composite reflectivity, (Fig. 2b) as well as the reflectivity close to the surface (at 750 m altitude, SI Fig. 3b) are in good

agreement with the observed distribution: The most frequent column maximum radar reflectivity is about 5 dBZ too low in

both simulations and the peak reflectivity are overestimated by about 5 dBZ in the passive aerosol simulation. The area covered

by clouds with low reflectivity (< 10 dBZ) is underestimated in both simulations (Fig. 2b). The low-level radar reflectivity10

(at 750m, SI Fig. 3b) from the passive aerosol simulation slightly underestimates the occurrence of reflectivity values between

20− 30 dBZ. Above 35 dBZ the model agrees to within ±5 dBZ. In the simulation with aerosol processing the reflectivity in

this region are also underestimated, but the occurrence of reflectivity smaller than 10 dBZ is overestimated. While the model

underestimates the area covered by clouds with low reflectivity, the overall agreement between observed and modelled radar

reflectivity distributions is better than that seen between the radar derived rain rate and model rain rate, where the model under-15

represents the medium surface precipitation rates. This suggests potential problems with the radar derived surface precipitation

for medium to low precipitation rates, possibly linked to a lack of sub-cloud evaporation in the radar diagnostic (e. g., Li and

Srivastava, 2001).

The 3D radar composite also provides information on the cloud structure, in particular the cloud depth. Cloud top height is de-

fined as the highest altitude with a radar reflectivity larger than 18 dBZ. The mean cloud top height increases from about 2 km20

in the morning to 3 km in the afternoon in the observations and the model simulations (SI Fig. 4a). This indicates a general

deepening of convective cells in correspondence to a larger convergence as the sea breeze lines establish. The maximum cloud

depth in the observations only shows a small increase from about 5 km to about 5.5 − 6 km, while maximum cloud top height

in the model increases from 3.5 km to 5 − 5.5 km (SI Fig. 4b). The modelled mean cloud top height agrees within 200-500 m

with the cloud top height derived from the 3D radar composites (SI Fig. 4a) with a small dependency on the radar reflectivity25

value (5− 25 dBZ) chosen to define cloud top. Given the vertical resolution of the radar data-set (500 m) and the model level

spacing (200 m at 5 km) this is a reasonable agreement. The larger maximum cloud top heights in the radar observations are

mainly due to higher level ice clouds likely forming outside the model domain.

3.2 Aircraft observations of hydrometeor number concentrations30

The fraction of aerosol activated to cloud droplets is an important parameter for the aerosol effect on clouds. We therefore

compare the cloud base cloud droplet number concentration (CDNC) measured by the CDP onboard the BAe-146 with the

modelled cloud base droplet number concentration (Fig. 3). The aircraft data is taken from several flight legs close to cloud

base (within 500m) sampling multiple cells along the convergence lines between 1200 UTC and 1250 UTC (red dots). In
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the model, all clouds in the domain are sampled within the same time period (grey shading). Cloud base in the model is

defined as the lowest vertical level in each column with cloud droplet mass larger than 1 mgkg−1. CDNC at cloud base

generally increases with the vertical velocity in the model data and the observations, as expected. Sensitivity experiments with

the aerosol size distribution used in the model suggest that a multi-mode representation of aerosols is required to match the

observed relation over the range of updraft velocities (up to 7ms−1) observed and simulated at cloud base (not shown). CDNC5

values in the observations reach about 375 cm−3, which is most closely matched by the simulation with aerosol processing

(Fig. 3b). The simulation assuming passive aerosols over-predicts maximum CDNC values by about 30 % (Fig. 3a). Aerosol

processing reduces CDNC at all vertical velocities, which improves the match with the observational data.

Combining aircraft data from cloud penetrations at various altitudes throughout the day, provides some information of the

CDNC variation with height above cloud base. In the simulation with passive aerosol, mean CDNC decreases slowly with10

height, although CDNC values comparable to the cloud-base values are observed at all levels within the clouds (SI Fig. 5a). In

the simulation with aerosol processing, CDNC decreases more rapidly above cloud base and the spread is significantly larger

(SI Fig. 5b). The observational data in general suggests a decrease of maximum observed CDNC with altitude above cloud

base (Taylor et al., 2016b). However, a direct comparison to the model results is not possible, since the location of the aircraft

observations relative to the updraft core is not known.15

3.3 Radiosonde data

The overall structure of the thermodynamic profiles in the model is similar to the two hourly radiosonde data at Davidstow (SI

Fig 6). The temperature agrees within ±1 K and the dewpoint temperature within ±5 K (±10 K) below (above) a stable layer

located between 5 km and 6 km altitude. The radiosonde data was compared to the thermodynamic profile at the grid column

closest to the release location of the radiosonde. As discussed later, the stable layer at 5− 6 km is an important feature of the20

thermodynamic profile for aerosol-induced changes in precipitation. This stable layer is located at the same altitude in both

model and observations (SI Fig. 6). Other parameters such as the height of the 0 ◦C level and the lifting condensation level are

similar in the model and the observational data throughout the day with maximum deviations of 100 m and 250 m, respectively

(SI Fig. 4c, d).

The comparison of the model simulations using the standard aerosol profiles compare favourably with radar and aircraft ob-25

servations (air and dewpoint temperature profiles differences smaller than ±1 K and ±5 K, respectively; 0 ◦C level, lifting

condensation level and cloud top height within ±250 m; cloud-base CDNC differences smaller than 30 %; domain-average

precipitation and precipitation rates larger than 4 mmh−1 within a factor 2; radar reflectivity within ±5 dBZ for reflectivity

larger than 5 dBZ). This suggests that the model is adequately representing the important processes important for this case

providing confidence that changes predicted by aerosol perturbation experiments will be robust. Next we will look at processes30

affecting the aerosol fields and changes in the cloud field due to perturbations to the aerosol initial and boundary conditions.
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4 Impact of the aerosol environment on the cloud field and surface precipitation

4.1 Modification of the aerosol environment by aerosol processing

The overall impact of including aerosol processing on the aerosol fields is illustrated by the Hovmöller diagrams of latitudinally

averaged column-integrated aerosol number concentration in Fig. 4: Aitken and accumulation mode aerosol concentrations are

reduced inside the clouds due to CCN activation. While the Aitken mode is depleted downstream of convective cells, the5

accumulation mode increases due to evaporative release of aerosol. The collision-coalescence processes in the cloud lead to a

transfer of aerosol from the Aitken to the accumulation mode. The coarse mode aerosol is increasing in cloudy areas mainly

due to sub-cloud evaporation of rain and downstream of convective cells. In the time interval between 9 UTC to 20 UTC, the

Aitken mode number concentration reduces on average by 7 %, the accumulation mode increases by 15 % and the coarse mode

increases by a factor 10 across the study area (6◦ W to 3.5◦ W). These estimates discount any clouds present at the downstream10

boundaries and take only cloud-free areas into account. The predicted changes in the coarse mode aerosol concentrations are

large enough that they eventually could be identified in future aircraft campaigns by flying long north-south oriented runs up-

and downstream of the convective line. Such observations would provide valuable information for the evaluation of the model

representation of aerosol-cloud interactions.

A more detailed picture of the modification of the aerosol fields by the convective clouds is obtained from cross-sections15

along the convergence line (SI Fig. 7): The Aitken mode aerosol is depleted within cloud, below cloud, in areas of evaporated

clouds (e.g., around 5.5◦ W) and in the convective outflow of the clouds at higher levels. The accumulation mode aerosol is

also reduced inside clouds. However, below cloud-base and in areas of evaporated clouds accumulation mode aerosols are

enhanced. Similar increases of the number concentration occur also at the lateral boundaries of clouds. These increases can be

explained by evaporation of larger cloud droplets or rain drops that have ingested multiple CCN during growth by collision-20

coalescence. Evaporation occurs mainly in detrained air, sub-saturated air below cloud base and in decaying clouds. The coarse

aerosol mode behaves very similarly to the accumulation mode aerosol, but the relative increases are more wide-spread and

have a larger amplitude.

Aerosol processing reduces the mean (maximum) cloud-base droplet number concentration by 50 % (10 %) compared to the

simulations with passive aerosols. This difference in cloud-base CDNC depends on aerosol concentration. Therefore, the25

perturbation by a factor 10 in aerosol concentration between the simulations translates to about a factor 7 change in mean

cloud-base CDNC for passive aerosols, but only a change by about a factor 5 in simulations with aerosol processing. The

impacts of aerosol processing on the cloud droplet number density are also reflected in a flatter relation between cloud droplet

number densities and vertical velocity at cloud base as discussed in section 3 (Fig. 3). Besides an overall decrease of cloud

droplet number concentration compared to the passive aerosol simulation (SI Fig. 5), the variability of the cloud droplet number30

concentration increases and the number concentration decrease more strongly towards cloud top. These changes are due to the

depletion of interstitial aerosols inside the cloud in the runs with processing, which impedes secondary activation in the model.

The overall reduction of the cloud droplet number concentration leads to higher rain and graupel number concentrations due to

more efficient conversion of rain formation and slightly smaller ice and snow number concentrations (not shown). The vertical
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variation in number concentrations is very similar for all hydrometeors except cloud droplets for the two runs.

The impact of aerosol processing on aerosol fields and hydrometeor number concentrations is qualitatively very similar for

simulations with perturbed aerosol initial conditions, except for the low aerosol simulations (not shown). For this simulation

the graupel number concentration displays hardly any change and the reduction of ice and snow number concentrations is

more pronounced. The impact of aerosol processing on precipitation formation and the overall cloud structure and evolution is5

discussed in the following sections.

4.2 Cloud field structure and cloud geometry

The perturbed aerosol conditions impact the cloud field structure in simulations with and without aerosol processing in a sim-

ilar way (SI Fig. 8): Cloud fields from simulations with higher aerosol concentrations are more organised with larger, less

widespread and more densely packed objects. These changes are consistent throughout the simulated time period.The number10

of cells decreases and the mean cell size increases with larger aerosol concentrations (Fig. 5a,b). The cell number changes in

all development stages of the convective line, while the change in cell size is particularly evident in the afternoon (after about

13 UTC) when the convective line is fully developed. Aerosol induced changes in cell number and size are smaller for aerosol

concentrations enhanced above the standard aerosol profile compared to reduced aerosol concentrations. The transition to a

more structured cloud field in the high aerosol environment is accompanied by a small reduction in the fraction of the domain15

covered by cloud (Fig. 5c). The cloud fraction is defined as the proportion of the domain covered by clouds with a condensed

water path larger than 1 gm−2. The temporal evolution of the cloud fraction in all simulations is very similar with a gradual

increase up to 14 UTC and a rapid decrease after 17 UTC. Changes in cell number and size operate such that aerosol-induced

changes in cloud fraction are very small, occurring mainly between 13 UTC and 16 UTC.

In addition to the change in the horizontal cloud structure, the average cloud top height rises in high aerosol environments20

(Fig. 5d). Differences are rather small in the development phase of the convective line, but amount to about 100− 200 m in

the afternoon. The cloud top height change is dominated by a reduction of cloud tops between 3− 4 km and an increase of

cloud tops above 4.5 km (SI Fig. 9a). Cloud base height variations between simulations with different aerosol profiles are much

smaller (mean height ±50 m, SI Fig. 9b). For enhanced aerosol concentrations changes in cloud top height are larger in the

aerosol processing than the passive aerosol simulation. The maximum cloud top height is restricted by a stable layer extending25

from about 5− 6 km, which is evident in thermodynamic profiles from radiosondes and model simulations (SI Fig. 8). While

cloud tops reach the stable layer in the simulations with passive aerosols under standard aerosol concentrations, clouds reach

this altitude only under enhanced aerosol concentrations if aerosol processing is included. Therefore in the latter cloud deepen-

ing from the low to the high aerosol scenario is not yet limited by the thermodynamic profile. For the simulations with passive

aerosol, a similar asymmetry in the response to increases and decreases in the aerosol concentration is also evident in other30

variables (section 4.3 and 5). We hypothesise that this asymmetry is controlled by thermodynamic constraints on the cloud top

height. This hypothesis is further discussed in section 5.
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4.3 Surface precipitation

The accumulated surface precipitation over the time period of convective activity (9-19 UTC) depends on the chosen aerosol

representation and on the aerosol profile (Fig. 6a). The accumulated precipitation is about 20 % smaller in the simulations with

aerosol processing. The sensitivity to perturbed aerosol conditions is larger in the aerosol processing simulation with changes

of up to 14 % relative to the standard aerosol environment, while for passive aerosol precipitation only varies by up to 4 %.5

The larger sensitivity in the simulations with aerosol processing occurs despite a smaller perturbation in cloud-base CDNC

between the different aerosol scenarios (section 4.1).

The overall precipitation response can be divided in two different phases (Fig. 6b): An early phase (9-12 UTC), for which

precipitation decreases with increasing aerosols, and a later phase (12-19 UTC), for which precipitation increases with increas-

ing aerosols. The transition from precipitation suppression to enhancement occurs with aerosol processing and passive aerosol10

and is related to the transition from isolated and unorganised convective clouds to on average larger and deeper cloud clusters

forming along the converging sea breeze fronts from around noon (SI Fig. 1, 2).

In the early phase, precipitation continuously decreases with increasing aerosol concentrations. This agrees with parcel model

arguments of a less efficient collision-coalescence in the presence of more CDNC (e.g., Twomey, 1966; Feingold et al., 2013).

The precipitation response is similar in the simulations with passive aerosols and aerosol processing, but has a smaller ampli-15

tude in the latter.

In the afternoon, the accumulated precipitation increases with enhanced aerosol concentrations up to standard (high) aerosol

concentrations for simulations with passive aerosols (aerosol processing) contrary to simple precipitation suppression ideas.

Further enhancing the aerosol concentration does not lead to further precipitation enhancement. The physical mechanisms

controlling this precipitation response are discussed in section 5.20

The precipitation rate distribution is also influenced by the aerosol concentrations (SI Fig. 10a). In the passive aerosol sim-

ulations medium rain rates (≈ 1− 20 mmh−1) are more frequent and small rain rates less frequent with increasing aerosol

concentrations. High precipitation rates (> 30 mmh−1) occur more frequently in the simulations with the standard aerosol

profile than those with perturbed aerosol profiles. If aerosol processing is included, changes in low and medium rain rates are

much smaller and the probability of high rain rates (> 30 mmh−1) increases with the aerosol concentration. The aerosol in-25

duced changes in accumulated surface precipitation and the precipitation rate distribution, suggest that precipitation formation

is enhanced by increased aerosol concentrations in the simulation with aerosol processing and to a lesser extent in simulations

with passive aerosols.

4.4 Condensed water content

Under enhanced aerosol conditions, precipitation formation is thought to be suppressed due to less efficient conversion of30

condensed water to precipitation seized hydrometeors. Consistent with this idea, the domain-integrated condensed water path

increases with the aerosol concentration in the time period of main convective activity, i.e., between 12 UTC and 18 UTC (SI

Fig. 11a). This increase is larger and extends to the entire simulated time period, if only hydrometeors with small sedimentation
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velocities (cloud droplets, ice and snow) are taken into account (SI Fig. 11b).

Parcel model considerations suggest that a higher condensed water content is required to obtain the same precipitation rate for

higher cloud droplet number concentrations due to less efficient collision-coalescence growth of hydrometeors. To investigate

whether this also holds for the relation of condensate loading and precipitation in a more complex model, the distribution

of condensate loading (in the ice and cloud droplet categories) in columns with a specific precipitation rate are displayed in5

Fig. 7. The 90th percentile of condensate loadings is increasing from low to high aerosol concentrations independent of the

assumed aerosol-microphysics coupling. For lower percentiles, the condensed water path only increases up to the standard

aerosol concentration and remains unchanged or decreases for increasing the aerosol concentrations. While these changes

occur systematically over a wide range of precipitation rates, they are still relatively small compared to the spread of the

condensed water path at a given precipitation rate. Differences to the expectations from parcel models likely arise, because10

statistics are computed over different lifecycle stages and the cloud microphysics operate in a “vertical column”, i.e., the

condensed water path does not directly translate into condensed water content and falling hydrometeors affect precipitation

production at lower levels in the cloud. This more complex situation likely results in a less straightforward relation between

condensed water path and precipitation rate than expected from parcel models. We hypothesise that the signal is consistent with

parcel models in the highest percentile, because these correspond to updraft regions in clouds at the mature lifecycle stage,15

for which condensate production is compensating for losses due to precipitation production. This is consistent with very small

changes in the condensed water path percentiles including all hydrometeor species, i.e., also including snow, rain and graupel

(SI Fig. 12c,d).

5 Physical mechanism of aerosol induced changes

5.1 Decomposition of precipitation response to changes in condensate generation and loss20

Changes in precipitation (aerosol induced, as in this study, or other) can be contextualised and interpreted by investigating the

condensate budget of the considered clouds (e.g., Barstad et al., 2007; Khain and Lynn, 2009; Altaratz et al., 2014). The change

in precipitation at the surface ∆P is thereby considered as the result of changes in condensate gain ∆G by condensation and

deposition of water vapour and condensate loss ∆L by evaporation and sublimation. If changes in condensate gain are larger

than changes to the loss terms, surface precipitation increases and vice-versa. Furthermore, the ratio between ∆G and ∆L25

combined with the precipitation efficiency of the control simulation indicates whether changes in the condensate generation,

i.e., changes in uplift, are driving surface precipitation responses or whether changes in precipitation efficiency, i.e., more or

less efficient conversion of condensate to precipitation, are involved as well (see Appendix). The analysis of the condensate

budget provides a close link between cloud microphysics, cloud dynamics and the cloud environment, since it is intrinsically

linked to latent heating, the condensate distribution within the cloud and the different timescales of cloud microphysics and30

dynamics (e.g., Stevens and Seifert, 2008; Miltenberger et al., 2015).

The condensate budget approach requires reasonable mass conservation properties of the underlying numerical model and a

closed mass budget over the cloud system lifetime. The first is ensured in our simulation by using the Aranami et al. (2014)
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and Aranami et al. (2015) approach to enforce moisture conservation in the regional model domain. The domain used in our

simulation does not cover the entire length of the convergence lines and therefore the condensate mass budget cannot be closed

over the entire life cycle of all clouds. Most cloud systems do, however, reach their mature stage before being advected out of

the domain. We diagnose the advected condensate amount at the domain edge from meteorological fields at 10 min resolution.

Fig. 8a shows that the inclusion of the advective terms has a small impact on the changes in gain and loss terms (compare open5

and filled symbols). Advective terms will therefore be ignored for the rest of the analysis.

The condensate budget terms are calculated by integrating condensation, evaporation, deposition and sublimation rates over

the model domain and the time period of convective activity, i.e., between 9 UTC and 20 UTC. Changes in the condensate

generation ∆G and loss terms ∆L relative to simulations with the standard aerosol profiles are shown in Fig. 8a. All points

above the one-to-one line correspond to simulations, for which the condensate gain changes less than the condensate loss and10

which accordingly have reduced surface precipitation. Points below the one-to-one line portray simulations with enhanced pre-

cipitation. The sign of condensate gain is correlated with the sign of the aerosol perturbation, i.e., an increased condensate gain

for higher aerosol concentrations. The magnitude of ∆L roughly scales with ∆G except for the simulation with low aerosol

concentration and aerosol processing. However, the absolute magnitude of ∆G is always larger than ∆L. The only exception

are the simulations with high and very high aerosol concentrations and passive aerosols, for which ∆L approximately equals15

∆G. This behaviour suggests that the aerosol induced changes in surface precipitation are primarily controlled by changes in

the condensation and deposition terms.

To investigate whether changes in the condensation generation alone or accompanying changes in the precipitation efficiency

are more important for the surface precipitation response, we decompose the precipitation response according to equation A2

(Appendix) in Fig. 8a and Table 4. Precipitation efficiency PE is defined here as the ratio of domain integrated time accu-20

mulated surface precipitation and condensate gain and quantifies the efficiency of cloud microphysical processes to convert

condensate to surface precipitation. Precipitation efficiency changes by up to 2 % between simulations with different aerosol

concentrations. Cloud base precipitation efficiency, i.e., discounting sub-cloud evaporation of rain, is overall about 10 % larger,

but behaves in a similar way. PE changes are generally larger in simulations with aerosol processing than in those with passive

aerosols. Simulations for which changes in ∆G alone are more important than changes in PE, fall in Fig. 8a in the area between25

the one-to-one line and the blue dashed lines. The majority of the simulations are located close to the dashed lines indicating

changes in G are of comparable importance to changes in PE. In general changes in PE are more important in the simulations

with aerosol processing.

The terms in the condensate budget can be further split according to the phase state of the involved hydrometeors, i.e., into

condensation/evaporation and deposition/sublimation. The changes in these four terms, again relative to the simulation with the30

standard aerosol profile, are shown in Fig. 8b. Absolute changes in condensation and evaporation (filled symbols) are generally

larger than changes in deposition and sublimation (open symbols). The only exception is the simulation with aerosol processing

and a high aerosol concentration, for which both are of similar magnitude. The changes in terms involving liquid and solid

hydrometeors have in general the same sign, i.e., if condensation increases, deposition does so as well. ∆L is very small for

solid phase hydrometeors suggesting (i) that the contribution of solid phase hydrometeors to total precipitation increases with35
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aerosol and (ii) that detrainment and subsequent sublimation of solid phase hydrometeors does not significantly increase with

aerosol concentrations for simulations with passive aerosol.

From the analysis of the condensate budget so far we can hence conclude that the aerosol-induced changes in surface precip-

itation are driven by changes in the condensation and evaporation, while changes in sublimation and deposition are of minor

importance For most cases changes in the total condensate gain are of similar importance to changes in precipitation efficiency.5

Changes in the loss terms (and therefore the precipitation efficiency) are important to understand differences between passive

aerosol and aerosol processing simulations and the simulations with very high aerosol concentrations. For simulations with

reduced (enhanced) aerosol concentrations, condensation gain is smaller (larger) than in the control case as is the accumu-

lated surface precipitation (Fig. 8a, 6a). The only exceptions are simulations with very high (and, for passive aerosols, high)

aerosol concentrations, in which precipitation does not increase further. The mechanisms driving changes in condensate gain10

are investigated in more detail in the next section.

5.2 Aerosol impact on convective core and stratiform regions

For a closer analysis of the driving factors behind ∆G and ∆L, the cloud field is decomposed into regions with different

updraft strength. Cloudy columns are stratified according to the column maximum in-cloud vertical velocity at each grid point

(wmax). ∆G for the conditionally sampled areas of the domain is shown in Fig. 9a. Condensation changes are dominated by15

regions with large wmax, while smaller changes of opposite sign occur in weaker updraft regions. In contrast, weak updraft

regions contribute most to changes in deposition. These modifications go along with changes in the vertical extent and area

covered by the updraft regions (Fig. 9b, SI Fig. 13a). Updraft cores deepen by about 100− 150 m for each factor 10 increase of

aerosol, while the areal extent increases by about 25 %. These changes in the updraft geometry do contribute to the differences

in column integrated condensate generation between simulations. However, they do not fully explain them, since the averaged20

condensation rate also increases with aerosol concentration (SI Fig. 13b). These changes are consistent between simulations

with and without aerosol processing.

Different responses to aerosol perturbations are expected in the convective core regions and the more stratiform regions of

the cells. Due to the change in behaviour of ∆G, updraft width and depth between 3 ms−1 and 4 ms−1, updraft regions are

defined by wmax > 3 ms−1 and the more stratiform regions by wmax = [0,3] ms−1. Average profiles of kinetic energy, latent25

heating rates and total condensed water for the two regions are shown in Fig. 10.

In the convective core regions the kinetic energy and the latent heat release increases with increasing aerosol concentrations

(Fig. 10b, d). Both of these variables peak in the warm-phase part of the cloud, with the peak in kinetic energy occurring about

1 km above the peak in latent heat release. The maximum in both variables shifts to higher altitudes with increasing aerosol

concentrations. Latent heat release above the 0 ◦C level increases slightly for higher aerosol scenarios, but the changes are very30

small compared to those below the 0 ◦C level. The condensate mass in the lower parts of the cloud decreases with increasing

aerosol, while it increases above the 0 ◦C level (Fig. 10f). The altitude of the maximum condensate loading also shifts to

higher altitudes for higher aerosol loadings. The generally small changes above the 0 ◦C-line indicate that the precipitation

enhancement is mainly a result of changes in the warm-phase part of the cloud, as suggested by the analysis in section 5.1.
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While energy released from phase transitions in the lower part of the cloud increases, the vertical velocity is almost unaltered

as is the cloud base temperature (∆T< 0.1 ◦C). Therefore the higher condensation rates can only be explained by less dry air

being mixed into the high updraft regions for increasing aerosol conditions. This hypothesis is corroborated by the decreasing

contribution of evaporation in simulations with higher aerosol concentrations (SI Fig. 14). Less mixing with dry air is consis-

tent with on-average larger cells and an increasing stratiform area (Fig. 5b, 9b). The stronger latent heating from convection as5

well as the less strong mixing with low kinetic energy air masses (due to a wider updraft region) contributes to the higher ver-

tical velocities aloft. The larger vertical motion promotes the upward transport of condensate. The higher condensate amounts

towards cloud top are also supported by slower conversion rates of cloud condensate into rain (SI Fig. 16). The more efficient

rain production in low aerosol conditions also explains the larger cloud condensate mass close to cloud base, which is mainly

a result of the sedimentation of rain (SI Fig. 16).10

In the stratiform region, the kinetic energy in the lower parts of the clouds is not affected by modified aerosol concentrations,

while it increases in the higher parts of the clouds for higher aerosol concentrations (Fig. 10a). With increasing aerosol con-

centrations, the latent heat release close to cloud base slightly increases, while it becomes more negative in the upper part of

the clouds (Fig. 10c). The condensed water content also shows small increase close to cloud base, little change up to 2 km and

a strong increase aloft (Fig. 10e). The changes in the upper parts of the clouds are due to a larger horizontal transport of con-15

densed water into the stratiform regions of the clouds. This is caused by a stronger divergence in the upper parts of the clouds in

direct consequence of a higher vertical flux in the convective core region. Secondly, the higher condensate content in the upper

parts of the clouds enables lateral mixing to broaden the cloud. In contrast for low condensate content, lateral mixing leads to

an evaporation of the cloud. The broadening of the clouds by larger transport into the stratiform regions is consistent with the

overall larger cloud size in the scenarios with higher aerosol concentrations (Fig. 5b). A further impact of the lateral mixing20

is that the convective core regions are less affected by entrainment of cloud free area, which supports the formation of wider

and deeper regions with high updrafts. The increase in condensate loading in the stratiform region is particularly pronounced

for simulations in which vertical growth of the clouds is prohibited by the stable layer aloft (high aerosol scenario with passive

aerosols). This enhanced export of condensate to the stratiform region together with a less efficient rain and graupel production

(SI Fig. 16) explain the absence of a further precipitation increase in these simulations compared to those with the standard25

aerosol profile.

The discussed changes in cloud dynamics and microphysics are consistent between the simulations with passive aerosol and

aerosol processing. The difference between the passive and processing treatment of aerosols can be understood based on the

overall lower CDNC in the aerosol processing simulations with the same physical mechanism.

5.3 Transition from precipitation suppression to enhancement30

The discussion of precipitation changes in the previous two sections focused on the precipitation enhancement with increasing

aerosol concentrations during the period of main convective activity (12-20 UTC). However, in the earlier period with scat-

tered and shallow convection, precipitation was suppressed by higher aerosol concentrations (section 4.3). In the morning, most

clouds are less deep and the cloud top height shows only small changes with the different aerosol scenarios (Fig. 5d). Due to
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the generally lower cloud tops, the clouds are predominantly warm-phase with very small ice and snow contributions close to

cloud top. Consistent with the small change in cloud top height, the condensate gain displays only minor changes. The changes

in the condensate loss are more significant and in contrast to the clouds developing later dominate the condensate budget

(Fig. 11). Systematic changes in cell sizes are much smaller than later on (Fig. 5b). The lack of ice-phase species and the lower

wind-speeds at cloud top limit the lateral transport of condensate into the area surrounding the updraft core and thereby prevent5

cells from growing larger. Accordingly the main control on the precipitation formation is the efficiency of cloud microphysical

processes in producing precipitation sized hydrometeors. This efficiency rapidly increases with decreasing CDNC and hence

aerosol concentrations.

In the later period, deeper clouds develop (Fig. 5a) due to the additional forcing from the converging sea-breeze fronts. Max-

imum in-cloud vertical velocities often exceed 3 ms−1, a larger mixed-phase region develops and the cloud depth and cell10

width become more sensitive to the ambient aerosol concentrations. The differences in accumulated precipitation changes are

mainly due to changes in the higher precipitation rates (precipitation rates larger than 4 mmh−1 account for 80 % of ∆P, SI

Fig. 10b). Changes in precipitation rate are mainly occurring in the regions with high vertical velocities (SI Fig. 13c). While

the mean profiles show smaller rain and graupel mass mixing ratios with increasing aerosol concentration inside the cloud,

the rain mass mixing ratio in the below cloud region does not vary strongly. In contrast the frequency of high graupel water15

paths increases with increasing aerosol concentrations (SI Fig. 16). The composite is averaged over the number of hydrom-

eteor containing columns at each level, i.e., an increase in peak graupel and rain mixing ratios will be masked by the more

numerous instances without significant graupel and rain due to the longer timescales needed for the formation of precipitation

sized hydrometeors. Hence the increasing maximum precipitation rates under higher aerosol concentration are a consequence

of the higher condensate content in the convective core, which ultimately leads to higher rain rates although later in the cloud20

lifecycle. The overall decrease in the highest aerosol scenarios is caused by the balance of increased lateral flux of condensate

into the more stratiform regions and the even further reduced formation efficiency of rain and graupel.

The aerosol-induced changes in cloud structure, lifecycle and precipitation formation for the phase of organised convection

are summarised in Fig. 12. The right (left) column corresponds to clouds, for which the vertical development is (not) limited

by a stable layer aloft. The upper panels depict the control scenario, while the lower panels indicate the cloud evolution under25

increased aerosol conditions.

6 Discussion and Conclusions

Aerosol-cloud interactions are investigated for mixed-phase convective clouds developing along a sea-breeze convergence

zone over the southwestern peninsula of the UK. High-resolution (∆x = 250 m) simulations with the Unified Model have

been conducted with a newly developed cloud microphysics scheme (CASIM), which can represent the modification of the30

aerosol environment by cloud microphysical processes. Evaluation of the model simulations with observations from the COPE

campaign suggest a good model performance in terms of the thermodynamic profiles, cloud structure, cloud microphysical and

radar reflectivity structure. The good agreement with low-level radar reflectivity, but larger difference in surface precipitation
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rate, suggest potential issues with the radar-retrieved surface precipitation rates.

A novel aspect of CASIM is the representation of the modification of aerosol environment by cloud microphysical processes in

a numerical weather prediction framework. Including this feedback has a largely positive impact on the model performance in

terms of cloud-base cloud droplet number density and reflectivity, but leads to a stronger underestimation of domain-average

surface precipitation and smaller cell sizes. The most notable changes are in the cloud droplet number concentrations and its5

spatial distribution, which also results in changes in cloud geometry and the amplitude, but not the mechanism of the response

to aerosol perturbations:

1. Aerosol processing reduces cloud base CDNC, results in a more rapid decrease of CDNC with altitude and increases the

spread of CDNC values at each altitude.

2. Changes in precipitation in the first phase of unorganised convection are smaller, when aerosol processing is included,10

compared to simulations with passive aerosols.

3. In the second phase with more organised convection, changes in precipitation are larger, when aerosol processing is

included, and changes in precipitation efficiency become more dominant. Changes appear larger due to overall less

deep clouds with aerosol processing for a given aerosol concentration and cloud deepening becomes thermodynamically

limited only in higher aerosol environments.15

The two-way interaction between clouds and aerosols is an important feedback mechanism, which may impact the magnitude

of aerosol-induced changes in clouds and is one source for co-variability between cloud and aerosol fields. The latter factor

is particularly important on larger spatial and temporal scales, which typically cannot be represented in very high-resolution

simulations with very detailed microphysics. Hence, one-way ,i.e., using aerosol for CCN activation, or two.way coupling,

i.e., changing the aerosol fields according to microphysical process, between aerosol and cloud fields has been implemented in20

some numerical weather prediction models with bulk microphysics schemes (e.g., COSMO-ART, Vogel et al. (2009); COSMO-

MUSCAT Dipu et al. (2017); or WRF-CHEM Fast et al. (2006)). Given the recent development of these modelling systems only

a limited number of studies on the sensitivity of aerosol-induced changes in clouds are available, which have predominantly

focused on stratocumulus clouds and aerosol processing. In this work, we have shown the importance of aerosol-processing in

orographically forced convection.25

Perturbations to the aerosol initial and boundary conditions (modifications by factors 0.1, 10 and 30) cause distinctive changes

in the cloud microphysical properties, geometry and precipitation production. These changes are summarised in Fig. 12. Key

aspects are:

1. Precipitation suppression under high aerosol conditions transitions to precipitation enhancement, when the clouds or-

ganise and grow deeper.30

2. Changes in precipitation are mainly a result of modified condensate generation in the warm-phase part of the clouds and

changes in precipitation efficiency. The latter are more important for simulations with aerosol processing.
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3. An increase of vertical velocities in the convective core regions and of condensate production, i.e., convective invigora-

tion, occurs for enhanced aerosol concentrations.

4. The translation of the convective invigoration to precipitation enhancement is limited by thermodynamic constraints on

the cloud depth.

5. The changes in the cloud field structure and mixing are important for the response to aerosol perturbations.5

6. Aerosol perturbations modify the cell number and sizes, but have little impact on the domain cloud fraction.

The change in precipitation response with the transition from shallow, unorganised to deeper and more organised convection

is in line with previous results from individual simulations in different cloud regimes as summarised for example by Khain

(2009). Different precipitation responses for convective and more stratiform precipitation have also been documented in the

large domain simulations of tropical convection by Lee and Feingold (2010). Previous studies on aerosol-induced changes in10

precipitation formation in deep convective clouds mainly focussed on changes in latent heating in the mixed-phase part of the

clouds (e.g., Rosenfeld et al., 2008; Lebo and Seinfeld, 2011), whereas our simulations suggest that the precipitation response

is mainly driven by changes in latent heating below the 0 ◦C level. A potential reason for this difference may be that clouds in

the COPE case have a less deep mixed-phase section compared to deep convective clouds in previous studies, which typically

reach the tropopause. We hypothesis that changes in latent heating rates are related to changes in cloud field structure. In terms15

of changes in cloud structure, most previous studies have focussed on changes in cloud top height or cloud depth (e.g., Koren

et al., 2005; Stevens and Feingold, 2009; Morrison and Grabowski, 2011), but changes in lateral cloud structure have received

less attention. Most previous studies used either small-domain, high-resolution simulations, which are unable to represent large

changes in cloud field structure, or larger-domain, but coarser resolution simulations, which lack a representation of updraft

dynamics. In the present study, spatial resolution is high enough to at least partly resolve updraft dynamics and the domain is20

large enough to represent cloud-cloud interactions and allow for changes in cloud field structure. The small changes in cloud

fraction, but major changes in cell number and area support the idea of the importance of changes in cloud field structure and

related compensating mechanisms as previously suggested for example by Stevens and Feingold (2009).

Despite the fairly high resolution of the presented simulations, there are some questions to the representation of lateral mix-

ing in the model simulations. Numerical weather prediction models have known issues with reproducing observed cell size25

distributions and modelled cell size distributions do not converge in simulations with increasing spatial resolution (e.g., Stein

et al., 2014, 2015; Hanley et al., 2015). These problems have been at least partly attributed to the representation of the lateral

mixing and parameter settings therein (Stein et al., 2015; Hanley et al., 2015). Future studies should investigate the sensitivity

of the aerosol induced changes in cloud field structure to the representation of lateral mixing or test whether similar changes

occur in models better resolving lateral mixing (LES simulations). Another caveat to the presented simulations is the use of30

saturation adjustment in the CASIM microphysics model. Lebo and Seinfeld (2011) have found significant differences in the

magnitude of aerosol-induced changes in latent heating in the mixed-phase part of the cloud depending on the representation

of supersaturations. Changes in latent heating were found to be much smaller if saturation adjustment was used. The repre-

sentation of mixed-phase cloud microphysics in models has a number of other uncertainties, both of parametric and structural
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nature. These include, but are not limited, to the representation of primary and secondary ice nucleation, drop freezing, rimed

particle density, and diameter-fall speed relations (e.g., Morrison, 2012; Johnson et al., 2015; Huang et al., 2017). Most of

these uncertainties in the microphysics are expected to influence the precipitation efficiency. However, given that changes in

condensate generation play an important role in the studied clouds, it can be speculated that these changes may have an impact

on the overall precipitation, but not on the overall mechanism of precipitation response.5

In the second part of this study, we will investigate whether the aerosol-induced changes in cloud structure and precipitation

discussed here are consistent across an initial condition ensemble (perturbations to meteorological variables) for the same case.

Further, the aerosol-induced changes will be put into the context of changes induced by small modification of the meteorolog-

ical initial conditions. This provides insight into the detectability of aerosol-cloud interactions in observational data and the

demands on observational data to enable a detection of aerosol-induced changes.10

Data availability. Model data is stored on the tape archive provided by JASMIN (http://www.jasmin. ac.uk/) service. Data access to Met

Office data via JASMIN is described at http://www.ceda.ac.uk/blog/access-to-the-met-office-mass-archive-on-jasmin-goes-live/.

Appendix A: Appendix

In a mass-conserving system, where changes to condensate storage are negligible, the surface precipitation P equals the differ-

ence between condensate generation G (condensation and deposition) and condensate loss L (evaporation and sublimation):15

P =G−L (A1)

The condensate generation is mainly determined by the cloud dynamics, i.e., uplift in saturated conditions, and to a smaller

extend the efficiency with which the generated supersaturation is depleted by transfer to the condensed phase. The condensate

loss is determined by the efficiency of microphysical processes to convert condensate to surface precipitation and the time-

scale available for this conversion, i.e., the residence time of any infinitely small air parcels in (super-)saturated conditions.20

Accordingly the change in precipitation between two different cases is the result of changes in the generation and loss terms:

If the change in loss are larger than those in the generation term, precipitation will decrease and vice-versa. A convenient way

to display this analysis is therefore a plot of ∆G against ∆L (Fig. A1).

This analysis can be extended to address the question whether a specific change in surface precipitation is dominated by a

change in the generation term or a change in the conversion efficiency. For this purpose, the precipitation efficiency PE is25

used, which is defined as the ratio of surface precipitation to condensate generation. The change in surface precipitation can be

decomposed according to:

∆P =Pctr −Pper =GctrPEctr −GperPEper

=GctrPEctr −GperPEper −GperPEctr +GperPEctr

=PEctr∆G+Gper∆PE (A2)30
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The first term on the right side of the equation quantifies the contribution of a change in generation and the second term those

of an altered precipitation efficiency. The conditions, for which the change in condensate generation dominate, are accordingly:

|PEctr∆G|>|Gper∆PE|= |Gper
Pcrt

Gctr
−Pper|

= |Gper
Pcrt

Gctr
−Pper|= | −

Gper

Gctr
Lctr +Lper|

= | −∆L−∆G(1−PEctr)| (A3)5

These conditions are met by the following combinations of ∆G and ∆L:

1.∆G> 0 & ∆L <∆G & ∆L >∆G(1− 2 ·PEctr) (A4)

2.∆G< 0 & ∆L >∆G & ∆L <∆G(1− 2 ·PEctr) (A5)

The respective areas in the ∆G−∆L are illustrated in Fig. A1.
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(a) (b)

Figure 1. (a) Aerosol size distribution used for initialising the simulations in the boundary layer: Aitken model (orange line), accumulation

mode (red line) and the sum of both (black dashed line). The vertical profiles of the aerosol number density is shown in the inset. The grey

horizontal bar showing the 500 m interval around the mean height of the boundary layer, across which a linear decrease of boundary layer

aerosol concentrations to free tropospheric concentrations is prescribed. (b) Regional model domains used for the simulations: the red dashed

line corresponds to the domain boundary used for the 1 km simulations and the orange dashed line to the one for the 250 m simulation.
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(a) (b)

Figure 2. Comparison of the (a) domain mean surface precipitation rate and (b) distribution of column maximum radar reflectivity from

model simulations with the standard aerosol profile (blue) and radar observations (red). The solid line shows results from the simulation with

passive aerosols and the dashed line from the simulation with aerosol processing. Simulated precipitation rates and radar reflectivity have

been coarse-grained to the spatial resolution of the radar observations (1 km horizontal and 500 m vertical).
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(a) (b)

Figure 3. Cloud base cloud droplet number density as a function of vertical velocities from aircraft data (red symbols) and model data (grey

shading). Aircraft observations include data collected during low-level flight legs close to cloud base (z̄ = 1160 m, 1200 UTC to 1250 UTC).

CDP measurements are used for the cloud droplet number concentrations and (AIMMS)-20 measurements for the vertical velocity. Cloud

base cloud droplet number density and vertical velocity in the model is retrieved from the lowest model level with cloud droplet mass larger

than 1 mgkg−1 from the entire domain between 12 UTC and 13 UTC.
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(a) (b)

(c)

Figure 4. Hovmöller diagrams of latitudinally averaged column integrated aerosol number density from the simulation with aerosol process-

ing and the standard aerosol profile for the Aitken (a), accumulation (b) and coarse mode (c). The white contour indicates areas where the

condensed water path is larger than 0.1 kgm−2.
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(a) (b)

(c) (d)

Figure 5. Time evolution of (a) number of cells, (b) average cell size, (c) cloud fraction and (d) domain average cloud top height. Cloudy

areas are defined as having a water path larger than 1 gm−2 and cells as areas with a column maximum radar reflectivity (composite radar

reflectivity) larger than 25 dBZ. Different line colours indicate the different aerosol initial conditions, solid lines correspond to simulations

with passive aerosols and dashed lines to simulations with aerosol processing.
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(a) (b)

Figure 6. Time evolution of accumulated precipitation since 9 UTC (a) and its change in simulations with perturbed aerosol concentrations

relative to the standard aerosol simulation (b). Different line colours indicate the different aerosol initial conditions, solid lines correspond to

simulations with passive aerosols and dashed lines to simulations with aerosol processing.
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(a) (b)

Figure 7. Percentiles of condensed water path (cloud and ice categories) in columns with certain precipitation rate for simulations with

passive aerosol (a) and aerosol processing (b). Different colours correspond to the different aerosol profiles and different line styles to the

different percentiles. Percentiles other than the median are only computed, if more than 100 data points are in a precipitation rate bin.
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(a) (b)

Figure 8. (a) Scatterplot of change in condensate gains and losses relative to the simulation with the standard aerosol profile. Points falling

above the one-to-one line (solid black) portray a decrease in surface precipitation, while points below it portray a surface precipitation

increase. The impact of advection of condensed water out of the domain is illustrated by the open symbols, for which the advective flux is

discounted as loss. For points in the area between the solid black line and the dashed lines (dark blue: passive aerosol, light blue: aerosol

processing) the change in condensate generation dominates over the change in precipitation efficiency (Appendix B). (b) Same as (a) but

separating contribution of condensation and evaporation (filled symbols) from contribution of deposition and sublimation (open symbols).
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(a) (b)

Figure 9. Characteristics of updraft regions classified by maximum column in-cloud vertical velocity: (a) Condensate gain and (b) updraft

area. In (a) dark colours represent changes in condensation and lighter colours changes in deposition relative to the simulation with the

control aerosol profile. Results from simulations with higher (lower) aerosol loading are depicted in greenish (blueish) colours. Solid lines

correspond to simulations with passive aerosol, dashed lines to simulations with aerosol processing.
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(a) (b)

(c) (d)

(e) (f)

Figure 10. Average profiles of kinetic energy from vertical velocity (a,b), latent heat release (c,d) and condensate content (e,f). The left panels

shows the average over all columns with a column maximum vertical velocity of 0− 3 ms−1 and the right panels for those with a column

maximum vertical velocity larger than 3 ms−1. The grey horizontal line indicates the location of the 0 ◦C line in the different simulations.38
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(a) (b)

(c) (d)

Figure 11. ∆G in relation to ∆L for the time period between 9-12 UTC (a) and 12-21 UTC (b). Difference in accumulated condensate

generation (c) and condensate loss (d) relative to the simulation with standard aerosol profile. Solid lines represent simulations with passive

aerosols and dashed lines those with aerosol processing.
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(a) (b)

Figure 12. Schematic summary of aerosol-induced changes in the investigated clouds for a scenario, in which cloud tops are not limited by an

upper level stable layer (left), and one, in which they are (right). The top row illustrates the cloud evolution in a low aerosol environment and

the bottom one in a high aerosol environment. The intensity of the shading indicates the condensate mass mixing ratio. Small dots represent

cloud droplets and larger ones rain drops. Different stages during of the cloud evolution are depicted from left to right and the lower section

of each panel shows the time series of accumulated precipitation from each cloud (cyan: base-line aerosol case, dark blue: enhanced aerosol

case). The orange arrows indicate vertical velocity in the convective core region.
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Figure A1. Exemplary plot of a ∆G versus ∆L diagram as explained in Appendix B. In simulations falling into the yellow (blue) shaded

area less (more) precipitation is formed than in the reference. The change in precipitation is dominated by ∆G for simulations in the green

shaded area, while precipitation changes in the rest of the phase space are dominated by changes in the precipitation efficiency. The green

shaded area is for an example for a reference simulation with a precipitation efficiency of 0.2. The green dashed lines correspond to the

indicated precipitation efficiency (0.2 to 1.9) of the reference simulation.
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Table 1. Parameters used for the representation of the different hydrometeor types (x: cloud, rain, ice, snow and graupel). The size distri-

butions of all hydrometeors are described as gamma-distributions with a fixed curvature µx. The relation between particle diameter Dx and

particle diameter mx is described by mx = cx ·Ddx
x ; the relation between Dx and the terminal fall velocity by vx = axDbx

x

(
ρ0
ρ

)0.5

.

µ ax [m1−bxs−1] bx [1] cx [kgm−3] dx [1]

cloud 0.0 3 · 107 2.0000 π
6
· 997 3

rain 2.5 130.00 0.5000 π
6
· 997 3

ice 0.0 71.34 0.6635 π
6
· 200 3

snow 2.5 4.84 0.2500 π
6
· 100 3

graupel 2.5 124.1 0.6600 π
6
· 250 3
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Table 2. Parameters of the aerosol size distribution in the boundary layer prescribed in the initial and lateral boundary conditions.

N [cm−3] m [kgm−3] σ [1]

Aitken mode 860 5.86 · 10−10 2.2

accumulation mode 150 3.84 · 10−9 1.7

coarse mode 0.23 1.07 · 10−8 1.5

insoluble aerosol 16.7 4.26 · 10−10 1.5
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Table 3. Precipitation efficiency of the different simulations. Precipitation efficiency is defined as the ratio of domain integrated precipitation

to domain integrated condensate gain (the sum of condensation and deposition rates. 1 mgkg−1.

passive aerosol aerosol processing

low 0.245 0.164

std 0.246 0.185

high 0.231 0.210

very high 0.224 0.215
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Table 4. Change in surface precipitation expected from the simulated change in precipitation efficiency (left column) and the change in

condensate generation (middle column). The last column gives the total relative change in precipitation, as predicted by the simulations.

Gstd∆PE/Pstd [%] PEn∆G/Pstd [%] ∆P/Pstd [%]

low passive aerosol 0.96 -5.65 -4.68

aerosol processing -11.13 -1.50 -12.63

high passive aerosol -6.68 3.33 -3.34

aerosol processing 12.39 4.35 16.74

very high passive aerosol -9.61 3.85 -5.76

aerosol processing 14.80 6.50 21.30
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