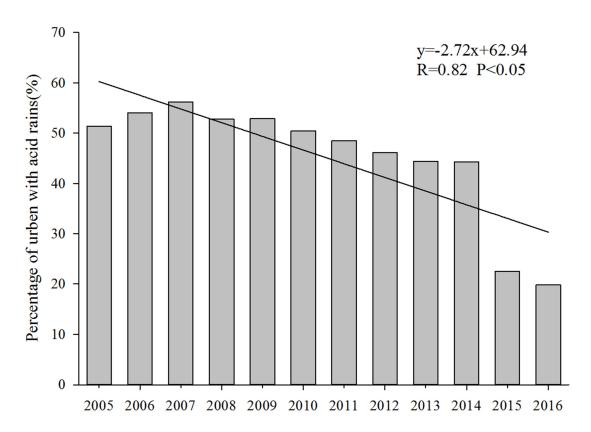
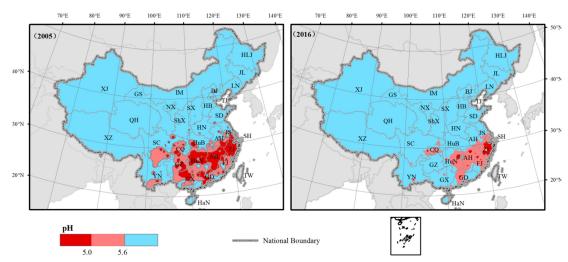
Effect assessment of NO_x and SO₂ control policies on acid components in precipitation from 2005

to 2016 in China, based on satellite monitoring

Xiuying Zhang ^{1,*}, Dongmei Chen ^{2,3}, Lei Liu ^{1,4}, Limin Zhao ¹, Wuting Zhang ¹


¹ International Institute for Earth System Science, Nanjing University, Nanjing 210023, China

² Department of Geography and Planning, Queen's University, Kingston, ONK7L 3N6, Canada


³ School of Geography and Remote Sensing, Nanjing University of Information Science & Technology, Nanjing, China

⁴ Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China

^{*} Corresponding authors: Xiuying Zhang (<u>lzhxy77@163.com</u>)

Fig.S1 Trend of percentage of urban with acid rains (%) from 2005 to 2016 (China Environmental Bulletin 2005 - 2016)

Fig. S2 Spatial distribution of precipitation pH in 2005 and 2016 (China Environmental Bulletin 2005 and 2016)