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Abstract

The Technical Note presents a statistical approach to evaluating simultaneous measurements of
several atmospheric components under the assumption of photochemical equilibrium. We consider
simultaneous measurements of OH, HO,, and O3 at the altitudes of the mesosphere as a specific
example and their daytime photochemical equilibrium as an evaluating relationship. A simplified
algebraic equation relating local concentrations of these components in the 50-100 km altitude
range has been derived. The parameters of the equation are temperature, neutral density, local
zenith angle, and the rates of 8 reactions. We have performed a one-year simulation of the
mesosphere and lower thermosphere using a 3D chemical-transport model. The simulation shows
that the discrepancy between the calculated evolution of the components and the equilibrium value
given by the equation does not exceed 3-4% in the full range of altitudes independent of season or
latitude. We have developed the technique of statistic Bayesian evaluation of simultaneous
measurements of OH, HO, and O3 based on the equilibrium equation taking into account the
measurement error. The first results of application of the technique to MLS/Aura data are
presented in this Technical Note. It has been found that the satellite data of HO, distribution
regularly demonstrates essentially lower altitudes of mesospheric maximum of this component.
This has also been confirmed by model HO, distributions and comparison with offline retrieval of

HO, from the daily zonal means MLS radiance.
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1. Introduction

A prominent feature of the atmospheric photochemical systems is the presence of a large number
of chemical components with short lifetime and concentrations close to stable photochemical
equilibrium at every instant. The condition of balance between their sources and sinks is described
by a system of algebraic equations. This system can be used to determine characteristics of hard
to measure atmospheric species through other measurable components, validate-evaluate results
of remote or insitu measurements, estimate reaction rates usually known with significant
uncertainty, and to understand processes and chemical reactions that influence variability of the
most important atmospheric components, e.g. ozone, in the geographical region of interest.

This approach has found wide application:

(1) in 3D chemical transport models that include a large set of physical and chemical
processes with a broad spectrum of spatio-temporal scales. In particular, the chemical family
concept is widely used for simulating gas phase photochemistry of the lower and middle
atmosphere (e.g., Douglass et al., 1989; Kaye and Rood, 1989; Rasch et al., 1995), when transport
is taken into account only for the concentration of a chemical family, while relative concentrations
of the constituent fast components are calculated from the instantaneous stable equilibrium
condition. Complemented with the Henry law (e.g., Djouad et al., 2003; Tulet et al., 2006) in
multiphase models, this approach markedly saves calculation time and increases the overall
stability of the numerical scheme. Moreover, the use of the photochemical equilibrium condition to
simulate fast components dynamics reduces the phase space dimension of box models
significantly (e.g., Kulikov and Feigin, 2014), allowing a comprehensive analysis of nontrivial
nonlinear dynamic properties of various atmospheric photochemical systems (e.g., Feigin and
Konovalov, 1996; Feigin et al., 1998; Konovalov et al., 1999; Konovalov and Feigin, 2000; Kulikov
et al., 2012).

(2) in investigations of the chemistry of the surface layer and free troposphere in different
regions (over megalopolises, in rural areas, in the mountains, over the seas) based on
measurements of nitrogen species, peroxy radicals, ozone, aerosols, and other components aimed
at understanding processes impacting the surface ozone formation and air quality. The equilibrium
condition is most frequently used for nitrogen species. For example, Chameides (1975) proposed a

model for determining the vertical distribution of odd nitrogen, in which the HNO3 profile could be
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deployed to retrieve profiles of five other components (NO, NO,, NO3, N,Os, and HNO,) from their
photochemical equilibrium condition. In the paper by Stedman et al. (1975) the equation for NO,
equilibrium that accounted only for the main source and sink of this component was applied to
determine the photodissociation constant J(NOz). A more accurate equation for the NO, equilibrium
was used by Crawford et al. (1996) and Kondo et al. (1996) to determine the NO,/NO partitioning
and NOy, allowing, in particular, investigating the spatial distribution of NO,/NO, over the Pacific.

Night-time equilibrium in the NO,-NO3-N,Os5 system is used to determine surface layer N,Os
concentration, equilibrium constant of this system, equilibrium partitioning between NO3z and N,Os,
and loss coefficients of NO3, N.Os and NOy (Martinez et al., 2000; Brown et al., 2003; Crowley et
al., 2010; McLaren et al., 2010; Benton et al., 2010; Sobanski et al., 2016).

Platt et al. (1979) used the CH,O photochemical equilibrium condition to analyse results of
simultaneous measurement of CH,O, O3 and NO, and to identify mechanisms of CH,O formation
over rural areas and in maritime air. In the papers by Ko et al. (2003), Cantrell et al. (2003),
Penkett et al. (1997), Penkett et al. (1998) algebraic expressions derived from equilibrium
conditions for H,O,, peroxy radicals and nitrogen species were used to determine equilibrium
values of peroxide concentration, total peroxy radical level, and NO/NO; ratio, and to diagnose the
ozone production and loss levels in clean or polluted troposphere.

(3) in stratospheric chemistry studies, including determination of a critical parameter in
catalytic cycles of ozone destruction in the polar stratosphere. In particular, the equilibrium
condition for CIO and Cl,O, along with the measurement data of daytime and night-time
concentrations of these components in the polar stratosphere are used to evaluate the temperature
dependence of the CIO concentration, reaction constants determining the
ClO + CIO +M « Cl,02 + M equilibrium, and the photolysis rate of Cl,O, (Ghosh et al., 1997;
Avallone et al., 2001, Solomon et al., 2002; Stimpfle et al., 2004; von Hobe et al., 2005; Berthet et
al., 2005; Butz et al., 2007; von Hobe et al., 2007; Kremser et al., 2011; Suminska-Ebersoldt et al.,
2012; Wetzel et al., 2012).

Pyle et al. (1983) proposed a method for derivation of the OH concentration from satellite
infrared measurements of NO, and HNO3; using a simple algebraic relation following from the
equilibrium condition for HNOs. Algorithms for retrieving distributions of OH and HO2 from the
satellite measurement data of Oz, NO,, H,O, HNO3; by LIMS/Nimbus 7 and UARS with the help of

algebraic models following from the photochemical equilibrium of Oy, HOx, and HNO3; components
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were proposed by Pyle and Zavody (1985), Pickett and Peterson (1996). It is also worthy of note
that similar models are widely used for calculating concentrations of components with a short
lifetime (e.g. O(*D) and OH) and subsequent evaluating vertical distributions of eddy diffusivity from
measurements of trace gas concentration profiles (see, e.g., Massie and Hunten, 1981).

Kondo et al. (1988) made use of the photochemical equilibrium between NO and NO, for
understanding diurnal variations of NO concentration measured during aircraft flights. In the paper
by Webster et al. (1990) simultaneous in situ balloon-borne measurements of NO, NO,, HNO3, O3
and N,O and the photochemical equilibrium condition for various nitrogen components were used
to determine OH, N>Os and NO, concentrations. A similar approach was employed by Kawa et al.
(1990), who obtained NO,, N,Os, CINO3, HNO3; and OH concentrations from aircraft measurements
of NO, CIO and O3 concentrations. Hauchecorne et al. (2010) found that NOs; concentration
measured by GOMOS/ENVISAT positively correlates with temperature at altitudes up to 45 km in
the region where NOs is in chemical equilibrium with O3. Funke et al. (2005) used NO and NO,
stable-state photochemistry to verify correctness of the new approach of retrieving distributions of
those component from MIPAS/ENVISAT measurement data. Marchlfand et al. (2007) proposed a
method to retrieve the temperature distribution in the stratosphere between 30 km and 40 km from
O3 and NO3; measurements by GOMOS with the help of a simple equation derived from the night-
time NO3 chemical equilibrium.

(4) in investigations of the chemistry of O,—HOx components and atmospheric glows in the
mesosphere and MLT area. In particular, Kulikov et al. (2006, 2009) proposed algorithms for the
simultaneous retrieval of O, H, HO, and H,O from joint OH and O3 satellite measurement, in which
the assumption of photochemical equilibrium of Oz, OH, and HO, was utilized. For several decades
the assumption of the photochemical equilibrium of ozone (PEO) was widely used to determine
distributions of atomic oxygen and atomic hydrogen at altitudes of the MLT via satellite and rocket
measurement of ozone concentration and airglow emissions (e.g., Evans and Llewellyn, 1973;
Good, 1976; Pendleton et al., 1983; McDade et al., 1985; McDade and Llewellyn, 1988; Evans et
al., 1988; Thomas, 1990; Llewellyn et al., 1993; Llewellyn and McDade, 1996; Mlynczak et al.,
2007, 2013a, 2013b, 2014; Smith et al., 2010; Siskind et al., 2008, 2015). Russell and Lowe (2003)
applied PEO to infer the seasonal and global climatology of atomic oxygen using WINDII/UARS.
PEO was deployed to investigate hydroxyl emission mechanisms, morphology, and variability in

the upper mesosphere — lower thermosphere region (Marsh et al., 2006; Xu et al., 2010, 2012;

4



125
126
127
128
129
130
131
132
133
134
135
136
137
138
139

140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

Kowalewski et al., 2014). Mlynczak and Solomon (1991, 1993) and Mlynczak et al. (2013b) used
the equilibrium assumption to derive exothermic chemical heat. The PEO assumption employed for
studying the mesospheric OH* layer response to gravity waves (Swenson and Gardner, 1998). In
ultimately theoretical works, e.g. Grygalashvyly et al. (2014), Grygalashvyly (2015), PEO was used
to derive the dependence of excited hydroxyl layer concentration and altitude on atomic oxygen
and temperature. In the paper by Sonnemann et al. (2015) it was used to analyze annual variations
of OH* layer. Moreover, PEO is frequently applied implicitly, when authors are equating the night-
time loss of ozone in the reaction with atomic hydrogen and production of ozone by a 3-body
reaction of molecular and atomic oxygen (e.g., Nikoukar et al., 2007).

In the present Technical note we demonstrate how the photochemical equilibrium condition
of several atmospheric components may be employed to statistically validate data of their
simultaneous measurements, particularly in the case when measurement error is large.

We consider the simultaneous photochemical daytime equilibrium of OH, HO,, and O3 at the
altitudes of the mesosphere. We have derived a simplified algebraic equation

F(OH,HO,,0,) =1,
describing the relationship between local concentrations of the components at the altitudes of 50—
100 km. The only parameters of the equation are temperature, neutral density, local zenith angle,
and constants of 8 reactions. One-year simulation of the mesosphere and lower thermosphere
based on a 3D chemical-transport model shows that the discrepancy between the calculated
evolution of the components and the equilibrium value given by the equation does not exceed 3—
4 % in the full range of altitudes independent of season or latitude.

We have developed a technique of statistical Bayesian evaluation of simultaneous
measurement of OH, HO, and O3 based on the mentioned equilibrium equation taking into account
the measurement error. The first results of its application to MLS/Aura data (Wang et al., 2015a,b;
Schwartz et al., 2015) are presented. It is found that the satellite data of HO, distribution regularly
demonstrates essentially lower altitudes of this component’s mesospheric maximum. These results
confirm the ones obtained via the offline retrieval of HO, from the MLS primary data (Millan et al.,
2015).

The Technical Note is structured as follows. A 3D chemical transport model is briefly
described in Sect. 2. In Sect. 3 a simplified algebraic relationship between the equilibrium

concentrations of OH, HO, and O3 is derived and verified by 3D simulations. Section 4 presents the
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method of statistical evaluation of simultaneous data of OH, HO, and Os. The results of applying
the method to MLS/Aura data are presented in Sect. 5. The last Section contains discussion of the

results followed by concluding remarks.

2. Model and calculations

For our calculations we used the global 3D chemical transport model (CTM) of the middle

atmosphere developed by the Leibniz Institute of Atmospheric Physics (IAP) (e.g., Berger, 1994;
Ebel et al., 1995;: Sonnemann et al.,, 1998; Kremp et al., 1999:; Berger and von Zahn, 1999;

Hartogh et al., 2004, 2011; Sonnemann et al., 2006, 2007). It was designed particularly for

investigation of the spatio-temporal structure of phenomena in the MLT region and specifically in
the extended mesopause region. The grid-point model extends from the ground up to the middle
thermosphere (0—-150 km; 118 pressure-height levels). The horizontal resolution amounts to 5.625°
latitudinally and 5.625° longitudinally. The chemical module described in numerous papers (e.g.,
Sonnemann et al., 1998; Korner and Sonnemann, 2001; Grygalashvyly et al., 2009, 2011, 2012)
consists of 19 constituents, 49 chemical reactions, and 14 photo-dissociation reactions (see Table
1). The reaction rates used in the model are taken from Burkholder et al. (2015). The temperature-
dependent reaction rates are calculated on-line, thus, they are sensitive to small temperature
fluctuations. We make use of the pre-calculated dissociation rates (Kremp et al., 1999).

The evolution of the components of HO, (H, OH, HO,, H,0,) and NOy (N, NO, NO,, NO3)
families is calculated using the chemical family concept proposed by Shimazaki (Shimazaki, 1985).
This is done because of the presence of short-lived components among these families, with
lifetimes much shorter than those of the families themselves, which imposes significant restrictions
on the value of the CTM'’s integration step. For example, the daytime lifetimes of OH and HO,
above 70 km are about 1 s or less, while the lifetime of the HO, family is about 10* s or more.
Therefore, when calculating these components individually it is necessary to set the CTM’s
integration step to be much less than 1 s. In our work, the Shimazaki technique is applied for
calculating the evolution of each component of the HO, and NOy families. We emphasize that this
technique does not explicitly use the steady-state approximation for the components, instead it

utilizes the approach based on an implicit Euler scheme (see Shimazaki, 1985). This allows
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increasing the integration step of CTM significantly without loss of accuracy of calculating the short-
lived components. In our work the integration time is chosen to be 9 s.

The model includes 3D advective and vertical diffusive transport (turbulent and molecular).
Three-dimensional fields of temperature and winds are taken from the Canadian Middle
Atmosphere Model (CMAM) for the year 2000 (de Grandpre et al., 2000; Scinocca et al., 2008).
We use the Walcek-scheme (Walcek and Aleksic, 1998; Walcek, 2000) for advective transport and
the implicit Thomas algorithm as described in Morton and Mayers (1994) for diffusive transport.
The vertical eddy diffusion coefficient is based on the results by Liubken (1997).

We calculate the annual variation of spatio-temporal distributions of OH, HO,, and O3 and

constructed distributions of the F(OH,HO,,03) function introduced in Sect. 1. To remove transitional
regions that correspond to sunset and sunrise, we take into account only periods of local time with
the solar zenith angle x < 85°. The obtained results are presented in the model coordinates, so the
pressure-height levels are used for the vertical axes. In addition, the approximate altitudes are
shown in the figures of Sec. 1, calculated for a given month utilizing averaged temperature profiles

of the model and hydrostatic equilibrium.

3. Daytime photochemical equilibrium of OH, HO,, and O3 at the altitudes of the mesosphere

The daytime balance of OH concentration at mesospheric altitudes is determined by the following
primary reactions (Brasseur and Solomon, 2005):

HO, + O — OH + O, (R18 in Table 1)

H + O3 — OH + O, (R21)

H + HO, — 20H (R14)

OH + O - H + O, (R17)

OH + O3 — HO, + O, (R22)

The daytime balance of HO, concentration:

H+ O, +M — HO, +M, M is molecule of air (R20)

OH + O3 — HO, + O, (R22)
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HO, + O — O, + OH (R18)
The daytime balance of O3 concentration:
O+02+M— O3 +M(R12)
Oz + hv —» O, + O (R52)
O3 + hv > O, + O(*D) (R53)
O3+ H—> OH + O, (R21)
Expressions for local concentrations of OH, HO,, and Os in the photochemical equilibrium
are written in the form
_ k- -HO, -O+2k, -HO, -H+k, -O,-H

OH Q)
k;,-O+k,,-O,
Hozzkzo-M-Oz-H +ky 0y OH @)
kO
k,-M-O,-O @)

* Ky, + kg + ko H
where k; are the corresponding reaction constants from Burkholder et al. (2015).
We eliminate O and H from Egs. (1)-(3) and derive an expression depending only on OH, HO, Os.
Almost everywhere in the mesosphere and lower thermosphere (with the exception of 85-95

km, see Kulikov et al., 2017) the photodissociation is the main ozone sink, i.e. Kk, + Ky, >>k,, -H.

Therefore, in the zero order approximation Eq. (3) can be simplified and the concentration of
atomic oxygen can be defined in terms of ozone concentration:

— kk52 +Kss ; (4)
12 ‘M '02
Making use of Eq. (4) we can derive from Eq. (2) an expression for the concentration of H in terms
of concentrations of OH, HO, and Os:
k18 '(ksz +k53)/ (k12 ‘M 'Oz)'Hoz _k22 -OH
kzo ‘M 'Oz

H= 0, (%)

By substituting this equation and Eqg. (4) into Eq. (1) we obtain an expression relating OH, HO,, and
Oa:

Ky -M-O, _{_klz'M'Oz'kzz). k;; -OH

F(OH,HO,,0;) =(
kzo ‘M 'Oz +k21 '03 +2'k14 'Hoz (ksz +k53)'k17 kls'Hoz

-1 (6)
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Figure 1 shows height—latitude cross-sections of <F(OH,HO,,0,) > for each month (in this

Section angle brackets denote monthly averaged zonal mean values). The dashed-gray area

corresponds to x > 85°. One can see that eq. (15) is most accurate within the 50-76 km range and

above 86 km, where |< F> —1| <1%. The difference reaches 3—-4 % in the region between 76 km

and 86 km. The altitude of this region has an annual variation with a maximum deviation in the
winter hemisphere. Below 50 km the value of <F > increases up to 1.2 at 40 km, thus below the
stratopause Eq. (6) no longer describes the simultaneous photochemical equilibrium of OH, HO,
and Os. Note that these components remain short-lived below 50 km (with the lifetimes of about
10%-10° s (Brasseur and Solomon, 2005)) depending on height and duration of daylight. However,
for quantitative description of their daytime equilibrium it is necessary to include additional
reactions involving, in particular, the components of the NO family.

Note also that Eq. (1) and Eq. (6) take into account only the main daytime source of OH
(P, ) specified by reactions R18, R14, and R21.:

Poy =K, -HO, -O + 2k, -HO, -H +k,,-O, -H

These reactions run “inside” the HOx (H, OH, HO,, H,O,) family and do not perturb its total
concentration. The height-latitude cross-sections of <P, > for each month are presented in
Fig. 2.

The next important daytime source of OH is specified by reactions R59 and R7 involving H,O, the
main source for the HO, family:

P, "“=(k, +2-k, -O('D))-H,0

Figure 3 shows height-latitude cross-sections of <P,,,"* / P, > for each month. Comparing Fig. 1

and Fig. 3, we conclude that the previously indicated 3—4 % deviation of <F > from 1 in the region
between 76 km and 86 km is largely due to the neglect of these reactions.

Another source of OH is sporadically activated during charged particle precipitation events
and exists for a relatively short time (several days). Solar proton events (SPE) perturb the ionic
composition in the mesosphere and the upper stratosphere considerably and trigger a whole
cascade of reactions involving ions, neutral components and their clusters (e.g., O,"-H,0). This
leads to an additional (to reactions R59 and R7) conversion of H,O molecules into OH and H

(Solomon et al., 1981). The maximum of the OH production rate (P, ) induced by SPE is
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located in the polar latitudes in the region of 60—-80 km and, as a rule, does not exceed 2-10° cm™

s (Jackman et al., 2011, 2014). It can be seen from Fig. 2 that at these latitudes and altitudes the

P,.,°"% I P,, ratio does not exceed 1-2%, even for the maximum values of P, . This means that

the impact of P,,,°"® on Eq. (6) is of the same order of smallness as in the case of reactions R59

and R7, hence, it may be neglected. A similar conclusion can be made for other reactions from
Table 1, not accounted for by Eq. (6), including the ones involving NOy in both quiet and perturbed
conditions in the mesosphere.

4. Method of statistical evaluation of simultaneous measurement of OH, HO, and O3

The proposed method is based on the statistical Bayesian procedure described in the works by
Kulikov et al. (2009) and Nechaev et al. (2016). It was originally developed for retrieving trace gas
concentrations in the mesosphere from ground-based and satellite measurements of other
mesospheric components. With respect to the considered evaluation problem this procedure
consists of three steps: (1) constructing conditional probability density function (PDF) of OH, HO,
and Ogj concentration values at each altitude z in the selected interval assuming that there is
certain measurement data of these components and the algebraic relationship (6) is valid; (2)
calculating the first moments of this distribution, i.e. expected value and dispersion of each
component using the Metropolis-Hastings algorithm (Chib and Greenberg, 1995) for

multidimensional integration; (3) comparing the obtained results with the initial measurement data.

For constructing posterior PDF it is convenient to introduce vector G{HOzret,O;e‘,OHre‘},

whose components are the retrieved values of chemical species concentrations at a certain altitude

z, and vector X{HOZ'“ ,0," ,OH”‘} composed of experimentally measured values of the components
of vector U, x; =u;+¢;,j=1.3, where & is a random error of measuring the j-th component of

vector U at the altitude z. It is assumed that

(1) random variables ¢&; are distributed normally with densities

J

(2) &; are mutually independent:

10
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E{68 &) ~ W) =] Tw,(&), (8)

where W.(&)is the total PDF of all &;;
(3) dispersions o; in Eq. (7), that are expected error values, are assumed to be known a priori (in

our case they are provided by the MLS retrieval algorithm along with measured data).

Then the probability to observe vector X is given by the conditional PDF
PX(>'<'|l]):I&()?—G)Wg(f’)d?’f’:Wé()?—l]), (9)
where o(...) is delta function.

The prior relationship of HO,™, O, and OH™ concentrations (Eg. (6)) can be written as
u, =G(uy,u,). Integrating the left-hand side of Eq. (17) with conditional PDF of the variable u,:
P, (U [uy,u,) =5 (u, =G (uy,u,)),
yields a likelihood function of the model
P (X Uy,Uy) =Wy (X, =G (U, U, )) -y (X, — U, )W, (X, —U,). (10)
According to Bayes’ theorem, the posterior function, i.e. the probability density of latent variables u,
and u,, under the condition that X is observed, is defined by the expression

P(ul1u2 | )z) oC F)x()z | ul’uz)'Papr (ul1u2)

oC exp[_(xl_—l;ll)J .exp(_(XZ _l:Z) J_exp[_(xe, _G(ullu2))2 J . Papr (ul,uz) (11)
20 20

2
1 2 20,

in which P, (u,,u,) defines prior PDF of u, and u,.

apr
The retrieved value of the latent variable u,,, is hereinafter understood as the mean value

of the function in Eq. (11):

o0 00

<u1,2>: I Iul,z P(ug,u, | )z)dulduz
o (12)

o0 00

{uy)= I IG(ul,uz)P(ul,uz | X)du,du,.

—00 —00

Its dispersion defines the uncertainty of the retrieval:

o, =(u?)~(u)’, j=1.3, (13)

]

11
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where the angle brackets denote averaging in the sense of Eq. (12).
5. MLS/Aura data evaluation and results

We used the latest version (v4.2) of the MLS “standard” product (Livesey et al., 2017) for trace gas
concentrations and temperature T within the 1 — 0.046 mbar pressure interval where all data are
suitable for scientific applications (Wang et al., 2015a,b; Schwartz et al., 2015). We took the
daytime data when the solar zenith angle x < 80° for January, May, and September 2005. All data
were appropriately screened. “Pressure”, “estimated precision”, “status flag”, “quality”,
“convergence” and “clouds” fields were taken into account. HO, data were seen as the day-minus-
night difference as prescribed by the MLS data guidelines (Livesey et al., 2017). Following Pickett
et al. (2008), each daytime profile of this component measured on a given day at a latitude Lat, a
profile resulting from averaging the nighttime profiles of HO,, measured on the same day in the
latitude range of Lat+5°, was subtracted. This operation eliminates systematic biases affecting HO,
retrievals, but limits the studied latitude range to the one where MLS observes both daytime and
nighttime data.

The integrals in Eq. (12)—-(13) were calculated at every pressure level p for each set of

simultaneously measured vertical profiles OH"-°(p), HO,"*(p), O,"°(p), T"*(p), o ,ms(P),

ret

O, oms(P), o, ms(P). The vertical profiles <OH™ >(p), <HO,* >(p), <O, >(p), Oy (P)

O.0=(P), 0,.(p) were found at each point of the globe along the satellite track. Numerical

integration was performed by a Monte Carlo method. For each pressure level, a sample of about

5-10° pairs of random variable values {u,,u,} ={HO,*,0,} distributed with normalized probability

density given by Eq. (11) with P, (u,,u,)=1 was generated with the help of the Metropolis-

apr
Hastings algorithm (Chib and Greenberg, 1995). In this case, the statistical moments in Eq. (12)—
(13) were determined by summation over the sample.

A typical example of retrieved profiles HO,, O, and OH™ (black curves) in comparison

with the measured HO,"**, O,"*°> and OH"® (red curves) is given in Fig. 4. First of all, note that

statistics of the retrieved data is in satisfactory agreement with the initial measurement of OH and
O3 concentrations, but not of HO,. The error of satellite measurement, o, .., greatly exceeds the
12
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uncertainty of retrieval, o__ .., So at some altitudes the values of <HO,"** > (red dashed curves)

ret 1
O2

ret >E0, - Second, the results of a single
2

do not fall within the corresponding intervals <HO,
measurement of all three components and their retrieved values have considerable uncertainties
relative to their means within the whole interval of altitudes. Therefore, the observed and retrieved
data should be compared using the commonly accepted approach (e.g., Pickett et al., 2008) of
averaging large ensembles of profiles within certain latitude and time ranges, or zones. It is
supposed that the noise of satellite measurement instruments is delta-correlated, so that random
values corresponding to each single measured or retrieved profile are statistically independent. In

this case the dispersion of a measured or retrieved zonal mean profile is determined by summation
1 N
2 2
0 =12 ZG ko
N® i3

where N is the number of measured or retrieved profiles within the zone and &?, is the dispersion

of the k-th measured or retrieved profile.

The range of latitudes covered by the satellite trajectory was divided into 17 bins 10° each.
About 3000 single profiles of each chemical component fall into one bin during a month of
MLS/Aura observations. Therefore, the resulting uncertainties due to measurement noise of OH,
HO, and O3 concentration profiles (both measured and retrieved) averaged over such ensembles
are significantly (about one and a half order of magnitude) lower than the uncertainties of individual
profiles. Examples of such profiles for January, May and September 2005 are presented in Fig. 5.
One can see that the indicated uncertainties are now small enough to make clear conclusions

about the extent to which the observed and retrieved profiles agree by comparing their averaged
values only, i.e. <OH™® > <HOM® > <OM° > and <OH™ >, <HO,™ >, <O, >.

Figures 4-6 show monthly averaged zonal mean pressure—latitude cross-sections of
<HO,* >, <HO,™® >, AHO, =(<HO,* >-<HO,"® >)/ <HO,"* > and similar characteristics
for OH and O3 concentration profiles for three months of the year 2005. First, clearly, the
distributions of <OH™ > and <O, > are in good qualitative and quantitative agreement with the
initial MLS/Aura measurement data at lower altitudes, below ~ 0.07 mbar and 0.1 mbar,
correspondingly. At higher altitudes, the distributions of <OH™ > reproduce all the main structural

H MLS

features of <O >, but the retrieved OH concentration has lower values than the observed one
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with a relative difference AOH reaching ~15% at the top. The distribution of <O, > above

0.1 mbar, in turn, differs considerably from <O,"° >, both in quantity and quality, and AO, locally
reaches 50-60% and more. Second, for all months there are significant qualitative and quantitative

differences between <HO,™ > and <HO,™® >, the most noticeable one being location of the

mesospheric maximum of this component’s concentration. According to the observations it is close
to 0.1 mbar, while the retrieved data demonstrate the altitudes of about ~0.046 mbar or higher. Our

analysis of the applied method of statistical evaluation demonstrates that the higher position of this

H MLS

maximum in the distributions of <HO,* > is influenced by the O data in which the

mesospheric maximum (see Figs. 6-8) is also located notably higher than 0.1 mbar.

6. Discussion and conclusion

On the basis of the data presented in Section 5 we can conclude that, upon the whole,
simultaneous OH, HO, and O3 satellite measurements poorly satisfy the photochemical equilibrium
condition. The HO, component biases from this condition most prominently. We can conjecture that
a possible explanation for the bias is the significant systematic error in HO, measurements, in
particular, in the height of the mesospheric maximum. This assumption is supported by the
calculation of the HO, distributions with the use of our 3D chemical transport model (see Fig. 9). It

can be seen that the mesospheric maximum of HO; in these months, as well as of the <HO,™ >

distributions, lies above 0.046 mbar.

Moreover, new data on the HO, distributions were recently obtained from the MLS
measurements. Millan et al. (2015) performed the offline retrieval of daily zonal means of HO,
profiles using averaged MLS radiances measured in 10° latitude bins. Averaged spectra have a
better signal to noise ratio, which removes many of the limitations of the MLS standard product for
HO.. In particular, the upper boundary of the altitude region in which daytime data is suitable for
scientific use has reached 0.0032 mbar, and the "day-minus-night" correction is not needed at
altitudes above 1 mbar. Comparison with various experimental and model data has shown that the
offline retrieval reproduces the basic properties of the HO, distribution in the mesosphere relatively
well (at least qualitatively) (Millan et al. 2015).

The offline retrieval product, the alternative dataset of daytime HO,, has recently become
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publicly available at https://mls.jpl.nasa.gov. Figure 10 shows the monthly averaged zonal means

of offline retrieval data (< HO,"® >) and relative differences with retrieved and MLS standard

offline

product data (<HO,M® > —<HO,M® . - >) <HOM*® . > and

offline offline

(<HO,* >—-<HOM® . >) <HO,M® . >, correspondingly. Figure 10 represents the same time

offline offline

periods as Figs. 6-8. It is worth noting that the distributions <HO,® . > depicted in Fig. 10

offline
represent significantly different amounts of data. The data sets for May and September include 31
and 27 days of measurements, respectively, whereas the January dataset encompasses only 4
days. The latter makes the graphs in the first row in Fig. 10 noisier than the others. One can see
that the results of the offline HO; retrieval show the same features as the results of our evaluation

technique in comparison to the standard MLS retrieval, i.e. the height of mesospheric HO,

maximum is notably higher. We can conclude that the distributions of <HO,™ > better match

<HO,"™® .. . > than <HO,® > although some quantitative discrepancy between <HO,™ > and

offline

<HO,™® . > also exists. Note that this may be due to systematic errors in the HO,"°

offline

distributions, which cannot be excluded within the framework of the introduced technique. For a

detailed qualitative and quantitative comparison of <HO,* > and <HO,"® . > one should

offline

modify the method, so that a statistical evaluation of the OH"® and O,"° standard products, and

the data of the offline HO, retrieval could be conducted within the framework of a single procedure

with no account for the HO,"* distributions. This modification is under way and will be presented

elsewhere.

The proposed method for statistical evaluation of mesospheric species measurements can
be readily generalized to other atmospheric photochemical systems that contain short-lived
components (see Introduction). It may also be modified for assessing hard to measure chemical
components, characteristics of atmospheric processes (like wind speed or turbulent diffusion rate),

or poorly known reaction rates.
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Table 1. List of reactions with corresponding reaction rates from Burkholder et al. (2015).

1 | o(*D)+0, —» O+0, 22 | OH+03 — 0,+HO, 43 | NO,+03 —> NO3+0O,
2 | O(*D)+N, - O+N, 23 | HO,+03 —> OH+20, 44 | N+OH — NO+H

3 | O(*D)+03 - 0,+20 24 | H+OH+N;, —> H,0+N, 45 | NO+HO, —> NO,+OH
4 | O(*D)+03 — 20, 25 | OH+H; — H,O+H 46 | H +NO, —» OH+NO
5 | O(*D)+N,O —2NO 26 | OH+OH — H,0+0 47 | NOs+NO — 2NO,
6 | O(*D)+N,O — N,+0O, 27 | OH+OH+M — H,0,+M 48 | N+NO — Np+O

7 | O(*D)+H,0 — 20H 28 | OH+HO, — H,0+0, 49 | N+NO2 — N20+0
8 | O(*D)+H; —» H+OH 29 | Hy0,+0OH — H,0+HO, 50 | O,+hv — 20

9 | O(*D)+CH4 — CH3+OH | 30 | HO,+HO, — H,0,+0, 51 | O,+hv —» O+O(*D)
10 | O(*D)+CH4 — Ho+CH,0 | 31 | HO»+HO»+M — Hy02+05+M | 52 | Og+hv — O,+0

11 | O+0O+M — O,+M 32 | CH3+O — CH,0+H 53 | Os+hv > 0,+0(*D)
12 | O+0+M — O3+M 33 | OH+CO — H+CO;, 54 | No+hv — 2N

13 | 0+03 — O, +0, 34 | CH4+OH — CH3s+H,0 55 | NO+hv — N+O

14 | H+HO, — 20H 35 | CH3+02+M — CH30,+M 56 | NOy+hv — NO+O
15 | H+HO, — H,0+0 36 | O3+N — NO+O, 57 | N2O+hv — No+O('D)
15 | H+HO; — Hy+0, 37 | NO3+O — NO,+0; 58 | N,O+hv — N+NO
17 | OH+O — H+O, 38 | O+NO+M — NO,+M 59 | H,O+hv — H+OH
18 | HO,+O — OH+0, 39 [ NOx+O — NO+O, 60 | CHs+hv — CHy+H,
19 | H,0,+0 — OH+HO, 40 | NO2+O+M — NO3+M 61 | HyOz+hv — 20H
20 | H+O2+M — HO,+M 41 | N+O, - NO+O 62 | NOs+hv — NO,+O
21 | H+O3 —» OH+0O, 42 | NO+O3 - NO,+0;, 63 | CO,+hv — CO+0O
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Figure 1. Daytime monthly averaged zonal mean F distributions.
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839 Figure 6. Daytime monthly averaged zonal mean retrieved (left column) and measured (middle
840  column) distributions of HO,, OH, and O3 and their relative difference (right column) in January
841  2005.
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846  Figure 7. Daytime monthly averaged zonal mean retrieved (left column) and measured (middle
847  column) distributions of HO,, OH, and O3 and their relative difference (right column) for May 2005.
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853  Figure 8. Daytime monthly averaged zonal mean retrieved (left column) and measured (middle
854  column) distributions of HO,, OH, and O3 and their relative difference (right column) for September
855  2005.
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Figure 10. Daytime mean monthly averaged distributions of HO, retrieved by Millan et al. (2015)
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