Chemical and climatic drivers of radiative forcing due to changes in stratospheric and tropospheric ozone over the 21st century - *Supplementary Material*

A. Banerjee¹, A. C. Maycock², and J. A. Pyle^{3,4}

¹Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA.

²School of Earth and Environment, University of Leeds, Leeds, UK.

³Department of Chemistry, University of Cambridge, Cambridge, UK.

⁴National Centre for Atmospheric Science - Climate, UK.

Correspondence to: Antara Banerjee (ab4283@columbia.edu)

	$\Delta[CH_4]_{ss}^{-1}[ppmv]$	$RF-CH4_{ss}^{2}[Wm^{-2}]$	$RF-O3_{ss}^{3}[Wm^{-2}]$
ΔCC4.5	-0.25	-0.10	0.08 (-0.02)
ΔCC8.5	-0.54	-0.22	0.04 (-0.04)
ΔODS	0.09	0.03	0.07 (0.01)
∆O3pre	0.08	0.03	-0.09 (0.01)

Table S1. Estimates of changes in the global abundance of tropospheric CH_4 (Δ [CH_4]_{ss}) from its imposed concentration of 1.75 ppmv to steady state after accounting for adjustments through changes in the CH_4 lifetime. Also reported are the associated tropospheric RF due to CH_4 (RF- $CH4_{ss}$) and ozone (RF-O3_{ss}).

 $^{1}\Delta$ [CH₄]_{ss} [ppmv] has been estimated following the methodology detailed in Banerjee et al. (2014, 2016) (and references therein) using the model-specific feedback factor of 1.52.

²RF-CH4_{ss} [Wm⁻²] corresponds to the direct RF of CH₄ that would result from Δ [CH₄]_{ss} relative to a baseline concentration of 1.75 ppmv, and is calculated using the simple expression in Myhre et al. (1998) (using [N₂O] = 327 ppbv).

 ${}^{3}\text{RF-O3}_{ss}$ [Wm⁻²] is the estimate of the tropospheric ozone RF that would result at steady state (bracketed values indicate the difference from Table S1 where CH₄ feedbacks are neglected). This is obtained by first scaling Δ [CH₄]_{ss} as in Banerjee et al. (2014, 2016) on a gridbox and monthly mean basis to obtain the corresponding change in ozone abundance. A steady state ozone field ([O₃]_{ss}) is calculated as the sum of this change and the simulated ozone. RF-O3_{ss} is then calculated by applying [O₃]_{ss} as a perturbation within the offline RTM.