
 
 

Response to Reviewer 1: 
 
We thank the reviewer for the constructive comments. We have tried to address all the points 
raised in the review. 
 
Comment: Lines 84-96 should be updated with the most recent GBD 2016 numbers 
 
Response: The numbers are updated (Lines 87-89). 
 
Comment: Lines 118-153 could use some organization. This section is basically just listing 
results from individual studies without synthesizing them or connecting them to the present 
study. It’s not clear as written by this section is there. 
 
Response: We have now extended this section (Lines 120-132). 
 
Comment: Line 188-190 states that this is the first study to use a common approach for 
health impact assessment across US and Europe, but the HTAP ozone and PM2.5 health 
impact assessments referenced earlier used a similar approach. Perhaps the authors are 
referring only to the economic valuation portion? If so, I’m still not sure this is the first study 
to do that since there are now several (perhaps many) global health impact and valuation 
studies that use a common approach for all countries/regions, including US and Europe. 
 
Response: The economic valuation was not included in the GBD assessment and others. 
OECD has published a global assessment with economic valuation, but without a consistent 
atmospheric modelling framework. 
 
Comment: Lines 296-298: given that this paper’s focus is on the health impacts, and not the 
modeling, there should be much more detail given here about the health impact methods in 
addition to, or instead of, the modeling detail, which can be found in other places and 
referenced. The health methods quickly summarized here diverge from the methods used by 
the Global Burden of Disease, U.S. EPA, and many recently published papers. So this needs 
to be explained, expanded, and justified quite a bit more. As stated, summing ozone deaths 
with PM2.5 YOLL doesn’t make logical sense, as one is cases and one is years, and what is 
being divided by 10.6 and why? The CAFÉ reference is 12 years old, and air pollution 
epidemiology and health impact assessment has advanced quite a bit since then. For ozone, 
there are now studies showing effects of long-term exposure on mortality, just like for PM, so 
why are only short-term ozone impacts calculated? 
 
Response: EVA methodology is now extended (Lines 326-420). The selected health end-
points are fairly conventional and aligned to the impact assessments that have been done for 
the European Commission and the European Environment Agency (EEA) up to 2013; they 
have been richly documented elsewhere. It was not the purpose here to develop a novel health 
impact assessment, or to compare in detail with GBD or US-EPA, but rather to explore its 
implications across the two continents.  



 
 

 
Comment: Lines 299-302: The ERFs listed in Table 2 are quite a bit out of date, particularly 
for the U.S. studies. Most of these are 20 years old. There have been many studies now 
reporting updated ozone and PM2.5 risk estimates for the American Cancer Society cohort 
which can be used. And these are not necessarily consistent magnitudes compared with the 
old studies. 
 
Response: These ERFs are consistent with the functions used by the EEA and conservative as 
they are updated only if recommended by the WHO even though there are recent studies 
providing updated functions. This is now added to the manuscript. A new version of the 
model is currently under development with more updated ERFs, additional species such as 
NO2, chronic O3-related mortality, and a breakdown of the aerosol components. 
 
Comment: Table 2 needs concentration metrics to which each ERF applies. Section 2.2 
should state which concentration metrics were drawn from the models (annual average, 
annual average of 8-hr daily max, etc.) used which each ERF. I see now these are indicated 
starting in line 376, but not explained, and should be in section 2.2. 
 
Response: Table 2 includes which pollutants are used for each health impact. The section is 
also extended now to include more specifically what metric are used on what temporal 
resolution (Lines 358-360), following: “EVA calculates and uses the annual mean 
concentrations of CO, SO2 and PM2.5, while for O3, it uses the SOMO35 metric that is 
defined as the yearly sum of the daily maximum of 8-hour running average over 35 ppb, 
following WHO (2013) and EEA (2017).” 
 
Comment: Section 2.2 should also give some equations used to calculate health impacts. It’s 
difficult to understand what was done and impossible to judge whether it’s technically sound. 
 
Response: We have now extended this section and it is now clearer on the implementation of 
the model (Lines 326-420). 
 
Comment: Section 2.2 were the exposure response functions applied in a linear equation or 
some other functional form (e.g. log-linear)? This is important for the perturbation 
simulations because you are reducing pollution at the high end, where the shape of the curve 
can have a big impact on the magnitude of health benefits estimated. 
 
Response: We have now added the following sentence (Lines 353-355): “EVA uses ERFs 
that are modelled as a linear function, which is a reasonable approximation as showed in 
several studies (e.g. Pope et al., 2000; the joint World Health Organization/UNECE Task 
Force on Health (EU, 2004; Watkiss et al., 2005)).” 
 
Comment: Section 2.2 should also indicate the source of baseline disease rates to calculate 
health impacts. 
 



 
 

Response: the EVA model applies universal baseline rates from Statistics Denmark, therefore 
not country-specific, which is a simplification, although aligned to the Eurozone countries. 
 
Comment: Section 2.2 did you first estimate health impacts from each individual model and 
then average, or first average the concentrations across models and then estimate health 
impacts? 
 
Response: We have now extended the section (Lines 288-294). All modeling groups 
interpolate their model outputs on a common 0.25°×0.25° resolution AQMEII grid predefined 
for Europe (30°W - 60°E, 25°N - 70°N) and North America (130°W - 59.5°W, 23.5°N - 
58.5°N). All the analyses performed in the present study use the pollutant concentrations on 
these final grids. Health impacts are first calculated for each individual model and then the 
ensemble mean, median and standard deviation are calculated for each health impact. In order 
to be able to estimate an uncertainty in the health impacts calculations, none of the models 
were removed from the ensemble. 
 
Comment: Section 2.2 what spatial resolution was used to estimate health impacts? Part of 
the problem with previous studies of PM long-range transport is that the grid resolution was 
too coarse to adequately capture health benefits from reducing local PM. Spatial scale is 
important. 
 
Response: We have now extended the section (Lines 288-294). All modeling groups 
interpolate their model outputs on a common 0.25°×0.25° resolution AQMEII grid predefined 
for Europe (30°W - 60°E, 25°N - 70°N) and North America (130°W - 59.5°W, 23.5°N - 
58.5°N). All the analyses performed in the present study use the pollutant concentrations on 
these final grids. Health impacts are first calculated for each individual model and then the 
ensemble mean, median and standard deviation are calculated for each health impact. In order 
to be able to estimate an uncertainty in the health impacts calculations, none of the models 
were removed from the ensemble. 
 
Comment: Section 3.2 are the plus/minus numbers given with all the results the range of 
health impacts calculated with individual models? How was uncertainty in the exposure 
response function accounted for? 
 
Response: We have now added the following (Lines 291-294). Health impacts are first 
calculated for each individual model and then the ensemble mean, median and standard 
deviation are calculated for each health impact. 
 
Comment: Line 413 appears to be missing a 0 in the HTAP2 result  
 
Response: We have now corrected this. 
 
Comment: Line 421 what is meant by “by construction”? 



 
 

 
Response: We have removed this phrase. 
 
Comment: There are many references to the Liang (in preparation) study, but since this study 
is not yet available the usefulness of these comparisons is limited. It is often used as 
justification that the present study was done right, since the numbers match up. But there is 
not currently enough information from either study to judge that. 
 
Response: We have added more comparisons with other published studies (Lines 563-566; 
617-620). 
 
Comment: There are many tables with numbers for health impacts that are difficult to digest. 
Suggest replacing some of these with figures to highlight the most salient points. 
 
Response: We have moved some of the tables (Table 3 and Table 4) in the supplement and 
kept the ensemble mean results together with the optimal ensemble results from old Table 7 
to the new Table 3. However, we believe that these numbers should be explicitly presented in 
the manuscript as particularly the morbidity calculations are for the first time calculated for 
both continents and transferring them into figures would lose the details. 
  



 
 

Response to Reviewer 2: 
 
We thank the reviewer for the comments. We have responded to all the points raised in the 
review. 
 
General comments: 
 
Comment: The Abstract is a bit too long. I encourage the authors to shorten their abstract to 
make it concise and informative. In addition, the authors should be more careful about the 
units. Many units in the tables and figures are missing or unclear and should be added. 
 
Response: The abstract is now shortened, however more details are added based on 
comments from the other reviewers. 
 
Comment: Although the description of the methods is comprehensive, additional description 
is needed. As the ensemble-contributing members as well as the gridded population density 
data have different spatial resolutions(see Table 1), the combining methods for those data 
should be added. Also, what is the spatial resolution of the multi-model ensemble mean 
(MMm) and the optimal reduced ensemble mean (MMopt) (Fig. 4)? 
 
Response: We have now extended the section (Lines 288-294). All modeling groups 
interpolate their model outputs on a common 0.25°×0.25° resolution AQMEII grid predefined 
for Europe (30°W - 60°E, 25°N - 70°N) and North America (130°W - 59.5°W, 23.5°N - 
58.5°N). All the analyses performed in the present study use the pollutant concentrations on 
these final grids. Health impacts are first calculated for each individual model and then the 
ensemble mean, median and standard deviation are calculated for each health impact. In order 
to be able to estimate an uncertainty in the health impacts calculations, none of the models 
were removed from the ensemble. 
 
Specific comments: 
 
Comment: Line 72: “North American emissions foreign emissions”-delete “foreign 
emissions”. 
 
Response: We have corrected the sentence. 
 
Comment: Line 224-225: “a number of emission perturbation scenarios have been simulated 
(Table 1)”–there is noEAS emission perturbation scenario for the European domain, and no 
EUR emission perturbation scenario for the North American domain. Please explain the 
design of the perturbation scenarios. 
 
Response: We have now extended the section for emission perturbation scenarios (Lines 265-
286). 
 



 
 

Comment: Line 351: Some text discussions should be added for the median values as they are 
part of Tables 3-5, Figures 2-3. 
 
Response: We have now added results on the median values in the manuscript (Lines 482-
484; 511-515; 547-550; 611-614). 
 
Comment: Line 342: “AsDE1 and US3 use the same SMOKE emissions and CTM”-but they 
appear to use different CTMs (i.e., COSMO-CLM/CMAQfor DE1, WRF/CAMxfor US3)? 
 
Response: US3 also uses the CMAQ model. This is now corrected in the text and tables. 
 
Comment: Table 2: There are four exposure-response coefficients for RAD in the table. How 
were they used in this study? 
 
Response: The ERF for RAD is actually calculated as an equation. The first term of the 
equation is the global ERF, and the subsequent three components represent deductions of 
RADs as related to the three hospitalizations (to avoid double counting of the days involved). 
The second term represents the respiratory admission due to PM, the fourth term represents 
cerebrovascular admissions due to PM and the third term is calculated only for the adults 
above 65. 
 
Comment: Table 4: Definition of “PD” is missing. Units should be added, as they differ 
across different health impacts. The same applies to TablesS2-S4. Also, please check the units 
for BUC and BUA in Table 2. 
 
Response: Definition of PD is now added to the captions. All units for health impacts are 
provided in Table as either number of cases or number of days. 
 
Comment: Figure 1: Units should be added. 
 
Response: The unit is added in the figure caption. 
 
Comment: Figure 2: “Days” should be replaced by “Months”.“O3”, “SO2”, “PM2.5”–
please use lower case for the number. 
 
Response: We have corrected the figure caption. 
 
Comment: Figure 4: Units should be added in Figures 4A and 4B. It is not clear what was 
shown in Figures4C and 4D.This needs to be explained in the figure caption. 
 
Response: We have modified the figure caption. 
 
  



 
 

Response to Reviewer 3: 
 
We thank the reviewer for the review. We have tried to implement all the comments and 
corrections in the new manuscript. 
 
General comments:  
 
Comment: The multi-model ensemble approach is widely used, especially in forecast studies 
in which observations are not available to evaluate the performance of individual models. 
Here the authors use multi-model ensemble results to investigate the air pollution levels in 
2010, where sufficient measurements are available over Europe and the U.S. Therefore, the 
authors should show that the ensemble results are better than any individual models. As 
shown in Table 3 and Table 6, the RSME of multi-model ensemble results (MMm and 
MMopt) are even larger than those of individual model results. Since the equations and 
datasets used to calculate these statistics in Tables 3 and 6 are unclear, it is difficult to judge 
the performance of the ensemble results. Particularly, the DE1_SMOKE simulation over the 
U.S. significantly underestimates SO2, CO, and PM2.5 (even up to a factor of three) 
comparing with the observations, which means that this result has systematic bias. This 
model should be removed from the ensemble, but I am not sure how it is being treated in the 
optimal-reduced multi-model ensembles. More description and explanations are needed here.  
 
Response: We have now extended the description and the discussion on mean and median 
multi-model results (Lines 482-484; 511-515; 547-550; 611-614). In order to be able to 
estimate an uncertainty in the health impacts calculations using concentration inputs from 
different models, none of the models were removed from the ensemble. It is true that the 
multi model mean results do not outscore all individual models and that is why we present 
both individual model results and multi-model ensemble results in the manuscript. 
 
Comment: This study mainly focuses on estimating the air pollution related health impacts, 
where annual mean concentrations of CO, SO2 and PM2.5 and yearly sum of daily maximum 
8-hour O3 running average over 35 ppb are used in the EVA system. The model evaluation in 
Section 3.1 should focus more on the spatial distribution of these models’ performance, 
rather than on the average over the whole region. Furthermore, the authors should provide 
more necessary information for model evaluation, e.g., sources of observations, equations 
used to calculate the statistics, etc.  
 
Response: We have now added spatial model performance based on the bias (Figures 4 and 
5) and included the relevant discussion (Lines 485-499; 516-528).  
 
Comment: From the model evaluation, it shows that results from different models have large 
divergence. This should be caused by many factors, like emissions, transport, chemistry, 
dry/wet removals. I would suggest the authors provide more information about the 
mechanisms/parameterizations used for each model in the supporting materials.  
 



 
 

Response: We have now added more details in Table 1 and model system descriptions in the 
supplementary material adopted from Solazzo et al., 2017. 
 
Comment: In this study, the intercontinental impacts are investigated using the 20 % 
emission reduction scenarios applied over the source regions. In their model experiments, a 
global model was used to provide chemical boundary conditions for all participating 
regional models. To my knowledge, the long-range transport of air pollutants is controlled by 
many complicated factors, which may lead to much larger uncertainties over the long-
distance path than the source region. I am not sure that using a single model to represent the 
long-range transport is a proper way for an ensemble analysis. Therefore, the authors should 
provide more information regarding the evaluation of the global model.  
 
Response: We have used one global model to produce the boundary conditions to the regional 
CTMs in order to limit the uncertainty in the multi-model ensemble. The evaluation of the 
global is not the aim of this study s it is a common input to all the regional models. C-IFS 
model has been extensively evaluated elsewhere (e.g. Flemming et al. (2015 and 2017), and 
in particular for the North America in Hogrefe et al. (2017) and Huang et al. (2017). 
 
Comment:  Figure quality is low and needs improvement, especially for Figures 1 and 4. The 
authors should make font-size, colorbar size, subtitles, units, and plot captions consistent. See 
specific comments below. 
 
Response: We have now improved the figures. 
 
Specific comments:  
 
Comment: Lines 102-116: This paragraph introduced a number of previous works 
quantifying air pollution-related health impacts due to intercontinental transport. However, 
the results of those studies showed inconsistent relative importance of domestic versus 
foreign emissions. Please comment on this.  
 
Response: These studies uses different sets of global models on different spatial resolutions. 
However results were consistent in terms of the contribution of local vs. non-local sources on 
the impacts of pollution.  
 
Comment: Lines 250-251: “… previous AQMEII-related works” need to show some 
references here.  
 
Response: These references are already listed in Lines 301-302. 
 
Comment: Lines 254-255: The authors should briefly introduce the sources and features of 
these observation data used in this study.  
 



 
 

Response: We have now added information on the source of the observations (Lines 250-
259): “The observational data used in this study are the same as the dataset used in second 
phase of AQMEII (Im et al., 2015a, b). Surface observations are provided in the Ensmeble 
system (http://ensemble2.jrc.ec.europa.eu/public/) that is hosted at the Joint Research Centre 
(JRC). Observational data were originally derived from the surface air quality monitoring 
networks operating in EU and NA. In EU, surface data were provided by the European 
Monitoring and Evaluation Programme (EMEP, 2003; http://www.emep.int/) and the 
European Air Quality Database (AirBase; http://acm.eionet.europa.eu/databases/airbase/). In 
NA observational data were obtained from the NAtChem (Canadian National Atmospheric 
Chemistry) database and from the Analysis Facility operated by Environment Canada 
(http://www.ec.gc.ca/natchem/).” 
 
Comment: Lines 329-330: The authors should describe in detail how the observed and 
simulated monthly time series in Figures 2 and 3 are obtained. For example, whether or not 
the observed and simulated results averaged over the whole continental regions are sampled 
with identical time and locations.  
 
Response: We have now added the following (Lines 244-250): “The models’ performance on 
simulating the surface concentrations of the health-related pollutants were evaluated using 
Pearson’s Correlation (r), normalized mean bias (NMB), normalized mean gross error 
(NMGE) and root mean square error (RMSE) to compare the modelled and observed hourly 
pollutant concentrations over surface measurement stations in the simulation domains. The 
hourly modelled vs. observed pairs are averaged and compared on a monthly basis. The 
modelled hourly concentrations  were first filtered based on observation availability before 
the averaging has been performed.” 
 
Comment: Lines 390-391: “…the numbers of cases are strongly correlated to the population 
density…”, please refers to Figure 1 for comparison.  
 
Response: We have now referred to Fig. 1 (Line 590).  
 
Comment: Table 6: Why not use the same units for Europe and North America?  
 
Response: We have now corrected the captions. Units are consistent over the two domains.  
 
Comment: Figure 1: Please clarify which continent the left/right panel refers to in the 
caption. The unit of population density also needs to be provided. More detailed terrestrial 
boundaries are recommended to distinguish countries or states. Furthermore, I recommend 
using the same scale for the two panels to have a better comparison.  
 
Response We have now updated Fig. 1. 
 
Comment: Figure 4: besides the same comments for Figure 1, figure quality needs to be 
improved significantly. The authors should be consistent in making the plots. For example, 



 
 

the top two plots have subtitles while the bottom ones don’t. The font-size and colorbar size 
of these panels are different. The units are missed in the top two panels. The colorbar of plot 
(d) even overlaps the coordinate. Additionally, the caption does not provide all necessary 
information to understand this figure. 
 
Response: We have now updated Fig. 4 (now Fig. 6). 
  



 
 

Response to Reviewer 4: 
 
We thank the reviewer for the constructive comments. We have responded to all the 
comments in the new version of the manuscript. 
 
Summary comments 
 
Comment: This manuscript is an ambitious effort to simulate air quality changes and 
estimate health impacts using an ensemble of models. The results clearly reflect a substantial 
effort on the part of the authors. I have three primary concerns:  
 
(1) the health impact assessment is insufficiently documented. In particular, the manuscript 
does not clearly describe the procedure for selecting and applying health endpoints to 
quantify or the 
source of the baseline incidence rates in the U.S. and Europe.   
 
Response: The selected health end-points are fairly conventional and aligned to the impact 
assessments that have been done for the European Commission and the European 
Environment Agency (EEA) up to 2013; they have been richly documented elsewhere. It was 
not the purpose here to develop a novel health impact assessment, but rather to explore its 
implications across the two continents. A new generation of health impact assessments are 
expected to make reference to the meanwhile established WHO HRAPIE consensus 
guidelines.  
 
(2) Reasonable people can disagree as to whether it’s appropriate to quantify the economic 
value of years of life lost. However, the manuscript does not attempt to provide a rationale 
for this 
choice.  
 
Response: This is a fairly crucial aspect of mortality impacts, which EU and USA simply 
approaches differently – we here adhere to the European approach, the main advocate of 
which was Ari Rabl (Rabl, Spadaro and Holland, 2014). See further below. 
 
(3) Finally, the authors should indicate whether each of the air quality and health impact 
models used have been peer reviewed and whether the source code is publicly available. 
 
Response: As seen in Table 1 and now in the supplementary material, there a number of 
CTMs used in the AQMEII exercise. Some of these CTMs are community models, such as  
WRF/Chem, CMAQ and CAMx, while others are not community models and being used by 
the main developers so that the model is not publicly available but can be shared upon 
collaboration. Only one health impact model has been used, using different concentration 
inputs from each of the CTMs. EVA system is not a community model either and developed 
internally by Aarhus University, but has been used upon collaboration with other institutes.  
 



 
 

Detailed comments 
 
Comment: Line 46: Is this correct? The outdoor air pollution portion of the Global Burden of 
Disease studies have applied a consistent modelling framework to predict ambient 
concentrations 
of common air pollutants, and quantify the number of premature deaths attributable to 
outdoor fine particles and ground-level ozone. Other studies, including Anenberg et al. 
(2010, 2014) quantify global ozone and PM-attributable deaths due to anthropogenic 
emissions.  
 
Response: GBD does not provide economic estimates. Same for Anenberg et al. (2010 and 
2014). 
 
Comment: Line 50: Anthropgenic and non-anthropogenic?  
 
Response: The perturbation simulations target anthrpogenic emissions. This is now added to 
the text (Line 49). 
 
Comment: Line 53: Did you estimate impacts down to some background concentration, or to 
zero?  
 
Response: EVA system uses a cut off value of 35 ppb to calculate health impacts from ozone 
and used to calculate the SOMO35 metric. Regarding PM2.5, no threshold is being applied, 
following the EEA recommendations (See Line 388-396). 
 
Comment: Lines 52-65: Here and elsewhere it would be helpful to distinguish between the air 
quality modeling portion of the ensemble and the health impact estimation portion of the 
ensemble. 
 
Response: The health impacts are calculated from each CTM individually. Therefore, the 
health impact ensemble includes health impacts using concentrations from the different 
CTMs. We have now made this more clear in the text as follows (Lines 288-294): “All 
modeling groups interpolate their model outputs on a common 0.25°×0.25° resolution 
AQMEII grid predefined for Europe (30°W - 60°E, 25°N - 70°N) and North America 
(130°W - 59.5°W, 23.5°N - 58.5°N). All the analyses performed in the present study use the 
pollutant concentrations on these final grids. Health impacts are first calculated for each 
individual model and then the ensemble mean, median and standard deviation are calculated 
for each health impact.” 
 
Comment: Lines 66-77: Are these a sum of the PM2.5 and ozone-related premature deaths?  
 
Response: The numbers reflect the total premature death. The text now reads (Lines 63-71): 
“A total of 54 000 and 27 500 premature deaths can be avoided by a 20% reduction of global 
anthropogenic emissions in Europe and the U.S., respectively. A 20% reduction of North 



 
 

American anthropogenic emissions avoids a total premature death of ~1 000 in Europe and 
25 000 total premature deaths in the U.S. A 20% decrease of anthropogenic emissions within 
the European source region avoids a total premature death of 47 000 in Europe. Reducing the 
East Asian anthropogenic emissions by 20% avoids ~2000 total premature deaths in the U.S. 
These results show that the domestic anthropogenic emissions make the largest impacts on 
premature death on a continental scale, while foreign sources make a minor contributing to 
adverse impacts of air pollution.” 
 
Comment: Line 85: What does "scale dependent challenge" mean in this context?  
 
Response: We have modified the sentence to be more clear (Line 79-81): “Air pollution is a 
transboundary phenomenon with global, regional, national and local sources, leading to large 
differences in the geographical distribution of human exposure.” 
 
Comment: Line 93: Suggest updating with most current GBD published value. Lines 104-
109: These two statements are difficult to reconcile.  
 
Response: This part has been modified with newer numbers and for better readability (Lines 
87-89): “The Global Burden of Disease Study 2015  estimated 254 000 O3-related and 4.2 
million anthropogenic PM2.5-related premature deaths per year (Cohen et al., 2017).” 
 
Comment: Line 150: This isn’t quite right. That paper estimated a total of between 130k and 
350k PM & O3 related deaths. Note also that this paper quantified impacts from 
anthropogenic emissions alone.  
 
Response: We have now corrected the sentence as (Line 153-155): “Fann et al. (2012) 
calculated 130,000 - 350,000 premature deaths associated with O3 and PM2.5from the 
anthropogenic sources in the U.S. for the year 2005.” 
 
Comment: Line 155: Suggest rephrasing for clarity.  
 
Response: We have changed the sentence as: “Observations have spatial limitations 
particularly when assessments are needed for large regions.” 
 
Comment: Lines 197-202: I had a hard time following these statements. In particular, I could 
not understand what exactly you did to minimize error and what redundancy you’re referring 
to.  
 
Response: We have now rephrased this part as follows (Lines 202-205): “Finally, following 
the conclusions of Solazzo and Galmarini (2015), the health impacts have been calculated 
using an optimal ensemble of models, determined by error minimization. This approach can 
assess the health impacts with reduced model bias, which we can then compare with the 
classically derived estimates based on model averaging. “ 
 



 
 

Comment: Line 291: How does this ozone metric correspond to the exposure metrics 
specified in each epidemiological study?  
 
Response: SOMO35 metric is recommended by the EEA and also recommended in the latest 
WHO report reviewing the different ERFs. We have rephrased this part as follows (Line 358-
360): “EVA calculates and uses the annual mean concentrations of CO, SO2 and PM2.5, while 
for O3, it uses the SOMO35 metric that is defined as the yearly sum of the daily maximum of 
8-hour running average over 35 ppb, following WHO (2013) and EEA (2017).” 
 
Comment: Line 292: Here (or elsewhere) it would be useful to provide the rationale for 
selecting these health endpoints. Citing back to WHO or US EPA documents or other 
systematic reviews would be helpful.  
 
Response: We have now refereed to EEA and WHO reports in several parts of the 
manuscript. 
 
Comment: Line 297: It’s really difficult to understand why YOLL are being divided by 10.6. 
Why not simply quantify counts of excess cases in the EVA tool?  
 
Response: see comment to lines 303-321 
 
Comment: Line 300: the selection of c-r functions greatly influences the health impact 
assessment, and so I’d recommend including this information directly in the manuscript 
rather than citing back to another paper. Likewise, what is the source of the baseline death 
and morbidity rates? At what spatial scale were these data available?  
 
Response: We have not extended the section describing EVA substantially (Lines 326-464).  
 
Comment: Lines 303-321: I’d suggest providing a clearer rationale for valuing years of life 
lost rather than counts of excess death.  
 
Response: government agencies in Europe, including the European Commission, apply a 
methodology for costing of air pollution that is based on accounting for lost life years, rather 
than for entire statistical lives as is customary in USA. Whereas the average traffic victim, for 
instance, is mid-aged and likely to lose about 35-40 years of life expectancy, pollution 
victims are believed to suffer significantly smaller losses of years (EAHEAP, 1999:64; 
Friedrich and Bickel, 2001). To avoid overstating the benefits of air pollution control, these 
are treated as proportional to the number of life years lost. 
 
The average loss of lifeyears per victim has previously been assessed to 10.6 (calculation 
method explained in Andersen 2017). 
 
Comment: Line 314: Please provide a citation to support this claim.  
 



 
 

Response: OECD, 2016 reference is now added to the text (Line 440) 
 
Comment: Line 316: Did you consider adjusting the WTP to account for changes in income 
over time (i.e. income elasticity)?  
 
Response: Indeed- the costs reported are the net present costs related to mortality and 
morbidity, and WTP is expected to increase with increasing incomes in the future; however 
this future stream of WTP needs to be discounted back into net present values. It has been 
customary in EU studies to apply an income elasticity of 1. 
 
Comment: Line 320: Why adjust the WTP using a PPP when you can just apply a U.S. 
specific value?  
 
Response: We have now extended this section (Lines 448-464). Cost-benefit analysis in USA 
relating to air pollution proceeds from a standard approach whereby abatement measures 
preventing premature mortality are considered according to the number of statistical fatalities 
avoided, which are appreciated according to the value of statistical life (VSL) (presently USD 
7.4 million). In contrast, and following recommendations from the UK working group on 
Economic Appraisal of the Health Effects of Air Pollution (EAHEAP, 1999), focus in EU has 
been on the possible changes in average life expectancy resulting from air pollution.  In EU 
the specific number of life years lost as a result of changes in air pollution exposures are 
estimated based on lifetable methodology, and monetized with Value-Of-Life-Year (VOLY) 
unit estimates (Holland et al. 1999; Leksell and Rabl 2001). The theoretical basis is a life-
time consumption model according to which the preferences for risk reduction will reflect 
expected utility of consumption for remaining life years (Hammitt 2007; OECD 2006:204). 
The much lower VSL values customary in Europe (presently €2.2 million) add decisively to 
the differences, as VOLY is deducted from this value. By using a common valuation 
framework according the EU approach we allow for direct comparisons of the monetary 
results. It follows from OECD recommendations (2012) to correct with PPP when doing such 
benefit transfer. 
 
Comment: Line 394-402: Please report the currency year.  
 
Response: The currency year is 2013 (Line 464).  
 
Comment: Line 418: Did you consider reporting population-normalized results (e.g. deaths 
per 100k)?  
 
Response: such a figure is embedded in the specific exposure-response function for mortality, 
which was derived from lifetable analysis, however providing lost life-years per 100k 
 
Comment: Line 434: Can you clarify what a health impact index is?  
 



 
 

Response: We have now rephrased this paragraph (Lines 636-643): “Results show that for the 
particular input (gridded air pollutant concentrations from individual model)-output (each 
health outcome) configuration, the PM2.5 drives the variability of the different health impact 
and that at least 81% of the variation of the health impacts are explained by sole variations in 
the pollutants (i.e. without interactions: Table S3). Table S1 also shows that the most 
important contribution to the health impacts is from PM2.5, followed by CO and O3 (with 
much smaller influence though). The impact  of perturbing PM2.5 by a fixed fraction of its 
standard deviation on the health impact is roughly double compared to CO and O3.” 
 
Comment: Table 2: The nomenclature is a little misleading. In a health impact function, 
effect coefficients are exponentiated and multiplied against an air quality change and then 
against baseline incidence rate and the population exposed. However, the effect coefficient is 
written as “x cases/ugm3”. This is not correct.  
 
Response: In EVA, we use linear functions for the ERFs. We have now added the following 
section (Lines 353-355): “EVA uses ERFs that are modelled as a linear function, which is a 
reasonable approximation as showed in several studies (e.g. Pope et al., 2000; the joint World 
Health Organization/UNECE Task Force on Health (EU, 2004; Watkiss et al., 2005)).”  
 
Comment: Table 2: Several of the endpoints list multiple studies. Were these pooled in some 
way?  
 
Response: Each of the morbidity effects refer to one study each.  
 
Comment: Tables 3-4: Please include 95% confidence intervals 
 
Response: We have moved the big tables into the supplementary material and made a new 
Table 3, which summarizes the mean results from the different ensemble approaches. Along 
with the mean of all individual pollutant estimates (denoted as MMmi in the manuscript), we 
have now added the standard deviations. EVA model implements the ERF functions as linear 
equations and the 95% CI are not taken into account presently. We agree with the reviewer 
that it is important to provide these numbers, however the present study employs a frozen 
version of the model, where the aim is not focusing on further development of the model. We 
continue to further develop the model on many aspects and this comment will also be taken 
into account. 
  



 
 

Response to Reviewer 5: 
 
We thank the reviewer for the comments and corrections. We have now implemented all the 
points to further develop the manuscript. 
 
General comments 
 
Comment: First, the description of the health impact assessments and the economic impacts 
should be more detailed, and include especially all the assumptions and choices made in 
making the computations and assessments. There are numerous alternative choices that you 
will need to make for e.g. economic evaluations; some of these have been properly described 
and discussed, whereas some have not been described. Reviewer number 1 has already 
detailed this issue. 
 
Response: The EVA methodology section has been substantially extended (Lines 326-464). 
 
Comment: Second, there are also gaps in the description of the individual CTM’s and, the 
constructed ensemble and the evaluation of the models and the ensemble. In particular, there 
is very little discussion on how the non-anthropogenic emission sources have been included; 
as these constitute a substantial part of the total PM mass, these should also be described. 
There should be also discussion on the main limitations of the CTM’s and the emission 
inventories used, what are their main uncertainties and the most poorly known parts of 
modelling. Details on this issue are in ‘detailed comments’. 
 
Response: We have added more details in Table 1 and added model descriptions to the 
supplementary materials adopted from Solazzo et al. (2017). 
 
Comment: Regarding model evaluation, the manuscript should specify which networks of 
stations were used, how many stations were considered within each domain, and what were 
their site classifications. Large PM deficits were found for some models. The manuscript 
should therefore discuss the most probably reasons for these underpredictions: were these 
caused by deficiencies of the used CTM’s, missing emissions or both, or/and some other 
reason. 
 
Response: We have extended the model evaluation part (Lines 485-499; 516-528). 
 
Comment: Regarding the presentation of the results, there are a lot of large tables, but in my 
view too little synthesis and graphical illustration of the main results and findings. I would 
recommend to move some of the large tables an annex or to supplementary materials for 
better readability, and some summary figures could be added instead, to highlight the main 
insights, findings and conclusions.  
 
Response: We have moved some of the tables (Table 3 and Table 4) in the supplement and 
kept the ensemble mean results together with the optimal ensemble results from old Table 7 



 
 

to the new Table 3. However, we believe that these numbers should be explicitly presented in 
the manuscript as particularly the morbidity calculations are for the first time calculated for 
both continents and transferring them into figures would lose the details. 
  
Comment: Regarding the section ‘materials and methods’, I recommend to use the traditional 
sections for a better readability, e.g., first Evaluation of emissions, then Atmospheric 
dispersion modelling, the construction of ensembles, Health impact assessment and finally 
economic parts. The current subtitles list one project and one model. 
 
Response: We have now re-structured this section following the reviewers recommendations. 
 
Detailed comments 
 
Abstract. 
 
Comment: Lines. 52-53. This is one of the main results of the study, so it should be presented 
clearly. This study addresses models for (i) emissions, (ii) dispersion, (iii) health assessment 
and (iv) economic evaluation. The term ‘model’ should therefore be used carefully and 
specified as necessary, throughout the manuscript. This sentence probably refers to CTM’s 
but not health models (or emission models). It is therefore variation due to the differences of 
CTM’s. However, the computed health impacts can also vary a lot depending on which health 
assessment model would be used, and which health assessment assumptions would be 
selected. In this study, the authors have addressed the variability due to CTM’s but not that of 
the health assessment modelling, although 
the latter uncertainty is commonly much larger. Please clarify and write more clearly and 
accurately what is meant. 
 
Response: We have now rephrased this sentence accordingly (Lines 53-55): “Health impacts 
estimated by using concentration inputs from different chemistry and transport models 
(CTMs) to the EVA system can vary up to a factor of three in Europe (twelve models) and 
the United States (three models).” 
 
Comment: Lines 54-55. These results could be also presented per capita; this would better 
illustrate better the differences of the two selected domains. The PM concentration levels and 
the distributions of population of the two domains could also be quantitatively compared. ‘In 
agreement’, specify quantitatively, e.g., within what percentage. 
 
Response: We have now added normalized PD numbers (number deaths per 100 000) in the 
text. 
 
Comment: Line 68. Write the acronym in full. 
 
Response: We have provided the full name of the acronym (Lines 48-52): “Along with a base 
case simulation, additional runs were performed introducing 20% anthropogenic emission 



 
 

reductions both globally and regionally in Europe, North America and East Asia, as defined 
by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-
HTAP2).” 
 
Comment: Line 71. ‘global anthropogenic emissions’ – specified for which pollutant species 
? 
 
Response: Emission perturbations target anthropogenic emissions. This is now made clear in 
the text (Lines 63-71): “A total of 54 000 and 27 500 premature deaths can be avoided by a 
20% reduction of global anthropogenic emissions in Europe and the U.S., respectively. A 
20% reduction of North American anthropogenic emissions avoids a total premature death of 
~1 000 in Europe and 25 000 total premature deaths in the U.S. A 20% decrease of 
anthropogenic emissions within the European source region avoids a total premature death of 
47 000 in Europe. Reducing the East Asian anthropogenic emissions by 20% avoids ~2000 
total premature deaths in the U.S. These results show that the domestic emissions make the 
largest impacts on premature death, while foreign sources make a minor contributing to 
adverse impacts of air pollution.” 
 
Comment: Line 72. ‘emissions foreign emission’ – correct sentence 
 
Response: The sentence has been corrected (Lines 64-66). 
 
Comment: Lines 75-77. ‘foreign sources make a minor contributing : : :’. This is too general. 
Whether the sources in a specified domain contribute more or less to health within that 
domain depends on a lot of factors, such as e.g., population densities in the considered areas, 
how large the considered two areas are, which pollutants are considered, etc. This statement 
is therefore correct for some cases, and not correct for some others. Please rewrite the 
statement more accurately. 
 
Response: We agree with the reviewer. However, the abstract is just an overall short 
summary of the paper so such a discussion does not fit to this section. We have now slightly 
rephrased the sentence as following: “These results show that the domestic anthropogenic 
emissions make the largest impacts on premature death on a continental scale, while foreign 
sources make a minor contributing to adverse impacts of air pollution.” 
 
Introduction 
 
Comment: Lines 107-109, and lines 114-117. Same comment as above. Whether these 
statements are true, depends on various factors – the relevant factors therefore need to be 
specified. 
 
Response: These studies employ global model ensembles on coarse spatial resolutions to 
calculate mortality due to air pollution. 
 



 
 

Comment: Lines 134-136. When presenting cost values, it is proper to state also for which 
year this has been evaluated. 
 
Response: The currency year is 2013 (Lines 463-464). 
 
Comment: Line 168. ‘: : : seen : : : ’ - correct the English language. 
 
Response:. We have rephrased the sentence as following (Lines 171-173): “Source-receptor 
relationships have the advantage of reducing the computing time significantly and have 
therefore been extensively used in systems like GAINS (Amann et al., 2011).” 
 
Comment: Lines 200-202. Using a so-called optimal ensemble is fine, but as far as I know, it 
does not guarantee that there is e.g. no redundancy or recursiveness of models. Practically in 
all cases, a collection of CTM’s will have some very similar treatments; using an ‘optimal’ 
ensemble will probably reduce their effect, and that is OK, but it does not altogether remove 
these effects. 
 
Response: We agree with the reviewer. That is why we write that we produce an optimal 
ensemble producing the minimum error at each time step for each pollutant, and do not say 
that we remove the error altogether.  
 
Materials and methods 
 
Comment: Line 218. Should read ‘emission information’. There are also several other input 
datasets, obviously. Report also the modelling of sea salt, desert dust, biogenic emissions, 
wild-land fires, etc. Add some discussion on what were the main limitations, uncertainties 
and gaps of modelling of the CTM’s used. 
 
Response: We have now added more details in Table 1 and provided model descriptions in 
the supplementary materials, adopted from Solazzo et al. (2017). 
 
Results 
 
Comment: What were the networks of stations used in Europe and the US; these should be 
described. How many stations were considered ? What were the classifications of stations – 
were all of these classified as regional or global background ? 
 
Response: We have extended the model evaluation section (Lines 244-263).  
 
Conclusions 
 
Comment: Line 562. This statement may be true, but it should be supported by quantitative 
evidence: were there model runs to quantify this effect, and how large was it in e.g. per cents 



 
 

of predicted concentrations ? Alternatively, if not confirmed, this statement could be 
removed. 
 
Response: This is the most important gap in air pollution-related health studies and therefore 
needs to be investigated. Therefore, there are no studies yet that designed such an experiment. 
Further down, we refer to a Nordic project that works on these issues. 
 
Comment: Lines 533-538. The underestimation of PM mass is a key uncertainty. There 
should therefore be some accurate assessment on the reasons resulting to this uncertainty. 
For instance, ‘natural emissions’ are mentioned, but it is not stated in the text which of these 
were included, which were neglected, and which possible omission or underestimation could 
probably have the largest effect. Please add some discussion of the most probable causes of 
the under-prediction. 
 
Response: We have now extended this paragraph (Lines 748-754). As shown in the 
supplementary material, the CTMs diverge a lot on the representation of particles and their 
size distribution, SOA formation, as well as the inclusion of natural sources. As the 
anthropogenic emissions are harmonized in the models, they represent a minor uncertainty in 
terms of model-to-model variation. However, differences in the treatment of the temporal, 
vertical and chemical distributions of the particulate and volatile organic species have an 
influence in the model calculations and therefore lead to model-to-model variations.



 
 

Assessment and economic valuation of air pollution impacts on human health over Europe 1 
and the United States as calculated by a multi-model ensemble in the framework of 2 
AQMEII3 3 

Ulas Im1*, Jørgen Brandt1, Camilla Geels1, Kaj Mantzius Hansen1, Jesper Heile Christensen1, 4 
Mikael Skou Andersen1, Efisio Solazzo2, Ioannis Kioutsioukis3, Ummugulsum Alyuz4, 5 
Alessandra Balzarini5, Rocio Baro6, Roberto Bellasio7, Roberto Bianconi7, Johannes Bieser8, 6 
Augustin Colette9, Gabriele Curci10,11, Aidan Farrow12, Johannes Flemming13, Andrea 7 
Fraser14, Pedro Jimenez-Guerrero6, Nutthida Kitwiroon15, Ciao-Kai Liang16, Uarporn 8 
Nopmongcol17, Guido Pirovano5, Luca Pozzoli4,2, Marje Prank18,19, Rebecca Rose14, Ranjeet 9 
Sokhi12, Paolo Tuccella10,11, Alper Unal4, Marta Garcia Vivanco9,20, Jason West16, Greg 10 
Yarwood17, Christian Hogrefe21, Stefano Galmarini2 11 

1 Aarhus University, Department of Environmental Science, Frederiksborgvej 399, DK-4000, 12 
Roskilde, Denmark. 13 
2 European Commission, Joint Research Centre (JRC), Ispra (VA), Italy. 14 
3 University of Patras, Department of Physics, University Campus 26504 Rio, Patras, Greece 15 
4 Eurasia Institute of Earth Sciences, Istanbul Technical University, Istanbul, Turkey 16 
5 Ricerca sul Sistema Energetico (RSE SpA), Milan, Italy 17 
6 University of Murcia, Department of Physics, Physics of the Earth, Campus de Espinardo, Ed. 18 
CIOyN, 30100 Murcia, Spain 19 
7 Enviroware srl, Concorezzo, MB, Italy 20 
8 Institute of Coastal Research, Chemistry Transport Modelling Group, Helmholtz-Zentrum 21 
Geesthacht, Germany 22 
9 INERIS, Institut National de l'Environnement Industriel et des Risques, Parc Alata, 60550 Verneuil-23 
en-Halatte, France  24 
10 Dept. Physical and Chemical Sciences, University of L'Aquila, L'Aquila, Italy 25 
11 Center of Excellence CETEMPS, University of L’Aquila, L’Aquila, Italy 26 
12 Centre for Atmospheric and Instrumentation Research (CAIR), University of Hertfordshire, 27 
Hatfield, UK 28 
13 European Centre for Medium Range Weather Forecast (ECMWF), Reading, UK 29 
14 Ricardo Energy & Environment, Gemini Building, Fermi Avenue, Harwell, Oxon, OX11 0QR, UK 30 
15 Environmental Research Group, Kings' College London, London, UK 31 
16 Department of Environmental Sciences and Engineering, University of North Carolina at Chapel 32 
Hill, Chapel Hill, North Carolina, USA 33 
17 Ramboll Environ, 773 San Marin Drive, Suite 2115, Novato, CA 94998, USA  34 
18 Finnish Meteorological Institute, Atmospheric Composition Research Unit, Helsinki, Finland 35 
19 Cornell University, Department of Earth and Atmospheric Sciences, Ithaca, USA 36 
20 CIEMAT. Avda. Complutense 40., 28040 Madrid, Spain 37 
21 Computational Exposure Division, National Exposure Research Laboratory, Office of Research and 38 
Development, United States Environmental Protection Agency, Research Triangle Park, NC, USA.  39 
 40 
Correspondence to: Ulas Im (ulas@envs.au.dk) 41 

Abstract 42 

The impact of air pollution on human health and the associated external costs in Europe and 43 
the United States (U.S.) for the year 2010 is modelled by a multi-model ensemble of regional 44 
models in the frame of the third phase of the Air Quality Modelling Evaluation International 45 



 
 

Initiative (AQMEII3). This is the first study known to use a common atmospheric modelling 46 
and health assessment approach across the two continents. The modelled surface 47 
concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air 48 
Pollution (EVA) system to calculate the resulting health impacts and the associated external 49 
costs from each individual model. Along with a base case simulation, additional runs were 50 
performed introducing 20% anthropogenic emission reductions both globally and regionally 51 
in Europe, North America and East Asia, as defined by the second phase of the Task Force on 52 
Hemispheric Transport of Air Pollution (TF-HTAP2).  53 

Health impacts estimated by using concentration inputs from different chemistry and 54 
transport models (CTMs) to the EVA system can vary up to a factor of three in Europe 55 
(twelve models) and the United States (three models). In Europe, the multi-model mean total 56 
number of premature deaths (acute + chronic) is calculated to be 414 000 while in the U.S., it 57 
is estimated to be 160 000, in agreement with previous global and regional studies. The 58 
economic valuation of these health impacts are calculated to be 300 and 145 billion Euros in 59 
Europe and the U.S., respectively.  A subset of models that produce the smallest error 60 
compared to the surface observations at each time step against an all-models mean ensemble 61 
results in increase of health impacts by up to 30% in Europe, thus giving significantly higher 62 
mortality estimates compared to available literature. Over the U.S., the optimal ensemble 63 
mean led to a decrease in the calculated health impacts by ~11%. These differences 64 
encourage the use of optimal-reduced multi-model ensembles over traditional all model-mean 65 
ensembles.  66 

A total of 54 000 and 27 500 premature deaths can be avoided by a 20% reduction of global 67 
anthropogenic emissions in Europe and the U.S., respectively. A 20% reduction of North 68 
American anthropogenic emissions avoids a total premature death of ~1 000 in Europe and 69 
25 000 total premature deaths in the U.S. A 20% decrease of anthropogenic emissions within 70 
the European source region avoids a total premature death of 47 000 in Europe. Reducing the 71 
East Asian anthropogenic emissions by 20% avoids ~2000 total premature deaths in the U.S. 72 
These results show that the domestic anthropogenic emissions make the largest impacts on 73 
premature death on a continental scale, while foreign sources make a minor contributing to 74 
adverse impacts of air pollution. 75 

1. Introduction 76 

According to the World Health Organization (WHO), air pollution is now the world’s largest 77 
single environmental health risk (WHO, 2014). Around 7 million people died prematurely in 78 
2012 as a result of air pollution exposure from both outdoor and indoor emission sources 79 
(WHO, 2014). WHO estimates 3.7 million premature deaths in 2012 from exposure to 80 
outdoor air pollution from urban and rural sources worldwide. According to the Global 81 
Burden of Disease (GBD) study, exposure to ambient particulate matter pollution remains 82 
among the ten leading risk factors. Air pollution is a transboundary phenomenon with global, 83 
regional, national and local sources, leading to large differences in the geographical 84 
distribution of human exposure. Short-term exposure to ozone (O3) is associated with 85 
respiratory morbidity and mortality (e.g. Bell et al., 2004), while long-term exposure to O3 86 



 
 

has been associated with premature respiratory mortality (Jerrett et al., 2009). Short-term 87 
exposure to particulate matter (PM2.5) has been associated with increases in daily mortality 88 
rates from respiratory and cardiovascular causes (e.g. Pope and Dockery, 2006), while long-89 
term exposure to PM2.5 can have detrimental chronic health effects, including premature 90 
mortality due to cardiopulmonary diseases and lung cancer (Burnett et al., 2014). The Global 91 
Burden of Disease Study 2015  estimated 254 000 O3-related and 4.2 million anthropogenic 92 
PM2.5-related premature deaths per year (Cohen et al., 2017).  93 

Changes in emissions from one region can impact air quality over others, affecting also air 94 
pollution-related health impacts due to intercontinental transport (Anenberg et al., 2014; 95 
Zhang et al., 2017). In the framework of the Task Force on Hemispheric Transport of Air 96 
Pollution (TF-HTAP), Anenberg et al. (2009) found that reduction of foreign ozone precursor 97 
emissions can contribute to more than 50% of the deaths avoided by simultaneously reducing 98 
both domestic and foreign precursor emissions. Similarly, they found that reducing emissions 99 
in North America (NA) and Europe (EU) has largest impacts on ozone-related premature 100 
deaths in downwind regions than within (Anenberg et al., 2009). This result agrees with 101 
Duncan et al. (2008), which showed for the first time that emission reductions in NA and EU 102 
have greater impacts on ozone mortality outside the source region than within. Anenberg et 103 
al. (2014) estimates that 93–97 % of PM2.5-related avoided deaths from reducing emissions 104 
occurs within the source region while 3–7 % occur outside the source region from 105 
concentrations transported between continents. In spite of the shorter lifetime of PM2.5 106 
compared to O3, it was found to cause more deaths from intercontinental transport (Anenberg 107 
et al., 2009; 2014). In the frame of the second phase of the Task Force on Hemispheric 108 
Transport of Air Pollution (TF-HTAP2; Galmarini et al., 2017), an ensemble of global 109 
chemical transport model simulations calculated that 20% emission reductions from one 110 
region generally lead to more avoided deaths within the source region than outside (Liang et 111 
al., 2017).  112 

Recently, Lelieveld et al. (2015) used a global chemistry model and calculated that outdoor 113 
air pollution led to 3.3 million premature deaths globally in 2010. They calculated that in 114 
Europe and North America, 381 000 and 68 000 premature deaths occurred, respectively. 115 
They have also calculated that these numbers are likely to roughly double in the year 2050 116 
assuming a business-as-usual scenario. Silva et al. (2016), using the ACCMIP model 117 
ensemble, calculated that the global mortality burden of ozone is estimated to markedly 118 
increase from 382 000 deaths in 2000 to between 1.09 and 2.36 million in 2100. They also 119 
calculated that the global mortality burden of PM2.5 is estimated to decrease from 1.70 120 
million deaths in 2000 to between 0.95 and 1.55 million deaths in 2100. Silva et al. (2013) 121 
estimated that in 2000, 470 000 premature respiratory deaths are associated globally and 122 
annually with anthropogenic ozone, and 2.1 million deaths with anthropogenic PM2.5-related 123 
cardiopulmonary diseases (93%) and lung cancer (7%). These studies employed global 124 
chemistry and transport models with coarse spatial resolution (≥ 0.5°×0.5°), therefore health 125 
benefits from reducing local emissions were not able to be adequately captured. Higher 126 
resolutions are necessary to calculate more robust estimates of health benefits from local vs. 127 
non-local sources (Fenech et al., 2017). In addition, these studies calculated number of 128 



 
 

premature deaths due to air pollution, however none of them addresses morbidity such as 129 
number of lung cancer or asthma cases, or restricted activity days. Finally, these studies did 130 
not include economic costs either. HoweverOn the other hand, there are a number of regional 131 
studies that calculate health impacts on finer spatial resolutions, and address morbidity. 132 
However, they are mostly based on single air pollution models or do not evaluate the health 133 
benefits from local vs. non-local emissions. Therefore, a comprehensive study employing 134 
multi model ensemble of high spatial resolution and focusing on both mortality and morbidity 135 
from local vs. non-local sources lacks in the literature. Finally, these studies did not include 136 
economic costs either. 137 

In Europe, recent results show that outdoor air pollution due to O3, CO, SO2 and PM2.5 causes 138 
a total number of 570 000 premature deaths in the year 2011 (Brandt et al., 2013a; 2013b). 139 
The external (or indirect) costs to society related to health impacts from air pollution are 140 
tremendous. OECD (2014) estimates that outdoor air pollution is costing its member 141 
countries USD 1.57 trillion in 2010. Among the OECD member countries, the economic 142 
valuation of air pollution in the U.S. was calculated to be ~500 billion USD and ~660 USD in 143 
Europe. In the whole of Europe, the total external costs have been estimated to approx. 800 144 
billion Euros in year 2011 (Brandt et al., 2013a). These societal costs have great influence on 145 
the general level of welfare and especially on the distribution of welfare both within the 146 
countries as air pollution levels are vastly heterogeneous both at regional and local scales and 147 
between the countries as air pollution and the related health impacts are subject to long-range 148 
transport. Geels et al. (2015), using two regional chemistry and transport models, estimated a 149 
premature mortality of 455 000 and 320 000 in Europe (EU28 countries) for the year 2000, 150 
respectively, due to O3, CO, SO2 and PM2.5. They also estimated that climate change alone 151 
leads to a small increase (15%) in the total number of O3-related acute premature deaths in 152 
Europe towards the 2080s and relatively small changes (<5%) for PM2.5-related mortality. 153 
They found that the combined effect of climate change and emission reductions will reduce 154 
the premature mortality due to air pollution, in agreement with the results from Schucht et al. 155 
(2015). 156 

The U.S. Environmental Protection Agency estimated that in 2010 there were ∼160 000 157 
premature deaths in the U.S. due to air pollution (U.S. EPA, 2011). Fann et al. (2012) 158 
calculated 130,000 - 350,000 premature deaths associated with O3 and PM2.5from the 159 
anthropogenic sources in the U.S. for the year 2005. Caizzo et al. (2013) estimated 200 000 160 
cases of premature death in the U.S. due to air pollution from combustion sources for the year 161 
2005. 162 

The health impacts of air pollution and their economic valuation are estimated based on 163 
observed and/or modelled air pollutant concentrations. Observations have spatial limitations 164 
particularly when assessments are needed for large regions. The impacts of air pollution on 165 
health can be estimated using models, where the level of complexity can vary depending on 166 
the geographical scale (global, continental, country or city), concentration input 167 
(observations, model calculations, emissions) and the pollutants of interest that can vary from 168 
only few (PM2.5 or O3) to a whole set of all regulated pollutants. The health impact models 169 
normally used may differ in the geographical coverage, spatial resolutions of the air pollution 170 



 
 

model applied, complexity of described processes, the exposure-response functions (ERFs), 171 
population distributions and the baseline indices (see Anenberg et al., 2015 for a review). 172 

Air pollution related health impacts and associated costs can be calculated using Chemical 173 
Transport Model (CTM) or with standardized source-receptor relationships characterizing the 174 
dependence of ambient concentrations on emissions. (e.g. EcoSense model: ExternE, 2005, 175 
TM5-FASST: Van Dingenen et al., 2014). Source-receptor relationships have the advantage 176 
of reducing the computing time significantly and have therefore been extensively used in 177 
systems like GAINS (Amann et al., 2011). On the other hand, full CTM simulations have the 178 
advantage of better accounting for non-linear chemistry-transport processes in the 179 
atmosphere.  180 

CTMs are useful tools to calculate the concentrations of health-related pollutants taking into 181 
account non-linearities in the chemistry and the complex interactions between meteorology 182 
and chemistry. However, the CTMs include different chemical and aerosol schemes that 183 
introduce differences in the representation of the atmosphere as well as differences in the 184 
emissions and boundary conditions they use (Im et al., 2015a,b). These different approaches 185 
are present also in the health impact estimates that use CTM results as basis for their 186 
calculations. Multi-model  (MM) ensembles can be useful to the extent that allow us to take 187 
into consideration several model results at the same time, define the relative weight of the 188 
various members in determining the mean behavior, and  produce also an uncertainty 189 
estimated based on the diversity of the results (Potempski and Galmarini, 2010; Riccio et al., 190 
2013;  Solazzo et al., 2013).  191 

The third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3) 192 
project brought together fourteen European and North American modelling groups to 193 
simulate the air pollution levels over the two continental areas for the year 2010 (Galmarini et 194 
al., 2017). Within AQMEII3, the simulated surface concentrations of health related air 195 
pollutants from each modelling group serves as input to the Economic Valuation of Air 196 
Pollution (EVA) model (Brandt et al., 2013a; 2013b). This is the first study in our knowledge 197 
that uses a common approach across the two continents regarding the economic valuation of 198 
health impacts of air pollution (Andersen, 2017). The EVA model is used to calculate the 199 
impacts of health-related pollutants on human health over the two continents as well as the 200 
associated external costs. EVA model has also been tested and validated for the first time 201 
outside Europe. We adopt a multi-model ensemble (MM) approach, in which the outputs of 202 
the modelling systems are statistically combined assuming equal contribution from each 203 
model and used as input for the EVA model. In addition, the human health impacts (and the 204 
associated costs) of reducing anthropogenic emissions, globally and regionally have been 205 
calculated, allowing to quantify the trans-boundary benefits of emission reduction strategies. 206 
Finally, following the conclusions of Solazzo and Galmarini (2015), the health impacts have 207 
been calculated using an optimal ensemble of models, determined by error minimization . 208 
This approach can assess the health impacts with reduced model bias, which we can then 209 
compare with the classically derived estimates based on model averaging.  210 

2. Material and Methods 211 



 
 

2.1. AQMEII 212 

2.1.1. Participating Models 213 

In the framework of the AQMEII3 project, fourteen groups participated to simulate the air 214 
pollution levels in Europe and North America for the year 2010. In the present study, we use 215 
results from the thirteen groups that provided all health-related species (Table 1). As seen in 216 
Table 1, six groups have operated the CMAQ model. The main differences among the CMAQ 217 
runs reside in the number of vertical levels and horizontal spacing (Table 1) and in the 218 
estimation of biogenic emissions. UK1, DE1, and US3 calculated biogenic emissions using the 219 
BEIS (Biogenic Emission Inventory System version 3) model, while TR1, UK1, and UK2 220 
calculated biogenic emissions through the MEGAN model (Guenther et al., 2012). Moreover, 221 
DE1 does not include the dust module, while the other CMAQ instances use the inline 222 
calculation (Appel et al., 2013) and TR1 uses the dust calculation previously calculated for 223 
AQMEII Phase 2. Finally, all runs were carried out using CMAQ version 5.0.2 except for TR1, 224 
which is based on the 4.7.1 version. The gas-phase mechanisms and the aerosol models are 225 
used by each group is also presented in Table 1.More details of the model system are provided 226 
in the supplementary material. The differences in the meterological drivers and aerosol 227 
modules can lead to substantial differences in modelled concentrations (Im et al., 2015b). 228 

2.1.2. Emission and Boundary Conditions 229 

The base-case emission inventories that are used in AQMEII for Europe and North America 230 
are extensively described in Pouliot et al. (2015). For Europe, the 2009 inventory of TNO-231 
MACC anthropogenic emissions was used. In regions not covered by the emission inventory, 232 
such as North Africa, five modelling systems have complemented the standard inventory with 233 
the HTAPv2.2 datasets (Janssens-Maenhout et al., 2015). For the North American domain, 234 
the 2008 National Emission Inventory was used as the basis for the 2010 emissions, 235 
providing the inputs and datasets for processing with the SMOKE emissions processing 236 
system (Mason et al., 2012). For both continents the regional scale emission inventories were 237 
embedded in the global scale inventory (Janssens-Maenhout et al., 2015) used by the global-238 
scale HTAP2 modelling community so that to guarantee coherence and harmonization of the 239 
information used by the regional scale modelling community. The annual totals for European 240 
and North American emissions in the HTAP inventory are the same as the MACC and 241 
SMOKE emissions. However, there are differences in the temporal distribution, chemical 242 
speciation and the vertical distribution used in the models. The C-IFS model (Flemming et 243 
al., 2015 and 2017) provided chemical boundary conditions. The C-IFS model has been 244 
extensively evaluated in Flemming et al. (2015 and 2017), and in particular for North 245 
America (Hogrefe et al., 2017; Huang et al., 2017). Galmarini et al. (2017) provides more 246 
details on the setup of the AQMEII3 and HTAP2 projects. 247 

2.1.3. Model Evaluation 248 

The models’ performance on simulating the surface concentrations of the health-related 249 
pollutants were evaluated using Pearson’s Correlation (r), normalized mean bias (NMB), 250 
normalized mean gross error (NMGE) and root mean square error (RMSE) to compare the 251 



 
 

modelled and observed hourly pollutant concentrations over surface measurement stations in 252 
the simulation domains. The hourly modelled vs. observed pairs are averaged and compared 253 
on a monthly basis. The modelled hourly concentrations were first filtered based on 254 
observation availability before the averaging has been performed. The observational data 255 
used in this study are the same as the dataset used in second phase of AQMEII (Im et al., 256 
2015a, b). Surface observations are provided in the Ensmeble system 257 
(http://ensemble2.jrc.ec.europa.eu/public/) that is hosted at the Joint Research Centre (JRC). 258 
Observational data were originally derived from the surface air quality monitoring networks 259 
operating in EU and NA. In EU, surface data were provided by the European Monitoring and 260 
Evaluation Programme (EMEP, 2003; http://www.emep.int/) and the European Air Quality 261 
Database (AirBase; http://acm.eionet.europa.eu/databases/airbase/). In NA observational data 262 
were obtained from the NAtChem (Canadian National Atmospheric Chemistry) database and 263 
from the Analysis Facility operated by Environment Canada (http://www.ec.gc.ca/natchem/).  264 

The model evaluation has been conducted for 491 European and 626 North American stations 265 
for O3, 541 European stations and 37 North American stations for CO, 500 European station 266 
and 277 North American stations for SO2, and 568 European stations and 156 North 267 
American stations for PM2.5. 268 

2.1.4. Emissions Perturbations 269 

In addition to the base case simulations in AQMEII3, a number of emission perturbation 270 
scenarios have been simulated (Table 1). The perturbation scenarios feature a reduction of 271 
20% in the global anthropogenic emissions (GLO) as well as the HTAP2-defined regions of 272 
Europe (EUR), North America (NAM) and East Asia (EAS), as explained in detail in 273 
Galmarini et al. (2017) and Im et al. (2017). To prepare these scenarios, both the regional 274 
models and the global C-IFS model that provides the boundary conditions to the participating 275 
regional models have been operated with the reduced emissions.  The global perturbation 276 
scenario (GLO) reduces the global anthropogenic emissions by 20%, introducing a change in 277 
the boundary conditions as well as a 20% decrease in the anthropogenic emissions used by 278 
the regional models. The North American perturbation scenario (NAM) reduces the 279 
anthropogenic emissions in North America by 20%, introducing a change in the boundary 280 
conditions while anthropogenic emissions remain unchanged for Europe, showing the impact 281 
of long-range transport while for North America, while the scenarios introduces a 20% 282 
reduction of anthropogenic emissions in the HTAP-defined North American region. The 283 
European perturbation scenario (EUR) reduces the anthropogenic emissions in the HTAP-284 
defined Europe domain by 20%, introducing a change in the anthropogenic emissions while 285 
boundary conditions remain unchanged in the regional models, showing the contribution 286 
from the domestic anthropogenic emissions only. Finally, the East Asian perturbation 287 
scenario (EAS) reduces the anthropogenic emissions in East Asia by 20%, introducing a 288 
change in the boundary conditions while anthropogenic emissions remain unchanged in the 289 
regional models, showing the impact of long-range transport from East Asia on the NA 290 
concentrations. 291 

2.2. Health Impact Assessment 292 



 
 

All modeling groups interpolate their model outputs on a common 0.25°×0.25° resolution 293 
AQMEII grid predefined for Europe (30°W - 60°E, 25°N - 70°N) and North America 294 
(130°W - 59.5°W, 23.5°N - 58.5°N). All the analyses performed in the present study use the 295 
pollutant concentrations on these final grids. Health impacts are first calculated for each 296 
individual model and then the ensemble mean, median and standard deviation are calculated 297 
for each health impact. In order to be able to estimate an uncertainty in the health impacts 298 
calculations, none of the models were removed from the ensemble. 299 

Along with the individual health impact estimates from each model, a multi-model mean 300 
dataset (MMm, in which all the modelling systems are averaged assuming equally weighted 301 
contributions) has been created for each grid cell and time step, hence creating a new model 302 
set of results that have the same spatial and temporal resolution of the ensemble-contributing 303 
members. In addition to this simple MMm, an optimal MM ensemble (MMopt) has been 304 
generated. MMopt is created following the criteria extensively discussed and tested in the 305 
previous phases of the AQMEII activity (Riccio et al., 2012; Kioutsioukis et al., 2016; 306 
Solazzo and Galmarini, 2016), where it was shown that there are several ways to combine the 307 
ensemble members to obtain a superior model, mostly depending on the feature we wish to 308 
promote (or penalize). For instance, generating an optimal ensemble that maximizes the 309 
accuracy would require a minimization of the mean error or of the bias, while maximizing the 310 
associativity (variability) would require maximize the correlation coefficient (standard 311 
deviation). In this study, the sub-set of models whose mean minimize the mean squared error 312 
(MSE) is selected as optimal (MMopt). MMm and MMopt have therefore the same spatial 313 
resolution with the individual models. The MSE is chosen for continuity with previous 314 
AQMEII-related works. The MSE is chosen in the light of its property of being composed by 315 
bias, variance and covariance types of error, thus lumping together measures of accuracy 316 
(bias), variability (variance) and associativity (covariance) (Solazzo and Galmarini, 2016). 317 
The minimum MSE has been calculated at the monitoring stations, where observational data 318 
are available and then extended to the entire continental areas. This approximation might 319 
affect remote regions away from the measurements. However, considering that for the main 320 
pollutants (O3 and PM2.5) the network of measurements is quite dense around densely 321 
populated areas (where the inputs of the MM ensemble are used for assessing the impact of 322 
air pollutants on the health of the population), errors due to inaccurate model selection in 323 
remote regions might be regarded as negligible (Solazzo and Galmarini, 2015). It should be 324 
noted that the selection of the optimal combinations of models is affected by the model's bias 325 
that might stem from processes that are common to all members of the ensemble (e.g. 326 
emissions). Therefore, such a common bias does not cancel out when combining the models, 327 
possibly creating a biased ensemble. Current work is being devoted to identify the optimal 328 
combinations of models from which the offsetting bias is removed (Solazzo et al., 2017b).  329 

2.2.1. EVA System 330 

The EVA system (Brandt et al., 2013a, b) is based on the impact-pathway chain (e.g. 331 
Friedrich and Bickel, 2001), consisting of the emissions, transport and chemical 332 
transformation of air pollutants, population exposure, health impacts and the associated 333 
external costs. The EVA system requires hourly gridded concentration input from a regional-334 



 
 

scale CTM as well as gridded population data, exposure-response functions (ERFs) for health 335 
impacts, and economic valuations of the impacts from air pollution. A detailed description of 336 
the integrated EVA model system along with the ERFs and the economic valuations used are 337 
given in Brandt et al. (2013a).  338 

The gridded population density data over Europe and the U.S. used in this study are presented 339 
in Fig. 1. The population data over Europe are provided on a 1km spatial resolution from 340 
Eurostat for the year 2011 (http://www.efgs.info).  The U.S. population data has been 341 
provided from the U.S. Census Bureau for the year 2010. The total populations used in this 342 
study are roughly 532 and 307 million in Europe and the U.S., respectively. As the health 343 
outcomes are age-dependent, the total population data has been broken down to a set of age 344 
intervals being babies (under 9 months), children (under 15), adult (above 15), above 30, and 345 
above 65. The fractions of population in these intervals for Europe is derived from the 346 
EUROSTAT 2000 database, where the number of persons of each age at each grid cell was 347 
aggregated into the above clusters (Brandt et al., 2011), while for the U.S. they are derived 348 
from the U.S. Census Bureau for the year 2010 at 5-year intervals.  349 

The EVA system can be used to assess the number of various health outcomes including 350 
different morbidity outcomes as well as short-term (acute) and long-term (chronic) mortality, 351 
related to exposure of O3, CO and SO2 (short-term) and PM2.5 (long-term). Furthermore, 352 
impact on infant mortality in response to exposure of PM2.5 is calculated. The health impacts 353 
are calculated using an ERF of the following form: 354 

R = α ×  δc × P 355 

where R is the response (in cases, days, or episodes), c denotes the pollutant concentration, P 356 
denotes the affected share of the population, and α an empirically determined constant for the 357 
particular health outcome. EVA uses ERFs that are modelled as a linear function, which is a 358 
reasonable approximation as showed in several studies (e.g. Pope et al., 2000; the joint World 359 
Health Organization/UNECE Task Force on Health (EU, 2004; Watkiss et al., 2005)).The 360 
concentration metrics used in each ERF is shown in Table 2. The sensitivity of EVA to the 361 
different pollutant concentrations are further evaluated in the supplementary material and 362 
depicted in Fig. S1. EVA calculates and uses the annual mean concentrations of CO, SO2 and 363 
PM2.5, while for O3, it uses the SOMO35 metric that is defined as the yearly sum of the daily 364 
maximum of 8-hour running average over 35 ppb, following WHO (2013) and EEA (2017). 365 

The morbidity outcomes include chronic bronchitis, restricted activity days, congestive heart 366 
failure, lung cancer, respiratory and cerebrovascular hospital admissions, asthmatic children 367 
(<15 years) and adults (>15 years), which includes bronchodilator use, cough, and lower 368 
respiratory symptoms. The exposure-response functions are broadly in line with estimates 369 
derived with detailed analysis in EU funded research (Rabl, Spadaro and Holland, 2014; 370 
EEA, 2013) To figure out the total number of premature deaths from the years of life lost due 371 
to PM2.5,  they have been converted into lost lives according to a lifetable method (explained 372 
in detail in Andersen, 2017) but using the factor of 10.6, as reported by (Watkiss et al., 2005). 373 
To these deaths are added the acute deaths due to O3 and SO2.,   The ERFs used, along with 374 
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their references, in both continents as well as the economic valuations for each health 375 
outcome in Europe and the U.S., respectively, are presented in Table 2. Baseline incidence 376 
rates are not assumed to be dissimilar, which is a coarse approach for morbidity. The baseline 377 
rates are from Statisctics Denmark 378 
(http://www.statistikbanken.dk/statbank5a/default.asp?w=1280) and lifetables are based on 379 
one countryDenmark, which is close to the US and Eurozone average (Andersen, 2017). For 380 
a description of the morbidity ERFs, see Andersen et al. (2004 and 2008). The economic 381 
valuations are provided by Brandt et al. (2013a); see also EEA (2013).  382 

ERF for all-cause chronic mortality due to PM2.5 were based on the findings of Pope et al. 383 
(2002), which is the most extensive study available, following conclusions from the scientific 384 
review of the Clean Air For Europe (CAFÉ) programme (Hurley et al., 2005; Krupnick et al., 385 
2005). The results from Pope et al. (2002) are further supported by Krewski et al. (2009), and 386 
more recently by the latest HRAPIE project report (WHO, 2013a). Therefore, as 387 
recommended by WHO (2013a), EVA uses the ERFs based on the meta-analysis of 13 cohort 388 
studies as described in Hoek et al. (2013). In EVA, the number of lost life years for a Danish 389 
population cohort with normal age distribution, when applying the ERF of Pope et al. (2002) 390 
for all-cause mortality (relative risk, RR= 1.062 (1.040-1.083) on 95% confidence interval), 391 
and the latency period indicated, sums to 1138 yr of life lost (YOLL) per 100 000 individuals 392 
for an annual PM2.5 increase of 10 μg m−3 (Andersen, 2008)..EVA uses a counterfactual 393 
PM2.5 concentration of 0 µgm-3 following the EEA methodology, meaning that the impacts 394 
have been estimated for the full range of observed modelled concentrations , meaning all 395 
PM2.5 concentrations from 0 μgm-3 upwards. Applying a low counterfactual concentration can 396 
underestimate health impacts at low concentrations if the relationship is linear or close to 397 
linear (Anenberg et al., 2016). However, it is important to note that uncertainty in the health 398 
impact results may increase at low concentrations due to sparse epidemiological data. 399 
Assuming linearity at very low concentrations may distort the true health impacts of air 400 
pollution in relatively clean atmospheres (Anenberg et al., 2016). 401 

It has been shown that O3 concentrations above the level of 35 ppb involve an acute mortality 402 
increase, presumably for weaker and elderly individuals. EVA applies the ERFs selected in 403 
CAFE for post-natal death (age group 1–12 months) and acute death related to O3 (Hurley et 404 
al., 2005). WHO (2013a) also recommends the use of the daily maximum of 8-hour mean O3 405 
concentrations for the calculation of the acute mortality due to O3. There are also studies 406 
showing that SO2 is associated with acute mortality, and EVA adopts the ERF identified in 407 
the APHENA study – Air Pollution and Health: A European Approach (Katsouyanni et al., 408 
1997).  409 

Chronic exposure to PM2.5 is also associated with morbidity, such as lung cancer. EVA 410 
employs the specific ERF (RR = 1.08 per 10 μg m−3 PM2.5 increase) for lung cancer indicated 411 
in Pope et al. (2002). Bronchitis has been shown to increase with chronic exposure to PM2.5 412 
and we apply an ERF (RR = 1.007) for new cases of bronchitis based on the AHSMOG study 413 
(involving non-smoking Seventh-Day Adventists; Abbey et al., 1999), which is the same 414 
epidemiological study as in CAFE (Abbey, 1995; Hurley et al., 2005). The ExternE crude 415 
incidence rate was chosen as a background rate (ExternE, 1999), which is in agreement with 416 
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a Norwegian study, rather than the pan-European estimates used in CAFE (Eagan et al., 417 
2002). Restricted activity days (RADs) comprise two types of responses to exposure: so-418 
called minor restricted activity days as well as work-loss days (Ostro, 1987). This distinction 419 
enables accounting for the different costs associated with days of reduced well-being and 420 
actual sick days. It is assumed that 40% of RADs are work-loss days based on Ostro (1987). 421 
The background rate and incidence are derived from ExternE (1999). Hospital admissions are 422 
deducted to avoid any double counting. Hospital admissions and health effects for asthmatics 423 
(here corresponding to the three responses bronchodilator use, cough and lower respiratory 424 
symptoms) are also based on ExternE (1999).  425 

Table 2 lists the specific valuation estimates applied in the modelling of the economic 426 
valuation of mortality and morbidity effects. A principal value of EUR 1.5 million was 427 
applied for preventing an acute death, following expert panel advice (EC 2001). For the 428 
valuation of a life year, the results from a survey relating specifically to air pollution risk 429 
reductions were applied (Alberini et al., 2006), implying a value of EUR 57.500  per year of 430 
life lost (YOLL). With the more conservative metric of estimating lost life years, rather than 431 
'full' statistical lives, there is no adjustment for age. This is due to the fact that government 432 
agencies in Europe, including the European Commission, apply a methodology for costing of 433 
air pollution that is based on accounting for lost life years, rather than for entire statistical 434 
lives as is customary in USA. While the average traffic victim, for instance, is mid-aged and 435 
likely to lose about 35-40 years of life expectancy, pollution victims are believed to suffer 436 
significantly smaller losses of years (EAHEAP, 1999:64; Friedrich and Bickel, 2001). To 437 
avoid overstating the benefits of air pollution control, these are treated as proportional to the 438 
number of life years lost. Most of the excess mortality is due to chronic exposure to air 439 
pollution over many years and the life year metric is based on the number of lost life years in 440 
a statistical cohort. Following the guidelines of the Organisation for Economic Co-operation 441 
and Development (OECD, 2006), the predicted acute deaths, mainly from O3, are valuated 442 
here with the adjusted value for preventing a fatality (VSL, Value of a Statistical Life). The 443 
life tables are obtained from European data and are applied to the U.S. as the average life 444 
expectancy in the U.S. is similar to that in Europe, and close to the OECD average (OECD, 445 
2016). The willingness to pay for reductions in risk obviously differs across income levels. 446 
However, in the case of air pollution costs, adjustment according to per capita income 447 
differences among different states is not regarded as appropriate, because long-range 448 
transport implies that emissions from one state will affect numerous other states and their 449 
citizens. The valuations are thus adjusted with regional purchasing power parities (PPP) of 450 
EU27 and USA. Cost-benefit analysis in the U.S. related to air pollution proceeds from a 451 
standard approach, where abatement measures preventing premature mortality are considered 452 
according to the number of statistical fatalities avoided, which are appreciated according to 453 
the value of VSL (presently USD 7.4 million). In contrast, and following recommendations 454 
from the UK working group on Economic Appraisal of the Health Effects of Air Pollution 455 
(EAHEAP, 1999), focus in EU has been on the possible changes in average life expectancy 456 
resulting from air pollution. In EU, the specific number of life years lost as a result of 457 
changes in air pollution exposures are estimated based on lifetable methodology, and 458 
monetized with Value-Of-Life-Year (VOLY) unit estimates (Holland et al. 1999; Leksell and 459 



 
 

Rabl 2001). The theoretical basis is a life-time consumption model according to which the 460 
preferences for risk reduction will reflect expected utility of consumption for remaining life 461 
years (Hammitt 2007; OECD 2006:204). The much lower VSL values customary in Europe 462 
(presently €2.2 million) add decisively to the differences, as VOLY is deducted from this 463 
value. By using a common valuation framework according the EU approach we allow for 464 
direct comparisons of the monetary results. It follows from OECD recommendations (2012) 465 
to correct with PPP when doing such benefit transfer. The unit values have been indexed to 466 
2013 prices as indicated in Table 2. 467 

 468 

3. Results 469 

3.1. Model Evaluation 470 

Observed and simulated hourly surface O3, CO, SO2 and daily PM2.5, which are species used 471 
in the EVA model to calculate the health impacts, over Europe and North America for the 472 
entire 2010 were compared in order to evaluate each model’s performance. The statistical 473 
parameters to evaluate the models and their equations are provided in the supplementary 474 
material. For a more thorough evaluation of models and species, see Solazzo et al. (2017a). 475 
The results of this comparison are presented in Table S1 for EU and NA, along with the 476 
multi-model mean and median values. The monthly time series plots of observed and 477 
simulated health-related pollutants are also presented in Figs. 2 and 3. The monthly means are 478 
calculated using the hourly pairs of observed and modelled concentrations at each station. 479 
The results show that over Europe, the temporal variability of all gaseous pollutants is well 480 
captured by all models with correlation coefficients (r) higher than 0.70 in general. The 481 
normalized mean biases (NMB) in simulated O3 levels are generally below 10% with few 482 
exceptions up to -35%. CO levels are underestimated by up to 45%, while the majority of the 483 
models underestimated SO2 levels by up to 68%, while some models overestimated SO2 by 484 
up to 49%. PM2.5 levels are underestimated by 19% to 63%. Over Europe, the median of the 485 
ensemble performs better than the mean in terms of model bias (NMB) for O3 (by 52%), 486 
while for CO, SO2 and PM2.5, the mean performs slightly better than the median (Table S1).  487 

We have further evaluated the models’ performance on simulating the annual mean pollutant 488 
levels over individual measurements stations and plotted the geographical distribution of the 489 
bias. Fig. 4 presents the multi model mean geographical distribution of bias over Europe, 490 
while Fig. S2-S5 for O3, CO, SO2 and PM2.5, respectively. O3 levels over central to western 491 
Europe are overestimated by up to ~10 µgm-3, while over eastern Europe, O3 levels are 492 
underestimated by up to  ~10 µgm-3 (Fig. 4a)  Over southern Europe, overestimations are 493 
larger (10-20 µgm-3). The geographical pattern is similar among the models with slight 494 
differences (± 10 µgm-3 ) in the bias (Fig. S2). CO levels are underestimated over all stations 495 
by up to 600 µgm-3 except for few stations where CO levels are overestimated by up to 100 496 
µgm-3 (Fig. 4b). All models underestimated CO levels over the majority of the stations (Fig. 497 
S3). SO2 levels are slightly overestimated over central and southern Europe (Fig. 4c). There 498 
are also underestimation over few stations with no specific geographical pattern. Similar to 499 



 
 

CO, all models underestimated SO2 levels over the majority of the stations (Fig. S4). Finally, 500 
PM2.5 levels are underestimated by up to 10 µgm-3 over most of Europe (Fig. 4d), with larger 501 
underestimations over the eastern Europe up to 30 µgm-3.  502 

Over North America, the hourly O3 variation is well captured by all models (Table S1), with 503 
DK1 having slightly lower r coefficient compared to the other models and largest NMB (Fig. 504 
3a).  The hourly variation of CO and SO2 levels are simulated with relatively lower r values 505 
(Figs. 3b, c), with SO2 levels having the highest underestimations. The PM2.5 levels are 506 
underestimated by ~15% except for the DE1 model, having a large underestimation of 63% 507 
(Table S1). As DE1 and US3 use the same SMOKE emissions and CTM, the large difference 508 
in PM2.5 concentrations can be partly due to the differences in horizontal and vertical 509 
resolutions in the model setups, as can also be seen in the differences in the CO 510 
concentrations. There are also differences in the aerosol modules and components that each 511 
model simulates. For example, DE1 uses an older version of the secondary organic aerosol 512 
(SOA) module, producing ~3 µgm-3 less SOA, which can explain ~20% of the bias over 513 
North America. Over the North American domain, the median outscores the mean for O3 ( by 514 
35%), CO (by 52%) and PM2.5 (by 29%) while for SO2, the median produces 26% higher 515 
NMB compared to the mean. DK1 model simulates a much higher bias for O3 and SO2 516 
compared to other models in the North American domain, while DE1 has the largest bias for 517 
CO and PM2.5.  518 

O3 levels are generally overestimated by the MM mean over the eastern U.S. by up to 15 ppb, 519 
while over the western U.S. there are also overestimations by up to 10 ppb (Fig. 5a). As seen 520 
in Fig. S6, all three models have very similar performance over the U.S., with DK1 521 
simulating a slightly lower underestimation and a higher overestimation compared to DE1 522 
and US3. DE1 and DK1 have very similar spatial pattern in terms of CO bias, in particular 523 
over the eastern coast of the U.S. (Fig. S7). CO levels are underestimated by ~100 ppb over 524 
majority of the stations, especially over the eastern U.S., while there are much larger 525 
underestimation over the western U.S. by up to 1000 ppb (Fig. 5b). SO2 levels are 526 
underestimated by up to 5 ppb over the majority of the stations in the U.S., with few 527 
overestimations of up to 5 ppb (Fig. 5c). DE1 and DK1 have very similar spatial distribution 528 
of bias, while US3 has slightly more overestimations (Fig. S8) Finally, PM2.5 levels are 529 
underestimated over majority of the stations by up to 6 µgm-3, with few overestimations by 2-530 
4 µgm-3 (Fig. 5d). DE1 has the largest underestimations compared to DK1 and US3 (Fig. S9). 531 

Table S1 shows that the ensemble median performs slightly better than the ensemble mean 532 
for all pollutants over both continents regarding the bias and error, while the difference on r 533 
is rather small. Over the European stations, the median has improved results over the mean 534 
by up to 14% for r and up to 9% for the RMSE. The improvements in r over the U.S. are 535 
much smaller compared to Europe (up to ~4%), while the RMSE is improved by up to 27%, 536 
except for SO2 where the median has 14% higher RMSE than the mean. 537 

3.2. Health outcomes and their economic valuation in Europe 538 



 
 

The different health outcomes calculated by each model in Europe as well as their multi 539 
model mean and median are presented in Table S2. Table 3 presents the mean of the 540 
individual model estimates as MMmi. Standard deviations calculated from the individual 541 
model estimates are presented along with the MMmi in the text. The health impact estimates 542 
vary significantly between different models. The different estimates obtained are found to 543 
vary up to a factor of three.  Among the different health outcomes, the individual models 544 
simulated the number of congestive heart failure (CHF) cases to be between 19 000 to 41 000 545 
(mean of all individual models, MMmi, 31 000 ± 6 500). The number of lung cancer cases due 546 
to air pollution are calculated to be between 30 000 to 78 000 (mean of all individual models, 547 
MMmi, 55 000 ± 14 000). Finally, the total (acute + chronic) number of premature death due 548 
to air pollution is calculated to be 230 000 to 570 000 (mean of all individual models, MMmi, 549 
414 000 ± 100 000). The health impacts calculated as the median of individual models differ 550 
slightly (~±1%) from those calculated as the mean of individual models (Table S2) due to the 551 
slight differences in the model bias (NMB) and error (NMGE and RMSE) between the mean 552 
and the median performance statistics of the models. 553 

In addition to averaging the health estimates from individual models (MMmi), we have also 554 
produced a multi-model mean concentration data (MMm) by taking the average of 555 
concentrations of each species calculated by all models at each grid cell and hour, and fed it 556 
to the EVA model. We have calculated the number of premature death cases in Europe as 557 
410 000 (Table 3) using MMm. Difference between the health impacts calculated using MMm 558 
data from the mean of all individual model (MMmi) estimates is smaller than 1%. The number 559 
of premature death cases in Europe as calculated as the average of all models in the multi 560 
model ensemble, MMmi, due to exposure to O3 is 12 000 ± 6 500, while the cases due to 561 
exposure to PM2.5 is calculated to be 390 000 ± 100 000 [180 000 – 550 000]. The O3-related 562 
mortality well agrees with Liang et al. (2017) that used the multi-model mean of the HTAP2 563 
global model ensemble, which calculated an O3-realted mortality of 12 800 [600 - 28 100]. 564 
The multi-model mean (MMmi) PM2.5-related mortality in the present study is much higher 565 
than that from the HTAP2 study (195 500 [4 400 – 454 800]). The results also agree with the 566 
most recent EEA findings (EEA, 2015), which calculated a total premature death of 419 000 567 
die to O3 and PM2.5 in the EU-28 countries. There is also agreement with Geels et al. (2015) 568 
that calculated 388 000 premature death cases in Europe for the year 2000. This difference 569 
can be attributed to the number of mortality cases as calculated by the individual models, 570 
where the HTAP2 ensemble calculates a much lower minimum while the higher ends from 571 
the two ensembles well agree.  572 

The differences between the health outcomes calculated by the HTAP2 and AQMEII 573 
ensembles arise firstly from the differences in the concentrations fields due to the differences 574 
in models, in particular spatial resolutions as well as the gas and aerosols treatments in 575 
different models, but also the differences in calculating the health impacts from these 576 
concentrations fields. EVA calculates the acute premature death due to O3 by using the 577 
SOMO35 metric. On the other hand, in HTAP2 O3-related premature death is calculated by 578 
using the 6-month seasonal average of daily 1-h maximum O3 concentrations. Both groups 579 
use the annual mean PM2.5 to calculate the PM2.5-related premature death. In addition to O3 580 



 
 

and PM2.5, EVA also takes into account the health impacts from CO and SO2, which is 581 
missing in the HTAP2 calculations. 582 

Among all models, DE1 model calculated the lowest health impacts for most health 583 
outcomes, which can be attributed to the largest underestimation of PM2.5 levels (NMB=-584 
63%: Table S2) due to lower spatial resolution of the model that dilutes the pollution in the 585 
urban areas, where most of the population lives. The number of premature deaths calculated 586 
by this study is in agreement with previous studies for Europe using the EVA system (Brandt 587 
et al., 2013a; Geels et al., 2015). Recently, EEA (2015) estimated that air pollution is 588 
responsible for more than 430 000 premature deaths in Europe, which is in good agreement 589 
with the present study.  590 

Fig. 6a. presents the geographical distribution of the number of premature death in Europe in 591 
2010. The figure shows that the numbers of cases are strongly correlated to the population 592 
density (Fig. 1a), with the largest numbers seen in the Benelux and the Po Valley regions that 593 
are characterized as the pollution hot spots in Europe as well as in megacities such as 594 
London, Paris, Berlin and Athens.  595 

The economic valuation of the air pollution-associated health impacts calculated by the 596 
different models along with their mean and median are presented in Table 4. A total cost of 597 
196 to 451 billion Euros (MM mean cost of 300 ± 70 billion Euros) was estimated over 598 
Europe (EU28). Results show that 5% [1% - 11%] of the total costs is due to exposure to O3, 599 
while 89% [80% - 96%] is due to exposure to PM2.5. Brandt et al. (2013a) calculated a total 600 
external cost of 678 billion Euros for the year 2011 for Europe, larger than the estimates of 601 
this study, which can be explained by the differences in the simulation year and the emissions 602 
used in the models as well as the countries included in the two studies (the previous study 603 
includes e.g. Russia).  604 

3.3. Health outcomes and their economic valuation in the U.S. 605 

The different health outcomes calculated by each model for the U.S. as well as their mean 606 
and median are presented in Table S2. The variability among the models (~3) is similar to 607 
that in Europe.  The number of congestive heart failure cases in the U.S. as calculated as the 608 
average of all models in the ensemble (MMmi) is calculated to be 13 000 [7 000 – 18 000], 609 
while the lung cancer cases due to air pollution are calculated to be 22 000 [9 000 – 31 000]. 610 
Finally, the number of premature deaths due to air pollution is calculated to be 165 000 ± 611 
75 000, where 25 000 ± 6 000 cases are calculated due to exposure to O3 and 140 000 ± 72 612 
000 cases due to exposure to PM2.5. The MMm dataset leads to a number of premature death 613 
of 149 000 that is 6% smaller than the average estimate from individual models (MMmi). Due 614 
to the large reduction of NMB by the median compared to the mean of individual models 615 
(Table S1), the multi-model health impacts calculated as the median of health impacts from 616 
individual models are ~13% higher than the health impacts calculated from the MMmi. The 617 
O3- and PM2.5 mortality cases as calculated by the AQMEII and HTAP2 model ensembles 618 
reasonably agree. Liang et al. (2017) calculated an O3-related mortality of 14 700 [900 – 619 
30 400] and a PM2-5-related mortality of 78 600 [4 500 – 162 600]. These results are in very 620 



 
 

good agreement with the U.S. EPA (2011) estimates of number of premature death cases of 621 
160 000 in year 2010 as 160 000 and with Caizzo et al. (2013), who calculateding 200 000 622 
premature death cases from combustion sources in the U.S. Among all models, DE1 model 623 
calculated the lowest health impacts for most health outcomes, which can be attributed to the 624 
largest underestimation of PM2.5 levels (NMB=-63%: Table S2).  625 

The premature death cases in North America are mostly concentrated over the New York 626 
area, as well as in hot spots over Chicago, Detroit, Houston Los Angeles and San Francisco 627 
(Fig. 6b). The figure shows that the number of cases is following the pattern of the population 628 
density. The economic valuation of the air pollution-associated health impacts calculated by 629 
the different models in the U.S. are shown in Table 4. As seen in the table, a total cost of 630 
~145 billion Euros is calculated. Results show that ~22% of the total costs is due to exposure 631 
to O3 while ~78% is due to exposure to PM2.5.  The major health impacts in terms of their 632 
external costs are slightly different in North America compared to Europe.  633 

3.4. Health impacts and their economic valuation through optimal reduced ensemble subset 634 

The effect of pollution concentrations (EVA input) on health impacts (EVA output) is 635 
investigated in order to estimate the contribution of each air pollutant in the EVA system to 636 
health impacts over different concentration levels. The technical details are provided in the 637 
supplement.  638 

Results show that for the particular input (gridded air pollutant concentrations from 639 
individual model)-output (each health outcome) configuration, the PM2.5 drives the variability 640 
of the different health impact and that at least 81% of the variation of the health impacts are 641 
explained by sole variations in the pollutants (i.e. without interactions: Table S3). Table S1 642 
also shows that the most important contribution to the health impacts is from PM2.5, followed 643 
by CO and O3 (with much smaller influence though). The impact  of perturbing PM2.5 by a 644 
fixed fraction of its standard deviation on the health impact is roughly double compared to 645 
CO and O3. 646 

We have run the EVA system over an all-models mean (MMm) dataset and an optimal 647 
reduced ensemble dataset (MMopt) calculated for each of the pollutants in the two domains in 648 
order to see how and whether an optimal reduced ensemble changes the assessment of the 649 
health impacts compared to an all- models ensemble mean. Table 5 shows some sensible 650 
error reduction, although the temporal and spatial averages mask the effective improvement 651 
in accuracy from MMm to MMopt. In Europe, the optimal reduced ensemble decreases the 652 
RMSE by up to 24%, while in NA, the error reduction is much larger (4% to up to 147%). On 653 
a seasonal basis, MMopt reduces RMSE in PM2.5 over Europe by 23% in winter while smaller 654 
decreases are achieved in other seasons (~10%). Regarding O3, improvement is 16%-22%, 655 
with the largest improvement in spring. In NA, the improvement in winter RMSE in PM2.5 is 656 
smallest (~2%) while larger improvements are achieved in other seasons (~7% - ~9%). For 657 
O3, the largest RMSE reduction in NA is achieved for the summer period by 14%. 658 

The analysis of the aggregated health indices data for Europe (Table S1) shows that EVA 659 
indices rely principally on the PM2.5 levels and then the CO and O3 values. Therefore, the 660 



 
 

relative improvement of the indices with the optimal ensemble should be proportional to the 661 
relative improvement in PM2.5, CO and O3. The proportionality rate for each pollutant is 662 
given in Table S3, assuming all pollutants are varied (from MMm to MMopt) away from their 663 
mean by the same fraction of their variance. As seen in the Table 3, from MMm to MMopt, the 664 
health indices increase by up to 30% in Europe. This increase is due to a 27% increase in the 665 
domain mean PM2.5 levels when the optimal reduced ensemble is used, as well a slight 666 
increase in O3 by ~1%. The number of premature deaths in Europe increase from 410 000 to 667 
524 000 (28%), resulting in a much higher estimate compared to previous mortality studies. 668 
On the contrary, in the U.S., the mean PM2.5 and O3 levels decrease from 2.94 µg m-3 to 2.62 669 
µgm-3 (~11%) and 18.7 ppb to 18.4 ppb (~2%), respectively. In response, the health indices 670 
decrease by ~11% (Table 3). The number of premature death cases in NA decrease from 671 
149 000 to 133 000.     672 

3.5. Impact of anthropogenic emissions on the health impacts and their economic valuation  673 

The impacts of emission perturbations on the different health outcomes over Europe and the 674 
U.S. as calculated by the individual models are presented in Tables S4-S6. Table 6 shows the 675 
impacts of the different emission perturbations on the premature death cases in Europe and 676 
the U.S as calculated by a subset of models that simulated the base case and all three 677 
perturbation scenarios (MMc). Results show that in Europe, the 20% reduction in the global 678 
anthropogenic emissions leads to ~17% domain-mean reduction in all the health outcomes, 679 
with a geographical variability as seen in Fig. 6c. The figure shows that the larger changes in 680 
mortality is calculated in the central and northern parts of Europe (15-20% decreases), while 681 
the changes are smaller in the Mediterranean region (5-10%), highlighting the non-linearity 682 
of the response to emission reductions. However, it should be noted that global models or 683 
coarse-resolution regional models (as in this study) cannot capture the urban features and 684 
pollution levels and thus, non-linearities should be addressed further using fine spatial 685 
resolutions or urban models. The models vary slightly simulating the response to the 20% 686 
reduction in global emissions, estimating decreases of ~11% to 20%. The number of 687 
premature deaths decreased on average by ~50 000, ranging from -39 000 (DK1) to -103 000 688 
(IT1). This number is in good agreement with the ~45 000 premature death calculated by the 689 
HTAP2 global models (Liang et al., 2017). The MMc ensemble calculated a 15% and 17% 690 
decrease in the O3- and PM2.5-related premature death cases, respectively, in response to the 691 
GLO scenario. This decrease in the global anthropogenic emissions leads to an estimated 692 
decrease of 56 ± 18 billion Euros in associated costs in Europe (Table 6).  693 

As seen in Table 8, a 20% reduction of anthropogenic emissions in the EUR region, as 694 
defined in HTAP2, avoids 47 000 premature death, while a 20% reduction of the 695 
anthropogenic emissions in the NAM region leads to a much smaller decrease of premature 696 
deaths in Europe (~1 000). These improvements in the number of premature deaths are in 697 
agreement with a recent HTAP2 global study that calculated reductions of ~34 000 and 698 
~1 000 for the EUR and NAM scenarios, respectively (Liang et al., 2017) and with Anenberg 699 
et al. (2009 and 2014), which totals to a sum of avoided premature deaths being ~39 000 and 700 
1 800 as calculated by the MM mean. Both the global and regional models agree that the 701 
largest impacts of reducing emissions with respect to premature deaths come from emission 702 



 
 

within the source region, while foreign sources contribute much less to improvements in 703 
avoiding adverse impacts of air pollution. The decreases in health impacts in EUR and NAM 704 
scenarios corresponds to decreases in the associated costs by -47 ± 16 billion Euros and -1.4 705 
± 0.4 billion Euros, respectively. This is consistent with results in Brandt et al. (2012), where 706 
a contribution of ~1% to PM2.5 concentrations in Europe is originating from the NAM region.   707 

The 20% reduction in global anthropogenic emissions leads to 18% reduction in the health 708 
outcomes (Table 8) in the U.S., with a geographical variability in the response. Fig. 6d shows 709 
that the largest decreases in mortality is calculated for the western coast of the U.S. (~20%) 710 
and slightly lower response in the central and eastern parts of the U.S. (15-20%). The number 711 
of premature death cases, as calculated by the mean of all individual models decreases from 712 
~160 000 ± 70 000 to ~130 000 ± 60 000, avoiding 24 ± 10 billion Euros (Table 6) in 713 
external costs, also in agreement with the ensemble of HTAP2 global models (~23 000) The 714 
O3-related premature death cases decreased by 42% while the PM2.5-relared cases decreased 715 
by 18%.  716 

A 20% reduction of the North American emissions avoids ~25 000 ± 12 000 premature 717 
deaths (-16%), suggesting that ~80% of avoided premature deaths are achieved by reductions 718 
within the source region while 20% (~5 000 premature deaths) is from foreign sources. This 719 
number is also in good agreement with Liang et al. (2017) that estimated a reduction of 720 
premature deaths of ~20 000 due to O3 and PM2.5 in the United States due to an emission 721 
reduction of 20% within the region itself, using the ensemble mean of the HTAP2 global 722 
models. These results are much larger than the number of avoided premature death of  723 
~11 000 as calculated by the sum of Anenberg et al. (2009 and 2104).The corresponding 724 
benefit is calculated to be 21 ± 9 billion Euros in the NAM scenario. According to results 725 
from the EAS scenario, among these 5 000 avoided cases that are attributed to the foreign 726 
emission sources, 1 900 ± 2 000 premature deaths can be avoided by a 20% reduction of the 727 
East Asian emissions, avoiding 2.5 ± 3 billion Euros. Our number of avoided premature 728 
deaths due to the EAS scenario is much higher than 580 avoided premature deaths calculated 729 
by Liang et al. (2017) and 380 avoided cases as calculated by Anenberg et al. (2009 and 730 
2014). 731 

Conclusions  732 

The impact of air pollution on human health and their economic valuation for the society 733 
across Europe and the United States is modelled by a multi-model ensemble of regional 734 
models from the AQMEII3 project. All regional models used boundary conditions from the 735 
C-IFS model, and emissions from either the MACC inventory in Europe or the EPA 736 
inventory for the North America, or the global inventory from HTAP. Sensitivity analysis on 737 
the dependence of models on different sets of boundary conditions has not been conducted so 738 
far but large deviations from the current results in terms of health impacts are not expected. 739 
The modelled surface concentrations by each individual model are used as input to the EVA 740 
system to calculate the resulting health impacts and the associated external costs from O3, 741 
CO, SO2 and PM2.5. Along with a base case simulation for the year 2010, some groups 742 



 
 

performed additional simulations, introducing 20% emission reductions both globally and 743 
regionally in Europe, North America and East Asia.   744 

The base case simulation of each model is evaluated with available surface observations in 745 
Europe and North America. Results show large variability among models, especially for 746 
PM2.5, where models underestimate by ~20% - ~60%, introducing a large uncertainty in the 747 
health impact estimates as PM2.5 is the main driver for health impacts. The differences in the 748 
models are largely due to differences in the spatial and vertical resolutions, meteorological 749 
inputs, inclusion of natural emissions, dust in particular, as well as missing or underestimated 750 
SOA mass, which is critical for the PM2.5 mass. As shown in the supplementary material, the 751 
CTMs diverge a lot on the representation of particles and their size distribution, SOA 752 
formation, as well as the inclusion of natural sources. As the anthropogenic emissions are 753 
harmonized in the models, they represent a minor uncertainty in terms of model-to-model 754 
variation. However, differences in the treatment of the temporal, vertical and chemical 755 
distributions of the particulate and volatile organic species have an influence in the model 756 
calculations and therefore lead to model-to-model variations. 757 

The variability of health impacts among the models can be up to a factor of three in Europe 758 
(twelve models) and the U.S. (three models), among the different health impacts. The multi-759 
model mean total number of premature death is calculated to be 414 000 in Europe and 760 
160 000 in the U.S., where PM2.5 contributes by more than 90%. These numbers agree well 761 
with previous global and regional studies for premature deaths due to air pollution. In order to 762 
reduce the uncertainty coming from each model, an optimal ensemble set is produced, that is, 763 
the subset of models that produce the smallest error compared to the surface observations at 764 
each time step. The optimum ensemble results in an increase of health impacts by up to 30% 765 
in Europe and a decrease by ~11% in the United States. These differences clearly 766 
demonstrate the importance of the use of optimal-reduced multi-model ensembles over 767 
traditional all model-mean ensembles, both in terms of scientific results, but also in policy 768 
applications.  769 

Finally, the role of domestic versus foreign emission sources on the related health impacts is 770 
investigated using the emission perturbation scenarios. A global reduction of anthropogenic 771 
emissions by 20% decreases the health impacts by 17%, while the reduction of foreign 772 
emissions decreases the health impacts by less than 1%. The decrease of emissions within the 773 
source region decreases the health impacts by 16%. These results show that the largest 774 
impacts of reducing emissions with respect to the premature death come from emissions 775 
within the source region, while foreign sources contributing to much less improvements in 776 
avoiding adverse impacts of air pollution. 777 

Outlook  778 

Currently health assessments of airborne particles are carried out under the assumption that 779 
all fine fraction particles affect health to a similar degree independent of origin, age and 780 
chemical composition of the particles. A 2013 report from WHO concludes that the 781 
cardiovascular effects of ambient PM2.5 are greatly influenced, if not dominated, by their 782 



 
 

transition metal contents (WHO, 2013b). It is known that trace metals and traffic markers are 783 
highly associated with daily mortality (Lippmann, 2014). Even low concentrations of trace 784 
metals can be influential on health related responses.  785 

Regarding ambient concentrations of PM and the exposure-response functions (ERFs), there 786 
is a rich set of studies providing information on total PM mass. However, only few studies 787 
focus on individual particulate species, mainly black carbon and carbonaceous particles. In 788 
addition to PM, studies on human populations have not been able to isolate potential effects 789 
of NO2, because of its complex link to PM and O3. The WHO REVIHAAP review from 2013 790 
concludes that health assessments based on PM2.5 ERFs will be most inclusive (WHO, 791 
2013b). In addition, the ERFs are based on urban background measurements, introducing 792 
uncertainties regarding non-urban areas or high pollution areas as e.g. street canyons. Current 793 
state-of-the-art health impact estimates, in particular on regional to global scales, assume a 794 
correlation with exposure to outdoor air pollution, while in reality, exposure is dynamic and 795 
depends on the behavior of the individual. In addition, differences in age groups, gender, 796 
ethnicity and behavior should be considered in the future studies. There are also uncertainties 797 
originating from the representations of the aerosols in the atmospheric models used in the 798 
calculation of pollutant concentrations as well as the emissions. Further developments in the 799 
aerosol modules, such as the representation of organic aerosols and windblown and 800 
suspended dust, are need in order to achieve mass closure of PM to get robust estimates of 801 
health impacts. In addition, new findings show that O3 has also chronic health impacts in 802 
addition to its acute impacts (WHO, 2013a; Turner et al., 2016). 803 

Due to above reasons, there is a large knowledge gap regarding the health impacts of 804 
particles. There are a number of ongoing projects trying to identify the health impacts from 805 
individual particle components and produce individual ERFs for these components. 806 
NordicWelfAir project (http://projects.au.dk/nordicwelfair/) aims to investigate the potential 807 
causal impact of individual chemical air pollutants as well as mixtures of air pollutants on 808 
health outcomes. In pursuing this aim, the project uses the unique Nordic population-based 809 
registers allowing linkage between historical residential address, air pollutants over decades 810 
and later health outcomes. By linking the exposure to health outcomes, new exposure-811 
response relationships can be determined of health effects for different population groups 812 
(e.g. age, education, ethnicity, gender, lifestyle, and working life vs. retirement conditions) 813 
related to air pollution for the individual chemical air pollutants. In addition, the high 814 
resolution simulations conducted will enable us to have a better understanding of non-815 
linearities between the emissions, health impacts, and their economic valuation. 816 
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Table 1.Key features (meteorological/chemistry and transport models, emissions, horizontal and vertical grids) of the regional models 
participating to the AQMEII3 health impact study and the perturbation scenarios they performed. 

Group Code Model  Emissions Horizontal 
Resolution 

Vertical 
Resolution 

Gas Phase Aerosol Model Europe North America 

BASE GLO NAM EUR BASE GLO EAS NAM 

DE1 COSMO-CLM/CMAQ HTAP 
24 km × 24 

km 
30 layers, 
50 hPa CB5-TUCL 3 modes × × × × × × × × 

DK1 WRF/DEHM HTAP 
50 km × 50 

km 
29 layers, 
100 hPa 

Brandt et al. 
(2012) 2 modes × × × × × × × × 

ES1 WRF/CHEM MACC  
23 km × 23 

km 
33 layers, 
50 hPa RADM2 3 modes, 

MADE/SORGAM ×  ×      

FI1 ECMWF/SILAM MACC 
0.25° × 
0.25° 

12 layers, 
13 km CB4 1-5 bins, VBS × × × ×     

FRES1 ECMWF/CHIMERE HTAP 
0.25° × 
0.25° 

9 layers, 50 
hPa MELCHIOR2 8 bins × × × ×     

IT1 WRF/CHEM MACC 
23 km × 23 

km 
33 layers, 
50 hPa RACM-ESRL 3 modes, 

MADE/VBS × ×  ×     

IT2 WRF/CAMx MACC 
23 km × 23 

km 
14 layers, 8 
km CB5 3 modes × ×       

NL1 LOTOS/EUROS MACC 
0.50° × 
0.25° 

4 layers, 
3.5 km CB4 2 modes, VBS ×        

TR1 WRF/CMAQ MACC 
30 km × 30 

km 
24 layers, 
10hPa CB5 3 modes × × ×      

UK1 WRF/CMAQ MACC 
15 km × 15 

km 
23 layers, 
100 hPa CB5-TUCL 3 modes × × × ×     

UK2 WRF/CMAQ HTAP 
30 km × 30 

km 
23 layers, 
100 hPa CB5-TUCL 3 modes × ×       

UK3 WRF/CMAQ MACC 
18 km × 18 

km 
35 layers, 
16 km CB5 3 modes × × ×      

US3 WRF/CMAQ SMOKE 
12 km × 12 

km 
35 layers, 
50 hPa CB5-TUCL 3 modes     × × × × 



 
 

Table 2. Exposure-response functions, the concentrations metrics, and economic valuations 
used in the EVA model. 

 

 

1 Abbey et al. (1995), 2 Ostro (1987), 3 Schwartz and Morris (1995), 4 Pope et al. (2002), 5 Dab et al. (1996), 6 
Wordley et al. (1997), 7 Roemer et al. (1993), 8 Pope and Dockerey (1992), 9 Dusseldorp et al. (1995), 10 
Anderson (1996), 11 Touloumi (1996), 12 Pope et al. (1995), 13 Woodruff et al. (1997). 

  

Health effects (compounds) 
Exposure-response coefficient Valuation, €2013 

(α) (EU27 & NA) 

Morbidity 

Chronic Bronchitis1, CB (PM) 8.2E-5 cases/μgm-3 (adults) 38,578 per case 

Restricted activity days2, RAD (PM) 

=8.4E-4 days/ μgm-3 (adults) 

98 per day 
-3.46E-5 days/ μgm-3 (adults) 

-2.47E-4 days/ μgm-3 (adults>65)  

-8.42E-5 days/ μgm-3 (adults) 

Congestive heart failure3, CHF (PM) 3.09E-5 cases/ μgm-3 
10,998 per case 

Congestive heart failure3, CHF (CO) 5.64E-7 cases/ μgm-3 

Lung cancer4, LC (PM) 1.26E-5 cases/ μgm-3 16,022 per case 

Hospital admissions 

Respiratory5, RHA (PM) 3.46E-6 cases/ μgm-3 
5,315 per case 

Respiratory5, RHA (SO2) 2.04E-6 cases/ μgm-3 

Cerebrovascular6, CHA (PM) 8.42E-6 cases/ μgm-3 6,734 per case 

Asthma children (7.6 % < 16 years) 

Bronchodilator use7, BUC (PM) 1.29E-1 cases/ μgm-3 16 per case 

Cough8 – COUC (PM)  4.46E-1 days/ μgm-3 30 per day 
Lower respiratory symptoms7, LRSA 
(PM) 1.72E-1 days/ μgm-3 9 per day 

Asthma adults (5.9 % > 15 years) 

Bronchodilator use9, BUA (PM) 2.72E-1 cases/ μgm-3 16 per case 

Cough9, COUA (PM) 2.8E-1 days/ μgm-3 30 per day 
Lower respiratory symptoms9, LRSA 
(PM) 1.01E-1 days/ μgm-3 9 per day 

Mortality 

Acute mortality10,11 (SO2) 7.85E-6 cases/ μgm-3 
1,532,099 per case 

Acute mortality10,11 (O3) 3.27E-6*SOMO35 cases/  μgm-3 

Chronic mortality4,12,, YOLL (PM) 1.138E-3 YOLL/ μgm-3  (>30 years) 57,510 per YOLL 

Infant mortality13, IM (PM) 6.68E-6 cases/ μgm-3 (> 9 months) 2,298,148 per case 



 
 

Table 3. Health impacts calculated by the mean of individual model estimates (denoted as 
MMmi) and the standard deviation, multi-model mean ensemble without error reduction 
(MMm) and the optimal ensemble (MMOpt) in Europe and the U.S. See Table 2 for the 
definitions of health impacts. PD stands for premature death. All health impacts are in units 
of number of cases × 1000, except for Infant Mortality (IM), which reports directly the 
number of cases. 

 EU NA 
 MMmi MMm MMOpt MMmi MMm MMOpt 

CB 360±89 360 468 142±74 142 125 
RAD 368 266±90 670 368245 478073 145 337±75 250  145337 127921 
RHA 23±5 23 28 10±4 8 7 
CHA 46±11 46 60 19±10 19 16 
CHF 31±6 31 38 13±6 9 8 
LC 55±14 55 72 22±11 22 19 
BDUC 10 766±2 650 10766 13976 4 566±2 383 4566 4019 
BDUA 70 492±17 400 70489 91511 27 819±14 400 27819 24485 
COUC 37 198±9 160 37196 48289 15 776±8 230 15776 13886 
COUA 72 566±17 900 72562 94203 28 637±14 830 28637 25206 
LRSC 14 355±3 530 14354 18635 6 088±3 180 6088 5359 
LRSA 26 175±6 400 26174 33980 10 330±5 350 10330 9092 
AYOLL 26±13 23 20 25±7 9 9 
YOLL 4 111±1 010 4111 5337 1 481±762 1481 1304 
PD 414±98  410 524 165±76 149 133 
IM* 403±99 403 524 143±75 143.3667 126.1 

  



 
 

Table 4. External costs (in million Euros) related to the health impacts of air pollution as 
calculated by the individual models over Europe and the United States. 

Models CO SO2 O3 PM2.5 TOTAL 
Europe 

DE1 70 19 000 22 000 155 000 196 000 
DK1 80 13 000 24 000 237 000 274 000 
ES1 70 8 000 6 000 339 000 353 000 
FI1 90 18 000 5 000 335 000 358 000 
FRES1 90 15 000 13 000 305 000 333 000 
IT1 80 17 000 21 000 413 000 451 000 
IT2 70 11 000 6 000 253 000 270 000 
NL1 70 12 000 18 000 215 000 245 000 
TR1 110 30 000 35 000 376 000 441 000 
UK1 80 28 000 25 000 280 000 333 000 
UK2 80 34 000 27 000 340 000 401 000 
UK3 80 47 000 25 000 279 000 351 000 
MEAN 81 21 000 19 000 294 000 334 000 
MEDIAN 80 17 500 21 500 292 500 342 000 

The United States 
DE1 30 9 000 21 000 46 000 76 000 
DK1 55 11 000 39 000 123 000 172 000 
US3 60 14 000 22 000 155 000 191 000 
MEAN 50 11 500 27 000 108 000 146 000 
MEDIAN 55 11 000 22 000 123 000 172 000 

 

 

 



 
 

Table 5. Annual average RMSE of the multi-model ensemble mean (MMm) and of the 
optimal reduced ensemble mean (MMopt) for the heath impact-related species. Units are µg m-

3 for all species for Europe and ppb for the gaseous species and µg m-3 for PM2.5 in North 
America. 

 O3 CO SO2 PM2.5 
 MMm MMopt MMm MMopt MMm MMopt MMm MMopt 

Europe 
Winter 10.3 8.6 502.4 490.3 6.3 5.6 22.5 20.7 
Spring 12.4 9.6 247.1 239.5 4.6 3.1 9.9 7.8 
Summer 13.4 10.7 197.4 188.0 3.9 2.3 8.2 5.7 
Autumn 10.7 8.8 314.5 305.5 4.6 3.1 11.0 8.7 
Annual 11.7 9.4 315.3 305.8 4.8 3.5 12.9 10.7 

North America 
Winter 10.9 10.4 356.7 328.1 5.7 5.5 8.3 8.1 
Spring 12.0 11.4 288.7 270.2 5.4 5.1 7.2 6.6 
Summer 15.1 13.0 258.3 238.7 5.4 5.0 9.7 8.8 
Autumn 12.8 11.6 330.6 307.6 5.8 5.3 7.8 7.2 
Annual 12.7 11.6 308.6 286.1 5.6 5.2 8.2 7.7 

  

 

 

  



 
 

 

Table 6. Impact of the emission reduction scenarios on avoided premature death (∆PD) and 
corresponding change in external cost as calculated by the multi-model mean over Europe 
and the United States. 

Source Receptor 
Europe The United States 

 ∆PD ∆Total Cost 
(billion €) ∆PD ∆Total Cost 

(billion €) 
GLO -54 000 ± 18 000 -56 ± 18 -27 500 ± 14 000 -24 ± 10 
NAM -940 ± 1100 -1.4 ± 0.4 -25 000 ± 12 000 -21 ± 9 
EUR -47 000 ± 24 000 -47 ± 16 - - 
EAS - - -1 900 ± 2 200 -2.5 ± 3 

 

  



 
 

 

Fig.1. Population density (population per grid box) over a) the United States and b) Europe. 



 
 

 

Fig. 2. Observed and simulated (base case) monthly a) O3, b) CO, c) SO2 and d) PM2.5 concentrations 
over Europe.  



 
 

 

Fig. 3. Observed and simulated (base case) monthly a) O3, b) CO, c) SO2 and d) PM2.5 concentrations 
over the U.S. 

  



 
 

 



 
 

Fig. 4. Spatial distribution of annual MM mean bias (µgm-3) for a) O3, b) CO, c) SO2 and d) PM2.5 
over Europe. 

  



 
 

 



 
 

Fig. 5. Spatial distribution of annual MM mean bias (ppb for gases and µgm-3 for PM2.5) for a) O3, b) 
CO, c) SO2 and d) PM2.5 over North America. 

  



 
 

 

  

Fig. 6. Spatial distribution of the number of total premature death (PD: units in number of cases) in a) the United States and b ) Europe and the relative change 
(%) in the number of premature death (PD) in response to the GLO scenario in c) the United States and d) Europe in 2010 as calculated by the multi-model 
mean ensemble.  


