Morphological transformation of soot: investigation of 1 microphysical processes during the condensation of sulfuric 2

acid and limonene ozonolysis product vapors 3

6 ¹Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, 41296, Sweden

7 ²Division of nuclear physics, Department of Physics, Lund University, Lund, 22100, Sweden

8 9 ³Ergonomics and Aerosol Technology, Lund University, Lund, 22100, Sweden

⁴Center for Atmospheric Particle Studies, Carnegie Mellon University, Pittsburgh, PA, 15213, USA

10 ⁵Forschungszentrum Jülich GmbH, Jülich, 52428, Germany

- 11 ⁶Department of Meteorology and Atmospheric Science, Pennsylvania State University, University Park, PA, 16802, USA 12
- 13 Correspondence to: Ravi Kant Pathak (ravikant@chem.gu.se)
- 14

15 **Reproducibility of soot**

16 For high quality data, reproducibility of the flame in all experiments was ensured. The mass and number

17 concentrations were measured four times during the entire measurement to guarantee that the same soot particles

18 were generated. Figure S1 and Figure S2 show the particle mass and number concentration, respectively,

19 associated with four sizes of fresh soot.

Xiangyu Pei¹, Mattias Hallquist¹, Axel C. Eriksson^{2,3}, Joakim H. Pagels³, Neil M. Donahue⁴, Thomas Mentel⁵, Birgitta Svenningsson², William Brune⁶, and Ravi Kant Pathak¹ 4 5

Figure S2. Number concentration of fresh soot with mobility size of 75, 100, 150, and 200 nm during the measurement.

25 Correction of multiply charged particles

26 The DMA-APM-CPC scans were fitted by normal distributions. The DMA-APM-CPC system can distinguish 27 between singly and multiply charged (mainly doubly) spherical particles. However, for soot aggregates with 28 effective densities that decrease with increasing mobility diameter, this distinction is possible in only some cases. 29 The doubly charged particles may result in the overestimation of the particle mass and the effective density. The 30 fraction of doubly charged particles may influence the mobility diameter of the soot aggregates if this diameter is 31 smaller than the geometric mean diameter (GMD; in this study: 90 nm) of the particle number size distribution. 32 Therefore, a sensitivity test was conducted for the 75-nm soot, assuming a Boltzmann charge distribution. The 33 overestimation of the mass of the 75-nm soot was <5%, whereas the overestimation of the masses of the 100-nm, 34 150-nm, and 200-nm soot was negligible, which is consistent with the literature (Rissler et al., 2013).

35

36 Experimental conditions

37 Table S1 shows the experiments performed and results obtained under different coating conditions.

Table S1. Experiments performed and results obtained under different coating conditions.

Exp.	Mobility	Sulfuric	VOC	Soot	Sulfuric	SOA	Limonene	Coating	Diameter	Effective	Dynamic	Void
	diameter	acid bath	bath	core	acid mass	mass	concentration	thickness,	growth	density,	shape	space
	of fresh	T (°C)	Т	mass	(fg)	(fg)	$(\mu g \cdot m^{-3})$	Δr_{me} (nm)	factor,	$ ho_{e\!f\!f}$	factor, χ	fraction,
	soot		(°C)	(fg)					Gfd	$(g \cdot cm^{-3})$		F_{vs}
	(nm)											
1	75	bypass	UV	0.17	0.00	0.00	0	0	1.00	0.80	1.62	0.58
			off									
2	75	bypass	1	0.17	0.00	0.08	56	5.7	1.11	0.88	1.39	0.45
3	75	bypass	5	0.17	0.00	0.11	73	7.4	1.12	0.99	1.27	0.37
4	75	1	UV	0.17	0.02	0.00	0	1.4	1.00	0.86	1.55	0.52
			off									
5	75	1	1	0.17	0.02	0.13	56	8.9	1.14	1.02	1.26	0.35
6	75	1	5	0.17	0.02	0.12	73	8.5	1.16	0.96	1.31	0.40
7	75	1	15	0.17	0.02	0.63	138	24.8	1.58	0.96	1.19	0.29
8	75	5	UV	0.17	0.03	0.00	0	1.3	0.98	0.86	1.55	0.53
			off									
9	75	5	1	0.17	0.03	0.15	56	9.8	1.13	0.98	1.27	0.33
10	75	5	5	0.17	0.03	0.26	73	14.3	1.22	1.03	1.20	0.26
11	75	5	15	0.17	0.03	0.91	138	30.6	1.59	1.05	1.11	0.13
12	75	25	UV	0.17	0.26	0.00	0	9.9	1.19	1.20	1.27	0.37
			off									
13	75	25	1	0.17	0.26	0.61	56	27.6	1.64	1.09	1.15	0.25
14	75	25	5	0.17	0.26	0.70	73	29.4	1.71	1.08	1.15	0.27
15	75	25	15	0.17	0.26	2.37	138	52.1	2.11	1.11	1.07	0.05
16	100	bypass	UV	0.33	0.00	0.00	0	0	1.00	0.64	1.83	0.63
			off									
17	100	bypass	1	0.33	0.00	0.15	56	4.9	1.07	0.85	1.55	0.56
18	100	bypass	5	0.33	0.00	0.18	73	6.4	1.10	0.82	1.54	0.54
19	100	bypass	15	0.33	0.00	0.35	138	12.1	1.18	0.90	1.37	0.45
20	100	1	UV	0.33	0.01	0.00	0	0.1	1.01	0.69	1.74	0.63
			off									
21	100	1	1	0.33	0.01	0.19	56	8.2	1.10	0.86	1.39	0.47
22	100	1	5	0.33	0.01	0.20	73	8.5	1.13	0.81	1.44	0.50
23	100	1	15	0.33	0.01	0.39	138	14.2	1.19	0.97	1.24	0.39
24	100	5	UV	0.33	0.04	0.00	0	2.0	1.01	0.67	1.78	0.60
			off									
25	100	5	1	0.33	0.04	0.20	56	10.0	1.10	0.85	1.40	0.45
26	100	5	5	0.33	0.04	0.24	73	11.1	1.13	0.90	1.35	0.46
27	100	5	15	0.33	0.04	0.52	138	18.7	1.23	0.94	1.25	0.32
28	100	25	UV	0.33	0.34	0.00	0	8.8	1.07	1.08	1.35	0.43
			off									
29	100	25	1	0.33	0.34	0.27	56	16.2	1.23	1.12	1.22	0.39
30	100	25	5	0.33	0.34	0.45	73	20.3	1.34	1.07	1.21	0.41

31	100	25	15	0.33	0.34	1.50	138	36.8	1.59	1.07	1.13	0.24
32	150	hypass	UV	0.75	0.00	0.00	0	0.0	1.00	0.46	2.13	0.73
		- J Fano	off				-					
			on									
33	150	bypass	1	0.77	0.00	0.28	56	5.0	1.02	0.63	1.79	0.65
34	150	bypass	5	0.77	0.00	0.29	73	5.9	1.04	0.59	1.84	0.66
35	150	1	UV	0.77	0.01	0.00	0	0.1	1.01	0.43	2.20	0.74
			off									
36	150	1	1	0.77	0.01	0.28	56	7.2	1.04	0.59	1.73	0.63
37	150	1	5	0.77	0.01	0.34	73	8.5	1.06	0.62	1.66	0.62
38	150	1	15	0.77	0.01	0.59	138	13.5	1.09	0.68	1.53	0.56
39	150	5	UV	0.77	0.12	0.00	0	2.7	1.02	0.50	2.05	0.71
			off									
40	150	5	1	0.77	0.12	0.35	56	10.7	1.07	0.61	1.68	0.60
41	150	5	5	0.77	0.12	0.49	73	13.4	1.09	0.68	1.55	0.57
42	150	5	15	0.77	0.12	0.88	138	19.8	1 13	0.78	1 39	0.48
12	150	25	UV	0.77	0.69	0.00	0	10.4	1.02	0.81	1.55	0.55
45	150	25	off	0.77	0.09	0.00	0	10.4	1.02	0.81	1.55	0.55
	1.50	25	011	0.55	0.50	0.54		22.1		0.07	1.00	0.20
44	150	25	1	0.77	0.69	0.74	56	22.1	1.11	0.97	1.28	0.38
45	150	25	5	0.77	0.69	0.94	73	24.7	1.16	0.95	1.28	0.40
46	150	25	15	0.77	0.69	1.90	138	35.2	1.30	1.08	1.15	0.36
47	200	bypass	UV	1.46	0.00	0.00	0	0	1.00	0.38	2.31	0.78
			off									
48	200	bypass	1	1.46	0.00	0.39	56	6.5	0.98	0.53	1.92	0.68
49	200	bypass	5	1.46	0.00	0.43	73	7.1	0.98	0.54	1.89	0.68
50	200	bypass	15	1.46	0.00	0.92	138	14.4	1.05	0.61	1.67	0.64
51	200	1	UV	1.46	0.04	0.00	0	0.4	1.01	0.44	2.11	0.75
			off									
52	200	1	1	1.46	0.04	0.44	56	7.3	1.01	0.56	1.77	0.66
53	200	1	5	1.46	0.04	0.58	73	9.2	1.01	0.59	1.69	0.63
54	200	1	15	1.46	0.04	0.82	138	12.3	1.05	0.59	1.66	0.63
55	200	5	UV	1.46	0.10	0.00	0	1.7	1.00	0.40	2.23	0.78
			off									
56	200	5	1	1.46	0.10	0.53	56	10.4	1.01	0.48	1.87	0.67
57	200	5	5	1.40	0.10	0.59	72	11.0	1.02	0.50	1.07	0.67
57	200	5	5	1.40	0.10	0.38	13	11.0	1.02	0.50	1.65	0.67
58	200	5	15	1.46	0.10	1.27	138	19.6	1.07	0.59	1.60	0.59
59	200	25	UV	1.46	0.68	0.00	0	8.5	0.96	0.61	1.78	0.66
			off									
60	200	25	1	1.46	0.68	0.34	56	13.2	1.01	0.64	1.67	0.63
61	200	25	5	1.46	0.68	0.80	73	18.8	1.01	0.76	1.47	0.54
62	200	25	15	1.46	0.68	2.00	138	30.5	1.10	0.86	1.30	0.46

40 Contribution of restructuring and condensational growth to *Gfd*

Table S2. Contribution of restructuring and condensational growth to *Gfd*.

Exp.	Mobility	Sulfuric	VOC bath T	Void space	Coating	Δr_{me}	Δr_{me} for	Void	% of	% of
	diameter of	acid bath T	(°C)	fraction,	thickness,	for	growth (nm)	space	material	material
	fresh soot	(°C)		F_{vs}	Δr_{me} (nm)	filling		filled (%)	consumed	consumed
	(nm)					(nm)			during	during
									filling	growth
1	75	bypass	UV off	0.58	0.0	0	0	0	0	0
2	75	bypass	1	0.45	5.7	1.5	4.2	12	23	77
3	75	bypass	5	0.37	7.4	3.0	4.4	26	35	65
4	75	1	UV off	0.52	1.4	1.3	0.1	10	93	7
5	75	1	1	0.35	8.9	3.6	5.3	31	34	66
6	75	1	5	0.40	8.5	2.5	6.0	21	24	76
7	75	1	15	0.29	24.8	3.3	21.5	28	7	93
8	75	5	UV off	0.53	1.3	1.3	0	10	100	0
9	75	5	1	0.33	9.8	5.0	4.8	46	44	56
10	75	5	5	0.26	14.3	6.2	8.1	59	34	66
11	75	5	15	0.13	30.6	8.4	22.2	86	15	85
12	75	25	UV off	0.37	9.9	2.9	7.0	25	23	77
13	75	25	1	0.25	27.6	3.7	23.9	32	7	93
14	75	25	5	0.27	29.4	2.8	26.6	24	4	96
15	75	25	15	0.05	52.1	9.3	42.8	97	6	94
16	100	bypass	UV off	0.63	0.0	0	0	0	0	0
17	100	bypass	1	0.56	4.9	1.2	3.7	6	22	78
18	100	bypass	5	0.54	6.4	1.7	4.7	9	23	77
19	100	bypass	15	0.45	12.1	3.1	9.0	17	20	80
20	100	1	UV off	0.63	0.1	0.1	0	0	100	0
21	100	1	1	0.47	8.2	3.1	5.1	17	33	67
22	100	1	5	0.50	8.5	2.0	6.5	10	20	80
23	100	1	15	0.39	14.2	4.6	9.6	26	25	75
24	100	5	UV off	0.60	2.0	1.7	0.3	9	84	16
25	100	5	1	0.45	10.0	4.9	5.1	28	43	57
26	100	5	5	0.46	11.1	4.4	6.7	24	33	67
27	100	5	15	0.32	18.7	7.3	11.4	44	29	71
28	100	25	UV off	0.43	8.8	5.2	3.6	30	54	46
29	100	25	1	0.39	16.2	4.6	11.6	26	21	79
30	100	25	5	0.41	20.3	3.4	16.9	18	11	89
31	100	25	15	0.24	36.8	7.3	29.5	44	10	90
32	150	bypass	UV off	0.73	0.0	0	0	0	0	0
33	150	bypass	1	0.65	5.0	3.6	1.4	9	70	30
34	150	bypass	5	0.66	5.9	3.0	2.9	8	48	52
35	150	1	UV off	0.74	0.1	0.1	0	0	100	0
36	150	1	1	0.63	7.2	4.2	3.0	11	55	45

37	150	1	5	0.62	8.5	4.3	4.2	11	47	53
38	150	1	15	0.56	13.5	6.4	7.1	18	41	59
39	150	5	UV off	0.71	2.7	1.1	1.6	3	39	61
40	150	5	1	0.60	10.7	5.8	4.9	16	49	51
41	150	5	5	0.57	13.4	6.9	6.5	19	45	55
42	150	5	15	0.48	19.8	9.8	10.0	29	41	59
43	150	25	UV off	0.55	10.4	8.7	1.7	25	81	19
44	150	25	1	0.38	22.1	14.0	8.1	45	55	45
45	150	25	5	0.40	24.7	12.6	12.1	39	41	59
46	150	25	15	0.36	35.2	12.4	22.8	39	24	76
47	200	bypass	UV off	0.78	0.0	0	0	0	0	0
48	200	bypass	1	0.68	6.5	6.5	0	10	100	0
49	200	bypass	5	0.68	7.1	7.1	0	12	100	0
50	200	bypass	15	0.64	14.4	9.2	5.2	15	59	41
51	200	1	UV off	0.75	0.4	0.4	0	1	100	0
52	200	1	1	0.66	7.3	7.3	0	12	100	0
53	200	1	5	0.63	9.2	8.4	0.8	14	90	10
54	200	1	15	0.63	12.3	8.2	4.1	14	62	38
55	200	5	UV off	0.78	1.7	1.4	0.3	2	82	18
56	200	5	1	0.67	10.4	9.7	0.7	16	92	8
57	200	5	5	0.67	11.0	9.4	1.6	16	83	17
58	200	5	15	0.59	19.6	12.8	6.8	23	59	41
59	200	25	UV off	0.66	8.5	8.5	0	14	100	0
60	200	25	1	0.63	13.2	13.2	0	24	100	0
61	200	25	5	0.54	18.8	18.1	0.7	35	95	5
62	200	25	15	0.46	30.5	20.5	10.0	41	58	42

Particle growth in mass

44 The particle mass was determined via DMA-APM. The particle mass growth factor, *Gfm*, is determined from:

$$Gfm = \frac{m_p}{m_0} \tag{2}$$

45 where m_0 and m_p represent the masses of particles before and after coating, respectively.

51 Figure S3. Mass growth factor associated with different mobility sizes (75, 100, 150, and 200 nm) of initial fresh soot.

Figure S3 shows the growth of the particle mass (*Gfm*) for four sizes of fresh soot subjected to different coating conditions as a function of the mass equivalent coating thickness (Δr_{me}). *Gfm* increases significantly when the initial fresh soot size is small compared with the maximum size. *Gfm* increases to 16.00, 6.26, 4.15, and 2.94 for initial fresh-soot sizes of 75 nm, 100 nm, 150 nm, and 200 nm, respectively. This indicates that the core size of the initial soot can determine the evolution of *Gfm*.

57

Figure S4. Fitted curves of *Gfm* as a function of Δr_{me} for four soot core sizes.

62 Using Eq. (3), *Gfm* was fitted as a function of Δr_{me} .

$$Gfm = a \cdot \exp(b \cdot \Delta r_{me}) \tag{3}$$

Table S4. Morphology of fresh soot coated with various compounds, as illustrated in Fig. 5.

Literature	Coating compound(s)	$D_{p,0}(\mathrm{nm})$	$D_{me,0}$	Dfm	d_{pp}
			(nm)		(nm)
Pagels et al. (2009)	Sulfuric acid	75	30.2	2.15	15
Xue et al. (2009)	Glutaric acid (GA),	80	32.9	2.20	16
Qiu et al. (2012)	Toluene-OH oxidation products	100	61.9	2.17	21
Khalizov et al. (2013)	Isoprene-OH oxidation products	100	61.9	2.20	19
Peng et al. (2016)	SOA from ambient precursors	100	63.4	2.25	16
Guo et al. (2016)	m-Xylene-OH oxidation products	100	61.4	2.17	45
Ghazi and Olfert (2013)	Dioctyl sebacate	100	51.9	2.14	45
This study	Sulfuric acid, acidity- mediated limonene SOA	100	70.8	2.28	28

References

- 67 Rissler, J., Messing, M. E., Malik, A. I., Nilsson, P. T., Nordin, E. Z., Bohgard, M., Sanati, M., and
- 68 Pagels, J. H.: Effective Density Characterization of Soot Agglomerates from Various Sources and
- 69 Comparison to Aggregation Theory, Aerosol Sci.Technol., 47, 792–805,
- 70 10.1080/02786826.2013.791381, 2013.