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Abstract. The implementation of European emission abatement strategies has led to 35 
significant reduction in the emissions of ozone precursors during the last decade. 36 
Ground level ozone is also influenced by meteorological factors such as temperature, 37 
which exhibit interannual variability, and are expected to change in the future. The 38 
impacts of climate change on air quality are usually investigated through air quality 39 
models that simulate interactions between emissions, meteorology and chemistry. 40 
Within a multi-model assessment, this study aims to better understand how air quality 41 
models represent the relationship between meteorological variables and surface ozone 42 
concentrations over Europe. A multiple linear regression (MLR) approach is applied to 43 
observed and modelled time series across ten European regions in springtime and 44 
summertime for the period of 2000-2010 for both models and observations. Overall, the 45 
air quality models are in better agreement with observations in summertime than in 46 
springtime, and particularly in certain regions, such as France, Mid-Europe or East-47 
Europe, where local meteorological variables show a strong influence on surface ozone 48 
concentrations. Larger discrepancies are found for the southern regions, such as the 49 
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Balkans, the Iberian Peninsula and the Mediterranean basin, especially in springtime. 50 
We show that the air quality models do not properly reproduce the sensitivity of surface 51 
ozone to some of the main meteorological drivers, such as maximum temperature, 52 
relative humidity and surface solar radiation. Specifically, all air quality models show 53 
more limitations to capture the strength of the ozone-relative humidity relationship 54 
detected in the observed time series in most of the regions, in both seasons.  Here, we 55 
speculate that dry deposition schemes in the air quality models might play an essential 56 
role to capture this relationship. We further quantify the relationship between ozone and 57 
maximum temperature (mo3-T, climate penalty) in observations and air quality models. 58 
In summertime, most of the air quality models are able to reproduce reasonably well the 59 
observed climate penalty in certain regions such as France, Mid-Europe and North Italy. 60 
However, larger discrepancies are found in springtime, where air quality models tend to 61 
overestimate the magnitude of observed climate penalty.  62 
 63 
 64 
 65 
 66 
 67 
 68 
 69 
 70 
 71 
 72 
1. Introduction 73 
 74 
Tropospheric ozone is recognised as a threat to human health and ecosystem 75 
productivity (Mills et al. 2007). It is produced by photochemical oxidation of carbon 76 
monoxide and volatile organic compounds (VOCs) in the presence of nitrogen oxides 77 
(NOx=NO+NO2) (Jacob and Winner, 2009). While it is an important pollutant on a 78 
regional scale, due to the long-range transport effect it may also influence air quality on 79 
a hemispheric scale (Hedegaard et al, 2013, Monks et al., 2015). Previous studies have 80 
shown that the reduction of emissions of ozone precursors, lead to a decrease in 81 
tropospheric ozone concentrations in Europe (Solberg et al. 2005, Jonson et al. 2006). 82 
However, there is also a large year-to-year variability due to weather conditions 83 
(Andersson et al. 2007).  84 
 85 
Ozone variability is strongly related to meteorological conditions. Significant 86 
correlations between ozone and temperature have been associated with the temperature-87 
dependent lifetime of peroxyacetyl nitrate (PAN), and also due to the temperature 88 
dependence of biogenic emission of isoprene (Sillman and Samson, 1995). Substantial 89 
increases in surface ozone have been associated with high temperatures and stable 90 
anticyclonic, sunny conditions that promote ozone formation (Solberg et al. 2008). 91 
Moreover, its strong relationship with temperature represents a major concern, since 92 
under a changing climate the efforts on new air pollution mitigation strategies might be 93 
insufficient. This effect, referred to as the climate penalty (Wu et al., 2008), is expected 94 
to play an important role in future air quality (Hendriks et al. 2016). Similarly, 95 
increasing solar radiation leads to high levels of ozone, though with a weak correlation 96 
(Dawson et al. 2007) and it has been suggested that it could reflect in part the 97 
association of clear sky with high temperatures (Ordónez et al., 2005). Humidity 98 
influences photochemistry through reactions between water vapor and atomic oxygen 99 
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(Vautard et al. 2012). High levels of humidity are normally related to enhanced cloud 100 
cover and thus reduced photochemistry (Dueñas et al. 2002, Camalier et al. 2007).The 101 
relationship between ozone and relative humidity can be also explained by dry 102 
deposition through stomatal uptake: under low levels of humidity plants close their 103 
stomata, which reduce the biogenic uptake (Hodnebrog et al. 2012, Kavassalis and 104 
Murphy, 2017). High wind speed is usually correlated with low ozone concentrations 105 
due to enhanced advection and deposition, although the processes involved are complex 106 
and studies from different regions reported weak or insignificant correlations (Dawson 107 
et al., 2007, Jacob and Winner, 2009). 108 
 109 
Chemistry transport models (CTMs) are one of the most common tools to investigate 110 
the impacts of climate change on air quality (Jacob and Winner, 2009, Colette et al. 111 
2015). Due to assumptions, parametrizations and simplifications of processes, the 112 
models themselves are subject to large uncertainties (Manders et al. 2012), which have 113 
been reflected in some regional differences in the magnitude of surface ozone response 114 
to projected climate change (Andersson and Engardt, 2010). Thus, model biases when 115 
compared to observations still remain a concern, especially in terms of the response of 116 
air quality under future climate (Fiore et al. 2009, Rasmussen et al. 2012). Comparisons 117 
between model outputs and measurements of available observational dataset are 118 
essential to evaluate the models ability to reproduce observations. Discrepancies in the 119 
outputs of CTMs can be due chemical and physical processes, fluxes (emissions, 120 
deposition and boundary fluxes) and meteorological processes (Vautard et al. 2012, 121 
Bessagnet et al. 2016). In particular, quantification and isolation of the effects of 122 
meteorology on ozone is a challenge, due to the complex interrelation between ozone, 123 
meteorology, emissions and chemistry (Solberg et al. 2015). Thus, evaluating air quality 124 
models with respect the meteorological inputs is important given that meteorology 125 
drives numerous chemical processes (Vautard et al. 2012). A number of studies have 126 
evaluated the performance of the meteorological models that drive CTMs by comparing 127 
them with observations of weather parameters relevant for air quality (Smyth et al., 128 
2006, Vautard et al. 2012, Brunner et al. 2014, Makar et al. 2015, Bessagnet et al. 129 
2016).  130 
 131 
Capturing observed sensitivities of ozone to meteorological factors is required to assess 132 
the confidence in the models and their ability to reproduce the observed relationships 133 
between pollutants and meteorology and better understand potential impacts under 134 
climate change. However, only a few studies have used model simulations to analyse 135 
ozone sensitivities to meteorological parameters. Davis et al. (2011) evaluated the 136 
performance of the Community Multiscale Air Quality (CMAQ) model to reproduce the 137 
ozone sensitivities to meteorology across Eastern US. Their results showed that the 138 
model underestimated the observed ozone sensitivities to temperature and relative 139 
humidity. Recently, Fix et al. (2017) examined the capability of the NRCM-Chem 140 
model to capture the meteorological sensitivities of high/extreme ozone. Overall, they 141 
found substantial differences between the modelled and the observed sensitivities of 142 
high levels of ozone to meteorological drivers that were not consistent between the three 143 
regions of study. Due to the complex interactions and processes, estimating the ozone 144 
sensitivities to key meteorological variables remains a challenge. Thus, we aim to 145 
examine the capabilities of a set of CTMs to reproduce the observed ozone responses to 146 
meteorological variables. To our knowledge, this is the first multi-model evaluation that 147 
compares observed and modelled meteorological sensitivities of ozone over Europe 148 
using a set of regional air quality models. 149 
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 150 
The EURODELTA-Trends (EDT) exercise has been designed to better understand the 151 
evolution of air pollution and assess the efficiency of mitigation strategies for 152 
improving air quality. The EDT exercise allows the evaluation of the skill of regional 153 
air quality models and quantification of the role of the different key driving factors of 154 
surface ozone, such as emissions changes, long-range transport and meteorological 155 
variability (more details on the EDT exercise can be found in Colette et al. 2017a). 156 
Earlier phases of EURODELTA and other relevant modelling exercises, such as 157 
AQMEII (Air Quality Model Evaluation International Initiative, Rao et al. 2009) 158 
covered a short period of time of one year, while only a few studies assessed long-term 159 
air quality but limited to one model (Vautard et al., 2006, Jonson et al. 2006, Wilson et 160 
al. 2012), or utilised climate data rather than reanalysed meteorology (e.g. Simpson et 161 
al., 2014; Colette et al., 2015). The EDT exercise presents a multi-model hindcast of air 162 
quality over 2 decades (1990-2010), and thus offers a good opportunity to evaluate the 163 
role of driving meteorological factors on ozone variability.    164 
 165 
The present study provides a novel and simple method to evaluate the performance of 166 
air quality models in terms of meteorological sensitivities of ozone. Specifically, our 167 
analysis focuses on the European ozone season (April to September) over the years 168 
2000-2010. The choice of this period is mainly motivated by the availability of the 169 
observational dataset from Schnell et al. (2014, 2015) (see section 2.1). Within the EDT 170 
framework, a recent report has presented the main findings on the long-term evolution 171 
of air quality (Colette et al. 2017b). Part of these results was obtained from the analysis 172 
of the 1990s (1990-2000) and 2000s (2000-2010) separately. We focus on the second 173 
decade (2000-2010), for which the interpolated dataset of observed maximum daily 8-174 
hourly mean ozone (MDA8 O3) used in this study was available. Similarly to Otero et 175 
al. (2016), we apply a multiple linear regression approach to examine the 176 
meteorological influence on MDA8 O3. Statistical models are developed separately for 177 
observational datasets and air quality models, with the primary focus on examining both 178 
observed and simulated relationships between MDA8 O3 and meteorological drivers . 179 
 180 
The present paper is structured as follows. Section 2 describes the observational data as 181 
well as the air quality models studied here. The methodology and the design of the 182 
statistical models are introduced in section 3. Section 4 discusses the results and the 183 
summary and conclusions are discussed in section 5. 184 
 185 
2. Data 186 

 187 
2.1. Observations 188 
 189 

This study uses gridded MDA8 O3 concentrations created with an objective-mapping 190 
algorithm developed by Schnell et al. (2014). They applied a new interpolation 191 
technique over hourly observations of stations from the European Monitoring and 192 
Evaluation Programme (EMEP) and the European Environment Agency’s air quality 193 
database (AirBase) to calculate surface ozone averaged over 1º by 1º grid cells (see 194 
Schnell et al., 2014, 2015). Otero et al. (2016) used this dataset for examining the 195 
influence of synoptic and local meteorological conditions over Europe. This 196 
interpolated product offers a possibility to establish a direct comparison between 197 
observations and CTMs. However, it must be acknowledged that for some areas with a 198 
low number of stations (i.e. the southeastern or northeastern European regions) the 199 
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values interpolated into the 1ºx1º degree grid cells may not be representative of such 200 
large scales. Recently, Ordóñez et al. (2017) and Carro-Calvo et al. (2017) have used 201 
this product to assess the impact of high-latitude and subtropical anticyclonic systems 202 
on surface ozone and the synoptic drivers of summer ozone respectively. They reported 203 
inhomogeneities during some years for specific grid-cells (e.g. in the Balkans and 204 
Sweden), which were excluded from their analysis. However, we did not observe a clear 205 
shift when analysing the spatial averages of the time series of the MDA8 O3 for those 206 
particular regions (e.g. Balkans and Scandinavia) (Figs. S1, S2), Therefore our analysis 207 
includes the whole dataset. 208 
 209 
This study investigates the influence of observed meteorological variables on MDA8 210 
O3, based on the ERA-Interim reanalysis product provided by the European Centre for 211 
Medium-Range Weather Forecasts (ECMWF) at 1ºx1º resolution (Dee et al. 2011). 212 
Meteorological reanalyses products are essentially model simulations constrained by 213 
observations and they have been widely validated against independent observations. 214 
Daily mean values are calculated as the mean of the four available time steps at 00, 06, 215 
12, and 18UTC for 10m wind speed components (u and v) and 2m relative humidity. 216 
Maximum temperature is approximated by the daily maximum of those time steps, 217 
while daily mean surface solar radiation is obtained from the 3-hourly values provided 218 
for the forecast fields.  219 
 220 

2.2. Chemistry Transport Models (CTMs) 221 
 222 

A set of state-of-the-art air quality models participating in the EDT exercise is used 223 
here: LOTOS-EUROS (Schaap et al., 2008, Manders et al. 2017), EMEP/MSC-W 224 
(Simpson et al., 2012), CHIMERE (Mailer et al., 2017), MATCH (Robertson et al., 225 
1999) and MINNI (Mircea et al., 2016). The domain of the CTMs extends from 17ºW 226 
to 39.8ºE and from 32ºN to 70ºN and it follows a regular latitude-longitude projection 227 
of 0.25x0.4 respectively. The main features of the CTM setup are largely constrained by 228 
the EDT experimental protocol (e.g. meteorology, boundary conditions, emissions, 229 
resolution, see Colette et al. 2017a for further details). For instance, the boundary 230 
conditions were defined from a climatology of observational data for most of the 231 
experiments of the EDT exercise (including the data used here). However, the 232 
representation of physical and chemical processes and the vertical distribution differ in 233 
the CTMs, as well as the vertical distribution of model layers (including altitude of the 234 
top layer and derivation of surface concentration at 3m height in the case of EMEP, 235 
LOTOS-EUROS and MATCH). Moreover, there were no specific constrains imposed 236 
on biogenic emissions (including soil NO emissions), which are represented by most of 237 
the models using an online module (Colette et al. 2017a).  Since we aim here to 238 
compare the modelled relationship between meteorology and surface ozone, prescribing 239 
common features in the CTMs is particularly an advantage to identify potential sources 240 
of discrepancies.  241 
 242 
The CTMs were forced by regional numerical weather model simulations using 243 
boundary conditions from the ERA-Interim global reanalysis (Dee et al., 2011). Most of 244 
the CTMs used the same meteorological input data, with a few exceptions. Three of 245 
them (EMEP, CHIMERE and MINNI) used input meteorology from the Weather 246 
Research and Forecast Model (WRF) (Skamarock et al. 2008). LOTOS-EUROS and 247 
MATCH used the input meteorology produced by RACMO2 (van Meijgaard, 2012) and 248 
HIRLAM (Dahlgren et al. 2016), respectively. Unlike the rest of the regional weather 249 
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models, RACMO2 used in the EDT exercise excluded nudging towards ERA-Interim, 250 
which might have some impact in the meteorological fields generated by RACMO2. A 251 
summary of the CTMs and the corresponding sources of meteorological input data with 252 
some of the main characteristics are given in Table 1. As with the observations, CTMs 253 
and their meteorological counterpart were interpolated to a common grid with 1º x 1º 254 
horizontal resolution. The use of a coarser resolution could have an impact in some 255 
regions with a complex orography where airflow is usually controlled by mesoscale 256 
phenomena (e.g. see-breeze and mountain-valley winds) or in regions characterized by 257 
high emission densities (Schaap et al., 2015, Gan et al. 2016). In such cases the use of a 258 
finer grid could be beneficial to capture the variability of local processes.  259 
 260 
A set of meteorological parameters was selected from the meteorological input data for 261 
the regression analyses. Similarly to the procedure with ERA-Interim, daily means are 262 
obtained from the available time steps every 3 hours in the case of WRF and RACMO2, 263 
and every 6 hours for HIRLAM for the following variables: 10m wind speed 264 
components, 2m relative humidity and surface solar radiation. Maximum temperature is 265 
also approximated by the daily maximum of those time steps.  266 
 267 
3. Multiple linear regression model 268 

 269 
Summertime usually brings favourable conditions for high near-surface ozone 270 
concentrations, such as air stagnation due to high-pressure systems, warmer 271 
temperatures, higher UV radiation, and lower cloud cover (Dawson et al. 2007). This 272 
study attempts to better understand how CTMs represent the meteorological sensitivities 273 
of ozone. To this aim, we use a multiple linear regression approach that can provide 274 
useful information of sensitivities in the distribution of ozone concentration as a whole 275 
(Porter et al., 2015).  276 
 277 
A total of five meteorological predictors (Table 2) are selected based on the existing 278 
literature that has shown their strong influence on ozone pollution (e.g. Bloomfield et al. 279 
1996, Barrero et al. 2005, Camalier et al. 2007, Dawson et al. 2007, Andersson and 280 
Engardt, 2010, Rasmussen et al. 2012, Davis et al. 2011, Doherty et al., 2013, Otero et 281 
al. 2016). Moreover, it has been shown that the occurrence of air pollution episodes 282 
might increase when the pollution levels of the previous day are higher than normal 283 
(Ziomas et al. 1995). Then, apart from the meteorological predictors, we add the effect 284 
of the lag of ozone (MDA8 from the previous day) in order to examine the role of ozone 285 
persistence. Additionally, we include harmonic functions that capture the effect of 286 
seasonality as in Rust et al. al (2009) and Otero et al. (2016), which is referred as “day” 287 
in the MLRs (see Table 2).  288 
 289 
For this study, we divide the European domain into 10 regions: England (EN), Inflow 290 
(IN), Iberian Peninsula (IP), France (FR), Mid-Europe (ME), Scandinavia (SC), North 291 
Italy (NI), Mediterranean (MD), Balkans (BA) and Eastern Europe (EA). These regions 292 
are based on those defined in the recent ETC/ACM Technical Paper (Colette et al. 293 
2017b). For our study, we further subdivide the original Mediterranean region (MD) 294 
into a region covering the Balkans (BA), due to the strong influence of the ozone 295 
persistence on MDA8 O3over this particular region as noted previously in Otero et al. 296 
(2016). Figure 1 shows the spatial coverage of each region and Table 3 lists their 297 
coordinates. As shown in Otero et al. (2016), the relative importance of predictors in the 298 
MLRs shows distinct seasonal patterns. Here, multiple linear regression models (MLR, 299 
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hereafter) are developed for each region for two seasons: springtime (April-May-June, 300 
AMJ) and summertime (July-August-September, JAS). These seasons differ from the 301 
meteorological definition, but cover the period when surface ozone typically reaches its 302 
highest concentrations (i.e. April-September). Additionally, we analysed the impact of 303 
the seasons’ definition by performing sensitivity tests using the meteorological seasons 304 
(i.e. March-May-April, MAM and June-July-August, JJA). As shown in Figs. S3 and S4 305 
(see Supplement), we found a stronger impact of some relevant key driving factors of 306 
ozone (e.g. temperature and relative humidity) when using the seasons defined above 307 
(AMJ and JAS) than when using the meteorological seasons. Therefore, we consider 308 
that our choice of 3-month periods that cover the whole ozone season is particularly 309 
useful for examining the impact of individual meteorological parameters when ozone 310 
levels are highest. Since the domains covered by observations and CTMs do not 311 
coincide exactly, we applied an observational-mask to use the same number of grid-312 
cells for CTMs and observations. Data used to estimate parameters of the MLR were 313 
spatially averaged over each region.  Thus, we compare MLRs developed separately for 314 
CTMs and observations for each region and season. The observational dataset contains 315 
the gridded MDA8 O3 and the meteorology input from ERA-Interim, while the dataset 316 
for the CTMs contains the MDA8 O3 from each one of them along with the 317 
corresponding meteorological input (LOTOS and RACMO2, CHIMERE and WRF, 318 
MATCH and HIRLAM) (see Table 1). 319 
 320 
A MLR is built to describe the relationship between MDA8 O3 (predictand) and a set of 321 
covariates (or predictors) describing seasonality, ozone persistence and the influence of 322 
meteorological fields (Table 2).  A data series yt, t= 1,..N (e.g. observations or CTM 323 
simulations) for a given region and season is conceived as a Gaussian random variable 324 
Yt with varying mean t and homogeneous variance 

2
. The mean t is described as a 325 

linear function of the covariates, i.e. 326 
 327 
𝑌𝑡 ~ 𝒩(𝜇𝑡, 𝜎2), 328 

𝜇𝑡 =  𝛽0 + 𝛽𝑠𝑖𝑛𝑠𝑖𝑛 (
2𝜋

365.25
𝑑𝑡) + 𝛽𝑐𝑜𝑠𝑐𝑜𝑠 (

2𝜋

365.25
𝑑𝑡)  + 𝛽𝑙𝑎𝑔𝑦𝑡−1 + ∑ 𝛽𝑘

𝐾
𝐾=1 𝑥𝑡,𝑘   (1) 329 

 330 
with t indexing daily values and 𝑑𝑡 referring to the day in the year associated with the 331 
index t. 𝛽0 is a constant offset, 𝛽𝑠𝑖𝑛 and 𝛽𝑐𝑜𝑠 are the first order coefficient of a Fourier 332 
series (e.g. Rust et al. 2009, 2013, Fischer et al. 2017), 𝛽𝑙𝑎𝑔 describes the persistence 333 

with respect to the previous day concentration  𝑦𝑡−1 ; if t is the first day in the late 334 
summer season (JAS, July 1

st
), 𝑦𝑡−1 is the concentration of June 30

th
. Further regression 335 

coefficients 𝛽𝑘 describe the linear relation to potential meteorological drivers (see table 336 
2). For covariates standardized to unit variance, the regression coefficients (𝛽)  are 337 
standardised coefficients giving the change in the predictand with the covariate in units 338 
of covariate standard deviation. 339 
 340 
Following the same strategy as used in Otero et al. (2016), the MLRs are developed 341 
through several common steps: 1) starting with the full set of potentially useful 342 
components in the predictor, a stepwise backward regression using the Akaike 343 
Information Criterion (AIC) as a selection criterion removes successively those 344 
components in the predictor, which contribute least to the model performance; and 2) a 345 
multi-collinearity index known as variance inflation factor (VIF, Maindonald and Braun 346 
2006) is used to detect multi-collinearity problems in the predictor (i.e. high correlations 347 
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between two or more components in the predictor). Components with a VIF above 10 348 
are left out of the predictor (Kutner et al 2004).  349 
 350 
The statistical performance of each MLR (built separately from observations and 351 
CTMs) is assessed through the adjusted coefficient (R

2
) and the root mean square error 352 

(RMSE). The R
2
 estimates the fraction of total variability described by the MLR and the 353 

RMSE gives the average deviation between model and observation obtained in the 354 
MLR. We also examine the relative importance of the individual components in the 355 
predictor. According to the method proposed by Lindeman et al (1980), the relative 356 
importance of each predictor is estimated by its contribution to the R

2
 coefficient 357 

(Grömping 2007). We assess the sensitivities of ozone to the predictors through the 358 
standardised coefficients obtained from the regression. These coefficients indicate the 359 
changes in the ozone response to the changes in the predictors, in terms of standard 360 
deviation. Thus, for every standard deviation unit increase (decrease) of a specific 361 
predictor, the predictand (MDA8 O3) will increase (decrease) the amount indicated by 362 
its coefficient in standard deviation units,. The use of standardised coefficients allows 363 
us to establish a direct comparison in the influence of individual predictors. The effect 364 
of seasonality introduced by the harmonic functions (namely, “day”, table 2) is kept in 365 
the MLRs (Eq. 1) for its usefulness in improving the power of the regression analysis, 366 
however further explanation about the effect of the predictors focuses on the rest of the 367 
variables.  368 
 369 
4. Results and discussion 370 
 371 

4.1. CTM performance by region 372 
 373 
We compare the seasonal cycle of observations and CTM results through the time series 374 
of daily averaged values of MDA8 O3 from observations and CTMs for the whole 375 
period (i.e. April-September, 2000-2010) spatially averaged over each region. 376 
Furthermore, correlation coefficients between both CTMs and observations at each 377 
region and season are used to quantify the CTM performance.  378 
 379 

4.1.1. Seasonal cycle of MDA8 O3 380 
 381 

We examine the ozone seasonal cycle represented by both the observational and 382 
modelled dataset. Figure 2 depicts daily averages during 2000-2010 of MDA8 O3 at 383 
each region for the CTMs and observations. In general, all CTMs are biased high 384 
compared with observations. CTM results are visually closer to observations in the 385 
northwestern regions (i.e. IN, EN and FR), while the spread becomes larger over the 386 
southern and southeastern regions (i.e. BA, NI, MD). The IN, EN and SC regions show 387 
the highest observed concentrations in the starting months (AMJ), which is not 388 
generally well captured by most of the CTMs, which show a more flat timeline (e.g. 389 
LOTOS, MATCH, CHIMERE). For example, in the SC region, some of the CTMs 390 
underestimate the ozone concentrations in AMJ (i.e. CHIMERE and MINNI). The rest 391 
of the regions show the highest observed concentrations in JAS, which is generally 392 
overestimated by the CTMs. Models show discrepancies in the ozone seasonal cycle 393 
when compared to each other and when compared against observations. For example, 394 
we observed substantial differences in the southern regions, such as IP, MD and BA, 395 
where the models show a considerable spread. In those regions, the CTMs exhibit a 396 
different behaviour when compared to each other. For instance, the EMEP model shows 397 
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ozone peak concentrations in April, while CHIMERE and MINNI show a peak in July. 398 
Overall LOTOS shows a relatively constant positive bias in all regions, more evident in 399 
the MD and NI regions.  400 
 401 
 402 

4.1.2. Correlation coefficients between modelled and observed time series 403 

 404 
The correlation coefficients between the observed and modelled values of MDA8 O3 at 405 
each region and in each season are shown in Fig. 3. Overall, MDA8 O3 from the CTMs 406 
is better correlated with observations in JAS than in AMJ in the regions ME, NI, EA 407 
and EN. As expected from inspection of the average time series (Fig. 2), the lowest 408 
correlations between models and observations are found in BA, especially in AMJ for 409 
all models. In particular, EMEP is negatively correlated with observations over this 410 
region. As mentioned above, the larger discrepancies between CTMs and observations 411 
found over BA might be attributed to a low density of observation sites from which the 412 
interpolated dataset is derived, resulting in a lower quality or higher uncertainties of 413 
such products (Schnell et al. 2014). The highest correlations in AMJ are obtained at the 414 
following regions: ME; FR; NI; and EN for most of the models, except for EMEP for 415 
which the highest correlation with observations was found in IN and SC. In general, the 416 
models that are most closely correlated with observations are MATCH, MINNI and 417 
CHIMERE, while LOTOS shows the lowest correlations, which could be partially due 418 
to the use of a different set-up of the RACMO2 model, without nudging towards ERA-419 
Interim (section 2.2). These correlations reflect the patterns represented by the seasonal 420 
cycle described above.  421 
 422 

4.2. MLR performance 423 
 424 

Figures 4 and 5 depict the statistical performance of each MLR in terms of R
2
 and 425 

RMSE (respectively) at the different regions for both seasons, AMJ and JAS. The R
2
 426 

values indicate that all MLRs models (based on both observations and CTMs) are able 427 
to explain more than 60% of the MDA8 O3 variance in all regions. Overall, the MLRs 428 
show a stronger fit in JAS than in AMJ in most of the regions (Fig. 4). The MLRs 429 
appear to perform better in regions such as NI, ME, FR or EA, while the poorest 430 
statistical performance is found in IN and EN. The results obtained from the CTM-431 
based MLRs show a similar performance to the observation-based MLRs in most of the 432 
regions. The lowest RMSE values for most of the MLR are found in SC ranging 433 
between 1 and 3 ppb, while EN shows the largest RMSE values. The MLRs from 434 
MATCH and CHIMERE show the lowest RMSE values (1-3ppb) suggesting the best 435 
statistical fit from a predictive point of view. 436 
 437 
Both R

2
 and RMSE metrics indicate that the statistical performance of MLRs for 438 

observations and CTMs show distinct variations between seasons and regions. Overall, 439 
better performances are found in JAS and in some regions (i.e. ME, NI, or FR) where 440 
MLRs are able to describe more than the 80% of the variance in CTMs and 441 
observations. This could be attributed to the major role of meteorology in summer 442 
influencing local photochemistry processes of ozone production, while in spring long 443 
range transport plays a stronger role (Monks, 2000, Tarasova et al. 2007). As it includes 444 
the bias, the RMSE reveals more differences among the MLRs when compared to each 445 
other (e.g. larger errors for LOTOS when compared to MATCH or CHIMERE). 446 
However, it is interesting that in general all MLRs show a similar tendency when 447 
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evaluating the statistical performance, which indicate that observations-based and 448 
CTMs-based MLRs present a similar statistical performance for modelling MDA8 O3. 449 
The ability of the CTMs to reproduce the influence of meteorological drivers on MDA8 450 
O3 is discussed in more detail below. 451 
 452 

4.3. Effects of drivers on ozone concentrations  453 
 454 

The analysis of the influence of the predictors in the MLRs reveals distinctive regional 455 
patterns in both observation-based and CTM-based MLRs. In agreement with Otero et 456 
al. (2016), here we also find that the regions geographically located towards the interior 457 
(including central, western and eastern regions) appear to be more sensitive to the 458 
meteorological predictors, especially in JAS. On the contrary, less meteorological 459 
contribution is found in the regions over the northernmost and southernmost part of the 460 
domain, implying that non-local processes (e.g. long-range transport) play a stronger 461 
role here. Considering such similarities, in the following, the regions: EN, FR, ME, NI 462 
and EA are referred as the internal regions, while the rest of the regions: IN, SC, IP, MD 463 
and BA, are referred as the external regions (see Fig. 1).  464 
  465 
4.3.1 Relative importance 466 
 467 
Figure 6 depicts the relative importance of the predictors for the observation-based and 468 
CTM-based MLRs in the internal regions (Fig. 1). Here, a larger meteorological 469 
influence (i.e., the predictors other than LO3 and day) can be seen in JAS compared to 470 
AMJ in all of these regions.  In general, the dominant meteorological drivers from the 471 
observation-based MLRs in these internal regions are RH and Tx. The contribution of 472 
RH is evident in AMJ (e.g. ME, or EA), while Tx is clearly dominant in JAS. SSRD is 473 
also a key driver of MDA8 O3 and generally, the wind factors (W10m and Wdir) appear 474 
to have a minor contribution.  475 
 476 
Despite the CTM-based MLRs being able to capture the meteorological predictors, we 477 
observe discrepancies among the internal regions when compared to the observation-478 
based MLR. The inter-model differences in terms of the relative importance of 479 
predictors are greater in AMJ than in JAS. For instance, the contribution of the LO3 is 480 
overestimated by most of CTMs. Substantial differences are found in the influence of 481 
RH when comparing the observation-based and the CTMs-based models. The CTMs do 482 
not capture the relative importance of the RH well, especially in AMJ. In general, the 483 
CTMs driven by WRF meteorology show a slightly larger contribution of RH in most of 484 
the cases, although we notice that there are also some differences among the models that 485 
share the same meteorology. CTMs do capture the relative importance of Tx in all 486 
regions, but overall they overestimate it, as they also show for SSRD. Here, we find 487 
discrepancies when comparing the contribution of predictors in the statistical models 488 
from CTMs driven by the same meteorology (e.g. EMEP when compared to CHIMERE 489 
and MINNI). Such differences among the models using the same meteorology point out 490 
that the model setup (e.g. number of vertical levels, depth of first layer) and model 491 
parameterizations (e.g chemistry/physical processes) have a larger influence in the 492 
model performance than the meteorological processes. 493 
 494 
Figure 7 presents the relative importance of individual predictors in the MLRs 495 
developed at the external regions (Fig. 1) for both seasons. The observation-based 496 
MLRs show that the main driving factor is LO3 in AMJ, while the effect of 497 
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meteorological drivers becomes stronger in JAS. RH presents a larger contribution in 498 
some regions (e.g. IN, IP or SC) in AMJ and Tx in JAS (e.g. IN, IP, SC and BA). The 499 
contribution of wind components, Wdir and W10m, is mainly reflected in both seasons 500 
in the western regions (i.e. IN and IP) and in MD, respectively.  501 
 502 
Overall, all CTMs show this tendency, although there are substantial differences when 503 
comparing the individual drivers’ contribution in the observation-based and CTM-based 504 
MLRs, particularly in AMJ (Fig. 7). CTMs do not capture the contribution of LO3 505 
reflected by the observation-based MLRs. As in the previous analysis (section 4.1) the 506 
largest discrepancies are found in BA. In this region, the observation-based MLR shows 507 
that most of the variability of ozone would be explained by LO3, while the CTM-based 508 
MLRs underestimate the contribution of LO3 and overestimate the meteorological 509 
contribution of Tx, SSRD and RH (e.g. LOTOS, CHIMERE and MINNI). The 510 
contribution of RH is, again, underestimated by the CTMs in most of the regions, 511 
(except in BA). On the contrary, the relative importance of SSRD is overestimated in 512 
some regions (e.g. IP, IN or MD) and Tx (IN, SC), in particular for the CTMs driven by 513 
WRF. Overall, CTMs show the observed contribution of W10m and Wdir in both 514 
seasons, although with some inconsistences among the regions and CTMs. 515 
 516 
Our results indicate that the relative importance of meteorological factors is stronger in 517 
the internal regions (Fig.6) than in the external regions (Fig.7), which could be partially 518 
attributed to a larger variability of most of the meteorological fields in internal regions 519 
(Fig. S5). The external regions are also more likely to be influenced by the lateral 520 
boundary conditions applied by each CTM. In addition, in some external regions (e.g. 521 
IP or MD), as mentioned in section 2, the use of a coarser grid in some regions might be 522 
insufficient to capture mesoscale processes, such as land-sea breezes, which also control 523 
MDA8 O3 concentrations (Millán et al. 2002). Moreover, we observe that meteorology 524 
becomes more important in summer, when local photochemistry processes are 525 
dominant. In general, CTMs show this tendency, but limitations to reproduce the effect 526 
of some meteorological drivers are found. Specifically, while CTMs tend to 527 
overestimate the contribution of Tx, and SSRD, they underestimate the relative 528 
importance of RH, which is also reflected in the correlations coefficients between 529 
predictand the predictors (Figs. S6, S7).  530 
 531 
4.3.2 Sensitivity of ozone to the drivers 532 
 533 
We assess the sensitivities of MDA8 O3 to the drivers through their standardised 534 
coefficients obtained in the MLR (Section 3). These coefficients provide further 535 
information about the changes of MDA8 O3 due to the effect of each driver. Figures 8 536 
and 9 depict the values of the main driving factors obtained in the MLR for the internal 537 
and the external regions (respectively): LO3, Tx and RH. Similarly to those patterns 538 
described by the relative importance of drivers, we observe that the ozone response to 539 
LO3 is stronger in AMJ than in JAS: the corresponding standardised coefficients are 540 
always positive and generally higher in AMJ. The observed sensitivities to LO3 are 541 
smaller in the internal regions (Fig. 8), being particularly dominant in the external 542 
regions (Fig. 9). Overall, most of the CTMs reflect a similar tendency. However, there 543 
are evident differences between observations and CTMs when comparing the values of 544 
the standardised coefficients, specifically in some regions such as BA or MD. When 545 
comparing the ozone responses of the CTMs to LO3, we observe that in most of the 546 
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regions MATCH and MINNI show values closest to observations, which  is consistent 547 
with the results described at the beginning of this section (4.1.2).  548 
 549 
Correlations between MDA8 O3 and Tx are strong, especially in the internal regions in 550 
JAS (Fig. S6).  Overall, we show that the CTMs appear to capture the observed effect of 551 
Tx better in JAS than in AMJ in most of the regions. The highest sensitivities to Tx are 552 
found in internal regions such as ME, NI, FR and EN, which is also shown in the CTMs 553 
(Fig. 8). However, we see that most of the CTMs tend to overestimate the effect of Tx 554 
and distinct sensitivities to Tx are also found for those models that share the same 555 
meteorology (i.e. CHIMERE, EMEP and MINNI). In particular, the MINNI and 556 
CHIMERE models show higher Tx sensitivities when compared to the rest of the 557 
CTMs. While the MINNI model presents the highest sensitivities to Tx in spring, 558 
especially in EN and FR, EMEP shows smaller values and it underestimates the 559 
correlations between Tx and MDA8 O3 (Figs. S6, S7).  560 
 561 
The slope of the ozone-temperature relationship (mO3-T) has been used in several studies 562 
to assess the ozone climate penalty (eg. Bloomer et al., 2009, Steiner et al., 2010, 563 
Rasmussen et al., 2012, Brown-Steiner et al. 2015) in the context of future air quality. 564 
Thus, we additionally analyse the ozone-temperature relationship in order to provide 565 
insight into the ability of CTMs to reproduce the observed mO3-T. Similarly to previous 566 
work (Brown-Steiner et al. 2015), the slopes are obtained from a simple linear 567 
regression using only Tx (without the influence from other predictors) and they are used 568 
to quantify such relationship in both seasons, AMJ and JAS. 569 
 570 
Figures 10 and 11 illustrate the mO3-T for the internal and the external regions 571 
respectively. The observed mO3-T is larger in JAS than in AMJ. In AMJ, it ranges 572 
between -0.45 and 1.15 ppbK

-1
 with the largest values found in ME, NI and MD. In 573 

JAS, the observed climate penalty is of the order of 1-2.7 ppbK
-1

 with the largest values 574 
in EN, FR, ME, NI, and MD. CTMs show a better agreement with observations in JAS 575 
than in AMJ. CTMs tend to overestimate the climate penalty in AMJ in most of the 576 
regions, with some exceptions, such as EMEP and MATCH that systematically 577 
underestimate the slopes. Also, CTMs are generally better in simulating the observed 578 
mO3-T in the internal regions compared to the mO3-T in the external regions, where in 579 
general CTMs appear to overestimate the climate penalty in both seasons. Using this 580 
metric, we identify some regions particularly sensitive to temperature, with larger 581 
values of mO3-T (e.g. EN, ME, FR, NI or MD). Through a multi-model assessment, 582 
Colette et al. (2015) showed a significant summertime climate penalty in southern, 583 
western and central European regions (e.g. EA, IP, FR, ME or MD) in the majority of 584 
the future climate scenarios used. Our study shows that most of the CTMs confirm the 585 
observed climate penalty in JAS in such regions in the near present, although we found 586 
that most of the CTMs overestimate the climate penalty in AMJ, especially in the 587 
external regions. 588 
 589 
We see a stronger effect of RH in AMJ than in JAS in the observations with the greatest 590 
impact in the internal regions (e.g. EA, ME, NI, FR and EN), which is not well 591 
represented by the CTMs (Figs. 8 and 9). As mentioned, CTMs underestimate the 592 
strength of the correlations between ozone and relative humidity (Figs. S6, S7). This 593 
general lack of sensitivity to RH could also partially explain the tendency for all CTMs 594 
to show a high bias in simulated ozone compared with observations (Fig. 2).  Among 595 
the possible reasons for this inconsistency, we hypothesize that it can be related to the 596 
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fact that ozone removal processes can be associated with higher relative humidity levels 597 
during thunderstorm activity on hot moist days, which might not be well captured by 598 
CTMs. As previous studies pointed out (e.g. Andersson and Engardt, 2010), the impacts 599 
of ozone dry deposition suggest that it may also play a role in explaining the problems 600 
that CTMs show to reproduce the observed ozone-relative humidity relationship. With a 601 
simple modelling approach, Kavassalis and Murphy (2017) found that the relationship 602 
between ozone and relative humidity was better captured by the inclusion of the vapour 603 
pressure deficit-dependent dry deposition, pointing out the relevance of detailed dry 604 
deposition schemes in the CTMs.  605 
 606 
High SSRD levels favour photochemical ozone formation and it is usually positively 607 
correlated to ozone. In this case, CTMs also present some limitations to capture this 608 
effect and they overestimated the sensitivities of ozone to SSRD (Figs. S8, S9). For 609 
example, the observations show a lower and surprisingly negative effect of SSRD. 610 
Although the correlations between SSRD and ozone are positive (see Figs. S6, S7), the 611 
presence of other predictors in the regression may reverse the sign of the estimated 612 
coefficient. The CTMs show a stronger sensitivity of ozone to SSRD and they 613 
overestimate its influence on surface ozone. Similarly, the sensitivities to Wdir and 614 
W10m are also overestimated by the CTMs, especially in AMJ (Figs. S8, S9).  615 
 616 
Our analysis suggests that CTMs present more limitations to reproduce the influence of 617 
meteorological drivers to MDA8 O3 concentrations in the external regions than in the 618 
internal regions, particularly in AMJ. Moreover, we find the largest discrepancies in 619 
BA, where models show the poorest seasonal performance and correlation coefficients 620 
(Figs. 2 and 3, respectively), probably due a low quality of the observational dataset.  621 
 622 
Furthermore, LO3 is the main driver over most of the external regions and explains a 623 
large proportion to the total variability of MDA8 O3, while meteorological factors play 624 
a smaller influence. Lemaire et al. (2016) found a very low performance (based on R

2
) 625 

over the British Isles, Scandinavia and the Mediterranean using a different statistical 626 
approach that only included two meteorological drivers. They attributed this low skill to 627 
the large influence over those regions of long-range transport of air pollution (Lemaire 628 
et al. 2016). Our results confirm the small influence of the meteorological drivers over 629 
those regions and the strong influence of the ozone persistence. Moreover, in the case of 630 
the external regions of northern Europe, it could also be explained due to the dominance 631 
of transport processes such as the stratospheric-tropospheric exchange or long-range 632 
transport from the European continent, rather than local meteorology, particularly in 633 
AMJ (Monks, 2000, Tang et al. 2009, Andersson et al. 2009). 634 
 635 
Previous work suggested that local sources of NOx and biogenic VOC (ozone 636 
precursors) are important factors of summertime ozone pollution in the Mediterranean 637 
basin (Richards et al. 2013). Moreover, some studies suggested that the local vertical 638 
recirculation and accumulation of pollutants play an important role in ozone pollution 639 
episodes in this region: during the nighttime the air masses are held offshore by land-sea 640 
breeze, creating reservoirs of pollutants that are brought back the following day (Millán 641 
et al. 20002, Jiménez et al. 2006, Querol et al. 2017). All of these factors (e.g. local 642 
emissions as well as local and large-scale processes) control the ozone variability, 643 
which might explain the smaller influence of local meteorological factors shown in this 644 
study over the Mediterranean basin when compared to meteorological influence in the 645 
internal regions. Thus, we may hypothesize that the strong impact of LO3 observed in 646 
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the external regions over southern Europe (i.e. IP, MD, BA) could be partially due to 647 
the role of vertical accumulation and recirculation of air masses along the 648 
Mediterranean coasts as a result of the mesoscale phenomena, which is enhanced by the 649 
complex terrains that surround the Basin. Other important factor for the strong impact 650 
of LO3 observed is the slow dry deposition of ozone on water that would favour the 651 
ozone persistence in southern Europe. 652 
 653 
Overall we conclude that CTMs capture the effect of meteorological drivers better in the 654 
internal regions (EN, FR, ME, NI and EA), where the influence of local meteorological 655 
conditions is stronger. The major effect of meteorological parameters found in the 656 
internal European regions might be also attributed to the fact that overall the variability 657 
of meteorological conditions is larger in those regions (Fig. S5). We also find 658 
differences among the CTMs driven by the same meteorology. As mentioned in the 659 
introduction, Bessagnet el al. (2016) suggested that the spread in the model results 660 
could be partly explained by the differences in the vertical turbulent mixing in the 661 
planetary boundary layer, differently diagnosed in each of the CTMs. Our results also 662 
indicate that even though models share the same meteorology (considering the 663 
prescribed requirements defined by the EDT exercise) they show discrepancies when 664 
compared to each other, which could be attributed to other sources of uncertainties 665 
(such as physical and chemical internal processes in the CTMs). The NMVOC and NOx 666 
emissions from the biosphere are critical in the ozone formation.  Since biogenic 667 
emissions were not specifically prescribed, which have a strong dependence on 668 
temperature and solar radiation, discrepancies in the CTMs performances, (e.g. different 669 
sensitivities to Tx) might be expected. Furthermore, we notice that the CTMs do not 670 
reproduce consistently the regional ozone-temperature relationship, which is a key 671 
factor when assessing the impacts of climate change on future air quality.  672 
 673 
5. Summary and conclusions 674 
 675 
The present study evaluates the capabilities of a set of Chemical Transport Models 676 
(CTMs) to capture the observed meteorological sensitivities of daily maximum 8-hour 677 
average ozone (MDA8 O3) over Europe. Our study reveals systematic differences 678 
between the CTMs in reproducing the seasonal cycle when compared to observations. 679 
In general, CTMs tend to overestimate the MDA8 O3 in most of the regions. In the 680 
western and northern regions (i.e. Inflow, England and Scandinavia), some models did 681 
not capture the high ozone levels in spring (e.g. CHIMERE and MINNI), while in some 682 
southern regions (e.g. Iberian Peninsula, Mediterranean and Balkans) they 683 
overestimated the ozone levels in summer (e.g. LOTOS, CHIMERE). Of the CTMs, 684 
MATCH and MINNI were the most successful in capturing the observed seasonal cycle 685 
of ozone in most regions. All CTMs revealed limitations to reproduce the variability of 686 
ozone over the Balkans region, with a general overestimation of the ozone 687 
concentrations, considerably larger during the warmer months (July, August). As 688 
reflected in the results, a limitation of the interpolated observational product used here 689 
is that in some regions (e.g. southern Europe) it has a lower quality due to a reduced 690 
number of stations (section 2.1).  691 
 692 
The MLRs performed similarly for most of the CTMs and observations, describing 693 
more than 60 % of the total variance of MDA8 O3. Overall, the MLRs perform better in 694 
JAS than in AMJ, and the highest percentages of described variance were found in Mid 695 
Europe and North Italy. This could be attributed to local photochemical processes being 696 
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more important in JAS, and is consistent with a relatively stronger influence of long-697 
range transport in AMJ.  698 
 699 
The effects of predictors revealed spatial and seasonal patterns, in terms of their relative 700 
importance in the MLRs. Particularly, we noticed a larger local meteorological 701 
influence in the regions located towards the interior of Europe, here termed as the 702 
internal regions (i.e. England, France, Mid-Europe, North Italy and East-Europe). A 703 
minor local meteorological contribution was found in the remaining regions, referred as 704 
the external regions (i.e. Inflow, Iberian Peninsula, Scandinavia, Mediterranean and 705 
Balkans). The CTMs are in better agreement with the observations in the internal 706 
regions than in the external regions, where they were not as successful in reproducing 707 
the effects of the ozone drivers. Overall, the different behaviour in the MLRs developed 708 
in the external regions could be attributed to (i) a larger influence of dynamical 709 
processes rather than local meteorological processes (e.g. long range transport in the 710 
northern regions) (ii) a stronger impact of the boundary conditions (iii) the use of a 711 
coarser grid that might be insufficient to capture mesoscale processes that also influence 712 
MDA8 O3 (e.g. sea-land breezes in the southern regions).  713 
 714 
We found substantial differences in the sensitivities of MDA8 O3 to the different 715 
meteorological factors among the CTMs, even when they used the same meteorology. 716 
As Bessagnet et al. (2016) point out, the differences amongst CTMs could be partly 717 
attributed to some other diagnosed model variables (e.g. vertical turbulent mixing and 718 
boundary layer height, as well as vertical model resolution). To assess the effect of such 719 
potential sources of uncertainties, further investigations would be required. Moreover, 720 
variations in the sensitivity of ozone to meteorological parameters could depend on 721 
differences in the chemical and photolysis mechanisms and the implementation of 722 
various physics schemes, all of which differ between the CTMs (see Colette et al. 723 
2017a). Specifically, the discrepancies found in the sensitivities of MDA8 O3to 724 
maximum temperature might be also attributed to biogenic emissions not prescribed in 725 
the models. This was particularly reflected in the analysis of the slopes ozone-726 
temperature (mO3-T) to assess the climate penalty, which differed between CTMs and 727 
regions when compared to the observations in both seasons. Most of the CTMs confirm 728 
the observed climate penalty in JAS, but with larger discrepancies in the external 729 
regions than in the internal regions. Furthermore, CTMs tend to overestimate the 730 
climate penalty in AMJ  (particularly in the external regions). 731 
 732 
Our results have shown discrepancies in the observed and simulated ozone sensitivities 733 
to relevant meteorological parameters for ozone formation and removal processes. In 734 
particular, we found that CTMs tend to overestimate the influence of maximum 735 
temperature and surface solar radiation in most of the regions, both strongly associated 736 
with ozone production. None of the CTMs captured the strength of the observed 737 
relationship between ozone and relative humidity appropriately, underestimating the 738 
effect of relative humidity, a key factor in the ozone removal processes. We speculate 739 
that ozone dry deposition schemes used by the CTMs in this study may not adequately 740 
represent the relationship between humidity and stomatal conductance, thus 741 
underestimating the ozone sink due to stomatal uptake. Further sensitivity analyses 742 
would be recommended for testing the impact of the current dry deposition schemes in 743 
the CTMs. 744 
  745 
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Table 1. Summary of the chemistry-transport models used in the study and the main characteristics (adapted from Colette et al. 2017). 789 
 790 

Model 
Meteorological  

driver 

Research 

group  

Vertical layers (vl)  

Vertical extent (ve) 

Surface concentration (sc) 

Depth first layer (dl) 

Biogenic VOC 
Dry deposition (dd) 

Stomatal resistence (sr) 

Land use database(lu) 

Advection scheme (ad) 

Vertical diffusion (vd) 

CHIMERE 

WRF  

(common 

driver) 
 

INERIS 

vl: 9 sigma 

ve: surface to 500 hPa 

sc: First model level 
dl: 20m 

MEGAN model v2.1 with 
highresolution spatial and temporal 

leaf area index (LAI; Yuan et al., 

2011) and recomputed emissions 
factors based on the land use 

(Guenther et al., 2006) 

dd: Resistance model (Emberson 

et al., 2000a, b) 

sr: Emberson et al. (2000a, b) 

lu: GLOBCOVER 

(24 classes) 

ad: van Leer (1984) 

vd:  vertical diffusion coefficient (Kz) approach 

following Troen and Mahrt (1986) 

EMEP 

WRF  
(common 

driver) 

 

MET Norway 

vl: 20 sigma 
ve: surface to 100 hPa  

sc: Downscaled to 3 m 

dl: 90m 

Online emissions based upon maps 
of 115 species from Koeble and 

Seufert (2001), and hourly 

temperature and light using 
Guenther 

et al. (1993, 1994). See Simpson et 

al. (1995, 2012) 

dd: Resistance model for gases 
(Venkatram and Pleim, 1999); 

for aerosols: Simpson et al. 

(2012) 
sr: DO3SEEMEP: Emberson et 

al. (2000a, b), Tuovinen et al. 

(2004), Simpson et al. (2012) 

lu: CCE/SEI for Europe, elsewhere GLC2000 

ad: Bott (1989) 

vd:  Kz approach following O’Brien (1970) and 
Jeriˇceviˇc et al. (2010) 

 

LOTOS-EUROS 
RACMO2 

 
TNO 

vl: 5 (4 dynamic layers and 

a surface layer) 

ve: 5000 m 

sc: Downscaled to 3 m 

dl: 25m 

Based upon maps of 115 species 

from Koeble and Seufert (2001), and 

hourly temperature and light 

(Guenther et al., 1991, 1993). See 

Beltman et al. (2013) 

dd: Resistance model, 

DEPAC3.11 for gases, Van 

Zanten et al. (2010) and Zhang et 

al. (2001) for aerosols 

rs: Emberson et al. (2000a, b) 

lu: Corine Land Cover 2000 (13 classes) 

ad: Walcek (2000) 

vd: Kz approach Yamartino et al. (2004) 

MATCH 

HIRLAM 

EURO4M  

 

SMHI 

vl: 39 hybrid levels of the 

meteorological model 
layers 

ve: surface to ca. 5000 m 

(4700–6000 m) 
sc: Downscaled to 3 m 

dl: ca. 60m 

Online emissions based on Simpson 

et al. (2012), dependent on hourly 
temperature and light 

 

dd: Resistance model depending 

on aerodynamic resistance and 
land use (vegetation). Similar to 

Andersson et al. (2007) 

sr: Simple, seasonally varying, 
diurnal variation of surface 

resistance for gases with stomatal 

resistance (similar to Andersson 
et al., 2007 and Simpson et al., 

2012) 

lu: CCE/SEI for Europe 
ad: Fourth-order massconserved 

advection scheme based on Bott (1989) 

vd: Implicit mass conservative Kz approach (see 
Robertson et al., 1999); Boundary layer 

parameterisation as detailed in Robertson et al. 

(1999) forms the basis for vertical diffusion and dry 
deposition 

MINNI 

WRF (common 

driver) 

 

ENEA/Arianet 
S.r.l 

vl: 16 fixed terrain-

following layers  

ve  10 000m 

sc: First model level 
dl: 40m 

MEGAN v2.04 (Guenther et al., 
2006) 

dd: Resistance model based on 

Wesely (1989) 

sr: Wesely (1989) 

lu: Corine Land Cover 2006 (22 classes) 

ad: Blackman cubic polynomials (Yamartino,1993) 

vd: Kz approach following Lange (1989) 
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 799 
 800 
 801 
 802 

 803 
Table 2. List of the predictors used in the multiple linear regression analysis: meteorological parameters, 804 
lag of MDA8 O3 (24h, previous day) and the seasonal cycle components.  805 
 806 

 807 
 808 
 809 
 810 
 811 
 812 
 813 
 814 
 815 
 816 
 817 
 818 
 819 
 820 
 821 

Table 3. List of the regions with the short name and the coordinates.  822 
 823 
 824 
 825 
 826 
 827 
 828 
 829 
 830 
 831 
 832 
 833 
 834 
 835 
 836 
 837 
 838 
 839 
 840 
 841 
 842 
 843 

Predictor Definition 

LO3 Lag of   MDA8 O3 (24 h)  

Tx Maximum temperature 

RH Relative humidity 

SSRD Surface solar radiation 

Wdir Wind direction 

W10m Wind speed 

day sin(2πdt/365.25), 

cos(2πdt/365.25) 

Region Acronym Coordinates (longitude, latitude) 

England EN 5W-2E, 50N-55N 

Inflow IN 10W-5W, 50N-60N, and 5W-2E, 55N-60N 

Iberian Peninsula IP 10W-3E, 36N-44N 

France FR 5W-5E, 44N-50N 

Mid-Europe ME 2E-16E, 48N-55N  

Scandinavia SC 5E-16E, 55N-70N 

North Italy NI 5E-16E, 44N-48N 

Balkans BA 18E-28E, 38N-44N 

Mediterranean MD 3E-18E, 36N-44N 

Eastern Europe EA 16E-30E, 44N-55N 
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List of Figures: 844 
 845 

 846 
   847 
 848 
Figure 1. Map of the regions considered in the study. Regions indicated with a black star are referred to 849 
the internal regions in the text. The rest of regions are referred to the external regions of the European 850 
domain.  851 
  852 

   853 
 854 
Figure 2. Time series of daily averages of MDA8 O3during the ozone season (April-September) for the 855 
period of study (2000-2010) at each subregion. 856 
 857 
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 858 
 859 

860 
  861 
Figure 3. Correlation coefficients between observed and modelled MDA8 O3for spring (AMJ) and 862 
summer (JAS) for the period of study (2000-2010) at each region (rows) and model (columns, ordered by 863 
highest correlation values). 864 
 865 
 866 

   867 
 868 
   869 
Figure 4. Coefficients of determination (R

2
) for each CTM-based (ordered as in Fig.3) and observation-870 

based MLR in spring (AMJ) and summer (JAS).  871 
 872 
 873 
 874 
 875 
 876 
 877 
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 878 
 879 

 880 
 881 
Figure 5. Root mean square errors (RMSE) for each CTM-based (ordered as in Fig.3) and observation-882 
based MLR at each region, in spring (AMJ) and summer (JAS). 883 
 884 
 885 
 886 

 887 
   888 
Figure 6. Proportion of each predictor to the total explained variance for each CTM-based (ordered as in 889 
Fig.3) and observation-based MLR in AMJ (top) and JAS (bottom) for the internal regions: England 890 
(EN), France (FR), Mid-Europe (ME), North Italy (NI) and East-Europe (EA). 891 
 892 
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 893 

894 
   895 
Figure 7. Proportion of each predictor to the total explained variance for each CTM-based (ordered as in 896 
Fig.3) and observation-based MLR in AMJ (top) and JAS (bottom) for the external regions: Inflow (IN), 897 
Iberian Peninsula (IP), Scandinavia (SC), Mediterranean (ME) and Balkans (BA). 898 
 899 
 900 

 901 
   902 
Figure 8. Standardised coefficients values of the main key-driving factors (LO3, Tx and RH) for each 903 
CTM-based (ordered as in Fig.3) and observation-based MLR in AMJ (top) and JAS (bottom) and for the 904 
internal regions: England (EN), France (FR), Mid-Europe (ME), North Italy (NI) and East-Europe (EA). 905 
 906 
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 907 

 908 
  909 
Figure 9. Standardised coefficients values of the main key-driving factors (LO3, Tx and RH) for each 910 
CTM-based (ordered as in Fig.3) and observation-based MLR in AMJ (top) and JAS (bottom) and for the 911 
external regions: Inflow (IN), Iberian Peninsula (IP), Scandinavia (SC), Mediterranean (ME) and Balkans 912 
(BA). 913 
 914 

 915 
 Figure 10. Slopes (mO3-T; ppbK

-1
) obtained from a simple linear regression to estimate the relationship 916 

ozone-temperature for each CTM-based (ordered as in Fig.3) and observation-based MLR in AMJ (top) 917 
and JAS (bottom) and for the internal regions: England (EN), France (FR), Mid-EU (ME), North Italy 918 
(NI), East-EU (EA). 919 
 920 
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 921 
  922 
Figure 11. Slopes (mO3-T; ppbK

-1
) obtained from a simple linear regression to estimate the relationship 923 

ozone-temperature for each CTM-based (ordered as in Fig.3) and observation-based MLR in AMJ (top) 924 
and JAS (bottom) and for the external regions: Inflow (IN), Iberian Peninsula (IP), Scandinavia (SC), 925 
Mediterranean (ME) and Balkans (BA). 926 
  927 
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