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Abstract 42 

The impact of air pollution on human health and the associated external costs in Europe and 43 
the United States (U.S.) for the year 2010 is modelled by a multi-model ensemble of regional 44 
models in the frame of the third phase of the Air Quality Modelling Evaluation International 45 
Initiative (AQMEII3). The modelled surface concentrations of O3, CO, SO2 and PM2.5 are 46 
used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the 47 
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resulting health impacts and the associated external costs from each individual model. Along 48 
with a base case simulation, additional runs were performed introducing 20% anthropogenic 49 
emission reductions both globally and regionally in Europe, North America and East Asia, as 50 
defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution 51 
(TF-HTAP2).  52 

Health impacts estimated by using concentration inputs from different chemistry and 53 
transport models (CTMs) to the EVA system can vary up to a factor of three in Europe 54 
(twelve models) and the United States (three models). In Europe, the multi-model mean total 55 
number of premature deaths (acute + chronic) is calculated to be 414 000 while in the U.S., it 56 
is estimated to be 160 000, in agreement with previous global and regional studies. The 57 
economic valuation of these health impacts are calculated to be 300 and 145 billion Euros in 58 
Europe and the U.S., respectively.  A subset of models that produce the smallest error 59 
compared to the surface observations at each time step against an all-models mean ensemble 60 
results in increase of health impacts by up to 30% in Europe, while in the U.S., the optimal 61 
ensemble mean led to a decrease in the calculated health impacts by ~11%.  62 

A total of 54 000 and 27 500 premature deaths can be avoided by a 20% reduction of global 63 
anthropogenic emissions in Europe and the U.S., respectively. A 20% reduction of North 64 
American anthropogenic emissions avoids a total premature death of ~1 000 in Europe and 65 
25 000 total premature deaths in the U.S. A 20% decrease of anthropogenic emissions within 66 
the European source region avoids a total premature death of 47 000 in Europe. Reducing the 67 
East Asian anthropogenic emissions by 20% avoids ~2000 total premature deaths in the U.S. 68 
These results show that the domestic anthropogenic emissions make the largest impacts on 69 
premature death on a continental scale, while foreign sources make a minor contributing to 70 
adverse impacts of air pollution. 71 

1. Introduction 72 

According to the World Health Organization (WHO), air pollution is now the world’s largest 73 
single environmental health risk (WHO, 2014). Around 7 million people died prematurely in 74 
2012 as a result of air pollution exposure from both outdoor and indoor emission sources 75 
(WHO, 2014). WHO estimates 3.7 million premature deaths in 2012 from exposure to 76 
outdoor air pollution from urban and rural sources worldwide. According to the Global 77 
Burden of Disease (GBD) study, exposure to ambient particulate matter pollution remains 78 
among the ten leading risk factors. Air pollution is a transboundary phenomenon with global, 79 
regional, national and local sources, leading to large differences in the geographical 80 
distribution of human exposure. Short-term exposure to ozone (O3) is associated with 81 
respiratory morbidity and mortality (e.g. Bell et al., 2004), while long-term exposure to O3 82 
has been associated with premature respiratory mortality (Jerrett et al., 2009). Short-term 83 
exposure to particulate matter (PM2.5) has been associated with increases in daily mortality 84 
rates from respiratory and cardiovascular causes (e.g. Pope and Dockery, 2006), while long-85 
term exposure to PM2.5 can have detrimental chronic health effects, including premature 86 
mortality due to cardiopulmonary diseases and lung cancer (Burnett et al., 2014). The Global 87 
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Burden of Disease Study 2015 estimated 254 000 O3-related and 4.2 million anthropogenic 88 
PM2.5-related premature deaths per year (Cohen et al., 2017).  89 

Changes in emissions from one region can impact air quality over others, affecting also air 90 
pollution-related health impacts due to intercontinental transport (Anenberg et al., 2014; 91 
Zhang et al., 2017). In the framework of the Task Force on Hemispheric Transport of Air 92 
Pollution (TF-HTAP), Anenberg et al. (2009) found that reduction of foreign ozone precursor 93 
emissions can contribute to more than 50% of the deaths avoided by simultaneously reducing 94 
both domestic and foreign precursor emissions. Similarly, they found that reducing emissions 95 
in North America (NA) and Europe (EU) has largest impacts on ozone-related premature 96 
deaths in downwind regions than within (Anenberg et al., 2009). This result agrees with 97 
Duncan et al. (2008), which showed for the first time that emission reductions in NA and EU 98 
have greater impacts on ozone mortality outside the source region than within. Anenberg et 99 
al. (2014) estimates that 93–97 % of PM2.5-related avoided deaths from reducing emissions 100 
occurs within the source region while 3–7 % occur outside the source region from 101 
concentrations transported between continents. In spite of the shorter lifetime of PM2.5 102 
compared to O3, it was found to cause more deaths from intercontinental transport (Anenberg 103 
et al., 2009; 2014). In the frame of the second phase of the Task Force on Hemispheric 104 
Transport of Air Pollution (TF-HTAP2; Galmarini et al., 2017), an ensemble of global 105 
chemical transport model simulations calculated that 20% emission reductions from one 106 
region generally lead to more avoided deaths within the source region than outside (Liang et 107 
al., 2017).  108 

Recently, Lelieveld et al. (2015) used a global chemistry model and calculated that outdoor 109 
air pollution led to 3.3 million premature deaths globally in 2010. They calculated that in 110 
Europe and North America, 381 000 and 68 000 premature deaths occurred, respectively. 111 
They have also calculated that these numbers are likely to roughly double in the year 2050 112 
assuming a business-as-usual scenario. Silva et al. (2016), using the ACCMIP model 113 
ensemble, calculated that the global mortality burden of ozone is estimated to markedly 114 
increase from 382 000 deaths in 2000 to between 1.09 and 2.36 million in 2100. They also 115 
calculated that the global mortality burden of PM2.5 is estimated to decrease from 1.70 116 
million deaths in 2000 to between 0.95 and 1.55 million deaths in 2100. Silva et al. (2013) 117 
estimated that in 2000, 470 000 premature respiratory deaths are associated globally and 118 
annually with anthropogenic ozone, and 2.1 million deaths with anthropogenic PM2.5-related 119 
cardiopulmonary diseases (93%) and lung cancer (7%). These studies employed global 120 
chemistry and transport models with coarse spatial resolution (≥ 0.5°×0.5°), therefore health 121 
benefits from reducing local emissions were not able to be adequately captured. Higher 122 
resolutions are necessary to calculate more robust estimates of health benefits from local vs. 123 
non-local sources (Fenech et al., 2017). In addition, these studies calculated number of 124 
premature deaths due to air pollution, however none of them addresses morbidity such as 125 
number of lung cancer or asthma cases, or restricted activity days. Finally, these studies did 126 
not include economic costs either. On the other hand, there are a number of regional studies 127 
that calculate health impacts on finer spatial resolutions, and address morbidity. However, 128 
they are mostly based on single air pollution models or do not evaluate the health benefits 129 
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from local vs. non-local emissions. Therefore, a comprehensive study employing multi model 130 
ensemble of high spatial resolution and focusing on both mortality and morbidity from local 131 
vs. non-local sources lacks in the literature.  132 

In Europe, recent results show that outdoor air pollution due to O3, CO, SO2 and PM2.5 causes 133 
a total number of 570 000 premature deaths in the year 2011 (Brandt et al., 2013a; 2013b). 134 
The external (or indirect) costs to society related to health impacts from air pollution are 135 
tremendous. OECD (2014) estimates that outdoor air pollution is costing its member 136 
countries USD 1.57 trillion in 2010. Among the OECD member countries, the economic 137 
valuation of air pollution in the U.S. was calculated to be ~500 billion USD and ~660 USD in 138 
Europe. In the whole of Europe, the total external costs have been estimated to approx. 800 139 
billion Euros in year 2011 (Brandt et al., 2013a). These societal costs have great influence on 140 
the general level of welfare and especially on the distribution of welfare both within the 141 
countries as air pollution levels are vastly heterogeneous both at regional and local scales and 142 
between the countries as air pollution and the related health impacts are subject to long-range 143 
transport. Geels et al. (2015), using two regional chemistry and transport models, estimated a 144 
premature mortality of 455 000 and 320 000 in Europe (EU28 countries) for the year 2000, 145 
respectively, due to O3, CO, SO2 and PM2.5. They also estimated that climate change alone 146 
leads to a small increase (15%) in the total number of O3-related acute premature deaths in 147 
Europe towards the 2080s and relatively small changes (<5%) for PM2.5-related mortality. 148 
They found that the combined effect of climate change and emission reductions will reduce 149 
the premature mortality due to air pollution, in agreement with the results from Schucht et al. 150 
(2015). 151 

The U.S. Environmental Protection Agency estimated that in 2010 there were ∼160 000 152 
premature deaths in the U.S. due to air pollution (U.S. EPA, 2011). Fann et al. (2012) 153 
calculated 130,000 - 350,000 premature deaths associated with O3 and PM2.5from the 154 
anthropogenic sources in the U.S. for the year 2005. Caizzo et al. (2013) estimated 200 000 155 
cases of premature death in the U.S. due to air pollution from combustion sources for the year 156 
2005. 157 

The health impacts of air pollution and their economic valuation are estimated based on 158 
observed and/or modelled air pollutant concentrations. Observations have spatial limitations 159 
particularly when assessments are needed for large regions. The impacts of air pollution on 160 
health can be estimated using models, where the level of complexity can vary depending on 161 
the geographical scale (global, continental, country or city), concentration input 162 
(observations, model calculations, emissions) and the pollutants of interest that can vary from 163 
only few (PM2.5 or O3) to a whole set of all regulated pollutants. The health impact models 164 
normally used may differ in the geographical coverage, spatial resolutions of the air pollution 165 
model applied, complexity of described processes, the exposure-response functions (ERFs), 166 
population distributions and the baseline indices (see Anenberg et al., 2015 for a review). 167 

Air pollution related health impacts and associated costs can be calculated using Chemical 168 
Transport Model (CTM) or with standardized source-receptor relationships characterizing the 169 
dependence of ambient concentrations on emissions. (e.g. EcoSense model: ExternE, 2005, 170 
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TM5-FASST: Van Dingenen et al., 2014). Source-receptor relationships have the advantage 171 
of reducing the computing time significantly and have therefore been extensively used in 172 
systems like GAINS (Amann et al., 2011). On the other hand, full CTM simulations have the 173 
advantage of better accounting for non-linear chemistry-transport processes in the 174 
atmosphere.  175 

CTMs are useful tools to calculate the concentrations of health-related pollutants taking into 176 
account non-linearities in the chemistry and the complex interactions between meteorology 177 
and chemistry. However, the CTMs include different chemical and aerosol schemes that 178 
introduce differences in the representation of the atmosphere as well as differences in the 179 
emissions and boundary conditions they use (Im et al., 2015a,b). These different approaches 180 
are present also in the health impact estimates that use CTM results as basis for their 181 
calculations. Multi-model  (MM) ensembles can be useful to the extent that allow us to take 182 
into consideration several model results at the same time, define the relative weight of the 183 
various members in determining the mean behavior, and  produce also an uncertainty 184 
estimated based on the diversity of the results (Potempski and Galmarini, 2010; Riccio et al., 185 
2013;  Solazzo et al., 2013).  186 

The third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3) 187 
project brought together fourteen European and North American modelling groups to 188 
simulate the air pollution levels over the two continental areas for the year 2010 (Galmarini et 189 
al., 2017). Within AQMEII3, the simulated surface concentrations of health related air 190 
pollutants from each modelling group serves as input to the Economic Valuation of Air 191 
Pollution (EVA) model (Brandt et al., 2013a; 2013b). This is the first study in our knowledge 192 
that uses a common approach across the two continents regarding the economic valuation of 193 
health impacts of air pollution, as also pointed in Andersen (2017). The EVA model is used 194 
to calculate the impacts of health-related pollutants on human health over the two continents 195 
as well as the associated external costs. EVA model has also been tested and validated for the 196 
first time outside Europe. We adopt a multi-model ensemble (MM) approach, in which the 197 
outputs of the modelling systems are statistically combined assuming equal contribution from 198 
each model and used as input for the EVA model. In addition, the human health impacts (and 199 
the associated costs) of reducing anthropogenic emissions, globally and regionally have been 200 
calculated, allowing to quantify the trans-boundary benefits of emission reduction strategies. 201 
Finally, following the conclusions of Solazzo and Galmarini (2015), the health impacts have 202 
been calculated using an optimal ensemble of models, determined by error minimization . 203 
This approach can assess the health impacts with reduced model bias, which we can then 204 
compare with the classically derived estimates based on model averaging.  205 

2. Material and Methods 206 

2.1. AQMEII 207 

2.1.1. Participating Models 208 

In the framework of the AQMEII3 project, fourteen groups participated to simulate the air 209 
pollution levels in Europe and North America for the year 2010. In the present study, we use 210 



6 
 

results from the thirteen groups that provided all health-related species (Table 1). As seen in 211 
Table 1, six groups have operated the CMAQ model. The main differences among the CMAQ 212 
runs reside in the number of vertical levels and horizontal spacing (Table 1) and in the 213 
estimation of biogenic emissions. UK1, DE1, and US3 calculated biogenic emissions using the 214 
BEIS (Biogenic Emission Inventory System version 3) model, while TR1, UK1, and UK2 215 
calculated biogenic emissions through the MEGAN model (Guenther et al., 2012). Moreover, 216 
DE1 does not include the dust module, while the other CMAQ instances use the inline 217 
calculation (Appel et al., 2013) and TR1 uses the dust calculation previously calculated for 218 
AQMEII Phase 2. Finally, all runs were carried out using CMAQ version 5.0.2 except for TR1, 219 
which is based on the 4.7.1 version. The gas-phase mechanisms and the aerosol models are 220 
used by each group is also presented in Table 1.More details of the model system are provided 221 
in the supplementary material. The differences in the meteorological drivers and aerosol 222 
modules can lead to substantial differences in modelled concentrations (Im et al., 2015b). 223 

2.1.2. Emission and Boundary Conditions 224 

The base-case emission inventories that are used in AQMEII for Europe and North America 225 
are extensively described in Pouliot et al. (2015). For Europe, the 2009 inventory of TNO-226 
MACC anthropogenic emissions was used. In regions not covered by the emission inventory, 227 
such as North Africa, five modelling systems have complemented the standard inventory with 228 
the HTAPv2.2 datasets (Janssens-Maenhout et al., 2015). For the North American domain, 229 
the 2008 National Emission Inventory was used as the basis for the 2010 emissions, 230 
providing the inputs and datasets for processing with the SMOKE emissions processing 231 
system (Mason et al., 2012). For both continents the regional scale emission inventories were 232 
embedded in the global scale inventory (Janssens-Maenhout et al., 2015) used by the global-233 
scale HTAP2 modelling community so that to guarantee coherence and harmonization of the 234 
information used by the regional scale modelling community. The annual totals for European 235 
and North American emissions in the HTAP inventory are the same as the MACC and 236 
SMOKE emissions. However, there are differences in the temporal distribution, chemical 237 
speciation and the vertical distribution used in the models. The C-IFS model (Flemming et 238 
al., 2015 and 2017) provided chemical boundary conditions. The C-IFS model has been 239 
extensively evaluated in Flemming et al. (2015 and 2017), and in particular for North 240 
America (Hogrefe et al., 2017; Huang et al., 2017). Galmarini et al. (2017) provides more 241 
details on the setup of the AQMEII3 and HTAP2 projects. 242 

2.1.3. Model Evaluation 243 

The models’ performance on simulating the surface concentrations of the health-related 244 
pollutants were evaluated using Pearson’s Correlation (r), normalized mean bias (NMB), 245 
normalized mean gross error (NMGE) and root mean square error (RMSE) to compare the 246 
modelled and observed hourly pollutant concentrations over surface measurement stations in 247 
the simulation domains. The hourly modelled vs. observed pairs are averaged and compared 248 
on a monthly basis. The modelled hourly concentrations were first filtered based on 249 
observation availability before the averaging has been performed. The observational data 250 
used in this study are the same as the dataset used in second phase of AQMEII (Im et al., 251 
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2015a, b). Surface observations are provided in the Ensmeble system 252 
(http://ensemble2.jrc.ec.europa.eu/public/) that is hosted at the Joint Research Centre (JRC). 253 
Observational data were originally derived from the surface air quality monitoring networks 254 
operating in EU and NA. In EU, surface data were provided by the European Monitoring and 255 
Evaluation Programme (EMEP, 2003; http://www.emep.int/) and the European Air Quality 256 
Database (AirBase; http://acm.eionet.europa.eu/databases/airbase/). In NA observational data 257 
were obtained from the NAtChem (Canadian National Atmospheric Chemistry) database and 258 
from the Analysis Facility operated by Environment Canada (http://www.ec.gc.ca/natchem/).  259 

The model evaluation has been conducted for 491 European and 626 North American stations 260 
for O3, 541 European stations and 37 North American stations for CO, 500 European station 261 
and 277 North American stations for SO2, and 568 European stations and 156 North 262 
American stations for PM2.5. 263 

2.1.4. Emissions Perturbations 264 

In addition to the base case simulations in AQMEII3, a number of emission perturbation 265 
scenarios have been simulated (Table 1). The perturbation scenarios feature a reduction of 266 
20% in the global anthropogenic emissions (GLO) as well as the HTAP2-defined regions of 267 
Europe (EUR), North America (NAM) and East Asia (EAS), as explained in detail in 268 
Galmarini et al. (2017) and Im et al. (2017). To prepare these scenarios, both the regional 269 
models and the global C-IFS model that provides the boundary conditions to the participating 270 
regional models have been operated with the reduced emissions.  The global perturbation 271 
scenario (GLO) reduces the global anthropogenic emissions by 20%, introducing a change in 272 
the boundary conditions as well as a 20% decrease in the anthropogenic emissions used by 273 
the regional models. The North American perturbation scenario (NAM) reduces the 274 
anthropogenic emissions in North America by 20%, introducing a change in the boundary 275 
conditions while anthropogenic emissions remain unchanged for Europe, showing the impact 276 
of long-range transport while for North America, while the scenarios introduces a 20% 277 
reduction of anthropogenic emissions in the HTAP-defined North American region. The 278 
European perturbation scenario (EUR) reduces the anthropogenic emissions in the HTAP-279 
defined Europe domain by 20%, introducing a change in the anthropogenic emissions while 280 
boundary conditions remain unchanged in the regional models, showing the contribution 281 
from the domestic anthropogenic emissions only. Finally, the East Asian perturbation 282 
scenario (EAS) reduces the anthropogenic emissions in East Asia by 20%, introducing a 283 
change in the boundary conditions while anthropogenic emissions remain unchanged in the 284 
regional models, showing the impact of long-range transport from East Asia on the NA 285 
concentrations. 286 

2.2. Health Impact Assessment 287 

All modeling groups interpolate their model outputs on a common 0.25°×0.25° resolution 288 
AQMEII grid predefined for Europe (30°W - 60°E, 25°N - 70°N) and North America 289 
(130°W - 59.5°W, 23.5°N - 58.5°N). All the analyses performed in the present study use the 290 
pollutant concentrations on these final grids. Health impacts are first calculated for each 291 
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individual model and then the ensemble mean, median and standard deviation are calculated 292 
for each health impact. In order to be able to estimate an uncertainty in the health impacts 293 
calculations, none of the models were removed from the ensemble. 294 

Along with the individual health impact estimates from each model, a multi-model mean 295 
dataset (MMm, in which all the modelling systems are averaged assuming equally weighted 296 
contributions) has been created for each grid cell and time step, hence creating a new model 297 
set of results that have the same spatial and temporal resolution of the ensemble-contributing 298 
members. In addition to this simple MMm, an optimal MM ensemble (MMopt) has been 299 
generated. MMopt is created following the criteria extensively discussed and tested in the 300 
previous phases of the AQMEII activity (Riccio et al., 2012; Kioutsioukis et al., 2016; 301 
Solazzo and Galmarini, 2016), where it was shown that there are several ways to combine the 302 
ensemble members to obtain a superior model, mostly depending on the feature we wish to 303 
promote (or penalize). For instance, generating an optimal ensemble that maximizes the 304 
accuracy would require a minimization of the mean error or of the bias, while maximizing the 305 
associativity (variability) would require maximize the correlation coefficient (standard 306 
deviation). In this study, the sub-set of models whose mean minimize the mean squared error 307 
(MSE) is selected as optimal (MMopt). MMm and MMopt have therefore the same spatial 308 
resolution with the individual models. The MSE is chosen for continuity with previous 309 
AQMEII-related works. The MSE is chosen in the light of its property of being composed by 310 
bias, variance and covariance types of error, thus lumping together measures of accuracy 311 
(bias), variability (variance) and associativity (covariance) (Solazzo and Galmarini, 2016). 312 
The minimum MSE has been calculated at the monitoring stations, where observational data 313 
are available and then extended to the entire continental areas. This approximation might 314 
affect remote regions away from the measurements. However, considering that for the main 315 
pollutants (O3 and PM2.5) the network of measurements is quite dense around densely 316 
populated areas (where the inputs of the MM ensemble are used for assessing the impact of 317 
air pollutants on the health of the population), errors due to inaccurate model selection in 318 
remote regions might be regarded as negligible (Solazzo and Galmarini, 2015). It should be 319 
noted that the selection of the optimal combinations of models is affected by the model's bias 320 
that might stem from processes that are common to all members of the ensemble (e.g. 321 
emissions). Therefore, such a common bias does not cancel out when combining the models, 322 
possibly creating a biased ensemble. Current work is being devoted to identify the optimal 323 
combinations of models from which the offsetting bias is removed (Solazzo et al., 2017b).  324 

2.2.1. EVA System 325 

The EVA system (Brandt et al., 2013a, b) is based on the impact-pathway chain (e.g. 326 
Friedrich and Bickel, 2001), consisting of the emissions, transport and chemical 327 
transformation of air pollutants, population exposure, health impacts and the associated 328 
external costs. The EVA system requires hourly gridded concentration input from a regional-329 
scale CTM as well as gridded population data, exposure-response functions (ERFs) for health 330 
impacts, and economic valuations of the impacts from air pollution. A detailed description of 331 
the integrated EVA model system along with the ERFs and the economic valuations used are 332 
given in Brandt et al. (2013a).  333 
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The gridded population density data over Europe and the U.S. used in this study are presented 334 
in Fig. 1. The population data over Europe are provided on a 1km spatial resolution from 335 
Eurostat for the year 2011 (http://www.efgs.info).  The U.S. population data has been 336 
provided from the U.S. Census Bureau for the year 2010. The total populations used in this 337 
study are roughly 532 and 307 million in Europe and the U.S., respectively. As the health 338 
outcomes are age-dependent, the total population data has been broken down to a set of age 339 
intervals being babies (under 9 months), children (under 15), adult (above 15), above 30, and 340 
above 65. The fractions of population in these intervals for Europe is derived from the 341 
EUROSTAT 2000 database, where the number of persons of each age at each grid cell was 342 
aggregated into the above clusters (Brandt et al., 2011), while for the U.S. they are derived 343 
from the U.S. Census Bureau for the year 2010 at 5-year intervals.  344 

The EVA system can be used to assess the number of various health outcomes including 345 
different morbidity outcomes as well as short-term (acute) and long-term (chronic) mortality, 346 
related to exposure of O3, CO and SO2 (short-term) and PM2.5 (long-term). Furthermore, 347 
impact on infant mortality in response to exposure of PM2.5 is calculated. The health impacts 348 
are calculated using an ERF of the following form: 349 

R = α ×  δc × P 350 

where R is the response (in cases, days, or episodes), c denotes the pollutant concentration, P 351 
denotes the affected share of the population, and α an empirically determined constant for the 352 
particular health outcome. EVA uses ERFs that are modelled as a linear function, which is a 353 
reasonable approximation as showed in several studies (e.g. Pope et al., 2000; the joint World 354 
Health Organization/UNECE Task Force on Health (EU, 2004; Watkiss et al., 2005)).The 355 
concentration metrics used in each ERF is shown in Table 2. The sensitivity of EVA to the 356 
different pollutant concentrations are further evaluated in the supplementary material and 357 
depicted in Fig. S1. EVA calculates and uses the annual mean concentrations of CO, SO2 and 358 
PM2.5, while for O3, it uses the SOMO35 metric that is defined as the yearly sum of the daily 359 
maximum of 8-hour running average over 35 ppb, following WHO (2013) and EEA (2017). 360 

The morbidity outcomes include chronic bronchitis, restricted activity days, congestive heart 361 
failure, lung cancer, respiratory and cerebrovascular hospital admissions, asthmatic children 362 
(<15 years) and adults (>15 years), which includes bronchodilator use, cough, and lower 363 
respiratory symptoms. The exposure-response functions are broadly in line with estimates 364 
derived with detailed analysis in EU funded research (Rabl, Spadaro and Holland, 2014; 365 
EEA, 2013) To figure out the total number of premature deaths from the years of life lost due 366 
to PM2.5,  they have been converted into lost lives according to a lifetable method (explained 367 
in detail in Andersen, 2017) but using the factor of 10.6, as reported by (Watkiss et al., 2005). 368 
To these deaths are added the acute deaths due to O3 and SO2. The ERFs used, along with 369 
their references, in both continents as well as the economic valuations for each health 370 
outcome in Europe and the U.S., respectively, are presented in Table 2. Baseline incidence 371 
rates are not assumed to be dissimilar, which is a coarse approach for morbidity. The baseline 372 
rates are from Statisctics Denmark 373 
(http://www.statistikbanken.dk/statbank5a/default.asp?w=1280) and lifetables are based on 374 

http://www.efgs.info/
http://www.statistikbanken.dk/statbank5a/default.asp?w=1280
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Denmark, which is close to the US and Eurozone average (Andersen, 2017). For a description 375 
of the morbidity ERFs, see Andersen et al. (2004 and 2008). The economic valuations are 376 
provided by Brandt et al. (2013a); see also EEA (2013).  377 

ERF for all-cause chronic mortality due to PM2.5 were based on the findings of Pope et al. 378 
(2002), which is the most extensive study available, following conclusions from the scientific 379 
review of the Clean Air For Europe (CAFÉ) programme (Hurley et al., 2005; Krupnick et al., 380 
2005). The results from Pope et al. (2002) are further supported by Krewski et al. (2009), and 381 
more recently by the latest HRAPIE project report (WHO, 2013a). Therefore, as 382 
recommended by WHO (2013a), EVA uses the ERFs based on the meta-analysis of 13 cohort 383 
studies as described in Hoek et al. (2013). In EVA, the number of lost life years for a Danish 384 
population cohort with normal age distribution, when applying the ERF of Pope et al. (2002) 385 
for all-cause mortality (relative risk, RR= 1.062 (1.040-1.083) on 95% confidence interval), 386 
and the latency period indicated, sums to 1138 yr of life lost (YOLL) per 100 000 individuals 387 
for an annual PM2.5 increase of 10 μg m−3 (Andersen, 2008)..EVA uses a counterfactual 388 
PM2.5 concentration of 0 µgm-3 following the EEA methodology, meaning that the impacts 389 
have been estimated for the full range of modelled concentrations from 0 μgm-3 upwards. 390 
Applying a low counterfactual concentration can underestimate health impacts at low 391 
concentrations if the relationship is linear or close to linear (Anenberg et al., 2016). However, 392 
it is important to note that uncertainty in the health impact results may increase at low 393 
concentrations due to sparse epidemiological data. Assuming linearity at very low 394 
concentrations may distort the true health impacts of air pollution in relatively clean 395 
atmospheres (Anenberg et al., 2016). 396 

It has been shown that O3 concentrations above the level of 35 ppb involve an acute mortality 397 
increase, presumably for weaker and elderly individuals. EVA applies the ERFs selected in 398 
CAFE for post-natal death (age group 1–12 months) and acute death related to O3 (Hurley et 399 
al., 2005). WHO (2013a) also recommends the use of the daily maximum of 8-hour mean O3 400 
concentrations for the calculation of the acute mortality due to O3. There are also studies 401 
showing that SO2 is associated with acute mortality, and EVA adopts the ERF identified in 402 
the APHENA study – Air Pollution and Health: A European Approach (Katsouyanni et al., 403 
1997).  404 

Chronic exposure to PM2.5 is also associated with morbidity, such as lung cancer. EVA 405 
employs the specific ERF (RR = 1.08 per 10 μg m−3 PM2.5 increase) for lung cancer indicated 406 
in Pope et al. (2002). Bronchitis has been shown to increase with chronic exposure to PM2.5 407 
and we apply an ERF (RR = 1.007) for new cases of bronchitis based on the AHSMOG study 408 
(involving non-smoking Seventh-Day Adventists; Abbey et al., 1999), which is the same 409 
epidemiological study as in CAFE (Abbey, 1995; Hurley et al., 2005). The ExternE crude 410 
incidence rate was chosen as a background rate (ExternE, 1999), which is in agreement with 411 
a Norwegian study, rather than the pan-European estimates used in CAFE (Eagan et al., 412 
2002). Restricted activity days (RADs) comprise two types of responses to exposure: so-413 
called minor restricted activity days as well as work-loss days (Ostro, 1987). This distinction 414 
enables accounting for the different costs associated with days of reduced well-being and 415 
actual sick days. It is assumed that 40% of RADs are work-loss days based on Ostro (1987). 416 
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The background rate and incidence are derived from ExternE (1999). Hospital admissions are 417 
deducted to avoid any double counting. Hospital admissions and health effects for asthmatics 418 
(here corresponding to the three responses bronchodilator use, cough and lower respiratory 419 
symptoms) are also based on ExternE (1999).  420 

Table 2 lists the specific valuation estimates applied in the modelling of the economic 421 
valuation of mortality and morbidity effects. A principal value of EUR 1.5 million was 422 
applied for preventing an acute death, following expert panel advice (EC 2001). For the 423 
valuation of a life year, the results from a survey relating specifically to air pollution risk 424 
reductions were applied (Alberini et al., 2006), implying a value of EUR 57.500  per year of 425 
life lost (YOLL). With the more conservative metric of estimating lost life years, rather than 426 
'full' statistical lives, there is no adjustment for age. This is due to the fact that government 427 
agencies in Europe, including the European Commission, apply a methodology for costing of 428 
air pollution that is based on accounting for lost life years, rather than for entire statistical 429 
lives as is customary in USA. While the average traffic victim, for instance, is mid-aged and 430 
likely to lose about 35-40 years of life expectancy, pollution victims are believed to suffer 431 
significantly smaller losses of years (EAHEAP, 1999:64; Friedrich and Bickel, 2001). To 432 
avoid overstating the benefits of air pollution control, these are treated as proportional to the 433 
number of life years lost. Most of the excess mortality is due to chronic exposure to air 434 
pollution over many years and the life year metric is based on the number of lost life years in 435 
a statistical cohort. Following the guidelines of the Organisation for Economic Co-operation 436 
and Development (OECD, 2006), the predicted acute deaths, mainly from O3, are valuated 437 
here with the adjusted value for preventing a fatality (VSL, Value of a Statistical Life). The 438 
life tables are obtained from European data and are applied to the U.S. as the average life 439 
expectancy in the U.S. is similar to that in Europe, and close to the OECD average (OECD, 440 
2016). The willingness to pay for reductions in risk obviously differs across income levels. 441 
However, in the case of air pollution costs, adjustment according to per capita income 442 
differences among different states is not regarded as appropriate, because long-range 443 
transport implies that emissions from one state will affect numerous other states and their 444 
citizens. The valuations are thus adjusted with regional purchasing power parities (PPP) of 445 
EU27 and USA.  446 
 447 
Cost-benefit analysis in the U.S. related to air pollution proceeds from a standard approach, 448 
where abatement measures preventing premature mortality are considered according to the 449 
number of statistical fatalities avoided, which are appreciated according to the value of VSL 450 
(presently USD 7.4 million). In contrast, and following recommendations from the UK 451 
working group on Economic Appraisal of the Health Effects of Air Pollution (EAHEAP, 452 
1999), focus in EU has been on the possible changes in average life expectancy resulting 453 
from air pollution. In EU, the specific number of life years lost as a result of changes in air 454 
pollution exposures are estimated based on lifetable methodology, and monetized with Value-455 
Of-Life-Year (VOLY) unit estimates (Holland et al. 1999; Leksell and Rabl 2001). The 456 
theoretical basis is a life-time consumption model according to which the preferences for risk 457 
reduction will reflect expected utility of consumption for remaining life years (Hammitt 458 
2007; OECD 2006:204). The much lower VSL values customary in Europe (presently €2.2 459 
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million) add decisively to the differences, as VOLY is deducted from this value. By using a 460 
common valuation framework according the EU approach we allow for direct comparisons of 461 
the monetary results. It follows from OECD recommendations (2012) to correct with PPP 462 
when doing such benefit transfer. The unit values have been indexed to 2013 prices as 463 
indicated in Table 2. 464 

 465 

3. Results 466 

3.1. Model Evaluation 467 

Observed and simulated hourly surface O3, CO, SO2 and daily PM2.5, which are species used 468 
in the EVA model to calculate the health impacts, over Europe and North America for the 469 
entire 2010 were compared in order to evaluate each model’s performance. The statistical 470 
parameters to evaluate the models and their equations are provided in the supplementary 471 
material. For a more thorough evaluation of models and species, see Solazzo et al. (2017a). 472 
The results of this comparison are presented in Table S1 for EU and NA, along with the 473 
multi-model mean and median values. The monthly time series plots of observed and 474 
simulated health-related pollutants are also presented in Figs. 2 and 3. The monthly means are 475 
calculated using the hourly pairs of observed and modelled concentrations at each station. 476 
The results show that over Europe, the temporal variability of all gaseous pollutants is well 477 
captured by all models with correlation coefficients (r) higher than 0.70 in general. The 478 
normalized mean biases (NMB) in simulated O3 levels are generally below 10% with few 479 
exceptions up to -35%. CO levels are underestimated by up to 45%, while the majority of the 480 
models underestimated SO2 levels by up to 68%, while some models overestimated SO2 by 481 
up to 49%. PM2.5 levels are underestimated by 19% to 63%. Over Europe, the median of the 482 
ensemble performs better than the mean in terms of model bias (NMB) for O3 (by 52%), 483 
while for CO, SO2 and PM2.5, the mean performs slightly better than the median (Table S1).  484 

We have further evaluated the models’ performance on simulating the annual mean pollutant 485 
levels over individual measurements stations and plotted the geographical distribution of the 486 
bias. Fig. 4 presents the multi model mean geographical distribution of bias over Europe, 487 
while Fig. S2-S5 for O3, CO, SO2 and PM2.5, respectively. O3 levels over central to western 488 
Europe are overestimated by up to ~10 µgm-3, while over eastern Europe, O3 levels are 489 
underestimated by up to  ~10 µgm-3 (Fig. 4a)  Over southern Europe, overestimations are 490 
larger (10-20 µgm-3). The geographical pattern is similar among the models with slight 491 
differences (± 10 µgm-3 ) in the bias (Fig. S2). CO levels are underestimated over all stations 492 
by up to 600 µgm-3 except for few stations where CO levels are overestimated by up to 100 493 
µgm-3 (Fig. 4b). All models underestimated CO levels over the majority of the stations (Fig. 494 
S3). SO2 levels are slightly overestimated over central and southern Europe (Fig. 4c). There 495 
are also underestimation over few stations with no specific geographical pattern. Similar to 496 
CO, all models underestimated SO2 levels over the majority of the stations (Fig. S4). Finally, 497 
PM2.5 levels are underestimated by up to 10 µgm-3 over most of Europe (Fig. 4d), with larger 498 
underestimations over the eastern Europe up to 30 µgm-3.  499 
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Over North America, the hourly O3 variation is well captured by all models (Table S1), with 500 
DK1 having slightly lower r coefficient compared to the other models and largest NMB (Fig. 501 
3a).  The hourly variation of CO and SO2 levels are simulated with relatively lower r values 502 
(Figs. 3b, c), with SO2 levels having the highest underestimations. The PM2.5 levels are 503 
underestimated by ~15% except for the DE1 model, having a large underestimation of 63% 504 
(Table S1). As DE1 and US3 use the same SMOKE emissions and CTM, the large difference 505 
in PM2.5 concentrations can be partly due to the differences in horizontal and vertical 506 
resolutions in the model setups, as can also be seen in the differences in the CO 507 
concentrations. There are also differences in the aerosol modules and components that each 508 
model simulates. For example, DE1 uses an older version of the secondary organic aerosol 509 
(SOA) module, producing ~3 µgm-3 less SOA, which can explain ~20% of the bias over 510 
North America. Over the North American domain, the median outscores the mean for O3 ( by 511 
35%), CO (by 52%) and PM2.5 (by 29%) while for SO2, the median produces 26% higher 512 
NMB compared to the mean. DK1 model simulates a much higher bias for O3 and SO2 513 
compared to other models in the North American domain, while DE1 has the largest bias for 514 
CO and PM2.5.  515 

O3 levels are generally overestimated by the MM mean over the eastern U.S. by up to 15 ppb, 516 
while over the western U.S. there are also overestimations by up to 10 ppb (Fig. 5a). As seen 517 
in Fig. S6, all three models have very similar performance over the U.S., with DK1 518 
simulating a slightly lower underestimation and a higher overestimation compared to DE1 519 
and US3. DE1 and DK1 have very similar spatial pattern in terms of CO bias, in particular 520 
over the eastern coast of the U.S. (Fig. S7). CO levels are underestimated by ~100 ppb over 521 
majority of the stations, especially over the eastern U.S., while there are much larger 522 
underestimation over the western U.S. by up to 1000 ppb (Fig. 5b). SO2 levels are 523 
underestimated by up to 5 ppb over the majority of the stations in the U.S., with few 524 
overestimations of up to 5 ppb (Fig. 5c). DE1 and DK1 have very similar spatial distribution 525 
of bias, while US3 has slightly more overestimations (Fig. S8) Finally, PM2.5 levels are 526 
underestimated over majority of the stations by up to 6 µgm-3, with few overestimations by 2-527 
4 µgm-3 (Fig. 5d). DE1 has the largest underestimations compared to DK1 and US3 (Fig. S9). 528 

Table S1 shows that the ensemble median performs slightly better than the ensemble mean 529 
for all pollutants over both continents regarding the bias and error, while the difference on r 530 
is rather small. Over the European stations, the median has improved results over the mean 531 
by up to 14% for r and up to 9% for the RMSE. The improvements in r over the U.S. are 532 
much smaller compared to Europe (up to ~4%), while the RMSE is improved by up to 27%, 533 
except for SO2 where the median has 14% higher RMSE than the mean. 534 

3.2. Health outcomes and their economic valuation in Europe 535 

The different health outcomes calculated by each model in Europe as well as their multi 536 
model mean and median are presented in Table S2. Table 3 presents the mean of the 537 
individual model estimates as MMmi. Standard deviations calculated from the individual 538 
model estimates are presented along with the MMmi in the text. The health impact estimates 539 
vary significantly between different models. The different estimates obtained are found to 540 
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vary up to a factor of three.  Among the different health outcomes, the individual models 541 
simulated the number of congestive heart failure (CHF) cases to be between 19 000 to 41 000 542 
(mean of all individual models, MMmi, 31 000 ± 6 500). The number of lung cancer cases due 543 
to air pollution are calculated to be between 30 000 to 78 000 (mean of all individual models, 544 
MMmi, 55 000 ± 14 000). Finally, the total (acute + chronic) number of premature death due 545 
to air pollution is calculated to be 230 000 to 570 000 (mean of all individual models, MMmi, 546 
414 000 ± 100 000). The health impacts calculated as the median of individual models differ 547 
slightly (~±1%) from those calculated as the mean of individual models (Table S2) due to the 548 
slight differences in the model bias (NMB) and error (NMGE and RMSE) between the mean 549 
and the median performance statistics of the models. 550 

In addition to averaging the health estimates from individual models (MMmi), we have also 551 
produced a multi-model mean concentration data (MMm) by taking the average of 552 
concentrations of each species calculated by all models at each grid cell and hour, and fed it 553 
to the EVA model. We have calculated the number of premature death cases in Europe as 554 
410 000 (Table 3) using MMm. Difference between the health impacts calculated using MMm 555 
data from the mean of all individual model (MMmi) estimates is smaller than 1%. The number 556 
of premature death cases in Europe as calculated as the average of all models in the multi 557 
model ensemble, MMmi, due to exposure to O3 is 12 000 ± 6 500, while the cases due to 558 
exposure to PM2.5 is calculated to be 390 000 ± 100 000 [180 000 – 550 000]. The O3-related 559 
mortality well agrees with Liang et al. (2017) that used the multi-model mean of the HTAP2 560 
global model ensemble, which calculated an O3-realted mortality of 12 800 [600 - 28 100]. 561 
The multi-model mean (MMmi) PM2.5-related mortality in the present study is much higher 562 
than that from the HTAP2 study (195 500 [4 400 – 454 800]). The results also agree with the 563 
most recent EEA findings (EEA, 2015), which calculated a total premature death of 419 000 564 
die to O3 and PM2.5 in the EU-28 countries. There is also agreement with Geels et al. (2015) 565 
that calculated 388 000 premature death cases in Europe for the year 2000. This difference 566 
can be attributed to the number of mortality cases as calculated by the individual models, 567 
where the HTAP2 ensemble calculates a much lower minimum while the higher ends from 568 
the two ensembles well agree.  569 

The differences between the health outcomes calculated by the HTAP2 and AQMEII 570 
ensembles arise firstly from the differences in the concentrations fields due to the differences 571 
in models, in particular spatial resolutions as well as the gas and aerosols treatments in 572 
different models, but also the differences in calculating the health impacts from these 573 
concentrations fields. EVA calculates the acute premature death due to O3 by using the 574 
SOMO35 metric. On the other hand, in HTAP2 O3-related premature death is calculated by 575 
using the 6-month seasonal average of daily 1-h maximum O3 concentrations. Both groups 576 
use the annual mean PM2.5 to calculate the PM2.5-related premature death. In addition to O3 577 
and PM2.5, EVA also takes into account the health impacts from CO and SO2, which is 578 
missing in the HTAP2 calculations. 579 

Among all models, DE1 model calculated the lowest health impacts for most health 580 
outcomes, which can be attributed to the largest underestimation of PM2.5 levels (NMB=-581 
63%: Table S2) due to lower spatial resolution of the model that dilutes the pollution in the 582 
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urban areas, where most of the population lives. The number of premature deaths calculated 583 
by this study is in agreement with previous studies for Europe using the EVA system (Brandt 584 
et al., 2013a; Geels et al., 2015). Recently, EEA (2015) estimated that air pollution is 585 
responsible for more than 430 000 premature deaths in Europe, which is in good agreement 586 
with the present study.  587 

Fig. 6a. presents the geographical distribution of the number of premature death in Europe in 588 
2010. The figure shows that the numbers of cases are strongly correlated to the population 589 
density (Fig. 1a), with the largest numbers seen in the Benelux and the Po Valley regions that 590 
are characterized as the pollution hot spots in Europe as well as in megacities such as 591 
London, Paris, Berlin and Athens.  592 

The economic valuation of the air pollution-associated health impacts calculated by the 593 
different models along with their mean and median are presented in Table 4. A total cost of 594 
196 to 451 billion Euros (MM mean cost of 300 ± 70 billion Euros) was estimated over 595 
Europe (EU28). Results show that 5% [1% - 11%] of the total costs is due to exposure to O3, 596 
while 89% [80% - 96%] is due to exposure to PM2.5. Brandt et al. (2013a) calculated a total 597 
external cost of 678 billion Euros for the year 2011 for Europe, larger than the estimates of 598 
this study, which can be explained by the differences in the simulation year and the emissions 599 
used in the models as well as the countries included in the two studies (the previous study 600 
includes e.g. Russia).  601 

3.3. Health outcomes and their economic valuation in the U.S. 602 

The different health outcomes calculated by each model for the U.S. as well as their mean 603 
and median are presented in Table S2. The variability among the models (~3) is similar to 604 
that in Europe.  The number of congestive heart failure cases in the U.S. as calculated as the 605 
average of all models in the ensemble (MMmi) is calculated to be 13 000 [7 000 – 18 000], 606 
while the lung cancer cases due to air pollution are calculated to be 22 000 [9 000 – 31 000]. 607 
Finally, the number of premature deaths due to air pollution is calculated to be 165 000 ± 608 
75 000, where 25 000 ± 6 000 cases are calculated due to exposure to O3 and 140 000 ± 72 609 
000 cases due to exposure to PM2.5. The MMm dataset leads to a number of premature death 610 
of 149 000 that is 6% smaller than the average estimate from individual models (MMmi). Due 611 
to the large reduction of NMB by the median compared to the mean of individual models 612 
(Table S1), the multi-model health impacts calculated as the median of health impacts from 613 
individual models are ~13% higher than the health impacts calculated from the MMmi. The 614 
O3- and PM2.5 mortality cases as calculated by the AQMEII and HTAP2 model ensembles 615 
reasonably agree. Liang et al. (2017) calculated an O3-related mortality of 14 700 [900 – 616 
30 400] and a PM2-5-related mortality of 78 600 [4 500 – 162 600]. These results are in very 617 
good agreement with the U.S. EPA (2011) estimates of number of premature death cases of 618 
160 000 in year 2010 and with Caizzo et al. (2013), who calculated 200 000 premature death 619 
cases from combustion sources in the U.S. Among all models, DE1 model calculated the 620 
lowest health impacts for most health outcomes, which can be attributed to the largest 621 
underestimation of PM2.5 levels (NMB=-63%: Table S2).  622 
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The premature death cases in North America are mostly concentrated over the New York 623 
area, as well as in hot spots over Chicago, Detroit, Houston Los Angeles and San Francisco 624 
(Fig. 6b). The figure shows that the number of cases is following the pattern of the population 625 
density. The economic valuation of the air pollution-associated health impacts calculated by 626 
the different models in the U.S. are shown in Table 4. As seen in the table, a total cost of 627 
~145 billion Euros is calculated. Results show that ~22% of the total costs is due to exposure 628 
to O3 while ~78% is due to exposure to PM2.5.  The major health impacts in terms of their 629 
external costs are slightly different in North America compared to Europe.  630 

3.4. Health impacts and their economic valuation through optimal reduced ensemble subset 631 

The effect of pollution concentrations (EVA input) on health impacts (EVA output) is 632 
investigated in order to estimate the contribution of each air pollutant in the EVA system to 633 
health impacts over different concentration levels. The technical details are provided in the 634 
supplement.  635 

Results show that for the particular input (gridded air pollutant concentrations from 636 
individual model)-output (each health outcome) configuration, the PM2.5 drives the variability 637 
of the different health impact and that at least 81% of the variation of the health impacts are 638 
explained by sole variations in the pollutants (i.e. without interactions: Table S3). Table S1 639 
also shows that the most important contribution to the health impacts is from PM2.5, followed 640 
by CO and O3 (with much smaller influence though). The impact  of perturbing PM2.5 by a 641 
fixed fraction of its standard deviation on the health impact is roughly double compared to 642 
CO and O3. 643 

We have run the EVA system over an all-models mean (MMm) dataset and an optimal 644 
reduced ensemble dataset (MMopt) calculated for each of the pollutants in the two domains in 645 
order to see how and whether an optimal reduced ensemble changes the assessment of the 646 
health impacts compared to an all- models ensemble mean. Table 5 shows some sensible 647 
error reduction, although the temporal and spatial averages mask the effective improvement 648 
in accuracy from MMm to MMopt. In Europe, the optimal reduced ensemble decreases the 649 
RMSE by up to 24%, while in NA, the error reduction is much larger (4% to up to 147%). On 650 
a seasonal basis, MMopt reduces RMSE in PM2.5 over Europe by 23% in winter while smaller 651 
decreases are achieved in other seasons (~10%). Regarding O3, improvement is 16%-22%, 652 
with the largest improvement in spring. In NA, the improvement in winter RMSE in PM2.5 is 653 
smallest (~2%) while larger improvements are achieved in other seasons (~7% - ~9%). For 654 
O3, the largest RMSE reduction in NA is achieved for the summer period by 14%. 655 

The analysis of the aggregated health indices data for Europe (Table S1) shows that EVA 656 
indices rely principally on the PM2.5 levels and then the CO and O3 values. Therefore, the 657 
relative improvement of the indices with the optimal ensemble should be proportional to the 658 
relative improvement in PM2.5, CO and O3. The proportionality rate for each pollutant is 659 
given in Table S3, assuming all pollutants are varied (from MMm to MMopt) away from their 660 
mean by the same fraction of their variance. As seen in the Table 3, from MMm to MMopt, the 661 
health indices increase by up to 30% in Europe. This increase is due to a 27% increase in the 662 
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domain mean PM2.5 levels when the optimal reduced ensemble is used, as well a slight 663 
increase in O3 by ~1%. The number of premature deaths in Europe increase from 410 000 to 664 
524 000 (28%), resulting in a much higher estimate compared to previous mortality studies. 665 
On the contrary, in the U.S., the mean PM2.5 and O3 levels decrease from 2.94 µg m-3 to 2.62 666 
µgm-3 (~11%) and 18.7 ppb to 18.4 ppb (~2%), respectively. In response, the health indices 667 
decrease by ~11% (Table 3). The number of premature death cases in NA decrease from 668 
149 000 to 133 000.     669 

3.5. Impact of anthropogenic emissions on the health impacts and their economic valuation  670 

The impacts of emission perturbations on the different health outcomes over Europe and the 671 
U.S. as calculated by the individual models are presented in Tables S4-S6. Table 6 shows the 672 
impacts of the different emission perturbations on the premature death cases in Europe and 673 
the U.S as calculated by a subset of models that simulated the base case and all three 674 
perturbation scenarios (MMc). Results show that in Europe, the 20% reduction in the global 675 
anthropogenic emissions leads to ~17% domain-mean reduction in all the health outcomes, 676 
with a geographical variability as seen in Fig. 6c. The figure shows that the larger changes in 677 
mortality is calculated in the central and northern parts of Europe (15-20% decreases), while 678 
the changes are smaller in the Mediterranean region (5-10%), highlighting the non-linearity 679 
of the response to emission reductions. However, it should be noted that global models or 680 
coarse-resolution regional models (as in this study) cannot capture the urban features and 681 
pollution levels and thus, non-linearities should be addressed further using fine spatial 682 
resolutions or urban models. The models vary slightly simulating the response to the 20% 683 
reduction in global emissions, estimating decreases of ~11% to 20%. The number of 684 
premature deaths decreased on average by ~50 000, ranging from -39 000 (DK1) to -103 000 685 
(IT1). This number is in good agreement with the ~45 000 premature death calculated by the 686 
HTAP2 global models (Liang et al., 2017). The MMc ensemble calculated a 15% and 17% 687 
decrease in the O3- and PM2.5-related premature death cases, respectively, in response to the 688 
GLO scenario. This decrease in the global anthropogenic emissions leads to an estimated 689 
decrease of 56 ± 18 billion Euros in associated costs in Europe (Table 6).  690 

As seen in Table 8, a 20% reduction of anthropogenic emissions in the EUR region, as 691 
defined in HTAP2, avoids 47 000 premature death, while a 20% reduction of the 692 
anthropogenic emissions in the NAM region leads to a much smaller decrease of premature 693 
deaths in Europe (~1 000). These improvements in the number of premature deaths are in 694 
agreement with a recent HTAP2 global study that calculated reductions of ~34 000 and 695 
~1 000 for the EUR and NAM scenarios, respectively (Liang et al., 2017) and with Anenberg 696 
et al. (2009 and 2014), which totals to a sum of avoided premature deaths being ~39 000 and 697 
1 800 as calculated by the MM mean. Both the global and regional models agree that the 698 
largest impacts of reducing emissions with respect to premature deaths come from emission 699 
within the source region, while foreign sources contribute much less to improvements in 700 
avoiding adverse impacts of air pollution. The decreases in health impacts in EUR and NAM 701 
scenarios corresponds to decreases in the associated costs by -47 ± 16 billion Euros and -1.4 702 
± 0.4 billion Euros, respectively. This is consistent with results in Brandt et al. (2012), where 703 
a contribution of ~1% to PM2.5 concentrations in Europe is originating from the NAM region.   704 
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The 20% reduction in global anthropogenic emissions leads to 18% reduction in the health 705 
outcomes (Table 8) in the U.S., with a geographical variability in the response. Fig. 6d shows 706 
that the largest decreases in mortality is calculated for the western coast of the U.S. (~20%) 707 
and slightly lower response in the central and eastern parts of the U.S. (15-20%). The number 708 
of premature death cases, as calculated by the mean of all individual models decreases from 709 
~160 000 ± 70 000 to ~130 000 ± 60 000, avoiding 24 ± 10 billion Euros (Table 6) in 710 
external costs, also in agreement with the ensemble of HTAP2 global models (~23 000) The 711 
O3-related premature death cases decreased by 42% while the PM2.5-relared cases decreased 712 
by 18%.  713 

A 20% reduction of the North American emissions avoids ~25 000 ± 12 000 premature 714 
deaths (-16%), suggesting that ~80% of avoided premature deaths are achieved by reductions 715 
within the source region while 20% (~5 000 premature deaths) is from foreign sources. This 716 
number is also in good agreement with Liang et al. (2017) that estimated a reduction of 717 
premature deaths of ~20 000 due to O3 and PM2.5 in the United States due to an emission 718 
reduction of 20% within the region itself, using the ensemble mean of the HTAP2 global 719 
models. These results are much larger than the number of avoided premature death of  720 
~11 000 as calculated by the sum of Anenberg et al. (2009 and 2104).The corresponding 721 
benefit is calculated to be 21 ± 9 billion Euros in the NAM scenario. According to results 722 
from the EAS scenario, among these 5 000 avoided cases that are attributed to the foreign 723 
emission sources, 1 900 ± 2 000 premature deaths can be avoided by a 20% reduction of the 724 
East Asian emissions, avoiding 2.5 ± 3 billion Euros. Our number of avoided premature 725 
deaths due to the EAS scenario is much higher than 580 avoided premature deaths calculated 726 
by Liang et al. (2017) and 380 avoided cases as calculated by Anenberg et al. (2009 and 727 
2014). 728 

Conclusions  729 

The impact of air pollution on human health and their economic valuation for the society 730 
across Europe and the United States is modelled by a multi-model ensemble of regional 731 
models from the AQMEII3 project. All regional models used boundary conditions from the 732 
C-IFS model, and emissions from either the MACC inventory in Europe or the EPA 733 
inventory for the North America, or the global inventory from HTAP. Sensitivity analysis on 734 
the dependence of models on different sets of boundary conditions has not been conducted so 735 
far but large deviations from the current results in terms of health impacts are not expected. 736 
The modelled surface concentrations by each individual model are used as input to the EVA 737 
system to calculate the resulting health impacts and the associated external costs from O3, 738 
CO, SO2 and PM2.5. Along with a base case simulation for the year 2010, some groups 739 
performed additional simulations, introducing 20% emission reductions both globally and 740 
regionally in Europe, North America and East Asia.   741 

The base case simulation of each model is evaluated with available surface observations in 742 
Europe and North America. Results show large variability among models, especially for 743 
PM2.5, where models underestimate by ~20% - ~60%, introducing a large uncertainty in the 744 
health impact estimates as PM2.5 is the main driver for health impacts. The differences in the 745 
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models are largely due to differences in the spatial and vertical resolutions, meteorological 746 
inputs, inclusion of natural emissions, dust in particular, as well as missing or underestimated 747 
SOA mass, which is critical for the PM2.5 mass. As shown in the supplementary material, the 748 
CTMs diverge a lot on the representation of particles and their size distribution, SOA 749 
formation, as well as the inclusion of natural sources. As the anthropogenic emissions are 750 
harmonized in the models, they represent a minor uncertainty in terms of model-to-model 751 
variation. However, differences in the treatment of the temporal, vertical and chemical 752 
distributions of the particulate and volatile organic species have an influence in the model 753 
calculations and therefore lead to model-to-model variations. 754 

The variability of health impacts among the models can be up to a factor of three in Europe 755 
(twelve models) and the U.S. (three models), among the different health impacts. The multi-756 
model mean total number of premature death is calculated to be 414 000 in Europe and 757 
160 000 in the U.S., where PM2.5 contributes by more than 90%. These numbers agree well 758 
with previous global and regional studies for premature deaths due to air pollution. In order to 759 
reduce the uncertainty coming from each model, an optimal ensemble set is produced, that is, 760 
the subset of models that produce the smallest error compared to the surface observations at 761 
each time step. The optimum ensemble results in an increase of health impacts by up to 30% 762 
in Europe and a decrease by ~11% in the United States. These differences clearly 763 
demonstrate the importance of the use of optimal-reduced multi-model ensembles over 764 
traditional all model-mean ensembles, both in terms of scientific results, but also in policy 765 
applications.  766 

Finally, the role of domestic versus foreign emission sources on the related health impacts is 767 
investigated using the emission perturbation scenarios. A global reduction of anthropogenic 768 
emissions by 20% decreases the health impacts by 17%, while the reduction of foreign 769 
emissions decreases the health impacts by less than 1%. The decrease of emissions within the 770 
source region decreases the health impacts by 16%. These results show that the largest 771 
impacts of reducing emissions with respect to the premature death come from emissions 772 
within the source region, while foreign sources contributing to much less improvements in 773 
avoiding adverse impacts of air pollution. 774 

Outlook  775 

Currently health assessments of airborne particles are carried out under the assumption that 776 
all fine fraction particles affect health to a similar degree independent of origin, age and 777 
chemical composition of the particles. A 2013 report from WHO concludes that the 778 
cardiovascular effects of ambient PM2.5 are greatly influenced, if not dominated, by their 779 
transition metal contents (WHO, 2013b). It is known that trace metals and traffic markers are 780 
highly associated with daily mortality (Lippmann, 2014). Even low concentrations of trace 781 
metals can be influential on health related responses.  782 

Regarding ambient concentrations of PM and the exposure-response functions (ERFs), there 783 
is a rich set of studies providing information on total PM mass. However, only few studies 784 
focus on individual particulate species, mainly black carbon and carbonaceous particles. In 785 
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addition to PM, studies on human populations have not been able to isolate potential effects 786 
of NO2, because of its complex link to PM and O3. The WHO REVIHAAP review from 2013 787 
concludes that health assessments based on PM2.5 ERFs will be most inclusive (WHO, 788 
2013b). In addition, the ERFs are based on urban background measurements, introducing 789 
uncertainties regarding non-urban areas or high pollution areas as e.g. street canyons. Current 790 
state-of-the-art health impact estimates, in particular on regional to global scales, assume a 791 
correlation with exposure to outdoor air pollution, while in reality, exposure is dynamic and 792 
depends on the behavior of the individual. In addition, differences in age groups, gender, 793 
ethnicity and behavior should be considered in the future studies. There are also uncertainties 794 
originating from the representations of the aerosols in the atmospheric models used in the 795 
calculation of pollutant concentrations as well as the emissions. Further developments in the 796 
aerosol modules, such as the representation of organic aerosols and windblown and 797 
suspended dust, are need in order to achieve mass closure of PM to get robust estimates of 798 
health impacts. In addition, new findings show that O3 has also chronic health impacts in 799 
addition to its acute impacts (WHO, 2013a; Turner et al., 2016). 800 

Due to above reasons, there is a large knowledge gap regarding the health impacts of 801 
particles. There are a number of ongoing projects trying to identify the health impacts from 802 
individual particle components and produce individual ERFs for these components. 803 
NordicWelfAir project (http://projects.au.dk/nordicwelfair/) aims to investigate the potential 804 
causal impact of individual chemical air pollutants as well as mixtures of air pollutants on 805 
health outcomes. In pursuing this aim, the project uses the unique Nordic population-based 806 
registers allowing linkage between historical residential address, air pollutants over decades 807 
and later health outcomes. By linking the exposure to health outcomes, new exposure-808 
response relationships can be determined of health effects for different population groups 809 
(e.g. age, education, ethnicity, gender, lifestyle, and working life vs. retirement conditions) 810 
related to air pollution for the individual chemical air pollutants. In addition, the high 811 
resolution simulations conducted will enable us to have a better understanding of non-812 
linearities between the emissions, health impacts, and their economic valuation. 813 

ACKNOWLEDGEMENTS 814 

We gratefully acknowledge the contribution of various groups to the third air Quality Model 815 
Evaluation international Initiative (AQMEII) activity. Joint Research Center Ispra/Institute 816 
for Environment and Sustainability provided its ENSEMBLE system for model output 817 
harmonization and analyses and evaluation. Although this work has been reviewed and 818 
approved for publication by the US Environmental Protection Agency, it does not necessarily 819 
reflect the views and policies of the agency. Aarhus University gratefully acknowledges the 820 
NordicWelfAir project funded by the NordForsk’s Nordic Programme on Health and Welfare 821 
(grant agreement no. 75007), the REEEM project funded by the H2020-LCE Research and 822 
Innovation Action (grant agreement no.: 691739), and the Danish Centre for Environment 823 
and Energy (AU-DCE). University of L’Aquila thanks the EuroMediterranean Center for 824 
Climate Research (CMCC) for providing the computational resources. RSE contribution to 825 
this work has been financed by the research fund for the Italian Electrical System under the 826 
contract agreement between RSE S.p.A. and the Ministry of Economic Development – 827 

http://projects.au.dk/nordicwelfair/


21 
 

General Directorate for Nuclear Energy, Renewable Energy and Energy Efficiency in 828 
compliance with the decree of 8 March 2006. 829 

 830 

REFERENCES 831 

Abbey, D.E., Lebowitz, M.D., Mills, P.K., Petersen, F.F., Beeson, W.L. Burchette, R.J, 1995. 832 
Long-term ambient concentrations of particulates and oxidants and development of chronic 833 
disease in a cohort of non-smoking California residents. Inhalation Toxicology 7, 19-34.  834 

Abbey, D.E., Nishino, N., Mcdonnell,W.F., Burchette, R.J., Knutsen, S.F., Lawrence Beeson, 835 
W., Yang, J.X., 1999. Long-term inhalable particles and other air pollutants related to 836 
mortality in nonsmokers. Am. J. Respir. Crit. Care Med., 159, 373–382.  837 

Alberini, A., Hunt, A. and Markandya, A., 2006, Willingness to pay to reduce mortality risks: 838 
Evidence from a three-country contingent valuation study. Environmental and Resource 839 
Economics, 33, 251–264. 840 

Amann, M., Bertok, I., Borken‐Kleefeld, J., Cofala, J., Heyes, C., Höglund‐Isaksson, L., 841 
Klimont, Z., Nguyen, B., Posch, M., Rafaj, P., Sandler, R., 2011. Cost‐effective control of air 842 
quality and greenhouse gases in Europe: modeling and policy applications. Environmental 843 
Modelling & Software, 26 (12), 1489–1501. 844 

Andersen, M.S., 2017. Co-benefits of climate mitigation: Counting statistical lives or life-845 
years? Ecological Indicators, 79, 11-18. 846 

Andersen, M.S., Frohn, L.M., Jensen, S.S., Nielsen, J.S., Sørensen, P.B., Hertel, O., Brandt, 847 
J., Christensen, J.H., 2014. Sundhedseffekter af luftforurening – beregningspriser, Faglig 848 
rapport fra DMU, nr. 507 849 
(http://www.dmu.dk/1_viden/2_Publikationer/3_fagrapporter/rapporter/FR507.PDF). 850 

Andersen, M.S., Frohn, L.M., Nielsen, J.S., Nielsen, M., Jensen, S.S., Christensen, J.H., 851 
Brandt, J., 2008. A Non-linear Eulerian Approach for Assessment of Health-cost 852 
Externalities of Air Pollution. Proceedings of the European Association of Environmental and 853 
Resource Economists 16th Annual Conference, Gothenburg, Sweden, 25–28 June 2008, 23 854 
pp.  855 

Anderson, H.R., Ponce de Leon, A., Bland, J.M., Bower, J.S., Strachan, D.P., 1996. Air 856 
Pollution and daily mortality in London: 1987-92. British Medical Journal, 312, 665-669.  857 

Anenberg, S. C., A. Belova, J. Brandt, N. Fann, S. Greco, S. Guttikunda, M.-E. Heroux, F. 858 
Hurley, M. Krzyzanowski, S. Medina, B. Miller, K. Pandey, J. Roos, R. Van Dingenen, 2015. 859 
Survey of ambient air pollution health risk assessment tools. Risk Analysis. DOI: 860 
10.1111/risa.12540.  861 

Anenberg, S.C., West, J.J., Yu, H., Chin, M., Schulz, M., Bergmann, D., Bey, I., Bian, H., 862 
Diehl, T., Fiore, A., Hess, P., Marmer, E., Montanaro, V., Park, R., Shindell, D., Takemura, 863 



22 
 

T., Dentener, F., 2014. Impacts of intercontinental transport of anthropogenic fine particulate 864 
matter on human mortality. Air Quality, Atmosphere & Health, 7, (3), 369-379, 865 
doi:10.1007/s11869-014-0248-9. 866 

Anenberg, S.C., West, J.J., Fiore, A.M., Jaffe, D.A., Prather, M.J., Bregmann, D., Cuvelier, 867 
K., Dentener, F.J., Duncan, B.N., Gauss, M., Hess, P., Jonson, J.E., Lupu, A., MacKenzie, 868 
I.A., Marmer, E., Park, R.J., Sanderson, M.G., Schultz, M., Shindell, D.T., Szopa, S., 869 
Vivanco, M.G., Wild, O., Zeng, G., 2009. Intercontinental impacts of ozone air pollution on 870 
human mortality. Environ Science and Technology, 43,6482–6487. 871 

Bell, M.L., McDermott, A., Zeger, S.L., Samet, J.M., Dominici, F., 2004. Ozone and short-872 
term mortality in 95 US urban communities, 1987–2000. Journal of. American Medical 873 
Association, 292, 2372–2378. 874 

Brandt, J., J. D. Silver, L. M. Frohn, C. Geels, A. Gross, A. B. Hansen, K. M. Hansen, G. B. 875 
Hedegaard, C. A. Skjøth, H. Villadsen, A. Zare, and J. H. Christensen, 2012. An integrated 876 
model study for Europe and North America using the Danish Eulerian Hemispheric Model 877 
with focus on intercontinental transport. Atmospheric Environment, Volume 53, June 2012, 878 
pp. 156-176, doi:10.1016/j.atmosenv.2012.01.011 879 

Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Bønløkke, J. H., Sigsgaard, T., 880 
Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Kaas, E., and Frohn, 881 
L. M.: Contribution from the ten major emission sectors in Europe and Denmark to the 882 
health-cost externalities of air pollution using the EVA model system – an integrated 883 
modelling approach. Atmospheric Chemistry and Physics, 13, 7725–7746, doi:10.5194/acp-884 
13-7725-2013, 2013a. 885 

Brandt, J., Silver, J. D., Christensen, J. H., Andersen, M. S., Bønløkke, J. H., Sigsgaard, T., 886 
Geels, C., Gross, A., Hansen, A. B., Hansen, K. M., Hedegaard, G. B., Kaas, E., and Frohn, 887 
L. M.: Assessment of past, present and future health-cost externalities of air pollution in 888 
Europe and the contribution from international ship traffic using the EVA model system. 889 
Atmospheric Chemistry and Physics, 13, 7747-7764, doi:10.5194/acp-13-7747-2013, 2013b. 890 

Brandt, J., Silver, J.D., Frohn, L.M., Christensen, J.H., Andersen, M.S., Bønløkke, J.H., 891 
Sigsgaard, T., Geels, C., Gross, A., Hansen, A.B., Hansen, K.M., Hedegaard, G.B., Kaas, E., 892 
2011. Assessment of Health-Cost Externalities of Air Pollution at the National Level using 893 
the EVA Model System, CEEH Scientific Report No 3, pp. 96. 894 
(www.ceeh.dk/CEEH_Reports/Report_3) 895 

Burnett, R. T., Arden Pope, C., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H., 896 
Singh, G., Hubbell, B., Brauer, M., Ross Anderson, H., Smith, K. R., Balmes, J. R., Bruce, N. 897 
G., Kan, H., Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M., Diver, W. R., Cohen, 898 
A., 2014. An integrated risk function for estimating the global burden of disease attributable 899 
to ambient fine particulate matter exposure. Environmental Health Perspectives, 122, 397–900 
403, doi:10.1289/ehp.1307049. 901 



23 
 

Caiazzo, F., Ashok, A., Waitz, I., Yim, S.H.L., Barrett, S.R.H., 2013. Air pollution and early 902 
deaths in the United States. Part I: Quantifying the impact of major sectors in 2005. 903 
Atmospheric Environment, 79,198–208, doi:10.1016/j.atmosenv.2013.05.081. 904 

Cohen, A.J., Brauer, M., Burnett, R., Anderson, H.R., Frostad, J., Estep, K., Balakrishnan, K., 905 
Brunekreef, B., Dandona, L., Dandona, R., Feigin, V., Freedman, G., Hubbell, B., Jobling, 906 
A., Kan, H., Knibbs, L., Liu, Y., Martin, R., Morawska, L., Pope III, C.A., Shin, H., Straif, 907 
K., Shaddick, G., Thomas, M., van Dingenen, R., van Donkelaar, A., Vos, T., Murray, C.J.L., 908 
Forouzanfar, M.H., 2017. Estimates and 25-year trends of the global burden of disease 909 
attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases 910 
Study 2015. The Lancet, 389, 10082, 1907–1918. http://dx.doi.org/10.1016/S0140-911 
6736(17)30505-6.  912 

Dab, W., Medina, S., Quénel, P., le Moullec, Y., le Tertre, A., Thelot, B., Monteil, C., 913 
Lameloise, P., Pirard, P., Momas, I., Ferry, R., Festy, B., 1996. Short Term Respiratory 914 
Health Effects of Ambient Air Pollution: Results of the APHEA Project in Paris. Journal of 915 
Epidemiology and Community Health, 50 (suppl 1), S42-S46.  916 

Duncan, B.N., West, J.J., Yoshida, Y., Fiore, A.M., Ziemke, J.R., 2008. The influence of 917 
European pollution on the air quality in the Near East and northern Africa. Atmospheric 918 
Chemistry and Physics, 8, 2267–2283. 919 

Dusseldorp, A., Kruize, H., Brunekreef, B., Hofschreuder, P., de Meer, G., Oudvorst, A.B. 920 
van, 1995. Associations of PM10 and Airborne Iron with Respiratory Health of Adults Living 921 
Near a Steel Factory. American Journal of Critical Care Medicine, 152, 1932-1939.  922 

Eagan, T.M.L., Bakke, P.S., Eide, G.E., Gulsvik, A., 2002. Incidence of asthma and 923 
respiratory symptoms by sex, age and smoking in a community study. Eur. Respir. J., 19, 924 
599–605.  925 

European Commission (EC) 2001, Recommended interim values for the value of preventing 926 
a fatality in DGEnvironment Cost Benefit analysis, Bruxelles: 927 
(http://ec.europa.eu/environment/enveco/others/pdf/recommended_interim_values.pdf), 928 
accessed 28 Sept 2016. 929 

EEA, 2015. Air quality in Europe, Technical report 5/2015, Copenhagen: European 930 
Environment Agency. 931 

EEA, 2013. Road user charges for heavy goods vehicles: Tables with external costs of air 932 
pollution, Technical report 1/2013, Copenhagen: European Environment Agency. 933 

EU 2004: Modelling and assessment of the health impact of particulate matter and ozone. 934 
Economic commission for Europe, Executive body for the convention on long-range 935 
transboundary air pollution, Working group on effects, twenty-third session, Geneva, 1–3 936 
September 2004.  937 

http://dx.doi.org/10.1016/S0140-6736(17)30505-6
http://dx.doi.org/10.1016/S0140-6736(17)30505-6
http://ec.europa.eu/environment/enveco/others/pdf/recommended_interim_values.pdf


24 
 

ExternE, 2005. Externalities of Energy Methodology 2005 update, European Commission, 938 
Directorate-General for Research Sustainable Energy Systems. Brussels, www.externe.info. 939 

ExternE: ExternE – Externalities of Energy: Vol. 7 Methodology 1998 update, European 940 
Commission, Brussels, www.externe.info (last access: 2 March 2013), 1999.  941 

Fann, N., Lamson, A.D., Anenberg, S.C., Wesson, K., Risley, D., Hubbell, B., 2012. 942 
Estimating the national public health Burden associated with exposure to ambient PM2.5 and 943 
ozone. Risk Anal. 32, 81-95. 944 

Fenech, S., Doherty, R. M., Heaviside, C., Vardoulakis, S., Macintyre, H. L., and O'Connor, 945 
F. M.: The influence of model spatial resolution on simulated ozone and fine particulate 946 
matter: implications for health impact assessments, Atmos. Chem. Phys. Discuss., 947 
https://doi.org/10.5194/acp-2017-1074, in review, 2017. 948 

Flemming, J., Benedetti, A., Inness, A., Engelen, R. J., Jones, L., Huijnen, V., Remy, S., 949 
Parrington, M., Suttie, M., Bozzo, A., Peuch, V.-H., Akritidis, D., and Katragkou, E.: The 950 
CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003–2015, Atmos. 951 
Chem. Phys., 17, 1945-1983, https://doi.org/10.5194/acp-17-1945-2017, 2017.  952 

Flemming, J., Huijnen, V., Arteta, J., Bechtold, P., Beljaars, A., Blechschmidt, A.-M., 953 
Diamantakis, M., Engelen, R. J., Gaudel, A., Inness, A., Jones, L., Josse, B., Katragkou, E., 954 
Marecal, V., Peuch, V.-H., Richter, A., Schultz, M. G., Stein, O., and Tsikerdekis, A., 2015. 955 
Tropospheric chemistry in the Integrated Forecasting System of ECMWF. Geoscientific 956 
Model Development, 8, 975-1003, doi:10.5194/gmd-8-975-2015.  957 

Friedrich, R. and Bickel, P., 2001, Environmental External Costs of Transport, München: 958 
Springer. 959 

Galmarini, S., Koffi, B., Solazzo, E., Keating, T., Hogrefe, C., Schulz, M., Benedictow, A., 960 
Griesfeller, J. J., Janssens-Maenhout, G., Carmichael, G., Fu, J., and Dentener, F., 2017. 961 
Technical note: Coordination and harmonization of the multi-scale, multi-model activities 962 
HTAP2, AQMEII3, and MICS-Asia3: simulations, emission inventories, boundary 963 
conditions, and model output formats. Atmospheric Chemistry and Physics, 17, 1543-1555, 964 
doi:10.5194/acp-17-1543-2017. 965 

Geels, C., C. Andersson, O. Hänninen, A. S. Lansø, P. Schwarze and J. Brandt, 2015. Future 966 
Premature Mortality due to Air Pollution in Europe – Sensitivity to Changes in Climate, 967 
Anthropogenic Emissions, Population and Building stock. International Journal of 968 
Environmental Research Public Health, 12, 2837-2869. 969 

Guenther, A., Karl, T., Harley, P., Wiedinmyer, C., Palmer, P. I., and Geron, C., 2006. 970 
Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of 971 
Gases and Aerosols from Nature). Atmos. Chem. Phys., 6, 3181–3210, doi:10.5194/acp-6-972 
3181-2006. 973 



25 
 

Hogrefe, C., Liu, P., Pouliot, G., Mathur, R., Roselle, S., Flemming, J., Lin, M., and Park, R. 974 
J.: Impacts of Different Characterizations of Large-Scale Background on Simulated 975 
Regional-Scale Ozone Over the Continental United States, Atmos. Chem. Phys. Discuss., 976 
https://doi.org/10.5194/acp-2017-676, in review, 2017.  977 

Huang, M., Carmichael, G. R., Pierce, R. B., Jo, D. S., Park, R. J., Flemming, J., Emmons, L. 978 
K., Bowman, K. W., Henze, D. K., Davila, Y., Sudo, K., Jonson, J. E., Tronstad Lund, M., 979 
Janssens-Maenhout, G., Dentener, F. J., Keating, T. J., Oetjen, H., and Payne, V. H.: Impact 980 
of intercontinental pollution transport on North American ozone air pollution: an HTAP 981 
phase 2 multi-model study, Atmos. Chem. Phys., 17, 5721-5750, https://doi.org/10.5194/acp-982 
17-5721-2017, 2017.  983 

Hurley, F., Hunt, A., Cowie, H., Holland, Miller, B., Pye, S., Watkiss, P., 2005. Development 984 
of Methodology for the CBA of the Clean Air For Europe (CAFE) Programme, Volume 2: 985 
Health Impact Assessment, Report for European Commission DG Environment.  986 

Im, U., Geels, C., Hansen, K.M., Christensen, J.H., Brandt, J., Solazzo, E., Alyuz, U., 987 
Balzarini, A., Baro, R., Bellasio, R., Bianconi, R., Bieser, J., Colette, A., Curci, G., Farrow, 988 
A., Flemming, J., Fraser, A., Jimenez-Guerrero, P., Kitwiroon, N., Pirovano, G., Pozolli, L., 989 
Prank, M., Rose, R., Sokhi, R., Tuccella, P., Unal, A., Vivanco, M.G., Yardwood, G., 990 
Hogrefe, C., Galmarini, S., 2017. Impacts of emission perturbations on multi-model 991 
simulations of major air pollutants over Europe and North America in frame of AQMEII3, In 992 
Preparation for Atmospheric Chemistry and Physics. 993 

Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A.,Balzarini, A., Baro, R., Bellasio, 994 
R., Brunner, D., Chemel, C.,Curci, G., Denier van der Gon, H., Flemming, J., Forkel, 995 
R.,Giordano, L., Jimenez-Guerrero, P., Hirtl, M., Hodzic, A., Honzak,L., Jorba, O., Knote, 996 
C., Makar, P. A., Manders-Groot, A.,Neal, L., Pérez, J. L., Pirovano, G., Pouliot, G., San 997 
Jose, R., Savage,N., Schroder,W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella,P., Wang, 998 
K., Werhahn, J., Wolke, R., Zabkar, R., Zhang,Y., Zhang, J., Hogrefe, C., and Galmarini, S.: 999 
Evaluation of operational online coupled regional air quality models over Europe and North 1000 
America in the context of AQMEII phase 2, Part II: particulate matter, Atmos. Environ., 115, 1001 
421–441, 2015a. 1002 

Im, U., Bianconi, R., Solazzo, E., Kioutsioukis, I., Badia, A.,Balzarini, A., Baro, R., Bellasio, 1003 
R., Brunner, D., Chemel, C.,Curci, G., Flemming, J., Forkel, R., Giordano, L., Jimenez-1004 
Guerrero, P., Hirtl, M., Hodzic, A., Honzak, L., Jorba, O., Knote,C., Kuenen, J. J. P., Makar, 1005 
P. A., Manders-Groot, A., Neal, L.,Pérez, J. L., Pirovano, G., Pouliot, G., San Jose, R., 1006 
Savage, N.,Schroder, W., Sokhi, R. S., Syrakov, D., Torian, A., Tuccella, P.,Werhahn, 1007 
J.,Wolke, R., Yahya, K., Zabkar, R., Zhang, Y., Zhang,J., Hogrefe, C., and Galmarini, S.: 1008 
Evaluation of operational online-coupled regional air quality models over Europe and 1009 
NorthAmerica in the context of AQMEII phase 2, Part I: ozone, Atmos. Environ., 115, 404–1010 
420, 2015b. 1011 

Janssens-Maenhout, G., Crippa, M., Guizzardi, D., Dentener, F., Muntean, M., Pouliot, G., 1012 
Keating, T., Zhang, Q., Kurokawa, J., Wankmüller, R., Denier van der Gon, H., Kuenen, J. J. 1013 



26 
 

P., Klimont, Z., Frost, G., Darras, S., Koffi, B., and Li, M., 2015. HTAP_v2.2: a mosaic of 1014 
regional and global emission grid maps for 2008 and 2010 to study hemispheric transport of 1015 
air pollution. Atmospheric Chemistry and Physics, 15, 11411–11432, doi:10.5194/acp-15-1016 
11411-2015. 1017 

Jerrett, M., Burnett, R.T., Pope, C.A., Ito, K., Thurston, G., Krewski, D., Shi, Y.L., Calle, E.,  1018 
Thun, M., 2009. Long-term ozone exposure and mortality. New England Journal of 1019 
Medicine, 360, 1085–95 1020 

Katsouyanni, K., Touloumi, G., Spix, C., Schwartz, J., Balducci, F., Medina, S., Rossi, G., 1021 
Wojtyniak, B., Sunyer, J., Bacharova, L., Schouten, J. P., Ponka, A., Anderson, H. R., 1997. 1022 
Short-term effects of ambient sulphur dioxide and particulate matter on mortality in 12 1023 
European cities: results from time series data from the APHEA project. Air Pollution and 1024 
Health: a European Approach. British Med. J., 314, 1658–1663.  1025 

Kioutsioukis, I., Im, U., Solazzo, E., Bianconi, R., Badia, A., Balzarini, A., Baró, R., 1026 
Bellasio, R., Brunner, D., Chemel, C., Curci, G., van der Gon, H. D., Flemming, J., Forkel, 1027 
R., Giordano, L., Jiménez-Guerrero, P., Hirtl, M., Jorba, O., Manders-Groot, A., Neal, L., 1028 
Pérez, J. L., Pirovano, G., San Jose, R., Savage, N., Schroder, W., Sokhi, R. S., Syrakov, D., 1029 
Tuccella, P., Werhahn, J., Wolke, R., Hogrefe, C., Galmarini, S., 2016. Insights into the 1030 
deterministic skill of air quality ensembles from the analysis of AQMEII data. Atmospheric 1031 
Chemistry and Physics, 16, 15629–15652, doi:10.5194/acp-16-15629-2016. 1032 

Krewski, D., Jerrett, M., Burnett, R.T., Ma, R., Hughes, E., Shi, Y., Turner, M.C., Arden 1033 
Pope III, C., Thurston, G., Calle, E.E., Thun, M.J., 2009. Extended Follow-Up and Spatial 1034 
Analysis of the American Cancer Society Study Linking Particulate Air Pollution and 1035 
Mortality. Health Effects Insitute Research Report, 140, 1–154.  1036 

Krupnick, A., Ostro, B., Bull, K., 2005. Peer review of the methodology of cost-benefit 1037 
analysis of the clean air for Europe programme http://www.cafe-cba.org/reports-on-1038 
developing-the-cba-framework/. 1039 

Lelieveld, J., Evans, J. S., Fnais, M., Giannadaki, D., Pozzer, A., 2015. The contribution of 1040 
outdoor air pollution sources to premature mortality on a global scale. Nature, 25, 367-371. 1041 

Liang, C., Silva, R.A., West, J.J., Emmons, L., Jonson, J.E., Bian, H., Pan, X., Chin, M., 1042 
Henze, D., Lund, M.T., Sudo, K., Sekiya, T., Takemura, T., Flemming, J., Park, R., Lin, M., 1043 
Pierce, R.B., Lenzen, A., Kucsera, T., Folberth, G., 2017. Multi-model estimates of 1044 
premature human mortality due to intercontinental transport of air pollution. Atmospheric 1045 
Chemistry and Physics, In preparation. 1046 

Lippmann, P., 2014. Toxicological and epidemiological studies of cardiovascular effects of 1047 
ambient air fine particulate matter (PM2.5) and its chemical components: Coherence and 1048 
public health implications. Critical Reviews in Toxicology, 44(4), 299-347. 1049 

Mason, R., Zubrow, A., Eyth, A., 2007. Technical Support Document (TSD) Preparation of 1050 
Emissions Inventories for the Version 5.0, 2007 Emissions Modeling Platform, available at: 1051 



27 
 

https://www.epa.gov/air-emissions-modeling/2007-version-50-technical-support-document, 1052 
last access: 24 May 2017. 1053 

OECD (2014). The Cost of Air Pollution: Health Impacts of Road Transport. OECD 1054 
Publishing, Paris. http://dx.doi.org/10.1787/9789264210448-en 1055 

OECD, 2006, Cost-benefit analysis and the environment: recent developments, Paris, 1056 
Organisation for Economic Co-operation and Development. 1057 

Ostro, B.D., 1987. Air Pollution and Morbidity Revisited: A Specification Test. Journal of 1058 
Environmental Economics and management, 14, 87-98.  1059 

Pope, C.A., Dockery, D.W., 2006. Health effects of fine particulate air pollution: lines that 1060 
connect. Journal of the Air and Waste Management Association, 56, 709-742. 1061 

Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 1062 
2002. Lung cancer, cardiopulmonary mortality and long-term exposure to fine particulate air 1063 
pollution. Journal of American Medical Association, 287 (9), 1132-1141.  1064 

Pope, C.A., 2000. Particulate matter-mortality exposure-response relations and threshold. 1065 
Am. J. Epidemiol., 152, 407–412. 1066 

Pope, C.A. Thun, M.J., Namboodiri, M.M., Dockery, D.W., Evans, J.S., Speizer, F.E., Heath 1067 
Jr, C.W., 1995. Particulate air pollution as a predictor of mortality in a prospective study of 1068 
US adults. American Journal of Respiratory and Critical Care Medicine, 151, 669-674.  1069 

Pope, C.A., Dockery, D.W., 1992. Acute Health Effects of PM10 Pollution on Symptomatic 1070 
and Asymptomatic Children. The American Review of Respiratory Disease, 145, 1123-1126.  1071 

Potempski, S., Galmarini, S., 2009. Est modus in rebus: analytical properties of multi-model 1072 
ensembles. Atmos. Chem. Phys., 9, 9471-9489, doi:10.5194/acp-9-9471-2009. 1073 

Pouliot, G., Denier van der Gon, H. A. C., Kuenen, J., Zhang, J., Moran, M. D., Makar, P. A., 1074 
2015. Analysis of the emission inventories and model-ready emission datasets of Europe and 1075 
North America for phase 2 of the AQMEII project. Atmospheric Environment, 115, 345–360. 1076 

Rabl, A., Spadaro, J.V., Holland, M., 2014. How Much Is Clean Air Worth? Calculating the 1077 
Benefits of Pollution Control. Cambridge University Press, ISBN: 9781107337831. 1078 

Riccio, A., Ciaramella, A., Giunta, G., Galmarini, S., Solazzo, E., Potempski, S., 2012. On 1079 
the systematic reduction of data complexity in multimodel atmospheric dispersion ensemble 1080 
modeling. Journal of Geophysical Research, 117, D05314. 1081 
dx.doi.org/10.1029/2011JD016503. 1082 

Roemer, W., Hoek, G., Brunekreef, B., 1993. Effect of Ambient Winter Air Pollution on 1083 
Respiratory Health of Children with Chronic Respiratory Symptoms. The American Review 1084 
of Respiratory disease, 147, 118-124.  1085 

http://dx.doi.org/10.1787/9789264210448-en


28 
 

Schucht, S., Colette, A., Rao, S., Holland, M., Schopp, W., Kolp, P., Klimont, Z., Bessagnet, 1086 
B., Szopa, S., Vautard, P., Brignon, J.-M., Rouil, L., 2015. Moving towards ambitious 1087 
climate policies: Monetised health benefits from improved air quality could offset mitigation 1088 
costs in Europe. Environmental Science & Policy, 50, 252-269.  1089 

Schwartz, J., Morris, R., 1995. Air Pollution and Hospital Admissions for Cardiovascular 1090 
Disease in Detroit, Michigan. American Journal of Epidemiology, 142 (1). 23-35.  1091 

Silva, R. A., West, J. J., Lamarque, J.-F., Shindell, D. T., Collins, W. J., Dalsoren, S., 1092 
Faluvegi, G., Folberth, G., Horowitz, L. W., Nagashima, T., Naik, V., Rumbold, S. T., Sudo, 1093 
K., Takemura, T., Bergmann, D., Cameron-Smith, P., Cionni, I., Doherty, R. M., Eyring, V., 1094 
Josse, B., MacKenzie, I. A., Plummer, D., Righi, M., Stevenson, D. S., Strode, S., Szopa, S., 1095 
Zengast, G., 2016. The effect of future ambient air pollution on human premature mortality to 1096 
2100 using output from the ACCMIP model ensemble. Atmospheric Chemistry and Physics, 1097 
16, 9847-9862, doi:10.5194/acp-16-9847-2016. 1098 

Silva, R. A., West, J. J., Zhang, Y., Anenberg, S. C., Lamarque, J.-F., Shindell, D. T.,  1099 
Collins,W. J., Dalsoren, S., Faluvegi, G., Folberth, G., Horowitz, L. W., Nagashima, T., Naik, 1100 
V., Rumbold, S., Skeie, R., Sudo, K., Takemura, T., Bergmann, D., Cameron-Smith, P., 1101 
Cionni, I., Doherty, R. M., Eyring, V., Josse, B., MacKenzie, I. A., Plummer, D., Righi, M., 1102 
Stevenson, D. S., Strode, S., Szopa, S., Zeng, G., 2013. Global premature mortality due to 1103 
anthropogenic outdoor air pollution and the contribution of past climate change. 1104 
Environmental Research Letters, 8, 034005, doi:10.1088/1748-9326/8/3/034005. 1105 

Solazzo, E., Van Dingenen, R., Riccio, A., Galmarini, S., 2017b. The role of multi-model 1106 
ensembles in assessing the air quality impact on crop yields and mortality. In preparation for 1107 
submission to ACP. 1108 

Solazzo, E., Bianconi, R., Hogrefe, C., Curci, G., Tuccella, P., Alyuz, U., Balzarini, A., Baró, 1109 
R., Bellasio, R., Bieser, J., Brandt, J., Christensen, J. H., Colette, A., Francis, X., Fraser, A., 1110 
Vivanco, M. G., Jiménez-Guerrero, P., Im, U., Manders, A., Nopmongcol, U., Kitwiroon, N., 1111 
Pirovano, G., Pozzoli, L., Prank, M., Sokhi, R. S., Unal, A., Yarwood, G., Galmarini, S., 1112 
2017a. Evaluation and error apportionment of an ensemble of atmospheric chemistry 1113 
transport modeling systems: multivariable temporal and spatial breakdown. Atmospheric 1114 
Chemistry and  Physics, 17, 3001-3054, doi:10.5194/acp-17-3001-2017. 1115 

Solazzo, E., Galmarini, S., 2016. Error Apportionment for atmospheric chemistry transport 1116 
models – a new approach to model evaluation. Atmospheric Chemistry and Physics 16, 6263-1117 
6283. 1118 

Solazzo, E., Galmarini, S., 2015. A science-based use of ensembles of opportunities for 1119 
assessment and scenario studies. Atmospheric Chemistry and Physics, 15, 2535-2544, 1120 
doi:10.5194/acp-15-2535-2015. 1121 

Solazzo, E., Riccio, A., Kioutsioukis, I., Galmarini, S., 2013. Pauci ex tanto numero: reduce 1122 
redundancy in multi-model ensemble. Atmospheric Chemistry and Physics, 13, 8315–8333. 1123 



29 
 

Touloumi, G., Samoli, E., Katsuyanni, K., 1996. Daily mortality and "winter type" air 1124 
pollution in Athens, Greece - a time series analysis within the APHEA project. Journal of 1125 
Epidemiology and Community Health, 50 (suppl 1), S47 - S51  1126 

Turner, M. 2016. Long-Term Ozone Exposure and Mortality in a Large Prospective Study. 1127 
Am. J. Respir. Crit. Care Med. 193:1134–1142; doi: 10.1164/rccm.201508-1633OC. 1128 

U.S. EPA, 2011. The Benefits and Costs of the Clean Air Act: 1990 to 2020. Final Report of 1129 
U.S. Environmental Protection Agency Office of Air and Radiation, pp. 5-10. 1130 

Van Dingenen, R., Leitao, J., Dentener, F., 2014. A multi-metric global source-receptor 1131 
model for integrated impact assessment of climate and air quality policy scenarios. European 1132 
Geophysical Union General Assembly 2014.  1133 

Watkiss P., Pye S., Holland M., 2005. Cafe CBA: Baseline Analysis 2000 to 2020. Service 1134 
Contract for Carrying out Cost-Benefit Analysis of Air Quality Related Issues, in Particular 1135 
in the Clean Air for Europe (Cafe) Programme. 2005.. Available online: 1136 
http://ec.europa.eu/environment/archives/cafe/activities/pdf/cba_baseline_results2000_2020.1137 
pdf, accessed on 24 May 2017. 1138 

Woodruff, T.J., Grillo, J., Schoendorf, K.C., 1997. The relationship between selected causes 1139 
of postneonatal infant mortality and particulate air pollution in the United States. 1140 
Environmental Health Perspectives, 105, 608-612.  1141 

Wordley, I., Walters, S., Ayres J.G., 1997. Short term variations in hospital admissions and 1142 
mortality and particulate air pollution. Journal of Occupational Environmental Medicine, 54, 1143 
108-116.  1144 

World Health Organization (WHO) 2014. 1145 
http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/ 1146 

World Health Organization (WHO) 2013a. Health risks of air pollution in Europe – HRAPIE: 1147 
Recommendations of concentration-response functions for cost-benefit analysis of particulate 1148 
matter, ozone and nitrogen dioxide.  1149 

World Health Organization (WHO), 2013b. Review of evidence on health aspects of air 1150 
pollution (REVIHAAP). WHO Technical Report. 1151 

Zhang, Q., Jiang, X., Tong, D., Davis, S.J., Zhao, H., Geng, G., Feng, T., Zheng, B., Lu, Z., 1152 
Streets, D.G., Ni, R., Brauer, M., van Donkelaar, A., Martin, R.V., Huo, H., Liu, Z., Pan, D., 1153 
Kan, H., Yan, Y., Lin, J., He, K., Guan, D., 2017. Transboundary health impacts of 1154 
transported global air pollution and international trade. Nature, 543, 705-709, 1155 
doi:10.1038/nature21712. 1156 

http://ec.europa.eu/environment/archives/cafe/activities/pdf/cba_baseline_results2000_2020.pdf
http://ec.europa.eu/environment/archives/cafe/activities/pdf/cba_baseline_results2000_2020.pdf
http://www.who.int/mediacentre/news/releases/2014/air-pollution/en/


30 
 

Table 1.Key features (meteorological/chemistry and transport models, emissions, horizontal and vertical grids) of the regional models 
participating to the AQMEII3 health impact study and the perturbation scenarios they performed. 

Group Code Model  Emissions Horizontal 
Resolution 

Vertical 
Resolution 

Gas Phase Aerosol Model Europe North America 

BASE GLO NAM EUR BASE GLO EAS NAM 

DE1 COSMO-CLM/CMAQ HTAP 
24 km × 24 

km 
30 layers, 
50 hPa CB5-TUCL 3 modes × × × × × × × × 

DK1 WRF/DEHM HTAP 
50 km × 50 

km 
29 layers, 
100 hPa 

Brandt et al. 
(2012) 2 modes × × × × × × × × 

ES1 WRF/CHEM MACC  
23 km × 23 

km 
33 layers, 
50 hPa RADM2 3 modes, 

MADE/SORGAM ×  ×      

FI1 ECMWF/SILAM MACC 
0.25° × 
0.25° 

12 layers, 
13 km CB4 1-5 bins, VBS × × × ×     

FRES1 ECMWF/CHIMERE HTAP 
0.25° × 
0.25° 

9 layers, 50 
hPa MELCHIOR2 8 bins × × × ×     

IT1 WRF/CHEM MACC 
23 km × 23 

km 
33 layers, 
50 hPa RACM-ESRL 3 modes, 

MADE/VBS × ×  ×     

IT2 WRF/CAMx MACC 
23 km × 23 

km 
14 layers, 8 
km CB5 3 modes × ×       

NL1 LOTOS/EUROS MACC 
0.50° × 
0.25° 

4 layers, 
3.5 km CB4 2 modes, VBS ×        

TR1 WRF/CMAQ MACC 
30 km × 30 

km 
24 layers, 
10hPa CB5 3 modes × × ×      

UK1 WRF/CMAQ MACC 
15 km × 15 

km 
23 layers, 
100 hPa CB5-TUCL 3 modes × × × ×     

UK2 WRF/CMAQ HTAP 
30 km × 30 

km 
23 layers, 
100 hPa CB5-TUCL 3 modes × ×       

UK3 WRF/CMAQ MACC 
18 km × 18 

km 
35 layers, 
16 km CB5 3 modes × × ×      

US3 WRF/CMAQ SMOKE 
12 km × 12 

km 
35 layers, 
50 hPa CB5-TUCL 3 modes     × × × × 
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Table 2. Exposure-response functions, the concentrations metrics, and economic valuations 
used in the EVA model. 

 

 

1 Abbey et al. (1995), 2 Ostro (1987), 3 Schwartz and Morris (1995), 4 Pope et al. (2002), 5 Dab et al. (1996), 6 
Wordley et al. (1997), 7 Roemer et al. (1993), 8 Pope and Dockerey (1992), 9 Dusseldorp et al. (1995), 10 
Anderson (1996), 11 Touloumi (1996), 12 Pope et al. (1995), 13 Woodruff et al. (1997). 

  

Health effects (compounds) 
Exposure-response coefficient Valuation, €2013 

(α) (EU27 & NA) 

Morbidity 

Chronic Bronchitis1, CB (PM) 8.2E-5 cases/μgm-3 (adults) 38,578 per case 

Restricted activity days2, RAD (PM) 

=8.4E-4 days/ μgm-3 (adults) 

98 per day 
-3.46E-5 days/ μgm-3 (adults) 

-2.47E-4 days/ μgm-3 (adults>65)  

-8.42E-5 days/ μgm-3 (adults) 

Congestive heart failure3, CHF (PM) 3.09E-5 cases/ μgm-3 
10,998 per case 

Congestive heart failure3, CHF (CO) 5.64E-7 cases/ μgm-3 

Lung cancer4, LC (PM) 1.26E-5 cases/ μgm-3 16,022 per case 

Hospital admissions 

Respiratory5, RHA (PM) 3.46E-6 cases/ μgm-3 
5,315 per case 

Respiratory5, RHA (SO2) 2.04E-6 cases/ μgm-3 

Cerebrovascular6, CHA (PM) 8.42E-6 cases/ μgm-3 6,734 per case 

Asthma children (7.6 % < 16 years) 

Bronchodilator use7, BUC (PM) 1.29E-1 cases/ μgm-3 16 per case 

Cough8 – COUC (PM)  4.46E-1 days/ μgm-3 30 per day 
Lower respiratory symptoms7, LRSA 
(PM) 1.72E-1 days/ μgm-3 9 per day 

Asthma adults (5.9 % > 15 years) 

Bronchodilator use9, BUA (PM) 2.72E-1 cases/ μgm-3 16 per case 

Cough9, COUA (PM) 2.8E-1 days/ μgm-3 30 per day 
Lower respiratory symptoms9, LRSA 
(PM) 1.01E-1 days/ μgm-3 9 per day 

Mortality 

Acute mortality10,11 (SO2) 7.85E-6 cases/ μgm-3 
1,532,099 per case 

Acute mortality10,11 (O3) 3.27E-6*SOMO35 cases/  μgm-3 

Chronic mortality4,12,, YOLL (PM) 1.138E-3 YOLL/ μgm-3  (>30 years) 57,510 per YOLL 

Infant mortality13, IM (PM) 6.68E-6 cases/ μgm-3 (> 9 months) 2,298,148 per case 
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Table 3. Health impacts calculated by the mean of individual model estimates (denoted as 
MMmi) and the standard deviation, multi-model mean ensemble without error reduction 
(MMm) and the optimal ensemble (MMOpt) in Europe and the U.S. See Table 2 for the 
definitions of health impacts. PD stands for premature death. All health impacts are in units 
of number of cases × 1000, except for Infant Mortality (IM), which reports directly the 
number of cases. 

 EU NA 
 MMmi MMm MMOpt MMmi MMm MMOpt 

CB 360±89 360 468 142±74 142 125 
RAD 368 266±90 670 368245 478073 145 337±75 250  145337 127921 
RHA 23±5 23 28 10±4 8 7 
CHA 46±11 46 60 19±10 19 16 
CHF 31±6 31 38 13±6 9 8 
LC 55±14 55 72 22±11 22 19 
BDUC 10 766±2 650 10766 13976 4 566±2 383 4566 4019 
BDUA 70 492±17 400 70489 91511 27 819±14 400 27819 24485 
COUC 37 198±9 160 37196 48289 15 776±8 230 15776 13886 
COUA 72 566±17 900 72562 94203 28 637±14 830 28637 25206 
LRSC 14 355±3 530 14354 18635 6 088±3 180 6088 5359 
LRSA 26 175±6 400 26174 33980 10 330±5 350 10330 9092 
AYOLL 26±13 23 20 25±7 9 9 
YOLL 4 111±1 010 4111 5337 1 481±762 1481 1304 
PD 414±98  410 524 165±76 149 133 
IM* 403±99 403 524 143±75 143.3667 126.1 
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Table 4. External costs (in million Euros) related to the health impacts of air pollution as 
calculated by the individual models over Europe and the United States. 

Models CO SO2 O3 PM2.5 TOTAL 
Europe 

DE1 70 19 000 22 000 155 000 196 000 
DK1 80 13 000 24 000 237 000 274 000 
ES1 70 8 000 6 000 339 000 353 000 
FI1 90 18 000 5 000 335 000 358 000 
FRES1 90 15 000 13 000 305 000 333 000 
IT1 80 17 000 21 000 413 000 451 000 
IT2 70 11 000 6 000 253 000 270 000 
NL1 70 12 000 18 000 215 000 245 000 
TR1 110 30 000 35 000 376 000 441 000 
UK1 80 28 000 25 000 280 000 333 000 
UK2 80 34 000 27 000 340 000 401 000 
UK3 80 47 000 25 000 279 000 351 000 
MEAN 81 21 000 19 000 294 000 334 000 
MEDIAN 80 17 500 21 500 292 500 342 000 

The United States 
DE1 30 9 000 21 000 46 000 76 000 
DK1 55 11 000 39 000 123 000 172 000 
US3 60 14 000 22 000 155 000 191 000 
MEAN 50 11 500 27 000 108 000 146 000 
MEDIAN 55 11 000 22 000 123 000 172 000 
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Table 5. Annual average RMSE of the multi-model ensemble mean (MMm) and of the 
optimal reduced ensemble mean (MMopt) for the heath impact-related species. Units are ppb 
for the gaseous species and µg m-3 for PM2.5. 

 O3 CO SO2 PM2.5 
 MMm MMopt MMm MMopt MMm MMopt MMm MMopt 

Europe 
Winter 10.3 8.6 502.4 490.3 6.3 5.6 22.5 20.7 
Spring 12.4 9.6 247.1 239.5 4.6 3.1 9.9 7.8 
Summer 13.4 10.7 197.4 188.0 3.9 2.3 8.2 5.7 
Autumn 10.7 8.8 314.5 305.5 4.6 3.1 11.0 8.7 
Annual 11.7 9.4 315.3 305.8 4.8 3.5 12.9 10.7 

North America 
Winter 10.9 10.4 356.7 328.1 5.7 5.5 8.3 8.1 
Spring 12.0 11.4 288.7 270.2 5.4 5.1 7.2 6.6 
Summer 15.1 13.0 258.3 238.7 5.4 5.0 9.7 8.8 
Autumn 12.8 11.6 330.6 307.6 5.8 5.3 7.8 7.2 
Annual 12.7 11.6 308.6 286.1 5.6 5.2 8.2 7.7 
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Table 6. Impact of the emission reduction scenarios on avoided premature death (∆PD) and 
corresponding change in external cost as calculated by the multi-model mean over Europe 
and the United States. 

Source Receptor 
Europe The United States 

 ∆PD ∆Total Cost 
(billion €) ∆PD ∆Total Cost 

(billion €) 
GLO -54 000 ± 18 000 -56 ± 18 -27 500 ± 14 000 -24 ± 10 
NAM -940 ± 1100 -1.4 ± 0.4 -25 000 ± 12 000 -21 ± 9 
EUR -47 000 ± 24 000 -47 ± 16 - - 
EAS - - -1 900 ± 2 200 -2.5 ± 3 
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Fig.1. Population density (population per grid box) over a) the United States and b) Europe. 
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Fig. 2. Observed and simulated (base case) monthly a) O3, b) CO, c) SO2 and d) PM2.5 concentrations 
over Europe.  
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Fig. 3. Observed and simulated (base case) monthly a) O3, b) CO, c) SO2 and d) PM2.5 concentrations 
over the U.S. 
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Fig. 4. Spatial distribution of annual MM mean bias (µgm-3) for a) O3, b) CO, c) SO2 and d) PM2.5 
over Europe. 
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Fig. 5. Spatial distribution of annual MM mean bias (ppb for gases and µgm-3 for PM2.5) for a) O3, b) 
CO, c) SO2 and d) PM2.5 over North America. 
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Fig. 6. Spatial distribution of the number of total premature death (PD: units in number of cases) in a) the United States and b ) Europe and the relative change 
(%) in the number of premature death (PD) in response to the GLO scenario in c) the United States and d) Europe in 2010 as calculated by the multi-model 
mean ensemble.  


