1	Investigating the role of dust in ice nucleation within clouds and					
2	further effects on the regional weather system over East Asia					
3	Part I: model development and validation					
4	Lin Su ¹ , and Jimmy C.H. Fung ^{2, 3}					
5	¹ School of Science, Hong Kong University of Science and Technology, Hong Kong, China					
6	² Division of Environment, Hong Kong University of Science and Technology, Hong Kong, China					
7	³ Department of Mathematics, Hong Kong University of Science and Technology, Hong Kong, China					
8	Correspondence to: Lin Su (<u>lsu@connect.ust.hk</u>)					
9 10 11	Keywords: dust; ice nucleation; microphysics scheme implementation; numerical modeling					
12	Highlights:					
13 14	A new treatment has been implemented in a regional model for evaluating the role of dust particles in atmospheric ice nucleation.					
15	The effect of dust on atmospheric IWC over East Asia during a dust-intensive period is simulated.					
16 17	The simulation of atmospheric IWC during dust events is substantially improved upon the effect of dust being considered.					
18						

19 Abstract. The GOCART-Thompson microphysics scheme coupling the GOCART aerosol model and the aerosol-20 aware Thompson-Eidhammer microphysics scheme has been implemented in WRF-Chem, to quantify and evaluate 21 the effect of dust on the ice nucleation process in the atmosphere by serving as ice nuclei (IN). The performance of 22 the GOCART-Thompson microphysics scheme in simulating the effect of dust in atmospheric ice nucleation is then 23 evaluated over East Asia during spring, a typical dust-intensive season, in 2012. Based upon the dust emission 24 reasonably reproduced by WRF-Chem, the effect of dust on atmospheric cloud ice water content (IWC) is well 25 reproduced. With abundant dust particles serving as IN, the simulated ice water mixing ratio and ice crystal number 26 concentration increases up to one order of magnitude over the dust source region and downwind areas during the 27 investigated period. The comparison with ice water path from satellite observations demonstrated that the simulation 28 of cloud ice profile is substantially improved by considering the indirect effect of dust particles in the simulations. 29 Additional sensitivity experiments are carried out to optimize the parameters in the ice nucleation parameterization in 30 the GOCART-Thompson microphysics scheme. Results suggest that lowering the threshold relative humidity to 100% 31 for the ice nucleation parameterization leads to further improvement in cloud ice simulation.

32

34 1 Introduction

Dust aerosol is the second largest contributor to the global aerosol burden (Textor et al., 2006), and it is estimated to contribute around 20% to the annual global aerosol emission (Tomasi et al., 2017). The Intergovernmental Panel on Climate Change (IPCC) has recognized dust as a major component of atmospheric aerosols, which are an "essential climate variable." East Asia is a main contributor to the Earth's dust emission. It has been reported in previous studies that East Asian dust contributes 25–50% of global emission, depending on the climate of the particular year (Ginoux et al., 2001).

41 Dust in the atmosphere alters the Earth's weather and climate through certain ways. By reflecting, absorbing and 42 scattering the incoming solar radiation, dust can cause a warming effect within the atmosphere and a cooling effect at 43 the surface layer (Lacis, 1995), which is the direct effect of dust. The semi-direct effect of dust is related to the 44 absorption of short-wave and long-wave radiation by dust aerosol within clouds, leading to a warming of the 45 surrounding environment, causing a shrinking of cloud and a lower cloud albedo, and thus modifying the radiation 46 budget (Perlwitz and Miller, 2010; Hansen et al., 1997). The dust-cloud-interaction is also referred to as the indirect 47 effect of dust. Dust particles are recognized as effective IN and play an important role in the ice nucleation process in 48 the atmosphere, directly affecting the dynamics in ice and mixed-phase clouds, such as the formation and development 49 of clouds and precipitation (Koehler et al., 2010;Twohy et al., 2009).

50 To date, many studies have been conducted to evaluate the direct radiative effect of dust aerosol using radiation 51 schemes implemented in numerical models all over the world (Mallet et al., 2009;Nabat et al., 2015a;Ge et al., 52 2010;Hartmann et al., 2013;Huang et al., 2009;Bi et al., 2013;Liu et al., 2011a;Liu et al., 2011b;Huang, 2017). 53 Recently, semi-direct effect of dust has been investigated in a few studies over different regions by applying various 54 global and regional models (Tesfaye et al., 2015; Nabat et al., 2015); Seigel et al., 2013). Unfortunately, due to the 55 poor understanding on the dust-cloud-interactions in microphysics processes, quantifying the microphysical effect of 56 dust remains as a difficult problem. Various ice nucleation parameterizations have been implemented into global 57 models to estimate the importance of dust in atmospheric ice nucleation (Lohmann and Diehl, 2006;Karydis et al., 58 2011;Hoose et al., 2008;Zhang et al., 2014). However, most regional models are not capable of estimating the indirect 59 effect of dust, and vary rare work has been done to assess the indirect effects of dust on the weather system, especially 60 over East Asia, which is a major contributor to the global dust emission. Currently, only a few microphysics schemes

61 considering aerosol-cloud-interaction are implemented in regional models. In most of these microphysics schemes 62 only the cloud condensation nuclei (CCN) served by aerosols are considered (Perlwitz and Miller, 2010;Solomos et 63 al., 2011; Miller et al., 2004), while IN are not treated or represented by a prescribed IN distribution (Chapman et al., 64 2009;Baró et al., 2015), and the production of ice crystals is simplified by a function of temperature or ice saturation. 65 In reality, however, the number of ice crystals that can form in the atmosphere is highly dependent on the number of 66 particles that can act as IN, and dust is the most abundant aerosols that can effectively serve as IN and affect the 67 formation and development of mixed-phase and ice clouds in the atmosphere. This effect should not be neglected in 68 numerical models, especially in the simulations over arid regions during strong wind events (DeMott et al., 69 2003;Koehler et al., 2010;DeMott et al., 2015;Lohmann and Diehl, 2006;Atkinson et al., 2013).

70 In 2014, the aerosol-aware Thompson-Eidhammer microphysics scheme, which takes into account the aerosols 71 serving as CCN and IN, has been implemented into the Weather Research and Forecast (WRF) model, enabling the 72 model to explicitly predict the number concentration for cloud droplets and ice crystals (Thompson and Eidhammer, 73 2014). Therefore, the aerosol-aware Thompson-Eidhammer scheme is an ideal microphysics scheme for evaluating 74 the effect of dust in atmospheric ice nucleation processes. However, this scheme is not coupled with any aerosol model 75 in WRF-Chem, the Weather Research and Forecast model coupled with Chemistry. When the aerosol-aware 76 Thompson-Eidhammer microphysics scheme is activated, the model reads in pre-given climatological aerosol data 77 derived from the output of other global climate models, which introduces large errors into the estimation of the effects 78 of dust in microphysical processes. This problem can be solved by embedding a dust scheme into Thompson-79 Eidhammer scheme, or couple the microphysics scheme with WRF-Chem. Compared with WRF, WRF-Chem 80 integrates various emission schemes and aerosol mechanisms for simulating the emission, transport, mixing, and 81 chemical transformation of aerosols simultaneously with the meteorology (Grell et al., 2013). Therefore, WRF-Chem 82 is more capable of producing a realistic aerosol field by comparing the performances of different emission schemes 83 or aerosol mechanisms.

In light of above, we aim to fully couple the aerosol-aware Thompson-Eidhammer microphysics scheme with the Goddard Chemistry Aerosol Radiation and Transport (GOCART) model (Ginoux et al., 2001) in the WRF-Chem modeling system in this study, enabling WRF-Chem to simultaneously simulate the effect of dust aerosol in ice nucleation processes during simulations. Based upon the implementation, the performance of the coupled GOCART- 88 Thompson microphysics scheme in simulating the ice nucleation process involving dust particles was validated and 89 the role that East Asian dust plays in the ice nucleation process in the atmosphere was further investigated.

90 The remainder of the manuscript is presented as follows. Section 2 provides a description of the model including the 91 implementation work for coupling the aerosol-aware Thompson-Eidhammer microphysics scheme and the GOCART 92 aerosol model in WRF-Chem, followed by the model configurations for numerical simulations in section 3. Section 4 93 presents the observational data used to validate the performance of the GOCART-Thompson microphysics scheme. 94 Section 5 is the results and discussion, followed by the conclusions in section 6.

95

96 2 Model description

97 WRF-Chem is an online-coupled regional modeling system, which means that it can simultaneously simulate the 98 meteorological field, the chemical field, and the interactions in between (Grell et al., 2013). The chemical model 99 contains several gas- and aerosol-phase chemical schemes. In this study, we focus on the GOCART model, a simple 100 aerosol model that will be used for dust simulation.

101

102 2.1 GOCART aerosol model

GOCART is an aerosol model for simulating major tropospheric natural-source aerosol components, such as sulfate, mineral dust, black carbon, organic carbon, and sea-salt aerosols (Ginoux et al., 2001;Chin et al., 2000). It has been implemented into WRF-Chem as a bulk aerosol scheme. GOCART is a simple aerosol scheme that can predict the mass of aerosol components, but does not account for complex chemical reactions. Therefore, it is numerically efficient in simulating aerosol transport, and thus applicable to cases without many chemical processes, especially dust events. Typically it requires 40% to 50% more computational time by applying WRF-Chem run with GOCART aerosol model than the standard WRF to produce the same period of simulation.

Shao's dust emission scheme model (Kang et al., 2011;Shao, 2004, 2001;Shao et al., 2011) is one of the dust emission
schemes in the GOCART aerosol, and has been demonstrated to exhibit superior performance in reproducing the dust
cycle over East Asia compared to other emission schemes (Su and Fung, 2015). The Shao's emission scheme was

updated in WRF-Chem since version 3.8 released in 2016 to produce five size bins for dust emission, with diameters of $< 2 \mu m$, 2–3.6 μm , 3.6–6.0 μm , 6.0–12.0 μm , and 12.0–20.0 μm , and mean effective radii of 0.73 μm , 1.4 μm , 2.4 μm , 4.5 μm , and 8.0 μm .

- 116
- 117 2.2 Aerosol-aware Thompson microphysics scheme

118 The Thompson scheme is a bulk two-moment microphysics scheme that considers the mixing ratios and number 119 concentrations for five water species: cloud water, cloud ice, rain, snow and a hybrid graupel/hail category (Thompson 120 et al., 2004). The Thompson-Eidhammer scheme is an aerosol-aware version of the Thompson scheme (Thompson 121 and Eidhammer, 2014). It incorporates the activation of aerosols serving as cloud condensation nuclei and IN, and 122 therefore it explicitly predicts the number concentrations of CCN and IN, as well as the number concentrations of 123 cloud droplets and ice crystals. Hygroscopic aerosols that serve as cloud condensation nuclei are referred to as water-124 friendly aerosols, and those non-hygroscopic ice-nucleating aerosols are referred to as ice-friendly aerosols. The cloud 125 droplets nucleate from explicit aerosol number concentrations using a look-up table for the activated fraction as 126 determined by the predicted temperature, vertical velocity, number of available aerosols, and pre-determined values 127 of the hygroscopicity parameter and aerosol mean radius.

The parameterization for condensation and immersion freezing in the aerosol-aware Thompson-Eidhammer microphysics scheme was proposed in 2010 (DeMott et al., 2010, hereafter referred to as the DeMott2010 scheme) based on combined data from field experiments at a variety of locations over 14 years. In the Demott2010 parameterization, the relationship between the number concentration of aerosol-friendly aerosols and ice nucleating particles (INP) is as follows:

133
$$n_{IN,T_k} = a(273.16 - T_k)^b n_{aero}^{(c(273.16 - T_k) + d)}$$
(1)

where n_{IN,T_k} is the ice crystal number concentration at temperature of T_k ; n_{aero} is the number concentration of icefriendly aerosols, and *a*, *b*, *c*, and *d* are constant coefficients equal to 5.94×10^{-5} , 3.33, 2.64×10^{-2} , and 3.33×10^{-3} , respectively. The parameterization was tested with various temperatures and number concentration of ice-friendly aerosols, yielding a good performance in reproducing ice crystal number concentration under conditions of relatively low mixing ratio of water vapor or low concentration of INP compared with field–experimental data. The relationship between the simulated number concentrations of ice-friendly aerosols and INP is basically linear for concentrations
of both of under 1,000 #/cm³ (DeMott et al., 2010).

The above parameterization was further developed in 2015 (DeMott et al., 2015, hereafter the DeMott2015 scheme) for conditions of higher mixing ratio of water vapor or higher concentrations of ice crystals based on the latest data from field and laboratory experiments. According to the updated observational data, INP concentration increases exponentially with number concentration of ice-friendly aerosols, and existing aerosols with relatively low concentrations (less than 1,000 #/cm³) can produce a large number of INP (more than 100,000 #/cm³). The updated relationship between the number concentrations of ice-friendly aerosols and INP in the DeMott2015 parameterization scheme is as follows.

148
$$n_{IN,T_k} = c_f n_{aero}^{\alpha(273.16-T_k)+\beta} \exp(\gamma(273.16-T_k)+\delta)$$
(2)

149 where α , β , γ , and δ are constant coefficients equal to 0, 1.25, 0.46, and -11.6, respectively. The calibration factor c_f 150 ranges from 1 to 6, and is recommended to be 3.

The number concentration of INP produced by the DeMott2015 scheme is much higher than that produced by the DeMott2010 scheme, and the difference grows larger with decreasing temperature and increasing number concentration of ice-friendly aerosols (DeMott et al., 2015). As the DeMott2015 scheme has been examined using more comprehensive field– and laboratory–experimental data, we apply the DeMott2015 ice nucleation scheme in the GOCART–Thompson microphysics scheme to be implemented, instead of the DeMott2010 scheme, in the default aerosol-aware Thompson-Eidhammer microphysics scheme to simulate the ice nucleation involving dust.

Originally, the calibration factor c_f is set to be 3; the threshold temperature is set to be -20 °C. The ice nucleation process is triggered once the relative humidity with respect to ice (RH_i) exceeds 105%. Furthermore, when the relative humidity with respect to water (RH_w) is above 98.5%, it is counted as condensation and immersion freezing, and calculated by DeMott2015 scheme; when RH_w is below 98.5%, it is treated as deposition nucleation, and determined by the parameterization of Phillips et al. (Phillips et al., 2008) is applied to account for deposition nucleation.

In addition, the freezing of deliquesced aerosols using the hygroscopic aerosol concentration is parameterized following Koop et al. (Koop et al., 2000), with the background aerosol concentration set to be 1 /L. For the Thompson-Eidhammer scheme in WRF, the number concentrations of both water-friendly aerosols and ice-friendly aerosols are 165 pre-given in the initialization of the simulations, and are derived from the climatological data produced by global 166 model simulations in which particles and their precursors are emitted by natural and anthropogenic sources and 167 explicitly modeled with various size bins for multiple species of aerosols by the GOCART model. In the consequent 168 simulations, a fake aerosol emission is implemented by giving a variable lower boundary condition based on the initial 169 near-surface aerosol concentration and a simple mean surface wind for calculating a constant aerosol flux at the lowest 170 level in the model. The number concentrations of both water-friendly aerosols and ice-friendly aerosols are then 171 updated at every time step by summing up the fake aerosol emission fluxes and tendencies induced by aerosol-cloud-172 interactions. The limitation of the current aerosol-aware Thompson-Eidhammer scheme is that the aerosol profile 173 generated from a fake emission cannot represent the realistic aerosol level all the time, especially over areas with 174 complex weathers, such as East Asia, leading to errors in quantifying the indirect effects of aerosols.

By coupling the GOCART aerosol model with the Thompson-Eidhammer microphysics scheme, it allows the model to explicitly evaluate the indirect effect of natural-source aerosols on the basic of a relatively realistic emission production, for instance, the effect of dust on ice nucleation during severe dust episodes or dust-intensive season.

178

179 3 Implementation of GOCART-Thompson microphysics scheme

180 To investigate the real-time indirect effects of dust aerosol over East Asia, a new treatment was implemented into 181 WRF-Chem to couple the GOCART aerosol model and the Thompson-Eidhammer microphysics scheme, namely 182 GOCART-Thompson microphysics scheme. To accomplish this, WRF-Chem version 3.8.1 has been modified in the 183 following three steps.

184

185 3.1 Upgraded GOCART aerosol model

186 Currently, the GOCART aerosol model generates only the mass concentration for aerosols but no number 187 concentrations. However, the number concentrations of aerosols are required for a microphysics scheme to evaluate 188 the indirect effects of aerosols. Therefore, modification was needed to provide information about the number 189 concentrations of aerosols from the mass concentration produced in GOCART aerosol model.

190 The aerosol mass concentration was converted into number concentration using the aerosol density and effective radius 191 for each size bin. Assuming that dust particles are spherical, the mass per dust particle $(m_p, \mu g/\#)$ for a size bin can 192 be approximated through the mean effective radius (r_{dust}, m) and density $(\rho_{dust}, kg/m^3)$ for that size bin.

193
$$m_p = \rho_{dust} \times \frac{4}{3} \times \pi r_{dust}^3 \tag{3}$$

194 The number concentration of dust particles N (#/kg) for size bin n at a grid point (i, j, k) is then calculated by the 195 following equation:

196
$$N(i, j, k, n) = C(i, j, k, n)/m_p$$
 (4)

where C(i, j, k, n) is the dust mass mixing ratio ($\mu g/kg$) for size bin *n* at grid point (*i*, *j*, *k*). Summing up the aerosol number concentrations through all of the size bins gives a total dust number concentration, which will be passed into the Thompson-Eidhammer microphysics scheme. Note that all of the dust particles are treated as ice-friendly aerosols in this study and represented by a newly-introduction variable, ice –friendly aerosol produced by GOCART aerosol model (*GNIFA*).

$$GNIFA(i,j,k) = \sum_{i=1}^{n} N(i,j,k,n)$$
(5)

203

3.2 GOCART-Thompson microphysics scheme

This part of modification was to hoop up the GOCART aerosol model and the Thompson-Eidhammer microphysicsscheme.

Instead of reading in the pre-given climatological aerosol data, the initialization module of the Thompson-Eidhammer
 microphysics scheme was modified to apply the bulk number concentration of ice-friendly aerosols produced by the
 GOCART aerosol model for the calculation of the number concentration of ice nucleating particles.

210 After the microphysical processes are finished for a particular time step, the tendency of the bulk aerosol number

211 concentration $(ten_{dust}, \#/kg/s)$ produced by the microphysics scheme is then passed into a wet scavenging scheme,

212 which will be described in detail in the following subsection, for the model to calculate the loss of aerosol mass due

to the microphysical processes within clouds, and update the aerosol mass field.

214

215 **3.3 In-cloud wet scavenging**

As no in-cloud scavenging is considered for dust aerosol in WRF-Chem, a new wet scavenging process was introduced into WRF-Chem to calculate the loss of aerosol mass due to the microphysical processes within clouds using the tendency of aerosol number concentration produced by the microphysics scheme. Assuming that the collection of dust particles is proportional to the number concentration of dust particles, the fraction of dust particle for each size bin (φ, φ_0) can be calculated in the GOCART aerosol model:

$$\varphi(i, j, k, n) = \frac{N(i, j, k, n)}{GNIFA(i, j, k)}$$
(6)

222 The tendency of ice-friendly aerosol is then distributed into each size bin and the loss of dust mass due to the 223 microphysical processes (*wetscav*, $\mu g/kg$) for a particular size bin *n* is calculated by the following equation:

224
$$wetscav(i, j, k, n) = ten_{dust} (i, j, k) \times \varphi(i, j, k, n) \times m_p \times dt$$
(7)

where *dt* is the time step for the simulation.

226 The mass mixing ratio (*C*, $\mu g/kg$) for dust aerosol in a particular size bin *n* is then updated at the next time step:

227
$$C_{(i,j,k,n)}^{t+1} = C_{(i,j,k,n)}^{t} - wetscav_{(i,j,k,n)}^{t}$$
(8)

Apart from the in-cloud scavenging, the below-cloud wet removal is calculated by the default wet deposition scheme in the GOCART aerosol model, in which the wet removal of dust is removed by a constant scavenging factor when there is a precipitation (Duce et al., 1991;Hsu et al., 2009).

231

232 4 Model configurations

A numerical experiment was conducted to examine the performance of the newly-implemented GOCART–Thompson microphysics scheme in simulating the ice nucleation process induced by dust in the atmosphere. Two simulations were conducted for the numerical test. One control run (CTRL) was conducted without dust and one test run (DUST) was conducted with dust. According to the observations, the dust events in 2012 over East Asia were concentrated in 237 mid-March to late-April, and the satellite observations from mid-March to the end of April were available for model 238 validation; therefore, the simulation period was from March 9 to April 30, 2012, with the first eight days as "spin-up" 239 time. Only the results from March 17 to April 30, 2012 were used for the analysis. The final reanalysis data provided 240 by the United States National Center of Environmental Prediction with a horizontal resolution of one degree was used 241 for generating the initial and boundary conditions for the meteorological fields, and the simulations were re-initialized 242 every four days, with the aerosol field being re-cycled, which means that the output of the aerosol field from the 243 previous four-day run was used as the initial aerosol state for the subsequent four-day run. The integration time step 244 for the simulations was 90s.

Two nested domains were used for the simulations, as shown in Figure 1. The outer domain (domain 1) is in a horizontal resolution of 27 km and covers the entire East Asia region. The inner domain (domain 2) is in a horizontal resolution of 9 km and covers the entire central to East China. Both domains have 40 vertical layers, with the top layer at 50 hPa. The locations of the two major dust sources, the Taklimakan Desert (TD) and the Gobi Desert (GD), are marked in Figure 1.

250 The GOCART aerosol model was applied to simulate aerosol processes (Ginoux et al., 2001;Ginoux et al., 2004). 251 Shao's dust emission (Kang et al., 2011; Shao et al., 2011) with soil data from the United states Geological Survey 252 (Soil Survey Staff, 1993), which have been demonstrated to have good performance in reproducing dust emissions 253 over East Asia, was used to generate dust emission in the test run. No other aerosol emissions were considered in the 254 simulations. The newly-implemented GOCART-Thompson microphysics scheme. In the GOCART-Thompson 255 scheme, the deposition nucleation is determined by the parameterization of Phillips et al. (Phillips et al., 2008), the 256 freezing of deliquesced aerosols using the hygroscopic aerosol concentration is parameterized following Koop et al. 257 (Koop et al., 2000), with the background aerosol concentration set to be 1/L, and the condensation and immersion 258 freezing is parameterized by the DeMott2015 ice nucleation scheme. The new wet scavenging scheme was used for 259 in-cloud wet scavenging of aerosols due to microphysical processes.

Other important physical and chemical parameterizations applied for the simulations are as follows. The Mellor– Yamada–Janjic (MYJ) turbulent kinetic energy scheme was used for the planetary boundary layer parameterization (Janjić, 2002, 1994); the moisture convective processes were parameterized by the Grell-Freitas scheme (Grell and Freitas, 2014); the short-wave (SW) and long-wave (LW) radiation budgets were calculated by the Rapid Radiative Transfer Model for General Circulation (RRTMG) SW and LW radiation schemes (Mlawer et al., 1997;Iacono et al.,
2008); the gravitational settling and surface deposition were combined for aerosol dry deposition calculation (Wesely,
1989); a simple washout method was used for the below-cloud wet deposition of aerosols (Duce et al., 1991;Hsu et
al., 2006); and the aerosol optical properties were calculated based on the volume-averaging method (Horvath, 1998).

268

269 5 Observations

270 5.1 Surface PM₁₀ observations

The hourly observations of surface concentration of particulate matter with diameter smaller than 10 μm (PM₁₀) at ten environmental monitoring stations located in or surrounding the dust source areas in East Asia were used to examine the capability of the model in reproducing dust levels at the ground surface during the simulation period. The ten stations (indicated by blue dots in Figure 1) were located in the following five cities:Jinchang, Gansu Province, Yinchuan, Qinghai Province, Shizuishan, Ningxia Province, Baotou, Inner Mongolia, and Yan'an, Shaanxi Province, with two stations in each city.

277

278 5.2 AERONET AOD observations

279 The AERONET program is a ground-based aerosol remote sensing network for measuring aerosol optical properties 280 at sites distributed around the globe. This program provides a long-term database of aerosol optical properties such as 281 aerosol extinction coefficient, single-scattering albedo, and aerosol optical depth (AOD) measured at various 282 wavelength. The observational data from two sites were available for comparison with the simulation results during 283 the simulation period in this study. One was Dalanzadgad located to the north of the Gobi Desert in Mongolia, and 284 the other was the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) located at 285 Lanzhou, Gansu Province, China. The exact locations of the two AERONET sites are depicted by the red triangles in 286 Figure 1. All of the measured data had passed the quality control standard level 2, with an uncertainty of ± 0.01 (Holben 287 et al., 2001).

289 5.3 Satellite data

290 5.3.1 Multi-angle Imaging SpectroRadiometer (MISR)

The MISR instrument aboard the Terra platform of the United State National Aeronautics and Space Administration (NASA) has been monitoring aerosol properties globally since 2000. It measures the aerosol properties in four narrow spectral band centered at 443 nm, 555 nm, 670 nm, and 865 nm, due to which the aerosol properties even over highly bright surfaces, such as deserts, can be retrieved (Martonchik et al., 2004;Diner et al., 1998). In this study, the AOD data at 555 nm retrieved from the MISR level 3 products with a spatial resolution of 0.5° were used for comparison with the spatial distribution of simulated AOD over East Asia during the investigated period.

297

298 5.3.2 Moderate Resolution Imaging Spectroradiometer (MODIS)

The MODIS instruments aboard Terra and Aqua platforms of NASA monitor Earth's surface and provide global highresolution cloud and aerosol optical properties at a near-daily interval (Kaufman et al., 1997).

To retrieve aerosol information over bright surfaces, the Deep Blue algorithm was developed to employ retrievals from the blue channels of the MODIS instruments, at which wavelength the surface reflectance is very low, such that the presence of aerosol can be detected by increasing total reflectance and enhanced spectral contrast (Hsu et al., 2006). By applying this algorithm, the AOD values at wavelengths of 214 nm, 470 nm, 550 nm, and 670 nm over bright surfaces can be retrieved. In this study, the MODIS level 2 AOD data at 550 nm with a spatial resolution of 10 km were used for comparison with the simulated AOD during the simulation period.

307

308 5.3.3 Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO)

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite, which is aboard the Aqua platform of NASA, combines an active Light Detection and Ranging (LIDAR) instrument with passive infrared and visible imagers to probe the vertical structure and properties of thin clouds and aerosols around the globe (Vaughan et al., 2004). It aims to fill existing gaps in the ability to measure the global distribution of aerosols and cloud properties, and provides threedimensional perspectives of how clouds and aerosols form, evolve, and affect weather and climate. It measures highresolution vertical profiles of aerosol and cloud extinction coefficient globally at wavelengths of 532nm and 1064 nm.

315 The atmospheric IWC is derived from the observational cloud extinction coefficients at 532 nm (Winker et al., 2009).

316 In this study, the vertical profiles of CALIPSO IWC with a horizontal resolution of 5 km and vertical resolution of 60

m were applied to verify the performance of the model in simulating the vertical distribution of atmospheric IWC.

318

319 6 Results and model validation

320 6.1 Dust over East Asia

The time series of daily average dust load over the entire East Asia region (domain 1) during the simulation period is shown in Figure 2a. In total four dust events occurred during the simulation period, lasting from March 18 to 25, March 30 to April 7, April 9 to 19, and April 22 to 29, 2012. The case from April 22 to 29 was the most significant one, with daily dust load that double as the other cases. The fraction of daily dust load for each size bin is also shown in Figure 2a. The dust particles in the fourth and fifth bins with effective diameters ranging from 6 to 20 µm account for around 60% of the total mass of dust aerosols, and dust particles with diameters smaller than 6 µm account for around 40% of the total mass of dust aerosols.

The number concentration of dust particles over East Asia were vertically integrated to obtain the number density of dust particles. As shown in Figure 2b, the time series of the daily average number density of dust particles over East Asia during the simulation period shows a similar distribution as that for dust load; the noteworthy distinction between the two time series lies in the fraction of each size bin. The two size bins with the smallest diameters (no larger than 3.6 μ m) account for over 80% of the total number of dust particles, and the particles with diameters smaller than 6 μ m account for over 95% of the total number of dust particles, indicating that the smallest dust particles are the main source of ice-friendly aerosol to serve as IN in the atmosphere.

335

336 6.1.1 Surface PM₁₀ concentration

To evaluate the performance of WRF-Chem in reproducing dust emissions over East Asia, the simulated surface PM₁₀
 concentrations were compared with the observations from the ten environmental monitoring stations located near dust

339 sources and downwind areas (described in Section 5.1). The time series of the observed and simulated surface PM_{10} 340 concentrations during the simulation period are shown in Figure 3. Note that the simulated PM_{10} concentration were 341 extracted from the nearest grid point to the geographical coordinates of the stations. The stations in the same city were 342 assigned into one group, thus here were five groups in Figure 3. Overall, the model shows a good performance in 343 simulating the dust cycle at different locations, with evolution and magnitude of the daily mean PM_{10} concentration 344 well captured at most of the stations. The model tends to produce lower surface PM10 concentration than those 345 observed, as no other emissions were considered in the simulations. However, the dust events on March 21 and April 346 26 were overestimated by the model at one station in Jinchang (Figure 3e), both stations in Shizuishan (Figure 3c and 347 d) and Yinchuan (Figure 3i and j).

348 The performance statistics were computed from the daily average simulated PM10 concentration from DUST and the 349 corresponding observations, as shown in Table 1. The model tends to produce lower surface PM_{10} concentrations than 350 those observed, as no other emissions were considered in the simulations. The mean bias (MB) ranged from -108.73351 μ g/m³ to 72.46 μ g/m³, with a mean over all the stations of -18.84μ g/m³. The mean error (ME) ranged from 46.07 352 μ g/m3 to 155.83 μ g/m3, with a mean over all of the stations of 107.24 μ g/m³. The root mean squared error (RMSE) 353 ranged from 64.78 μ g/m³ to 317.73 μ g/m³, with a mean over all of the stations of 181.28 μ g/m³. The relatively large 354 values of the MB, ME and RMSE are mainly attributed to the fact that no other aerosol emissions were considered in 355 the simulations other than dust, while the surface PM_{10} concentration at the monitoring stations is influenced by 356 aerosols emitted from other sources, such as anthropogenic emissions. The correlation coefficient (r) ranged from 0.59 357 to 0.87, with an average for all of the stations of 0.70. The comparisons between the observed and simulated surface 358 PM_{10} concentration indicates that the model is capable of reproducing the surface dust concentration reasonably during 359 dust events over East Asia.

360

361 6.1.2 AOD time series

To examine the performance of the model in reproducing the column sum of dust in the atmosphere, the simulated AOD values were compared with observations measured at two AERONET sites during the simulation period, as shown in Figure 4. The site at Dalanzadgad (Figure 4a) is located in Mongolia to the north of the Gobi Desert. Overall, the evolution and magnitude of the AOD time series at Dalanzadgad were reasonably reproduced by the model during the simulation period, despite the fact that the simulated AOD was overestimated at the end of March and in mid-April compared to the observed values.

369 SACOL (Figure 4b) is a site located in Lanzhou, Gansu Province, which is a typical downwind area for dust in China.
370 The model showed a good performance in reproducing the time series of AOD at SACOL during the entire simulation
371 period, with evolution and magnitude of AOD well captured.

372

373 6.1.3 AOD spatial distribution

374 The spatial distribution of monthly mean simulated AOD was also compared with observed values from MODIS and 375 MISR products. Note that the high AOD values observed at North, East, South China and part of Southeast Asia are 376 attributed to the abundant anthropogenic emissions, while those high values in the circle area are mostly due to dust 377 events. The region with high AOD values in the west part of the circled area is TD, and the region with relatively 378 lower AOD in the east part of the circled area is GD. The AOD observed by MODIS showed high values at the dust 379 source region in both March and April of 2012, as shown in Figures 5a and b. The mean observed AOD over GD was 380 lower than that over TD in both March and April, and the mean observed AOD was higher in April than in March 381 over both dust source areas. The spatial patterns of AOD observed by MISR are similar to MODIS, with comparable 382 mean values over GD. However, the mean AOD values over TD observed by MISR are 36% and 40% lower than 383 those by MODIS, respectively (Figure 5c and d).

The spatial patterns for the mean simulated AOD were similar to the observed values in both months but closer to those from MODIS, as shown in Figures 5e and f. The model shows a good capability in capturing the spatial characteristics of the AOD over the dust source areas. For example, the mean observed AOD was higher in the southern part of TD than that in the northern part in March, and showed an increase from March to April over GD, both of which were captured by the model. The values of the mean simulated AOD over the Gobi Desert (0.33 for March and 0.39 for April) are comparable to the observational values from both MODIS (0.30 for March and 0.32 for April) and MISR (0.31 for March and 0.34 for April), but the mean simulated AOD over TD (0.54 for March and 0.64 for April) are between the values of the MISR observations (0.72 for March and 0.88 for April) and the MODIS
observations (0.46 for March and 0.53 for April).

393 In summary, it was demonstrated that the dust emissions simulated by WRF-Chem are reliable for further analysis by 394 the comparison between the simulation results and the observations for surface PM_{10} concentrations, as well as the 395 temporal and spatial distributions of AOD values.

396

397 6.2 Cloud ice over East Asia

398 Dust particles are effective IN and play an important role in ice nucleation in the atmosphere under appropriate 399 conditions. With the large number of IN served by dust particles emitted into the atmosphere, an increase in the number 400 of ice crystals is expected in the results from DUST compared with those from CTRL, after taking into account the 401 effects of dust particles in the GOCART–Thompson microphysics scheme. Figure 6 shows the overall comparison 402 between the simulated cloud ice mixing ratio and ice crystal number concentration at each simulated data point (at 403 all model grids at hourly intervals) from CTRL and DUST during the entire simulation period.

404 As expected, the model produces a much higher cloud ice mixing ratio (Figure 6a) and ice crystal number 405 concentration (Figure 6b) in DUST. The simulated cloud ice mixing ratio produced in CTRL is lower than 2 µg/kg at 406 most data points during the simulation period, whereas the data points with simulated ice mixing ratio higher than 2 407 μ g/kg are substantially increased in the output of DUST. Similarly, the simulated ice crystal number concentration produced in CTRL is lower than 0.5×10^6 #/kg at most data points during the simulation period, by contrast, the 408 409 simulated ice crystal number concentration number concentration is higher than 0.5×10^6 #/kg at over a half of total 410 data points in DUST. The substantial increase of simulated cloud ice mixing ratio and ice crystal number concentration 411 indicates that the enhancement of ice nucleation process induced by dust is successfully reproduced by the newly-412 implemented GOCART-Thompson microphysics scheme during the simulation period.

413

414 6.2.1 Spatial distribution of ice water path (IWP)

415 The spatial distributions of the simulated IWP and ice crystal number density from CTRL and DUST in Figure 7 416 further demonstrate the enhancement in cloud ice due to dust over East Asia. The IWP produced by CTRL was lower 417 than 1 g/m² over the entire East Asia Region (Figure 7a). After considering the effect of dust in the ice nucleation 418 process, the IWP produced by DUST increased substantially over the entire region, especially over dust sources and 419 downwind areas, with values as high as 10 g/m^2 (Figure 7b and c). The mean IWP averaged over the domain during 420 the simulation period was 9.15 g/m² for DUST, and 0.70 g/m² for CTRL. As shown in Figures 7d–f, the spatial pattern 421 for the enhancement of ice crystal number density over East Asia was similar with that for the IWP. The mean ice crystal number density averaged over the domain during the simulation period was 2.79×10^8 /m² for DUST, and 422 6.38×10^6 /m² for CTRL. 423

424 The IWP and ice crystal number density were increased by more than one order of magnitude over vast areas of East 425 Asia upon considering the effect of dust in the ice nucleation process in the simulation, and such effect can reach as 426 far as the South China Sea at the southern part of the simulation domain (Figure 7b and 7e). During dust season, the 427 outbreak of cold high system over northeast Asia can bring quantitative dust aerosol down to the South China Sea or 428 even further. In such cases, strong northwestlies swept across the entire China, and brought large amount of dust, 429 especially fine particles, from source areas to the south border of the domain. Besides, the water vapor mixing ratio 430 over South China Sea can be several times as that over north China. Large amount of ice nuclei transported by winds, 431 combining with abundant water vapor, results in a substantial enhancement in the formation of ice crystals over the 432 area at the southern part of the simulation domain. The larger fraction of fine particles in the dust plumes that reach 433 this area results in a much higher enhancement of ice crystal number concentration than the mass of ice crystals.

434

435 6.2.2 IWC during dust events

The vertical profile of the simulated IWC was also compared with the observation from CALIPSO during dust events. As mentioned in section 5.1, a total of four dust events occurred during the simulation period, lasting from March 18 to 25, March 30 to April 7, April 9 to 19, and April 22 to 28, 2012. As shown in Figures 8 and 9, the performance of the model in simulating the vertical profile of IWC was evaluated by comparing the observations measured at 06 UTC on March 21, 18 UTC on April 1, 18 UTC on April 9, and 05 UTC on April 23, 2012 with the simulated profiles at the same hour. 442 CALIPSO measures the global distribution of aerosol and cloud properties by LIDAR, which uses a laser to generate 443 visible light with a wavelength of 1 µm or less to detect small particles or droplets in the atmosphere. Therefore, 444 CALIPSO instruments are more sensitive to tenuous ice clouds and liquid clouds composed of small particles or 445 droplets, which are invisible to instruments using signals of near-infrared or infrared wavelength to detect clouds. 446 Moreover, the LIDAR signal is attenuated rapidly in optically dense clouds that the infrared or near-infrared signals 447 can easily penetrate(Winker et al., 2010). As a result, the CALIPSO observations of IWC are mostly at the locations 448 where the temperatures is lower than -40 °C and the altitude is greater than 6 km poleward to 12 km equatorward, 449 and mostly those without precipitating ice. Given the above considerations, the simulated IWC profiles compared with 450 the CALIPSO observations are referred to as only cloud ice in this section.

451 The simulated dust load over East Asia at 06 UTC on March 21, 2012 is shown in Figure 8a, in which the dust covered 452 vast areas from West to East China between 35°N and 45°N, and the orbit of the satellite passed through the area with 453 heavy dust load at around 100°E. Along the satellite orbit, the abundant dust particles were transported to as high as 454 10 km aloft (Figure 8c). At this time, a high concentration of IWC was observed along the satellite orbit at an altitude of around 10 km between 30°N and 45°N (Figure 8e). The simulation result from CTRL (Figure 8g) shows that the 455 456 model produces some ice cloud at altitude of 9-10 km between 35°N and 45°N, but with much lower IWC compared 457 to the observations. Nevertheless, by considering the effect of dust on ice nucleation process in DUST, it results in a 458 much higher IWC at altitude of 9–10 km between 35°N and 45°N (Figure 8i), which is much more consistent with the 459 observations. The comparison between the simulation results from CTRL and DUST indicates that the high IWC 460 observed by the satellite between 30°N and 35°N might be unrelated to microphysical processes, but instead due to 461 strong convective motions over South China.

462 On April 1, 2012, Central to East China was covered by a thick dust plume, and the orbit of the satellite passed between 463 25°N and 43°N along 120°E at 18 UTC (Figure 8b). Dust particles were distributed vertically from the surface to over 464 8 km along the satellite orbit (Figure 8d). A band of high IWC was observed by the satellite at altitude of 5 km to 10 465 km between 33°N and 44°N (Figure 8f), which was barely reproduced in the results of the CTRL run without dust. In 466 contrast, the observed band of high IWC was reproduced by the model in DUST with much more consistent location 467 and magnitude (Figure 8j). At 18 UTC on April 9, 2012, the satellite was scanning the dust source over GD, which was covered by a thick dust plume between 35°N and 45°N (Figure 10a), with dust particles lifted up to 10 km above the surface (Figure 9c). High concentration of IWC was observed by the satellite at altitude from 5 km to 11 km between 30°N and 45°N (Figure 9e). In this case, the model reproduced the high concentration of IWC at the observed location in the results from both CTRL and DUST, although the IWC was significantly underestimated in the results from CTRL (Figure 9g), while it was better reproduced in the results from DUST (Figure 9j).

474 Similar to the previous cases, the satellite was scanning along east coast of China at 05 UTC on April 23, 2012, when 475 a dust plume was arriving from the dust sources and affecting areas between 35°N and 45°N (Figure 9b), and dust 476 particles were distributed vertically from the surface to 10 km along the scanning track of the satellite (Figure 9d). 477 Along the orbit of the satellite, two bands with high IWC were observed at altitudes between 5 km and 12 km, one is 478 located between 30°N and 37°N, and the other is located between 40°N and 45°N (Figure 9f). In the results from 479 CTRL, the model reproduced the bands of high IWC at the correct locations, but with substantially lower values 480 (Figure 9h); however, upon taking into account the effect of dust in the GOCART-Thompson microphysics scheme, 481 the bands of high IWC were well reproduced by the model, with much more consistent values (Figure 9j).

By comparing the satellite-observational and simulated vertical profiles of IWC during the various dust events, it was demonstrated that by considering the effects of dust on ice nucleation process, the model reproduces the enhancement of IWC clouds in the mid- to upper troposphere by taking in to account the effect of dust in the ice nucleation process, which substantially improves the simulation of cloud ice.

486

487 6.2.3 Mean vertical profiles of IWC

The mean profiles of the observed IWC, as well as the simulated IWC from CTRL and DUST for the four dust events discussed in Section 6.2.2, are shown in Figure 10. Note that the "mean profile" of IWC is the average over the available data points for the IWC along the orbit of the satellite between 30°N to 45°N for each of the dust events shown in Figures 8 and 9.

492 Compared with the results from CTRL, the vertical profile of the simulated IWC was substantially improved in DUST493 for each dust event, with the enhancement of the ice nucleation process well captured by the GOCART-Thompson

494 microphysics scheme. However, there were still discrepancies between observations and the simulation results from495 DUST, the magnitudes of the vertical IWC produced by the model were always lower than the observed values.

For the cases on March 21 and April 1, the peaks of IWC were observed at 9.5 km and 8 km, respectively, whereas the simulated peak of IWC were located at 8 km and 7.5 km, respectively, with lower peak values. The lower peak value for the case on March 21 was due to the missing of the high IWC observed between 30°N to 45°N in the simulation results (Figure 8e and i), while the lower peak value for the case on April 1 was due to the underestimation of the IWC around 35°N (Figure 8f and j). The locations of the peaks of simulated IWC for the cases on April 9 and April 23 were more consistent with the observed peaks, but still possessed lower values due to the missing or underestimation of high IWC with respect to the observations.

503

504 6.3 Sensitivity test and discussion

As discussed in Section 6.2.3, the simulation of cloud ice is greatly improved by considering the enhancement of ice nucleation process induced by dust, which is well captured by the GOCART–Thompson microphysics scheme. However, the IWC is still underestimated by the model during dust events. To determine the reason for this limitation, numerical experiments were performed to investigate the sensitivity of simulated IWC to the parameters of the ice nucleation parameterization in the GOCART–Thompson microphysics scheme.

510

511 6.3.1 Calibration factor c_f

The calibration factor c_f is an empirical tuning coefficient derived from observational data from field and laboratory experiments. It ranges from 1 to 6, and recommended to be 3 (DeMott et al., 2015), which was applied in the previous simulations. Three other experiments were conducted to investigate the sensitivity of the simulated IWC to c_f values ranging from 3 to 6.

not result in an increase of IWC; instead, the simulated IWC remained consistent for c_f values varying from 3 to 6.

⁵¹⁶ The mean profiles of IWC from simulation results were compared with the CALIPSO observations for the dust events

discussed in Section 6.2.2 and 6.2.3, as shown in Figure 11. For the cases on March 21 and April 1, changing c_f did

For the case on April 9, the simulated IWC increased between 6 km and 9 km and was closer ro the observed profile when c_f was equal to 4 and 5; however, when c_f was set to 3 and 6, the simulated IWC was lower than that obtained with c_f values of 4 or 5.

For the case on April 23, two peaks were observed in the profiles of simulated IWC, located at 7 km and 10 km. The simulated IWC remained unchanged with c_f values varying from 3 to 6 for the peak at 10 km, but increased upon changing the c_f from 3 to 4, and remained the same upon changing the c_f from 5 and 6 for the peak. The peak of the simulated IWC at 7 km should correspond to the observed peak between 6 km to 8 km, which was slightly overestimated by the model.

527 In summary, increasing the calibration factor c_f from 3 to 6 does not necessarily lead to a significant variation in the 528 simulated IWC during dust events, and the model achieves a relatively better performance in reproducing the profile 529 of IWC when the c_f is set to 4 or 5.

530 As ice nucleation occurs only in a super-saturated atmosphere with respect to water vapor, the ice nucleation process 531 would be terminated in the GOCART-Thompson microphysics scheme when the environmental RH_i is lower than the 532 threshold RH_i, which was set to 105% for the simulations in this study. The consistency in the simulated IWC with 533 increasing c_f for the cases in Figure 11 indicates that in these cases, the environmental RH_i had already reached below 534 105% when c_f was set to 3, meaning that the water vapor available for freezing into ice crystals has been consumed 535 up with c_f equal to 3, therefore, increasing c_f could not lead to a further increase in simulated IWC. Given the above, 536 lowering the threshold RH_i might result in an enhancement of the ice nucleation process as well as the simulated IWC, 537 which will be discussed in the following section.

538

539 6.3.2 Threshold of relative humidity

In this study, the threshold relative humidity to trigger the ice nucleation process in the simulation was originally set
to 105%, which was selected for the central lamina condition in the laboratory experiments to derive the DeMott2015
ice nucleation scheme (DeMott et al., 2015). However, as reported in other studies, the number of ice nucleating

particles starts to rise when the relative humidity exceeds 100% (DeMott et al., 2011). Therefore, a sensitivity
experiment was carried out to investigate the response of simulated IWC to lower threshold relative humidity.

The mean profiles of IWC from the simulation results were compared with the CALIPSO observations for the aforementioned dust events, as shown in Figure 12. With the threshold relative humidity lowered to 100%, the simulated IWC showed an increase throughout the vertical profile with the most significant increase at the peaks, suggesting more consistency with the observations for all of the dust events, except the one on April 1. In the case on April 1, the simulated IWC increased at lower altitudes than the observed peak, but slightly decreased right at the peak with lowering the threshold relative humidity to 100%. Overall, the simulation of IWC during dust events was significantly improved by lowering the threshold relative humidity from 105% to 100%.

552

553 7 Conclusions

A new treatment, the GOCART–Thompson scheme, was implemented into WRF-Chem to couple the GOCART aerosol model to the aerosol-aware Thompson-Eidhammer microphysics scheme. By applying this newlyimplemented microphysics scheme, the effect of dust on the ice nucleation process by serving as IN in the atmosphere can be quantified and evaluated. Numerical experiments, including a control run without dust and a test run with dust, were then carried out to evaluate the performance of the newly–implemented GOCART–Thompson microphysics scheme in simulating the effect of dust on the content of cloud ice over East Asia during a typical dust-intensive period, by comparing the simulation results with various observations.

Based on the GOCART aerosol model the model reproduced dust emission reasonably well, by capturing the evolution and magnitude of surface PM_{10} concentration at the locations of various environmental monitoring stations and the AOD at two AERONET sites. The spatial patterns of the mean AOD over East Asia during the simulation period were also consistent with satellite observations.

The effect of dust on the ice nucleation process was then quantified and evaluated in the GOCART–Thompson microphysics scheme. Upon considering the effect of dust in the simulation, the simulated ice water mixing ratio and ice crystal number concentration over East Asia were one order of magnitude higher than those simulated without dust, with the most significant enhancements located over dust source regions and downwind areas. 569 By comparing the simulated IWP averaged over East Asia during the simulation period with MODIS observations, it 570 was demonstrated that the IWP including cloud ice and precipitating ice was reasonably reproduced by the model over 571 most areas of East Asia, although slightly underestimated. The results from the simulation run with dust were more 572 consistent with the observations.

573 Comparison between the vertical profiles of the satellite-observed and simulated IWC during various dust events 574 indicated that the enhancement of cloud ice induced by abundant dust particles serving as IN is well captured by the 575 GOCART–Thompson microphysics scheme, with the results from the simulation with dust much more consistent with 576 the satellite–observations, although the IWC is generally underestimated by the model.

577 Sensitivity experiments revealed that the simulated IWC was not very sensitive to the calibration factor defined in the 578 DeMott2015 ice nucleation scheme, but the model delivered a slight better performance in reproducing the IWC when 579 the calibration factor was set to 3 or 4. However, the simulated IWC was sensitive to the threshold relative humidity 580 to trigger the ice nucleation process in the model and was improved upon lowering the threshold relative humidity 581 from 105% to 100%.

582

583 Acknowledgement. We would like to acknowledge the provision of the MODIS and the MISR observations by the 584 Ministry of Environmental Protection Data Center, U.S. National Center for Atmospheric Research (NCAR), and the 585 CALIPSO data by the U.S. National Aeronautics and Space Administration (NASA) Data Center. We thank the 586 principal investigators and their staff for establishing and maintaining the two AERONET sites used in this study. The 587 AERONET data were obtained freely from the AERONET program website (https://aeronet.gsfc.nasa.gov/). We 588 appreciate the assistance of the Hong Kong Observatory (HKO), which provided the meteorological data. Lin Su 589 would like to thank Dr. Georg Grell, Dr. Stuart McKeen, and Dr. Ravan Ahmandov from the Earth System Research 590 Laboratory, U.S. National Oceanic and Atmospheric Administration for insightful discussions. Other data used this 591 paper are properly cited and referred to in the reference list. All data shown in the results are available upon request. 592 This N_HKUST631/05, work supported by NSFC/RGC Grant was 593 NSFC-FD Grant U1033001, and the RGC Grant 16303416.

595 References

- 596 Atkinson, J. D., Murray, B. J., Woodhouse, M. T., Whale, T. F., Baustian, K. J., Carslaw, K. S., Dobbie, S., O'sullivan,
- 597 D., and Malkin, T. L.: The importance of feldspar for ice nucleation by mineral dust inmixed-phase clouds, Nature,
 598 498, 355, 2013.
- 599 Baró, R., Jiménez-Guerrero, P., Balzarini, A., Curci, G., Forkel, R., Grell, G., Hirtl, M., Honzak, L., Langer, M., and
- 600 Pérez, J. L.: Sensitivity analysis of the microphysics scheme in WRF-Chem contributions to AQMEII phase 2,
- 601 Atmospheric Environment, 115, 620-629, 2015.
- Bi, J., Huang, J., Fu, Q., Ge, J., Shi, J., Zhou, T., and Zhang, W.: Field measurement of clear-sky solar irradiance in
- Badain Jaran Desert of Northwestern China, Journal of Quantitative Spectroscopy and Radiative Transfer, 122, 194207, 2013.
- 605 Chapman, E. G., Gustafson Jr, W., Easter, R. C., Barnard, J. C., Ghan, S. J., Pekour, M. S., and Fast, J. D.: Coupling
- 606 aerosol-cloud-radiative processes in the WRF-Chem model: Investigating the radiative impact of elevated point
- 607 sources, Atmospheric Chemistry and Physics, 9, 945-964, 2009.
- 608 Chin, M., Rood, R. B., Lin, S.-J., Müller, J.-F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the 609 global model GOCART: Model description and global properties, 2000.
- DeMott, P. J., Sassen, K., Poellot, M. R., Baumgardner, D., Rogers, D. C., Brooks, S. D., Prenni, A. J., and
 Kreidenweis, S. M.: African dust aerosols as atmospheric ice nuclei, Geophysical Research Letters, 30, 2003.
- 612 DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M., Eidhammer,
- 613 T., and Rogers, D.: Predicting global atmospheric ice nuclei distributions and their impacts on climate, Proceedings
- 614 of the National Academy of Sciences, 107, 11217-11222, 2010.
- 615 DeMott, P. J., Möhler, O., Stetzer, O., Vali, G., Levin, Z., Petters, M. D., Murakami, M., Leisner, T., Bundke, U., and
- 616 Klein, H.: Resurgence in ice nuclei measurement research, Bulletin of the American Meteorological Society, 92, 1623-
- **617** 1635, 2011.
- 618 DeMott, P. J., Prenni, A. J., McMeeking, G. R., Sullivan, R. C., Petters, M. D., Tobo, Y., Niemand, M., Möhler, O.,
- Snider, J. R., and Wang, Z.: Integrating laboratory and field data to quantify the immersion freezing ice nucleation
 activity of mineral dust particles, Atmospheric Chemistry and Physics, 15, 393-409, 2015.
- 621 Diner, D. J., Barge, L. M., Bruegge, C. J., Chrien, T. G., Conel, J. E., Eastwood, M. L., Garcia, J. D., Hernandez, M.
- 622 A., Kurzweil, C. G., and Ledeboer, W. C.: The Airborne Multi-angle Imaging SpectroRadiometer (AirMISR):
- 623 instrument description and first results, IEEE Transactions on Geoscience and Remote Sensing, 36, 1339-1349, 1998.
- 624 Duce, R., Liss, P., Merrill, J., Atlas, E., Buat-Menard, P., Hicks, B., Miller, J., Prospero, J., Arimoto, R., and Church,
- **625** T.: The atmospheric input of trace species to the world ocean, Global biogeochemical cycles, 5, 193-259, 1991.
- 626 Ge, J., Su, J., Ackerman, T., Fu, Q., Huang, J., and Shi, J.: Dust aerosol optical properties retrieval and radiative
- 627 forcing over northwestern China during the 2008 China-US joint field experiment, Journal of Geophysical Research:
- 628 Atmospheres, 115, 2010.
- 629 Ginoux, P., Chin, M., Tegen, I., Prospero, J. M., Holben, B., Dubovik, O., and Lin, S. J.: Sources and distributions of
- dust aerosols simulated with the GOCART model, Journal of Geophysical Research: Atmospheres, 106, 20255-20273,
- **631** 2001.

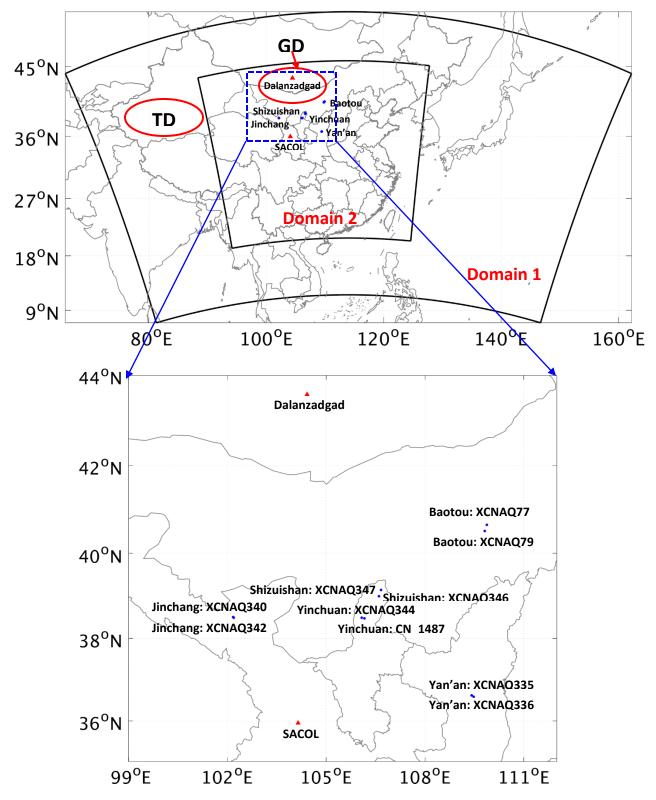
- 632 Ginoux, P., Prospero, J. M., Torres, O., and Chin, M.: Long-term simulation of global dust distribution with the
- 633 GOCART model: correlation with North Atlantic Oscillation, Environmental Modelling & Software, 19, 113-128,
- **634** 2004.
- 635 Grell, G., Peckham, S., Fast, J., Singh, B., Easter, R., Gustafson, W., Rasch, P., Wolters, S., Barth, M., and Pfister, G.:
- 636 WRF-Chem V3. 5: A summary of status and updates, EGU General Assembly Conference Abstracts, 2013, 11332.
- 637 Grell, G. A., and Freitas, S. R.: A scale and aerosol aware stochastic convective parameterization for weather and air
- 638 quality modeling, Atmos. Chem. Phys, 14, 5233-5250, 2014.
- Hansen, J., Sato, M., and Ruedy, R.: Radiative forcing and climate response, Journal of Geophysical Research:
- 640 Atmospheres, 102, 6831-6864, 1997.
- Hartmann, D., Tank, A., and Rusticucci, M.: IPCC fifth assessment report, climate change 2013: The physical science
 basis, IPCC AR5, 31-39, 2013.
- Holben, B., Tanre, D., Smirnov, A., Eck, T., Slutsker, I., Abuhassan, N., Newcomb, W., Schafer, J., Chatenet, B., and
- 644 Lavenu, F.: An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET, Journal of
- 645 Geophysical Research: Atmospheres, 106, 12067-12097, 2001.
- Hoose, C., Lohmann, U., Erdin, R., and Tegen, I.: The global influence of dust mineralogical composition on
- 647 heterogeneous ice nucleation in mixed-phase clouds, Environmental Research Letters, 3, 025003, 2008.
- Horvath, H.: Influence of atmospheric aerosols upon the global radiation balance, Atmospheric particles, 5, 62-63,1998.
- 650 Hsu, N. C., Tsay, S.-C., King, M. D., and Herman, J. R.: Deep blue retrievals of Asian aerosol properties during ACE-
- Asia, IEEE Transactions on Geoscience and Remote Sensing, 44, 3180-3195, 2006.
- Hsu, S. C., Liu, S. C., Arimoto, R., Liu, T. H., Huang, Y. T., Tsai, F., Lin, F. J., and Kao, S. J.: Dust deposition to the
- East China Sea and its biogeochemical implications, Journal of Geophysical Research: Atmospheres, 114, 2009.
- Huang, J., Fu, Q., Su, J., Tang, Q., Minnis, P., Hu, Y., Yi, Y., and Zhao, Q.: Taklimakan dust aerosol radiative heating
- derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints, AtmosphericChemistry and Physics, 9, 4011-4021, 2009.
- 657 Huang, J.: Emission, transport, and radiative effects of mineral dust from the Taklimakan and Gobi deserts:
- 658 comparison of measurements and model results, Atmos. Chem. Phys, 1680, 7324, 2017.
- Iacono, M. J., Delamere, J. S., Mlawer, E. J., Shephard, M. W., Clough, S. A., and Collins, W. D.: Radiative forcing
- by long-lived greenhouse gases: Calculations with the AER radiative transfer models, Journal of Geophysical
- 661 Research: Atmospheres, 113, 2008.
- 662 Janjić, Z. I.: The step-mountain eta coordinate model: Further developments of the convection, viscous sublayer, and
- turbulence closure schemes, Monthly Weather Review, 122, 927-945, 1994.
- Janjić, Z. I.: Nonsingular implementation of the Mellor–Yamada level 2.5 scheme in the NCEP Meso model, NCEP
 office note, 437, 61, 2002.
- 666 Kang, J. Y., Yoon, S. C., Shao, Y., and Kim, S. W.: Comparison of vertical dust flux by implementing three dust
- 667 emission schemes in WRF/Chem, Journal of Geophysical Research: Atmospheres, 116, 2011.

- Karydis, V., Kumar, P., Barahona, D., Sokolik, I., and Nenes, A.: On the effect of dust particles on global cloud
 condensation nuclei and cloud droplet number, Journal of Geophysical Research: Atmospheres, 116, 2011.
- 670 Kaufman, Y., Tanré, D., Remer, L. A., Vermote, E., Chu, A., and Holben, B.: Operational remote sensing of
- 671 tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, Journal of Geophysical
- 672 Research: Atmospheres, 102, 17051-17067, 1997.
- 673 Koehler, K., Kreidenweis, S., DeMott, P., Petters, M., Prenni, A., and Möhler, O.: Laboratory investigations of the
- 674 impact of mineral dust aerosol on cold cloud formation, Atmospheric Chemistry and Physics, 10, 11955-11968, 2010.
- 675 Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the determinant for homogeneous ice nucleation in
- 676 aqueous solutions, Nature, 406, 611-614, 2000.
- 677 Lacis, A.: Climate forcing, climate sensitivity, and climate response: A radiative modeling perspective on atmospheric
- aerosols, Aerosol forcing of climate, 11-42, 1995.
- Liu, Huang, J., Shi, G., Takamura, T., Khatri, P., Bi, J., Shi, J., Wang, T., Wang, X., and Zhang, B.: Aerosol optical
- 680 properties and radiative effect determined from sky-radiometer over Loess Plateau of Northwest China, Atmospheric
- 681 Chemistry and Physics, 11, 11455-11463, 2011a.
- Liu, Zheng, Y., Li, Z., Flynn, C., Welton, E. J., and Cribb, M.: Transport, vertical structure and radiative properties of
- dust events in southeast China determined from ground and space sensors, Atmospheric environment, 45, 6469-6480,
- 684 2011b.
- Lohmann, U., and Diehl, K.: Sensitivity studies of the importance of dust ice nuclei for the indirect aerosol effect on
 stratiform mixed-phase clouds, Journal of the Atmospheric Sciences, 63, 968-982, 2006.
- 687 Mallet, M., Tulet, P., Serça, D., Solmon, F., Dubovik, O., Pelon, J., Pont, V., and Thouron, O.: Impact of dust aerosols
- 688 on the radiative budget, surface heat fluxes, heating rate profiles and convective activity over West Africa during
- 689 March 2006, Atmospheric Chemistry and Physics, 9, 7143-7160, 2009.
- 690 Martonchik, J., Diner, D., Kahn, R., Gaitley, B., and Holben, B.: Comparison of MISR and AERONET aerosol optical
- depths over desert sites, Geophysical Research Letters, 31, 2004.
- 692 Miller, R., Tegen, I., and Perlwitz, J.: Surface radiative forcing by soil dust aerosols and the hydrologic cycle, Journal
- 693 of Geophysical Research: Atmospheres, 109, 2004.
- Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., and Clough, S. A.: Radiative transfer for inhomogeneous
- atmospheres: RRTM, a validated correlated-k model for the longwave, Journal of Geophysical Research: Atmospheres,
- **696** 102, 16663-16682, 1997.
- 697 Nabat, P., Somot, S., Mallet, M., Michou, M., Sevault, F., Driouech, F., Meloni, D., Di Sarra, A., Di Biagio, C., and
- 698 Formenti, P.: Dust aerosol radiative effects during summer 2012 simulated with a coupled regional aerosol-
- atmosphere–ocean model over the Mediterranean, Atmospheric Chemistry and Physics, 15, 3303-3326, 2015a.
- 700 Nabat, P., Somot, S., Mallet, M., Sevault, F., Chiacchio, M., and Wild, M.: Direct and semi-direct aerosol radiative
- effect on the Mediterranean climate variability using a coupled regional climate system model, Climate dynamics, 44,
- 702 1127-1155, 2015b.
- 703 Perlwitz, J., and Miller, R. L.: Cloud cover increase with increasing aerosol absorptivity: A counterexample to the
- conventional semidirect aerosol effect, Journal of Geophysical Research: Atmospheres, 115, 2010.

- Phillips, V. T., DeMott, P. J., and Andronache, C.: An empirical parameterization of heterogeneous ice nucleation for
 multiple chemical species of aerosol, Journal of the atmospheric sciences, 65, 2757-2783, 2008.
- 707 Seigel, R., Van Den Heever, S., and Saleeby, S.: Mineral dust indirect effects and cloud radiative feedbacks of a
- 708 simulated idealized nocturnal squall line, Atmospheric Chemistry and Physics, 13, 4467-4485, 2013.
- 709 Shao: A model for mineral dust emission, Journal of Geophysical Research: Atmospheres, 106, 20239-20254, 2001.
- 710 Shao: Simplification of a dust emission scheme and comparison with data, Journal of Geophysical Research:
- 711 Atmospheres, 109, 2004.
- 712 Shao, Ishizuka, M., Mikami, M., and Leys, J.: Parameterization of size-resolved dust emission and validation with
- 713 measurements, Journal of Geophysical Research: Atmospheres, 116, 2011.
- 714 Soil Survey Staff: Soil survey manual, 1993.
- 715 Solomos, S., Kallos, G., Kushta, J., Astitha, M., Tremback, C., Nenes, A., and Levin, Z.: An integrated modeling
- tudy on the effects of mineral dust and sea salt particles on clouds and precipitation, Atmospheric Chemistry and
- 717 Physics, 11, 873-892, 2011.
- 718 Su, L., and Fung, J. C.: Sensitivities of WRF-Chem to dust emission schemes and land surface properties in simulating
- dust cycles during springtime over East Asia, Journal of Geophysical Research: Atmospheres, 120, 2015.
- 720 Tesfaye, M., Tsidu, G. M., Botai, J., and Sivakumar, V.: Mineral dust aerosol distributions, its direct and semi-direct
- effects over South Africa based on regional climate model simulation, Journal of Arid Environments, 114, 22-40,
- **722** 2015.
- 723 Textor, C., Schulz, M., Guibert, S., Kinne, S., Balkanski, Y., Bauer, S., Berntsen, T., Berglen, T., Boucher, O., and
- 724 Chin, M.: Analysis and quantification of the diversities of aerosol life cycles within AeroCom, Atmospheric Chemistry
- 725 and Physics, 6, 1777-1813, 2006.
- 726 Thompson, G., Rasmussen, R. M., and Manning, K.: Explicit forecasts of winter precipitation using an improved bulk
- 727 microphysics scheme. Part I: Description and sensitivity analysis, Monthly Weather Review, 132, 519-542, 2004.
- 728 Thompson, G., and Eidhammer, T.: A study of aerosol impacts on clouds and precipitation development in a large
- winter cyclone, Journal of the Atmospheric Sciences, 71, 3636-3658, 2014.
- 730 Tomasi, C., Fuzzi, S., and Kokhanovsky, A.: Atmospheric Aerosols: Life Cycles and Effects on Air Quality and
- 731 Climate, John Wiley & Sons, 2017.
- 732 Twohy, C. H., Kreidenweis, S. M., Eidhammer, T., Browell, E. V., Heymsfield, A. J., Bansemer, A. R., Anderson, B.
- E., Chen, G., Ismail, S., and DeMott, P. J.: Saharan dust particles nucleate droplets in eastern Atlantic clouds,
- 734 Geophysical Research Letters, 36, 2009.
- 735 Vaughan, M. A., Young, S. A., Winker, D. M., Powell, K. A., Omar, A. H., Liu, Z., Hu, Y., and Hostetler, C. A.: Fully
- automated analysis of space-based lidar data: An overview of the CALIPSO retrieval algorithms and data products,
- 737 Remote Sensing, 2004, 16-30.
- 738 Wesely, M.: Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models,
- 739 Atmospheric Environment (1967), 23, 1293-1304, 1989.

- 740 Winker, Pelon, J., Coakley Jr, J., Ackerman, S., Charlson, R., Colarco, P., Flamant, P., Fu, Q., Hoff, R., and Kittaka,
- 741 C.: The CALIPSO mission: A global 3D view of aerosols and clouds, Bulletin of the American Meteorological Society,
- **742** 91, 1211-1229, 2010.
- 743 Winker, D. M., Vaughan, M. A., Omar, A., Hu, Y., Powell, K. A., Liu, Z., Hunt, W. H., and Young, S. A.: Overview
- of the CALIPSO mission and CALIOP data processing algorithms, Journal of Atmospheric and Oceanic Technology,
- **745** 26, 2310-2323, 2009.
- 746 Zhang, C., Wang, M., Morrison, H., Somerville, R. C., Zhang, K., Liu, X., and Li, J. L. F.: Investigating ice nucleation
- 747 in cirrus clouds with an aerosol-enabled Multiscale Modeling Framework, Journal of Advances in Modeling Earth
- 748 Systems, 6, 998-1015, 2014.
- 749

751 List of tables and figures


- 752 Table 1: Performance statistics for the model in simulating surface PM_{10} concentrations at environmental monitoring 753 stations during the simulation period.
- Figure 1: Nested domain set for the simulations. Blue dots represent the ten monitoring stations used for model
- validation. TD: the Taklimakan Desert; GD: The Gobi Desert.
- 756 Figure 2: Time series of spatially averaged daily dust mass load (a) and daily number density of dust particles (b) over
- East Asia (domain 1) during the simulation period.
- Figure 3: Time series of hourly observed and simulated surface PM_{10} concentrations at various environmental
- 759 monitoring stations. r represents the correlation coefficient between simulation results and observations.
- Figure 4: Time series of daily mean observed and simulated aerosol optical depths at Dalanzadgad (a) and SACOL
- (b). r represents the correlation coefficient between simulation results and observations.
- Figure 5: Spatial distributions of monthly mean AOD from MODIS observations (a, b), MISR observations (c, d), and
- simulation results (e, f) for March (left panel) and April (right panel) of 2012.
- Figure 6: Simulated cloud ice mixing ratio (a) and cloud ice crystal number concentration (b) at each data point fromCTRL and DUST.
- Figure 7: Spatial distributions for the temporal mean simulated cloud ice water path (a-c) and ice crystal number
- density (d-f) from CTRL (left panel), DUST (middle panel), and the difference between CTRL and DUST (right panel)
- 768 over East Asia (domain 1) during the simulation period.
- 769 Figure 8: Spatial distribution for simulated dust load and satellite scanning track (a, b); the simulated vertical profile
- of ice-friendly aerosol (GNIFA) number concentration (c, d), with the orography represented by the shaded area; the
- 771 CALIPSO vertical profile of IWC (e, f); and the simulated vertical profile of IWC from CTRL (g, h) and DUST (i, j)
- for the case on March 21 (left panel) and April 1 (right panel) of 2012.
- Figure 9: As Figure 8 but for the cases on April 9 (left panel) and April 23, (right panel) of 2012.
- Figure 10: Vertical profiles for the mean observed IWC from CALIPSO, and the simulated IWC from CTRL and
- 775 DUST for dust events on March 21, April 1, April 9, and April 23, 2012.

- Figure 11: Vertical profiles for the mean observed IWC from CALIPSO, and the simulated IWC with various c_f for
- the dust events on March 21, April 1, April 9, and April 23, 2012.
- Figure 12: Vertical profiles for the mean observational IWC from CALIPSO, and the simulated IWC with threshold
- RH values of 105% and 100% for the dust events on March 21, April 1, April 9, and April 23, 2012.

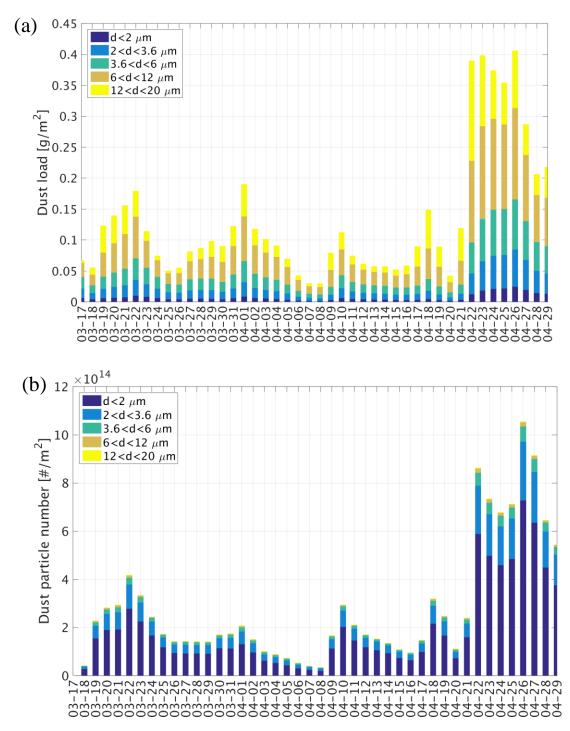
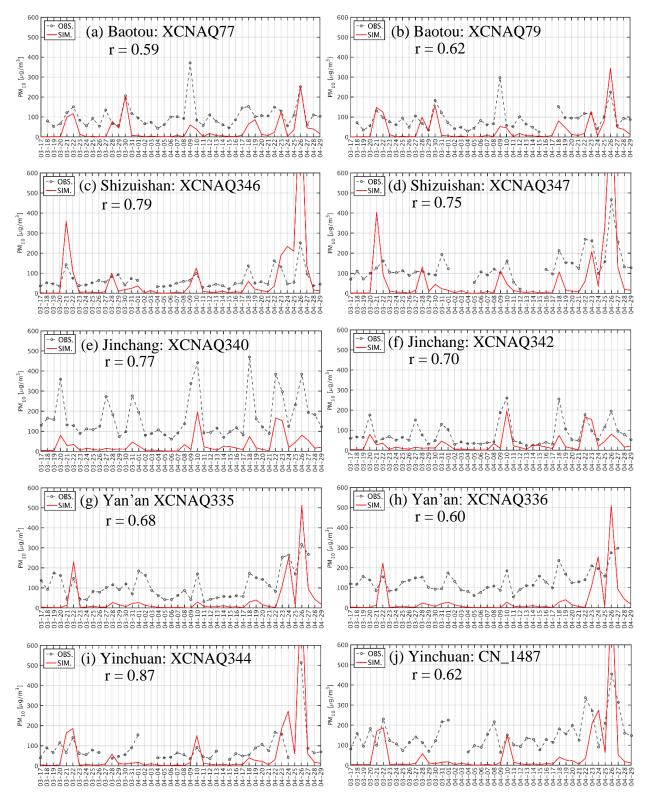
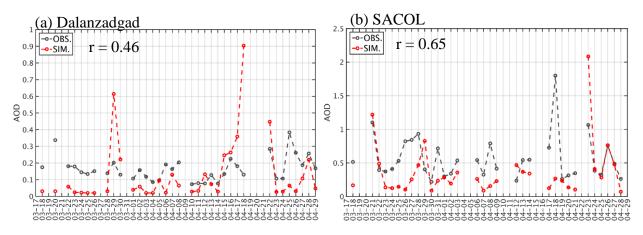
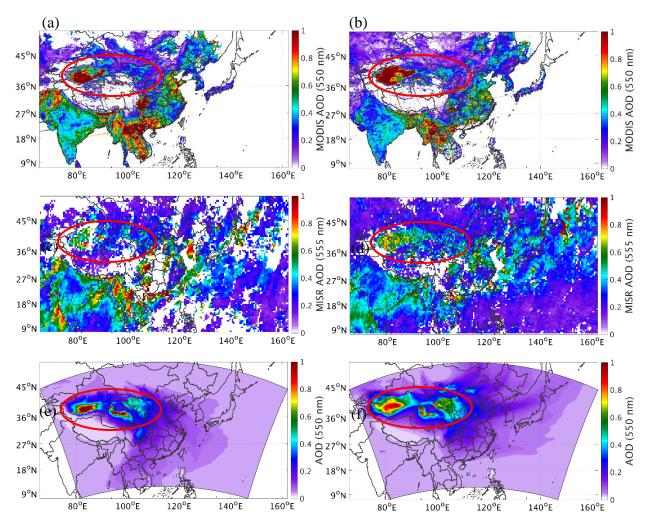

City	STATION NO.	MB (µg/m3)	ME (µg/m3)	RMSE (µg/m3)	r
BAOTOU	XCNAQ77	-36.18	80.43	94.88	0.59
	XCNAQ79	-10.05	75.83	106.58	0.62
SHIZUISHAN	XCNAQ346	72.46	121.18	317.73	0.79
	XCNAQ347	17.64	147.95	294.71	0.75
JINCHANG	XCNAQ340	-108.73	109.09	128.56	0.77
	XCNAQ342	-18.65	46.07	64.78	0.70
YAN'AN	XCNAQ335	-38.93	99.05	149.44	0.68
	XCNAQ336	-60.15	124.74	166.89	0.60
YINCHUAN	XCNAQ344	33.97	112.26	240.27	0.87
	CN_1487	-39.62	155.83	249.00	0.62
Average		-18.84	107.24	181.28	0.70

Table 1: Performance statistics for the model in simulating surface PM_{10} concentrations at environmental monitoring stations during the simulation period.

MB: mean bias; ME: mean error; RMSE: root mean squared error; r: correlation coefficient.

Figure 1: Nested domain set for the simulations. Blue dots represent the ten monitoring stations used for model validation. TD: the Taklimakan Desert; GD: The Gobi Desert.

Figure 2: Time series of spatially averaged daily dust mass load (a) and daily number density of dust particles (b) over East Asia (domain 1) during the simulation period.

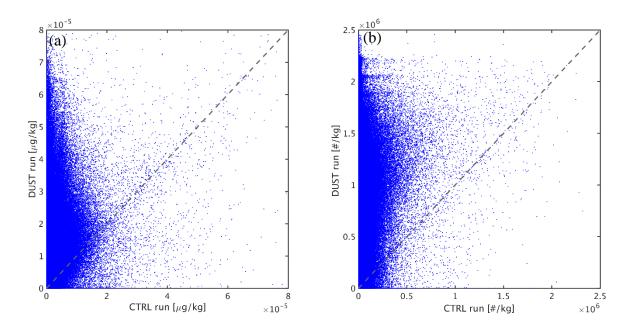

Figure 3: Time series of hourly observed and simulated surface PM_{10} concentrations at various environmental monitoring stations. r represents the correlation coefficient between simulation results and observations.

Figure 4: Time series of daily mean observed and simulated aerosol optical depths at Dalanzadgad (a) and SACOL (b). r represents the correlation coefficient between simulation results and observations.

Figure 5: Spatial distributions of monthly mean AOD from MODIS observations (a, b), MISR observations (c, d), and simulation results (e, f) for March (left panel) and April (right panel) of 2012.

Figure 6: Simulated cloud ice mixing ratio (a) and cloud ice crystal number concentration (b) at each data point from CTRL and DUST.

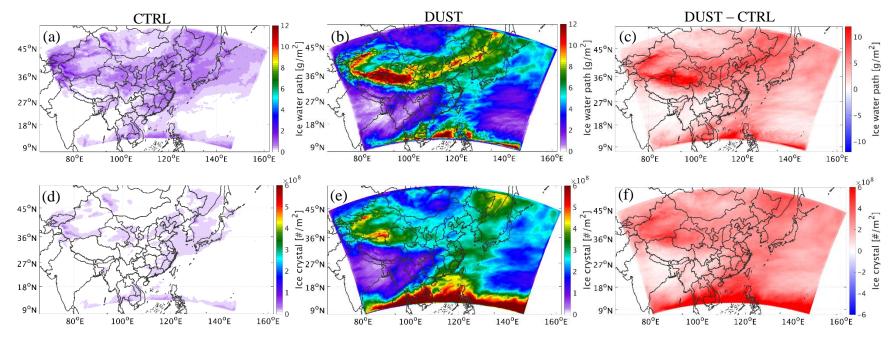
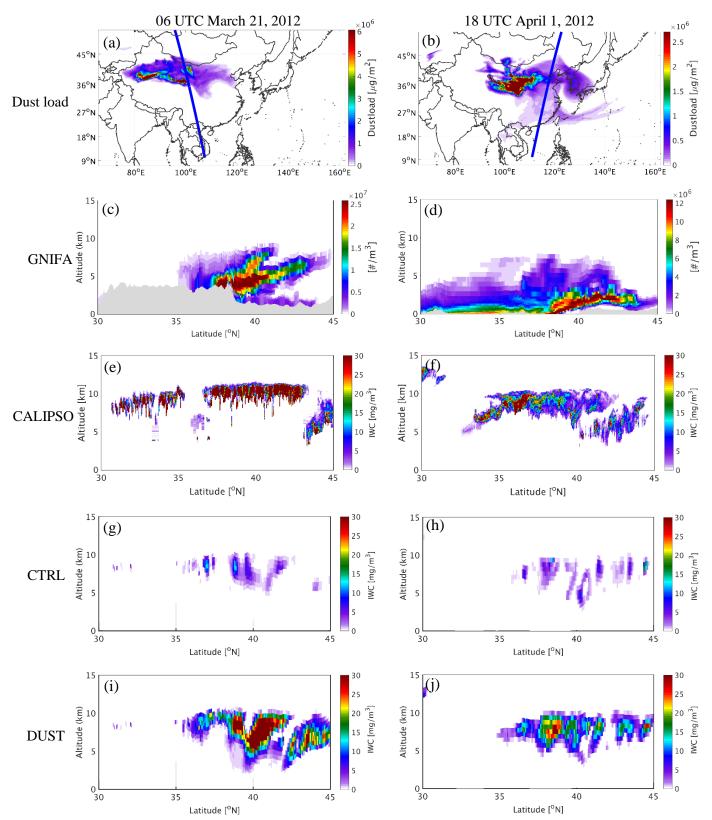



Figure 7: Spatial distributions for the temporal mean simulated cloud ice water path (a-c) and ice crystal number density (d-f) from CTRL (left panel), DUST (middle panel), and the difference between CTRL and DUST (right panel) over East Asia (domain 1) during the simulation period.

Figure 8: Spatial distribution for simulated dust load and satellite scanning track (a, b); the simulated vertical profile of ice-friendly aerosol (GNIFA) number concentration (c, d), with the orography represented by the shaded area; the CALIPSO vertical profile of IWC (e, f); and the simulated vertical profile of IWC from CTRL (g, h) and DUST (i, j) for the case on March 21 (left panel) and April 1 (right panel) of 2012.

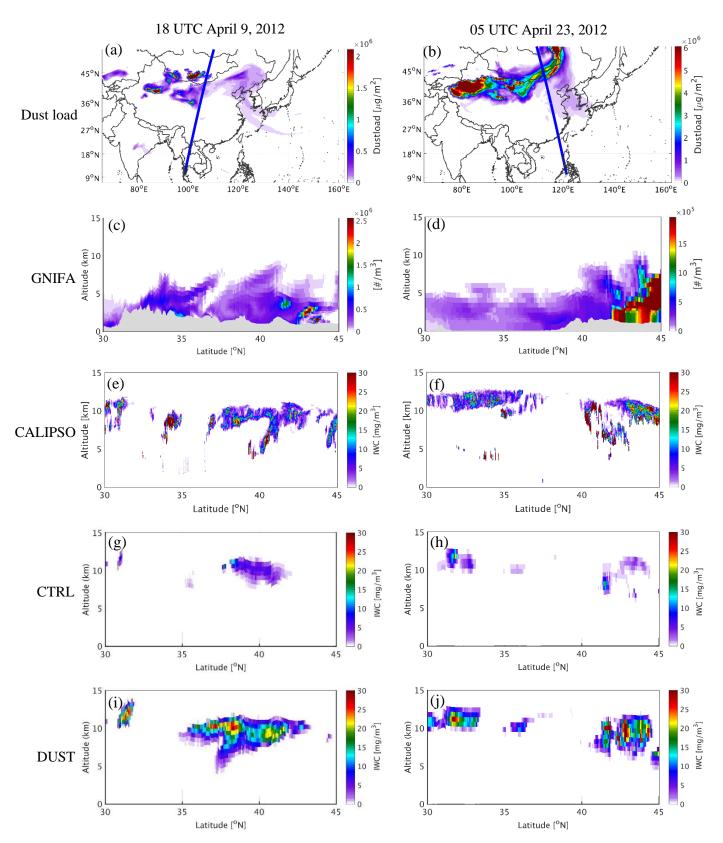


Figure 9: As Figure 8 but for the cases on April 9 (left panel) and April 23, (right panel) of 2012.

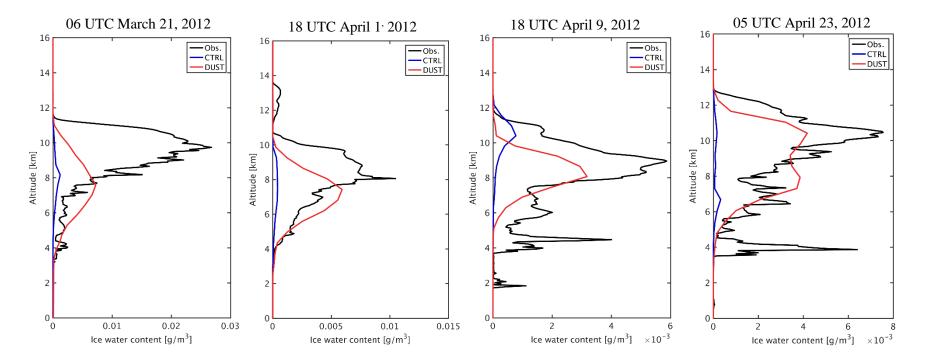


Figure 10: Vertical profiles for the mean observed IWC from CALIPSO, and the simulated IWC from CTRL and DUST for dust events on March 21, April 1, April 9, and April 23, 2012.

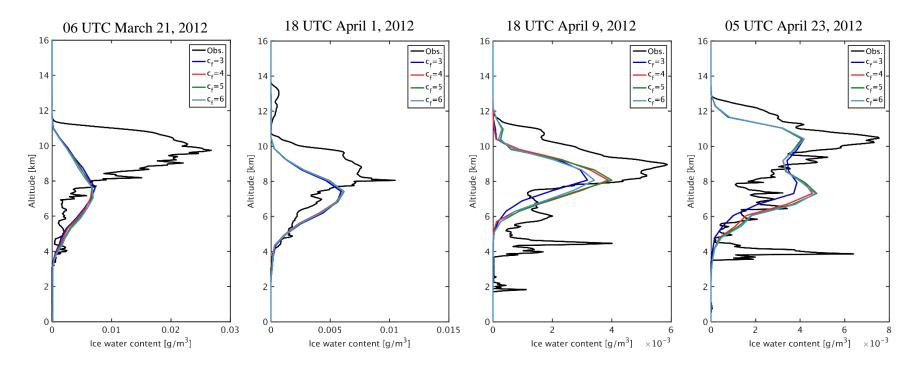


Figure 11: Vertical profiles for the mean observed IWC from CALIPSO, and the simulated IWC with various c_f for the dust events on March 21, April 1, April 9, and April 23, 2012.

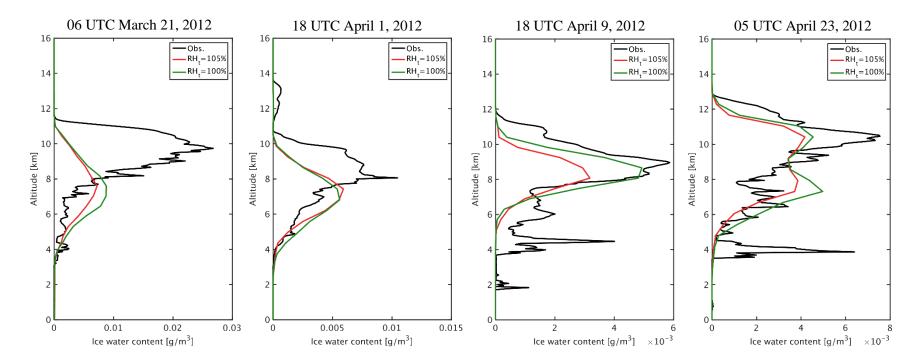


Figure 12: Vertical profiles for the mean observational IWC from CALIPSO, and the simulated IWC with threshold RH values of 105% and 100% for the dust events on March 21, April 1, April 9, and April 23, 2012.