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Abstract. High surface ozone concentrations, which usually occur when photochemical ozone production takes place, pose a 

great risk to human health and vegetation. Air quality models are often used by policy makers as tools for the development 10 

of ozone mitigation strategies. However, the modeled ozone production is often not or not enough evaluated in many ozone 

modelling studies. The focus of this work is to evaluate the modeled ozone production in Europe indirectly, with the use of 

the ozone–temperature correlation for the summer of 2010 and to analyze its sensitivity to precursor emissions and 

meteorology by using the regional air quality model, CAMx. The results show that the model significantly underestimates 

the observed high afternoon surface ozone mixing ratios (≥ 60 ppb) by 10–20 ppb and overestimates the lower ones (< 40 15 

ppb) by 5–15 ppb, resulting in a misleading good agreement with the observations for average ozone. The model also 

underestimates the ozone–temperature regression slope by about a factor of 2 for most of the measurement stations. To 

investigate the impact of emissions, four scenarios were tested: i) increased VOC emissions by a factor of 1.5 and 2 for the 

anthropogenic and biogenic VOC emissions, respectively, ii) increased NOx emissions by a factor of 2, iii) a combination of 

the first two scenarios, iv) increased only traffic NOx emissions by a factor of 4. For southern, central and eastern (except the 20 

Benelux area) Europe, doubling NOx emissions seems to be the most efficient scenario to reduce the underestimation of the 

observed high ozone mixing ratios without significant degradation of the model performance for the lower ozone mixing 

ratios. The model performance for ozone–temperature correlation is also better when NOx emissions are doubled. In the 

Benelux area, however, the third scenario (where both NOx and VOC emissions are increased) leads to a better model 

performance. Although increasing only the traffic NOx emissions by a factor of 4 gave very similar results as the doubling of 25 

all NOx emissions, the first scenario is more consistent with the uncertainties reported by other studies than the latter 

suggesting that high uncertainties in NOx emissions might originate mainly from the road-transport sector rather than other 

sectors. The impact of meteorology was examined with three sensitivity tests: i) increased surface temperature by 4˚C, ii) 

reduced wind speed by 50%, and iii) doubled wind speed. The first two scenarios lead to a consistent increase in all surface 

ozone mixing ratios, thus improving the model performance for the high ozone values but significantly degrading it for the 30 

low ozone values, while the third scenario had exactly the opposite effects. Overall, the modeled ozone is predicted to be 
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more sensitive to its precursor emissions (especially traffic NOx) and therefore their uncertainties, which seem to be 

responsible for the model underestimation of the observed high ozone mixing ratios and ozone production.  

1 Introduction 

Surface ozone (O3) has been identified as a threat to human health by causing respiratory problems (WHO, 2013; EEA, 

2014) and can also cause damage to plants (Fowler et al., 2009). Tropospheric ozone is not directly emitted from a source, 5 

but it is a secondary pollutant formed by chemical reactions of other gases in the presence of sunlight in a complex, non-

linear way (Monks, 2005). The main precursor species for ozone formation are the nitrogen oxides (NOx = NO + NO2) and 

the volatile organic compounds (VOCs), which are emitted by various anthropogenic (e.g. industries, road vehicles, ships, 

etc.) and natural sources (e.g. plants, soil, etc.). Controlling these emissions therefore has been the main approach of ozone 

mitigation strategies (Monks et al., 2015). Apart from the ozone precursor emissions, the other key driver of the surface 10 

ozone concentrations, as well as its chemistry, is the meteorology; from local to global scale (Monks et al., 2015). For 

example, on the local scale changes in shortwave solar radiation and temperature can directly influence the ozone 

photochemistry, and changes in wind speed or vertical mixing can lead to accumulation or dilution of the ozone precursor 

concentrations as well as ozone itself. On the global scale, changes in atmospheric circulation patterns can influence the 

continental transport of ozone concentrations and its precursors, the stratosphere–troposphere ozone exchange and the local 15 

meteorology. As a large number of chemical and physical processes are involved in the formation and transport of 

tropospheric ozone, chemical-transport-models (CTMs) provide a useful tool for the investigation and assessment of the 

ozone concentrations as well as the processes influencing them.  

The peak values of surface ozone concentrations usually occur in the summer afternoon hours when the temperature reaches 

its diurnal maximum and the incoming solar radiation is still ample. Since the very high ozone concentrations increase the 20 

risk for the damage to human health, as it happened for example, during the European heat wave in 2003 (Filleul et al., 

2006), the understanding of ozone formation and reduction of risks is of primary interest. In order to better understand the 

role of drivers for ozone production and to introduce successful ozone mitigation strategies by means of CTMs, a consistent 

and careful model evaluation and data interpretation is required. 

The evaluation of modeled ozone production by just comparing modeled ozone concentrations with measurements may be 25 

misleading, as an agreement between modeled and observed ozone concentrations might just be the result of compensating 

errors. On the other hand, it is known that surface ozone has a high positive correlation with temperature (Sillman and 

Samson, 1995; Pusede et al., 2015). As a result, temperature has been used in several studies (Neftel et al., 2002; Baertsch-

Ritter et al., 2004; Bloomer et al., 2009) as a surrogate to indirectly assess surface ozone production via the ozone–

temperature correlation. However, so far the use of the ozone–temperature correlation was only applied locally for individual 30 

stations and not at a greater regional scale. In this study we adopted alternative methods to assess the ozone concentrations, 

to unmask compensating errors and to evaluate the modeled ozone production in Europe. Furthermore, by applying 
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sensitivity tests we characterized the response of modeled ozone production to its two main drivers: emissions and 

meteorology. 

The paper is organized as follows. In Sect. 2, the data and modelling methods are introduced, results are given in Sect. 3 

beginning with model evaluation and then continuing with the evaluation of afternoon ozone mixing ratios, ozone production 

and its response to changes in model input such as emissions, meteorological parameters, initial and boundary conditions. 5 

Finally, conclusions are summarized in Sect. 4. 

2 Methods 

2.1 Model setup 

In this study we used the regional air quality model, CAMx version 6.30 (comprehensive air quality model with extensions, 

http://www.camx.com). The modelling period covered the summer months (JJA) in 2010 with the last two weeks of May 10 

being used as spin-up time. The model domain extended from 15oW to 35oE and 35oN to 70oN in Europe with a horizontal 

resolution of 0.250º x 0.125º (Fig. 1). In order to perform a region-specific data analysis, the model domain was divided into 

8 sub-regions, 7 of which are similar or identical to the PRUDENCE (http://ensemblesrt3.dmi.dk/quicklook/regions.html) 

climatic regions. The separation was also based on distinct local meteorological or chemical conditions such as in the 

Benelux area and the Po Valley in Northern Italy (Colette et al., 2012; Pernigotti et al., 2012, 2013; Thunis et al., 2015). We 15 

used 14 sigma layers going up to 460 hPa with the first layer being approximately 20 m thick. The concentrations are 

calculated at the mid-point of a given layer, so the modeled values of the first layer correspond to a height of approximately 

10 m. Additional tests showed that higher vertical resolution with layers up to 100 hPa would have a negligible effect on 

surface ozone (see Fig. S1) as also shown by other studies (Menut et al., 2013; Markakis et al., 2015).  

The gas phase mechanism used in this study was CB6r2 (Carbon Bond mechanism, version 6, revision 2: Hildebrandt Ruiz 20 

and Yarwood, 2013). We simulated the particle concentrations using CAMx’s fine/coarse option. CAMx uses the 

ISORROPIA (Nenes et al., 1998, 1999) model for inorganic thermodynamics and gas–aerosol partitioning. We calculated 

the organic aerosol concentrations using the SOAP model (Strader et al., 1999). The calculation of dry deposition was based 

on the algorithms of Zhang et al. (2003). The initial and boundary conditions for the chemical species were obtained from 

the MOZART (Model of Ozone and Related Chemical Tracers) global model data for 2010 with a time resolution of 6 hours 25 

(Horowitz et al., 2003). These data were then interpolated to the size and resolution of our grid using the CAMx pre-

processor MOZART2CAMx (RAMBOLL-ENVIRON, 2016). The photochemistry in CAMx is performed in two steps. 

First, clear-sky photolysis rates are calculated externally by the Tropospheric Ultraviolet and Visible (TUV) radiation model 

(NCAR, 2011) and then used as input into CAMx, where they are internally adjusted every hour for clouds, aerosols, 

pressure and temperature (Emery et al., 2010). In addition, for more accurate radiative transfer calculations, the 8-streams 30 

discrete ordinates scheme was used (Stamnes et al., 1988). Total Ozone Mapping Spectrometer (TOMS) data obtained by the 

http://ensemblesrt3.dmi.dk/quicklook/regions.html
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National Aeronautics and Space Administration (ftp://toms.gsfc.nasa.gov/pub/omi/data/) served as total ozone column input 

for both TUV and CAMx. The meteorological input and the emissions are discussed in detail in the next sections. 

2.2 Meteorology 

The meteorological parameters required as input for the air quality simulations were generated by the WRF-ARW model 

(Weather Research and Forecasting Model, version 3.7.1; Skamarock et al., 2008). The model domain and horizontal 5 

resolution were identical to those used for CAMx model (see section 2.1) while there were 31 vertical layers up to 100 hPa, 

of which 14 were selected for the CAMx runs for computational efficiency. The terrain and land use data were taken from 

10΄ data available from the United States Geological Survey (USGS). The selected key physical options for WRF 

parameterization are summarized in Table S1. Initial and boundary conditions for WRF were generated using 6 h European 

Centre for Medium-Range Weather Forecasts (ECMWF) re-analysis global data of resolution 0.72º x 0.72º. The same data 10 

were also used for four-dimensional data assimilation (FDDA) above the planetary boundary layer (PBL) in the WRF 

simulations. Moreover, the observational nudging in the meteorological simulations (i.e. the use of FDDA) has been shown 

to improve the prediction of ozone by the air quality models (Choi et al., 2009). The model was run as a 48 h forecast and 

was then re-initialized. The first 24 h were considered as spin-up and were discarded.  

The WRF output was pre-processed with the WRFCAMx algorithm (RAMBOLL-ENVIRON, 2016) before being used by 15 

CAMx. The WRFCAMx pre-processor interpolates the meteorological variables from the WRF domain to the CAMx one (in 

our case only a vertical selection of the aforementioned 14 layers was done). Furthermore, it calculates vertical diffusivity 

(Kv) profiles (using the WRF planetary boundary layer height, PBLH), as the standard K-theory is applied in CAMx to 

account for vertical diffusion and sub-grid-scale mixing between layers. For the Kv calculation the Yonsei University non-

local closure scheme (YSU) PBL methodology was chosen to consistently match our WRF PBL parameterization. Finally, 20 

the minimum value for Kv was set to 0.1 m2 s-1. 

2.3 Emissions 

We used the TNO-MACC-III European anthropogenic emission inventory for 2010 provided by the Netherlands 

Organization for Applied Scientific Research (TNO). The TNO-MACC-III is an extension of the TNO-MACC-II emission 

inventory (Kuenen et al., 2014) with some updates which are described in Kuik et al. (2016). It contains annual emission 25 

data for 10 SNAP (Selected Nomenclature for Air Pollution) categories per grid cell (Table S2). The TNO emission domain 

covers the same geographical space as our domain (Section 2.1) but with a higher horizontal resolution (0.125º x 0.0625º). 

By applying the monthly, weekly and diurnal profiles provided by TNO, we calculated the hourly gridded anthropogenic 

emissions of species required for CAMx. The total NOx and NMVOC (non-methane volatile organic compounds) emissions 

per SNAP category in summer 2010 are shown in Fig. 2. The inventory does not include sea salt, mineral dust, wild fire 30 

emissions and NO emissions from lightning. The air quality simulations, however, do contain sea salt and mineral dust 

aerosol concentrations from the initial and boundary conditions.  
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The biogenic emissions (isoprene, monoterpenes, sesquiterpenes, soil NO) were calculated according to the method 

described by Andreani-Aksoyoglu and Keller (1995) using temperature, shortwave solar radiation and USGS land use data 

from the WRF output and the GlobCover 2005-06 inventory (http://due.esrin.esa.int/page_globcover.php). Spatial 

distribution maps of those biogenic emissions are provided in the Supplement (Fig. S2). All emissions were treated as area 

emissions in the first model layer. Uncertainties in the emission estimates vary depending on the emitted pollutants and their 5 

sources (Kuenen et al., 2014). Among the anthropogenic emissions, one of the most important contributors, with high 

uncertainty, is the road transport (SNAP 7) which was shown to be the category with the highest contribution to the daily 

average maximum 8 h ozone mixing ratio in Europe (Tagaris et al., 2015). The uncertainty in NOx and NMVOC emissions 

from road transport was rated as C (C corresponds to a typical error range of 50 to 200%) by the European Environment 

Agency (EEA, 2016). Especially high uncertainty in NOx emissions from the diesel vehicles might be related to non-10 

compliance with air quality regulations or insufficiencies in the air quality regulation control. For example, in several studies 

emissions from passenger cars were measured in different, more realistic driving conditions than the laboratory test New 

European Driving Cycle (NEDC) (Hausberger, 2010; Weiss et al., 2011a, b, 2012; Alves et al., 2013; May et al., 2013). 

These studies showed that there was a significant discrepancy (a factor of 2–4) in the NOx emissions from light-duty diesel 

vehicles between the two driving cycles, indicating inadequacy of the NEDC to effectively control the compliance of 15 

passenger cars with the European air quality regulations. As a consequence, large discrepancies have been observed between 

real-world emissions of diesel passenger vehicles based on remote sensing and simultaneous license plate detection at a road 

site in Switzerland, and the homologation limit of diesel passenger vehicle (Baltensperger, 2016). According to Anenberg et 

al. (2017), also the heavy duty diesel trucks and buses emit more NOx than the legislative limit. Furthermore, Vaughan et al. 

(2016) and Karl et al. (2017) reached similar conclusions by analyzing NOx flux measurements and attributed the 20 

discrepancy between observations and emission inventory estimates to the under-representation of the real-world road traffic 

emissions. Moreover, a general underestimation of the total NOx emissions, compared to TNO MEGAPOLI and MACC-III 

inventories, by a factor of 1.4-1.5 for the summer of 2009 in Paris was recently reported by Shaiganfar et al. (2017), where 

they used a large set of car multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements to calculate 

the NOx emissions by applying the closed integral method (CIM). For the VOC emissions there are reported emission 25 

uncertainties of ~50% for the anthropogenic sources (Theloke and Friedrich, 2007; Kuenen et al., 2014). The VOC emission 

uncertainties can be due to a number of reasons such as: i) the small number of measured vehicles for the transportation 

sector, since the VOC species resolution rely on measurements, ii) not enough available measurement data for the 

combustion-, process-, and production-related emissions compared to the much higher number of individual emission 

sources, iii) the large variety of the VOC compositions in the used solvents, iv) the measurement uncertainties (Theloke and 30 

Friedrich, 2007). Biogenic VOC emission estimates on the other hand, have higher uncertainties (a factor of 2–3) associated 

with their transformation in the atmosphere and the lack of sufficient measurements of biogenic species (Karl et al., 2009; 

Hogrefe et al., 2011; Oderbolz et al., 2013; Guenther, 2013). In addition, the marine transport sector is one of the least 

regulated anthropogenic emission sources with emissions from ships having high uncertainties (EEA, 2016) and can have an 

http://due.esrin.esa.int/page_globcover.php
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important contribution to surface ozone in the Mediterranean sea, coastal areas and to some extent over land (Tagaris et al., 

2015, 2017; Aksoyoglu et al., 2016).  

2.4 Observations 

Meteorological observations from European stations with 3 h time intervals were obtained from the British Atmospheric 

Data Centre (BADC) using the UK Met Office Integrated Data Archive System (MIDAS) Land Surface Stations database 5 

(Meteorological Office, 2013). Even though the UK stations have hourly observations, for the sake of a more homogeneous 

and consistent model performance evaluation for the whole European domain the 3 h interval was used for the UK stations 

as well. The extracted meteorological parameters were: dewpoint and air temperature at 2 m (T), wind speed and direction at 

10 m (WS and WD, respectively) and surface air pressure. The water vapor mixing ratio (qv) was calculated using the 

dewpoint temperature and surface air pressure as described in the literature (Bolton, 1980; Wagner and Pruß, 2002). Only 10 

stations that belong to the synoptic network (SYNOP) were used for the WRF performance evaluation, as only those stations 

meet the requirements for forecasting as given in the MIDAS user’s guide (http://badc.nerc.ac.uk/data/ 

ukmo-midas/ukmo_guide.html) and therefore contain data appropriate for comparison with the instant WRF output values. 

All data are reported in UTC time. 

There are no direct measurements of the PBLH, but it can be estimated with different methods by using sounding data. Such 15 

data were extracted from the University of Wyoming database (http://weather.uwyo.edu/upperair/sounding.html). All 79 

sites have one sounding at 12:00 UTC and most of them have also a second one at 00:00 UTC. Since not all sites have 

soundings at 00:00 UTC and the concept of the PBLH applies only for convective periods, only the soundings at 12:00 UTC 

were selected for evaluation. We used the bulk Richardson number (Ribc) method to estimate the PBLH above ground, which 

is considered as the altitude where the Ribc exceeds a critical value Ricr (Seibert et al., 2000). Although there is a range of 20 

values for Ricr proposed in the literature (Richardson et al., 2013; Zhang et al., 2014) we selected the Ricr to be 0.25 for both 

stable and unstable conditions which is also used in the PBLH calculations with the YSU scheme in WRF (Hong, 2010). The 

same method and the critical value were also used in other air quality modelling studies for PBLH evaluation (Brunner et al., 

2015; Bessagnet et al., 2016). 

The observational data for the surface air pollutant concentrations (http://acm.eionet.europa.eu/databases/) were taken from 25 

the European Air Quality Database v7 (AirBase; Mol and De Leeuw 2005). In order to reduce the uncertainty due to grid 

resolution we used only background rural stations with hourly (UTC) measurements for comparison with the model output. 

The chemical species used in the evaluation are: O3, NO2, SO2, CO and PM2.5. In addition, we used ozonesonde data from 

the World Ozone and Ultraviolet Radiation Data Centre (Toronto, Canada; http://woudc.org/data.php) for 6 sites to evaluate 

the vertical profiles of ozone, temperature and wind speed (discussed in Sect. 3.3). A short description of the ozonesonde 30 

stations is given in Table S3. Finally, data quality filters were applied to exclude surface stations with less than 90% data 

availability and with elevation higher than 700 m. For the radiosonde sites a less strict filter of 2/3 data availability was 

applied due to the low measurement frequency. 

http://badc.nerc.ac.uk/data/ukmo-midas/ukmo_guide.html
http://badc.nerc.ac.uk/data/ukmo-midas/ukmo_guide.html
http://weather.uwyo.edu/upperair/sounding.html
http://acm.eionet.europa.eu/databases/
http://woudc.org/data.php
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2.5 Model evaluation methods 

For comparison with surface observations the values in the lowest model layer were interpolated (bilinear interpolation) to 

each station’s coordinates, while for the evaluation of vertical profiles the nearest neighbor method was used for horizontal 

interpolation together with linear vertical interpolation to 14 constant heights above ground. The statistical metrics that were 

used for the meteorological and air quality model performance evaluation are summarized in Table 1. The statistical metrics 5 

for the wind direction were calculated only for wind speeds higher than 1.5 m s-1 to omit the high observational errors below 

this threshold (Zhang et al., 2013). For the meteorological parameters the model evaluation was performed for the respective 

available time interval, while for the chemical species the evaluation was done for the daily mean values in order to be 

comparable with other studies using other models and parameterizations (e.g. Bessagnet et al., 2016). We calculated the 

daily means from the hourly measurements to ensure that it corresponds to the time range of 00:00–23:59 for the day. As this 10 

study focuses on ozone, additional evaluation of its diurnal variation and afternoon (when most of ozone production takes 

place) mean was performed, as well as for NO2 since it is one of the main precursors for ozone formation. The analysis of 

each statistical metric was first performed for each station individually (to avoid spatial noise) and then the total mean of all 

stations was taken as the representative value of the model performance evaluation for the whole domain. The statistical 

results were also compared with recommended model performance criteria for model evaluation, which are shown in Table 15 

2. 

In addition to the aforementioned traditional evaluation methods, we used other, less common, approaches for the evaluation 

of modeled ozone in our study. We applied these non-traditional methods in the afternoon hours (12:00–18:00 UTC; only 

12:00, 15:00 and 18:00 UTC for the meteorology) when the ozone production and mixing ratios often reach their maximum. 

For the evaluation of ozone mixing ratios, we divided the observed values into mixing ratio bins of 10 parts per billion by 20 

volume (thereafter ppb) between 20 and 70 ppb, plus one bin incorporating all the values equal or higher than 70 ppb. For 

each observed ozone mixing ratio bin we calculated the mean bias (as defined in Table 1) between the respective model 

values and observations. This approach shows and quantifies more clearly the model’s prediction for each respective 

observed value set, avoiding compensation of errors on the temporal scale. This greatly improves the interpretation of the 

model’s prediction, especially if it is to be compared with other models or sensitivity tests. 25 

The evaluation of ozone production was performed indirectly, with the use of its correlation with temperature as discussed in 

Sect.1. We made use of the ozone–temperature correlations as described in the following three approaches: 

1) We selected 8 surface stations (see Table S4 for details), which have measurements of both temperature and ozone, and 

performed regression analysis (use of scatter plot) between afternoon mean ozone mixing ratios and the respective afternoon 

mean temperature for each station. Since we used different measurement networks for the air quality and meteorology, the 30 

characterization of a station as common in both networks was based on the very small difference (< 0.01º) of the station’s 

reported coordinates (both longitude and latitude) between the two networks. The next step was to identify a linear 

relationship between the ozone and temperature values and apply a best linear fit. Since the least-square linear regression 
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method can be sensitive to outliers, we used a more robust linear regression technique: the Theil-Sen estimator (Sen, 1968). 

From the best linear fit we calculated the slope that represents the ozone production as a function of temperature. By 

comparing these slopes with the ones from the modeled ozone and temperature, we evaluated the modeled ozone production. 

2) In order to evaluate the model results using all stations with ozone data (in the first step, we could use only 8 stations 

which had both ozone and temperature measurements) we applied an additional method. We compared the observed ozone– 5 

temperature correlation with the correlation between observed ozone and modeled temperature. This was done to assess and 

confirm (together with the meteorological model evaluation in Section 3.1) that the modeled temperature was a good 

surrogate for the observed temperature in the ozone–temperature correlation. In this way, we could apply this method to all 

stations and evaluate the ozone production in the whole European domain. It is difficult, however, to interpret the results 

when the evaluation is performed for each station separately when the number of stations is large. We displayed therefore all 10 

the calculated slopes of the ozone–temperature linear fit for both observations and model into a single scatter plot. In this 

way, the illustration and interpretation of the modeled ozone production evaluation for whole domain became simpler. In 

addition, for more consistent results two filters were applied in the method above: i) we only included days with afternoon 

mean temperature higher or equal to 15˚C, ii) since stations in colder regions do not have very high temperatures even in 

summer, we only kept stations with at least 2/3 data availability (after the first filter was applied). 15 

3) In order to have a more rigorous model evaluation of the ozone production without the influence of day-to-day variation 

and local meteorological conditions, we also applied a binned data analysis in the ozone–temperature correlation as also used 

by Bloomer et al. (2009). We divided the modeled temperature into four bins with 5˚C intervals starting at 15˚C and ending 

at temperatures equal or higher than 30˚C. For each temperature bin the mean ozone mixing ratio for the respective values 

was calculated. With this third approach a more general picture (representative for each region) of the ozone–temperature 20 

regression is shown. All three approaches comprise the core of the modeled ozone production evaluation of this study and 

will also help apportion its potential errors, as correctly as possible, to its sources. A prerequisite of these methods’ 

consistency is a good meteorological model performance which is evaluated in Sect. 3.1 along with the air quality model 

results. 

2.6 Sensitivity tests 25 

In order to characterize the sensitivity of the modeled ozone production to its main drivers, various emission and 

meteorological sensitivity tests were performed (see Table 3). These tests were based on the emission uncertainties that were 

discussed in Sect. 2.3 as well as the meteorological uncertainties of this study such as temperature and wind speed 

underestimation and overestimation of low-wind speed, which are quite common in modelling studies (Solazzo et al., 2013, 

2017; Im et al., 2015; Bessagnet et al., 2016). 30 
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3 Results and discussion 

3.1 Model performance evaluation 

The meteorological model results show a good agreement with the surface observations for 1051 stations (Table 4) and meet 

the performance criteria (Table 2) suggested by Emery et al. (2001). Only the mean gross error (MGE, see Table 1 for 

definitions) for the wind direction is slightly off by 5 deg. Apart from the surface meteorological parameters, also the PBLH 5 

(56 stations) is predicted quite well with a high index of agreement (IOA), and the mean bias (MB) and root-mean-square 

error (RMSE) are well within the range of other studies (Brunner et al., 2015; Bessagnet et al., 2016).  

The overall model performance for the daily mean concentrations of the air pollutants in summer (JJA) 2010 (Table 5) was 

reasonably good. The statistical evaluation results for most chemical species were in line with those reported for various 

models and parameterizations for summer periods in Europe (Bessagnet et al., 2004, 2016; Solazzo et al., 2012b, b; 10 

Nopmongcol et al., 2012; Giordano et al., 2015). Model performance goals and criteria for O3 and PM2.5 (Table 2), 

recommended by Boylan and Russell (2006) and EPA (2007), were met. Moreover, O3, which is the main focus of this 

study, was only slightly over-predicted by 4 ppb and had a high correlation coefficient (r) of 0.7. On the other hand, SO2 is 

overestimated with a MB and RMSE of 1 and 2 ppb, respectively. In the EURODELTA III model inter-comparison exercise, 

models showed the worst performance for SO2 (Bessagnet et al., 2016). Possible reasons for this behavior, as also discussed 15 

in Ciarelli et al. (2016), can be the injection height of the SO2 emissions from high stack point sources which are placed in 

the first model layer (i.e. up to 20 m), especially near the harbors and coastal areas, as well as insufficient conversion to 

sulfate and deposition processes. The CO concentrations were underestimated (MB and MGE were close in absolute terms 

and correlation was poor). However, the accurate modelling of CO is a common problem in the European modelling 

community and our results are similar to other studies (Nopmongcol et al., 2012; Solazzo et al., 2013, 2017; Giordano et al., 20 

2015). Since CO concentrations do not change rapidly by chemistry and deposition processes, the differences between model 

and observations are mostly related to boundary conditions, vertical mixing and emissions (Solazzo et al., 2013, 2017; 

Giordano et al., 2015). Although the bias for NO2 is small (–0.2 ppb), the MGE and RMSE are much higher (in absolute 

terms) indicating compensation between over- and underestimation throughout the day leading to a weak correlation 

coefficient (0.4). The largest discrepancies occur in the night and early morning hours (NO2 diurnal profile is discussed in 25 

detail below). The model performance for PM2.5 looks good (small negative MB), however, a similar compensation of errors 

as in the case of NO2 appears to occur for PM2.5 concentrations as well. Since NO2 and SO2 are precursors for the PM2.5 

formation, their errors (especially in the night and early morning hours) are expected to affect the PM2.5 concentrations in a 

similar way. In addition, the lack of wildfire emissions could also contribute to the discrepancies between model and 

observations for PM2.5 and CO (Saarikoski et al., 2007; Hodzic et al., 2007; Tressol et al., 2008; Turquety et al., 2009; Strada 30 

et al., 2012). 

The diurnal profiles of O3 and NO2 for each region are shown in Fig. 3 and 4, respectively. The model captures quite well the 

O3 diurnal variation, especially in the afternoon for most regions except for the Po Valley (PV region) where models have 
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usually difficulties in this heavily polluted area with complex topography (de Meij et al., 2009a), and the British Isles (BI 

region) where there is a consistent slight overestimation. The overestimation during the night and early morning hours can be 

due to overestimation of vertical mixing, which causes stronger vertical transport of O3 from the higher altitudes to the 

surface and thus enhancing the surface mixing ratios (Lin et al., 2008; Lin and McElroy, 2010; ENVIRON, 2011). The effect 

is the opposite for NO2, where more mixing during the night and early morning hours results in enhanced transport of NO2 5 

from the surface to the upper layers leading to lower NO2 mixing ratios in the lower layers. However, there can be different 

level of uncertainty in the Kv values for different layers and thus different effects on NO2 mixing ratios, especially in the first 

layer where the emissions are injected (ENVIRON, 2011). In addition, the nocturnal dilution of NO2 will also impact the 

night time NOx titration of ozone and this will influence both the mixing ratios of NO2 and O3. The early morning peak in the 

NO2 diurnal profile is related to the traffic NOx emission peak where there is a time shift of one hour between the model and 10 

observations. This is probably due to very low Kv values in those early morning hours for the first model layer, which 

confine the emissions to the surface (ENVIRON, 2011). Since the NOx emissions are not efficiently transported out of the 

first model layer, they lead to a peak of NO2 mixing ratios one hour earlier than the NOx emissions’ early morning peak 

(NOx emissions are already high one hour before their peak time). The same source of error could also account for the 

overestimation of evening surface NO2 mixing ratios in most regions. Other sources of error for the NO2 mixing ratio during 15 

the night-early morning hours can be related to uncertainties in its dry deposition (Simpson et al., 2014) or to the coarse grid 

resolution (some background rural stations might be located in grid cells that are characterized by urban conditions). On the 

other hand, the model underestimates the NO2 in the afternoon by up to a factor of ~ 2 for all regions apart from the Po 

Valley (PV region), where it is even higher. It is known that the observed NO2 mixing ratios, which are mainly measured 

with instruments equipped with molybdenum converters, can be overestimated due to instrumental artifact. Steinbacher et al. 20 

(2007) reported that in the summer afternoon hours for a non-elevated rural site in Switzerland the ratio of NO2 mixing ratios 

measured with molybdenum converter to the ones measured with photolytic converter (i.e. without that artifact) was on 

average ~1.7. However, this overestimation in the NO2 observations cannot solely explain the model’s afternoon under-

prediction as it is higher than the measured NO2 artifact, as indicated by the diurnal variation of the ratio of observed to 

modeled NO2 mixing ratio for the base case (Fig. S3). The rest of this discrepancy can be mainly attributed to emission 25 

and/or meteorological uncertainties. 

In order to investigate the afternoon O3 and NO2 mixing ratios in more detail, we analyzed the afternoon averaged (12:00–

18:00 UTC) scatter plots (Fig. 5 and 6). The good agreement between modeled and measured afternoon ozone in Fig. 3 

seems to be the result of a compensation of errors. More specifically, in the afternoon the model mainly over-predicts the 

low ozone mixing ratios (≤ 40 ppb) and under-predicts the high ones (≥ 50 ppb), especially in central Europe (PV, ME and 30 

BX regions). While the overestimation of the lower observed ozone values is more likely linked to transport (vertical and 

horizontal) processes, the underestimation of the higher ones might be an indication of underestimation in ozone production. 

Similar model bias patterns as in this study were also reported by other studies for a variety of different models and 

parameterizations in Europe, the vast majority of which showed overestimation of the low ozone concentrations and 
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significant underestimation of the high ozone levels (Solazzo et al., 2012b; Im et al., 2015). In the less polluted SC and BI 

regions most of the observed ozone values do not grow above 60 ppb (98-99% of the sample) and so the region is mainly 

characterized by the overestimation of the lower ozone values. On the other hand, the afternoon bias in the NO2 mixing 

ratios (underestimation by factor of 2 for the whole domain except for the Scandinavia (SC region)) is consistent with the 

diurnal plots (Fig. 4) and appears to be more pronounced (Fig. 6). However, for BI and SC regions the NO2 results should 5 

not be interpreted as a robust representation of the whole region due to the small number of sites (4 and 3 respectively) that 

are included. 

As the afternoon ozone mixing ratios are strongly related to ozone production, we made use of the ozone–temperature 

correlation (as discussed in Section 2.5) to examine the modeled ozone production performance. The regression between 

surface afternoon mean ozone mixing ratio and temperature for 8 stations is shown in Fig. 7. Three cases are shown: i) 10 

observed ozone mixing ratios against observed temperature, ii) observed ozone mixing ratios against modeled temperature, 

and iii) modeled ozone mixing ratios against modeled temperature. For all cases a strong linear correlation of ozone with 

temperature with an upward trend is evident, except for the Nice (FR) station where ozone stays constant with increasing 

temperature. A comparison of the ozone–temperature correlation for the first two cases (black and red colors) shows that the 

modeled temperature can be used consistently as a surrogate for the observed one and can therefore be paired with the 15 

observed ozone mixing ratios. For the third case (blue color), the upward trend of the ozone–temperature correlation is less 

steep compared to the other two cases. This is mainly due to the underestimation of the high ozone mixing ratio values (≥ 60 

ppb). Since the ozone–temperature correlation is a proxy for the ozone production performance we can argue that the model 

underestimates the ozone production at these stations. 

In general, the use of daily means and diurnal profiles for the model performance evaluation may conceal hidden biases as 20 

shown above. Especially for a chemical species like ozone, which is greatly influenced by both the meteorology and its 

complex non-linear chemistry, a model evaluation should be carried out for hourly values to increase the evaluation’s 

consistency but also to better examine and understand the physical and chemical processes leading to the modeled values. 

Regarding the ozone production, the use of the afternoon ozone–temperature correlation indicated an underestimation of the 

model, but it was limited to 8 stations only. In the next sections we employ the rest of the methods discussed in Section 2.5 25 

on all stations to better evaluate both qualitatively and quantitatively the model afternoon ozone mixing ratio and production, 

and apply various sensitivity tests to investigate the sources of error. 

3.2 Sensitivity of ozone to emissions 

Base case: Figure 8 shows the mean bias in the modeled afternoon ozone mixing ratios as a function of measured ozone 

mixing ratio bins (as discussed in Section 2.5) for the base case as well as for four emission scenarios described in Table 3. 30 

The trend of the model bias for the base case is very similar to the one in Fig. 5: in all regions afternoon ozone mixing ratios 

higher than or equal to 50 ppb are underestimated (3–17 ppb) and this underestimation increases with the mixing ratio. In the 

Po Valley (PV region), which has the largest number of measurement data in the highest mixing ratio bin (≥ 70 ppb), the 
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mean negative bias is about 15 ppb. The lower afternoon ozone mixing ratios (< 50 ppb) are overestimated in the whole 

domain with more regional variations than in the case of higher mixing ratios (≥ 50 ppb). The only exception to this 

overestimation appears in the less polluted regions BI and SC, where the overestimation in the lower bins (< 50 ppb) is either 

very small or close to zero. More specifically, the positive model bias is higher for the stations in southeast France as well as 

south and central Italy (MD region) with up to 20 ppb for the first bin (20–30 ppb) and then gradually decreasing with 5 

increasing mixing ratio. With increasing latitude the positive bias is reduced and reaches almost zero at the stations in BI and 

SC regions. In general, the low afternoon ozone mixing ratios (< 50 ppb) at the background rural sites are more likely related 

to background ozone levels and influenced more by the meteorology. On the contrary, the higher afternoon ozone mixing 

ratios (≥ 50 ppb) are usually associated with ozone production, where the ozone precursors and thus the emissions play a key 

role. This is confirmed by the various emission sensitivity tests we applied. However, the meteorology can influence the 10 

mixing ratios of ozone precursors by vertical mixing or advection, especially for sites that are located downwind of high 

emission areas. 

Increased VOC emissions: The model’s response to increased VOC emissions (1.5-2VOC scenario, Table 3) is relatively 

weak for most of the regions except for MD, PV and BX regions (Fig. 8) with the largest effect of ~4 ppb reduction of the 

negative bias occurring in the highest bin (≥ 70 ppb). Moreover, for the lowest three bins the effect is negligible in regions 15 

IP, MD, EA and BI. A higher impact is seen in the polluted areas such as the Po Valley (PV region), the Mediterranean 

coasts in Italy and southeast France (MD region) and the Benelux area (BX region). The Benelux area is exposed to high 

NOx emissions from both land and shipping activities, leading to a more VOC sensitive chemical regime for ozone 

production in this region (Beekmann and Vautard, 2010; Aksoyoglu et al., 2012). The geographical characteristics of the Po 

Valley in Northern Italy lead to a trap and accumulation of the pollutants in the area (de Meij et al., 2009a, b; Pernigotti et 20 

al., 2012, 2013), which in return can also affect the nearby stations that are located in the MD region. For both PV and BX 

regions there is a consistent increase in modeled ozone mixing ratios for all bins resulting in a decrease in the negative bias 

in higher bins and a slight increase in the positive bias in lower bins (Fig. 8). 

Increased NOx emissions: A larger impact on the ozone mixing ratios (negative bias improved by ~6-8 ppb) is observed 

with increased NOx emissions (2NOx) for all regions except for BX and BI regions. In BX region the higher bins were not 25 

affected while mixing ratios in the lower bins decreased most likely due to more titration, consistent with the VOC sensitive 

regimes. The ozone mixing ratios in the BI region were insensitive to the increase of the NOx emissions, as background 

levels mainly govern ozone levels in that area. On the other hand, there was a small enhancement (up to ~2.5 ppb) of the 

positive bias for the lower ozone mixing ratios (< 50 ppb) in IP, MD, EA and SC regions. The effect of increasing only the 

traffic NOx emissions by a factor of 4 (4traf_NOx scenario) is very similar to the 2NOx scenario. It reduces the negative bias 30 

slightly more (~1–2 ppb) compared to the 2NOx scenario in the two highest bins (≥ 60 ppb) in regions EA and ME without 

increasing the overestimation in the lower bins (<50 ppb). Only in the Po Valley (PV region) is the model’s response slightly 

weaker (~2–3 ppb) for the two highest bins (≥ 60 ppb) compared to the 2NOx scenario, where negative bias was not reduced 

as much as with the 2NOx scenario. However, this might be related to enhanced ozone titration by NOx, as the positive bias 
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in the lower bins (< 50 ppb) decreased more (~3–4 ppb) than with the 2NOx scenario. Finally, since the 4traf_NOx scenario 

has a very similar impact on surface ozone as the 2NOx scenario and it is within the reported observed underestimation range 

(i.e., factor of 2–4; see Sect. 2.3), this might suggest that high uncertainties in the NOx emissions might be more relevant to 

the road-transport sector (SNAP 7; see Fig. 2). 

Increased NOx and VOC emissions: The combined increase of both NOx and VOC emissions has the largest impact among 5 

all the emission scenarios. For all regions (except for BX region), the ozone mixing ratios consistently increase in all bins 

leading to an underestimation only for the highest ozone levels and overestimation for all other bins. For BX region, this 

scenario reduces the bias in all bins. In the lower ozone mixing ratio bins (< 40 ppb) the NOx emissions are responsible for 

the ozone destruction causing the reduction of the positive bias, while in the higher ozone mixing ratio bins (≥ 50 ppb) the 

enhancement of ozone production leads to a reduction of the negative bias by 2–7 ppb (negative bias reduction increases 10 

with ozone mixing ratio). For the 40–50 ppb bin, there is a negligible change (< 1 ppb) towards a negative bias.  

In general, the PV region exhibits the highest sensitivity to emissions due to its location, and the model prediction for ozone 

is generally improved with the increased NOx emissions (2NOx and 4traf_NOx scenarios). For the rest of the Southern 

European stations (IP and MD regions), the increase of the NOx emissions (2NOx and 4traf_NOx scenarios) also gives the 

best results but the overall modeled ozone performance remains problematic as the overestimation of the lower ozone mixing 15 

ratios (< 50 ppb) is enhanced (in a smaller degree for the 4traf_NOx scenario in MD region) without effectively tackling the 

underestimation problem of the higher ozone mixing ratios (≥ 60 ppb). Similarly for central Europe (ME region), increasing 

the NOx emissions (2NOx scenario) and especially the transportation NOx emissions (4traf_NOx scenario) improves the base 

case more than any other emission test by reducing the negative bias for high ozone mixing ratios (≥ 50 ppb) and having 

only a small bias (positive or negative) for other ozone mixing ratio ranges. On the other hand, increasing both NOx and 20 

VOC emissions (2NOx,1.5-2VOC scenario) has the most effective improvement in the model performance for the BX 

region, since it is the only case where the ozone bias decreases in all bins. The British Isles (BI) and Scandinavia (SC) are 

the only regions where the base case performs quite well, with only a ± 5 ppb or less bias for ozone mixing ratios less than 

60 ppb which comprise 98-99% of the total ozone mixing ratio range for those regions. Although increased VOC emissions 

improve the results slightly, the change is very small. Overall, our emission-sensitivity analysis indicates that the NOx 25 

emissions, especially from the transportation sector (SNAP 7) in central, eastern and southern Europe might be too low in 

the emission inventories. 

Ozone–temperature correlation: We analyzed the slopes of the regression lines from the ozone–temperature correlations 

using the second approach, as described in Section 2.5. The modeled slopes are displayed as a function of observed slopes 

for each region and for each emission scenario in Fig. 9. For the base case, the model underestimates the ozone–temperature 30 

slope by about a factor of 2 or more for most stations in all regions apart from the BI and SC regions (light blue and purple 

color, respectively), where the most stations are close to the 1:1 line. The underestimation of the slopes is more evident for 

the IP and MD regions (yellow and pink color, respectively). For the MD region, despite the underestimation of the high 

ozone mixing ratios, the model also overestimates the low ozone mixing ratios more significantly than for other regions (see 
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Fig. 8) and this will consequently influence the trend of the ozone–temperature regression. Increasing the VOC emissions 

(1.5-2VOC scenario) does not change the picture compared to the base case with the exception of improvement in the BX 

region (red color), which is consistent with the results shown in Fig. 8. On the other hand, the scenarios with increased NOx 

emissions (2NOx and 4traf_NOx scenarios) as well as with increased NOx and VOC emissions (2NOx,1.5-2VOC scenario) 

improve the modeled ozone–temperature slopes. The difference between these two cases (increasing only NOx or both NOx 5 

and VOC emissions) is mainly for the BX region, where the 2NOx,1.5-2VOC scenario performs better (red dots get closer to 

the 1:1 line), which is again consistent with the aforementioned analysis of Fig. 8. The same scenario may also bring some 

stations of other regions closer to the 1:1 line, but by combining the results from Fig. 8 one can see that it overestimates the 

ozone values in all bins except for the last one. This underlines the need of an additional approach to evaluate the ozone–

temperature correlation by taking into account both the regression slope and the magnitude of ozone mixing ratios. 10 

The ozone–temperature correlation was also investigated from a different perspective smoothing out the station-to-station 

variation by making use of the third approach discussed in Section 2.5. The results are shown in Fig. 10 where the 15˚C 

temperature threshold cuts off most of the lowest afternoon ozone mixing ratios (< 30 ppb) as the mean ozone mixing ratios 

(modeled and observed) in the 15–20˚C bin are greater or equal to 35 ppb for all regions and the production of ozone is 

likely very low for temperatures lower than this threshold. This allows accentuating on the underestimation of the high ozone 15 

mixing ratios which is more relevant for the ozone production. Furthermore, the advantage of Fig. 10 is that it summarizes 

information from both Fig. 8 and 9: the height of the bars depicts the underestimation/overestimation of the high/low ozone 

mixing ratios, while the trend of their relationship with temperature (which is more clearly illustrated by the lines above 

them) represents an evaluation of the model performance for ozone production. By looking at both of these characteristics in 

Fig. 10, the modeled ozone production for the base case is under-predicted in all regions apart from BI and SC where it is in 20 

good agreement or slightly over-predicted. More specifically, the observed ascending trend (black line) is stronger for the 

MD, PV, ME and BX regions compared to the base case, while for the IP and EA regions the observed trend is weaker and 

closer to the base case and especially in the IP region it starts to level off at high temperatures (≥ 30˚C). The difference 

between the base case (red color) and the 1.5-2VOC scenario (green color) is the smallest among all the emission sensitivity 

tests in all temperature bins. The 2NOx (blue color), 4traf_NOx (yellow color) and 2NOx,1.5-2VOC (purple color) scenarios 25 

have very similar trends (with almost parallel lines) for all regions, but they differ in the height of the bars (i.e. the ozone 

mixing ratio values) with the exception of the BI and SC regions where they are also similar. By considering both bar height 

and line trend, increasing just the NOx emissions (2NOx or 4traf_NOx scenario) improves the model performance for ozone 

production for the MD, PV and ME regions, while for the IP and EA regions despite the agreement in the ozone–temperature 

trends, the ozone mixing ratios are consistently overestimated in all temperature bins. Since the IP and EA are the only 30 

regions where the model overestimates the ozone mixing ratios in both the first two temperature bins (< 25˚C), this might 

imply an overestimation in the background ozone levels which might partially mask some of the underestimation of ozone 

mixing ratios in the last two temperature bins (≥ 25˚C). On the other hand, for the BX region a combined emissions increase 

scenario (2NOx,1.5-2VOC) is required. Finally, for the BI and SC regions, the base case performs quite well. 
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3.3 Sensitivity of ozone to meteorology 

Meteorology affects ozone mixing ratios not only directly (e.g. horizontal advection, vertical diffusion, photolysis rates, etc.) 

but also indirectly by influencing the concentrations of its precursors and its chemistry. Therefore, we performed some tests 

to explore the impact of key meteorological parameters like temperature and wind speed. The PBLH is another 

meteorological parameter that can have a strong influence on ozone mixing ratios, but its impact is very complex and can 5 

have opposite effects: Increased vertical mixing dilutes the ozone precursors inhibiting ozone production, but it also reduces 

the NOx titration of ozone (especially in urban areas) and enhances the downward transport of ozone from the enriched-

ozone upper layers in the evening-morning which in turn influences the ozone mixing ratios and chemistry the next day 

(Kleeman, 2008; Lin et al., 2008). It is probably due to these reasons that the correlation of ozone mixing ratios with the 

mixing depth is reported to be weak (Wise and Comrie, 2005; Ordóñez et al., 2005; Jacob and Winner, 2009). Therefore, we 10 

do not expect that our PBLH uncertainties (Table 4, Fig. S8) could consistently explain the observed bias trend in the 

afternoon ozone mixing ratios and since there is no straightforward and consistent way to artificially perturb the PBLH, we 

did not perform such a sensitivity test. The results of the ozone sensitivity to the tested meteorological parameters are shown 

in Fig. 11. 

Temperature: A temperature increase of 4˚C was chosen to be tested as the model underestimates the observed high 15 

temperatures (≥ 25˚C) in most of the domain by ~1–2˚C (Fig. S4) and by ~3–4˚C in the PV region (interpolation errors are 

higher for coastal and mountain areas). As expected, increasing the temperature by 4˚C (green color) causes an increase in 

ozone mixing ratios in the range of 1.5–6 ppb for all regions (Fig. 11). The main driver of enhanced ozone production 

(excluding temperature driven emission changes) due to a temperature increase is peroxyacetyl nitrate (PAN) (including 

similar compounds) chemistry (Baertsch-Ritter et al., 2004; Dawson et al., 2007; Pusede et al., 2015). Those studies explain 20 

that PAN can serve as NOx and radical reservoir and redistribute them away from the large emission areas (e.g. cities, power 

plants) to more remote, rural ones (by thermally decomposing back to NO2 and radicals). A temperature increase will shift 

the equilibrium between NO2 and PAN to higher NO2 mixing ratios and thus enhance ozone production. However, as 

mentioned earlier, the true impact of the temperature uncertainty in our simulations is lower than the tested one, as our 

meteorological model evaluation indicates a good prediction of the surface temperature for most of the stations (Table 4, Fig. 25 

S4 and S6). Moreover, at the higher altitudes the prediction of temperature is also good with the afternoon MB being within 

about a ± 1 ˚C range for most stations (Fig. S9). Since for the given temperature uncertainty of our meteorological input the 

impact on the ozone mixing ratio is much less, this cannot explain the magnitude and trend of the bias seen in Fig. 11.  

Wind speed: The processes that are mainly influenced by a change in wind speed are: advection, horizontal diffusion and 

dry deposition. As a result of this complex effect, the impact of the wind speed on ozone mixing ratios (blue and purple 30 

colors) is less systematic than that of the temperature with its correlation with the region’s air pollution. More specifically, in 

the less polluted Scandinavia (SC region) the effect of the wind speed reduction is lower in the highest bins (≥ 60 ppb) 

compared to the rest of the bins. This is possible due to the fact that the low mixing ratios of ozone precursors in the region 
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do not lead to a significant accumulation when the wind speed is reduced and hence ozone production does not increase as 

much as in the other regions. On the other hand, when we double the wind speed (purple color) the ozone precursors are 

rapidly driven away inhibiting any ozone production and the wind speed effect in SC region increases with increasing ozone 

bin. Indeed, this model sensitivity pattern is also observed for rest of the regions and for both wind speed tests (WS/2 and 

WSx2 scenarios), as there is an increase with increasing bin in the ozone enhancement (reduction) by the wind speed 5 

reduction (increase), from approximately 5 to 11 (-2 to -10) ppb for the IP, MD, PV, EA and ME regions, from 6 to 11 (-2 to 

-11) ppb for the BX region and from 1 to 11 (-1 to -12) ppb for the BI region. In general, the actual impact of the wind speed 

bias on ozone mixing ratios will be lower (for both wind speed sensitivity scenarios), as the model provides a quite good 

prediction of wind speed (as shown in Section 3.1) with the majority of the stations having an afternoon (12:00–18:00 UTC) 

mean bias within a range of ± 1 m s-1 (Fig. S7). Moreover, the increase of the wind speed seems more representative for our 10 

case, since the mean bias of the wind speed for observed wind speeds ≥ 2 m s-1 is negative (except for the SC region) in the 

range of a factor of 1.5–2 for the majority of the samples (Fig. S5). The model only consistently overestimates the very low 

wind speeds (0–2 m s-1) with the mean bias ranging, depending on the region, from 0.5 to 1.5 m s-1. However, these low 

wind speeds comprise less than 20% of the total sample (Fig. S5) for most regions, with the exception of the MD, EA and 

PV regions where it is higher (20%, 22% and 32%, respectively). Regarding the wind speed at the higher altitudes, the 15 

vertical wind speed profiles indicate a mean bias of ± 1 m s-1 for most heights (Fig. S10), which is rather small for the high 

wind speeds of the higher levels of the atmosphere. Consequently, the tested absolute decrease (increase) of wind speed is 

higher at higher altitudes and hence the dilution of ozone precursors is even lower (higher) than near the surface. This results 

in enhanced (reduced) ozone production within about the first kilometer from the surface, where photochemistry can be 

responsible for about a third of the ozone mixing ratio variability (Chevalier et al., 2007), leading usually to higher (lower) 20 

ozone mixing ratios at these altitudes than the respective ones in the base case (Fig. S11). The reduced (increased) dry 

deposition also accounts for the increased (reduced) ozone mixing ratios near the surface. In general, reducing the wind 

speed by half does result in an improvement of the underestimation of high ozone mixing ratios, but at the same time 

worsens significantly the overestimation of the low ozone mixing ratios. On the other hand, the sign of the wind speed bias is 

in most cases and in most regions negative, justifying more the WSx2 scenario (compared to the WS/2 one) which will 25 

improve the model performance in the lower ozone bins but also unmask a higher underestimation in the higher ozone bins. 

In addition, the wind speed uncertainties that were tested here are much higher than the ones from the model evaluation 

results (especially for the upper layers). Therefore, we conclude that the uncertainty in wind speed cannot be the reason for 

the bias in the afternoon ozone mixing ratios. 

Ozone–temperature correlation: A closer look to the influence of meteorology on the ozone production is shown in Fig. 30 

12, with the use of the ozone–temperature correlation. Since the impact of meteorology on ozone mixing ratios was 

thoroughly examined in Fig. 11, the focus of Fig. 12 is more on the effect of meteorology on the correlation of ozone with 

temperature. It has to be noted that the ozone mixing ratio for the T+4˚C scenario (green) is plotted against the temperature 

of the base case. The use of the temperature range (bin) instead of a single value makes the ozone–temperature regression 
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less sensitive to uncertainties related to the temperature bias (within the acceptable margins of an evaluated meteorological 

model performance). Any over- or under-estimation in ozone mixing ratios due to temperature bias will be averaged out if 

they are in the same temperature bin. Even if the ozone mixing ratios are wrongly allocated in a different bin (due to the 

temperature bias), this won’t affect the overall ozone–temperature regression as these biased ozone mixing ratios will be in 

the same range with correctly predicted ozone mixing ratios for the same temperature bin. In other words, if the T+4˚C 5 

scenario is plotted consistently in Fig. 12, then the impact of the temperature on ozone becomes really small (≤ 1 ppb) in all 

temperature bins and for all regions. Since a wind speed reduction (blue) and increase (purple) consistently increases and 

decreases the ozone mixing ratios (both low and high values),  respectively, this leads to negligible changes in the ozone–

temperature trend. Especially for the MD, PV, EA, ME and BX regions, the lines of WS/2 and WSx2 scenarios are almost 

parallel to the base case (red) which is much less steep than the observed one (black). 10 

Overall, the meteorological scenarios that were tested did not improve the modeled ozone performance as consistently as 

some of the emissions scenarios. The behavior of the modeled wind speed biases, i.e. overestimation of the lowest wind 

speed and underestimation of the rest (Fig. S5), can explain to some degree the overestimation of low ozone mixing ratios 

and the underestimation of the high ones; but not entirely since the tested wind speed uncertainties are higher than the real 

ones which are indicated by the model performance evaluation (Table 4, Fig. S5, S7, S10). The temperature sensitivity test 15 

had a smaller impact than the one of the wind speed, and also the tested change (+ 4˚C) was higher than the actual model 

temperature bias range (± 2˚C) for most of the parts of the domain. In general, the meteorology does not seem to be the main 

source of error for the underestimation of ozone production, in contrast to the emissions. 

3.4 Sensitivity of ozone to initial and boundary conditions 

Many studies (Katragkou et al., 2010; Solazzo et al., 2013; Giordano et al., 2015; Im et al., 2015) have reported a strong 20 

influence of the boundary conditions on ozone mixing ratios, but their impact is less significant near the surface and inside 

the PBL, as well as in summer compared to other seasons (winter or autumn), due to more dominant near-surface effects 

(e.g. photochemistry, emissions, transport, dry deposition). Furthermore, Katragkou et al. (2010) showed that the impact of 

increased O3 in the lateral boundaries by 8 ppb in Europe in summer was already down to half (3–4 ppb) over Great Britain 

and western Scandinavia and faded out towards central and southeast Europe. In addition, an increase of 12 ppb of O3 in the 25 

top boundary and 1 ppb of NOx in the lateral boundaries resulted in less than about 2 and 3 ppb increase, respectively, in 

surface ozone over whole Europe. In order to investigate the influence of background ozone levels on surface ozone mixing 

ratios, we perturbed the initial and boundary (lateral and top) conditions (ICBC) of ozone by ± 5 ppb (Table 3). The impact 

of an increase (decrease) in the ICBC of ozone was a 1–2 ppb increase (decrease) consistently in all ozone bins and in most 

regions (see Fig. S12). The tested impact on surface ozone diminished as it progressed into the interior of the domain (not 30 

shown), which is in line with the aforementioned results reported in the literature. Therefore, uncertainties in the ICBC do 

not seem to be responsible for the observed ozone bias trend in the surface mixing ratios. 
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4 Conclusions 

In this work we used alternative methods to evaluate the modeled surface afternoon ozone mixing ratios and production 

more consistently in the whole European domain for the summer of 2010 using the regional air quality model CAMx. The 

results were analyzed in eight European regions. The separation of the observed surface ozone mixing ratios in bins helps to 

unmask the hidden model bias and identify the significant underestimation of high mixing ratios and overestimation of the 5 

low ones. Since the high surface ozone mixing ratios are more related to photochemical ozone production, an evaluation of 

the modeled ozone production was carried out using the ozone–temperature correlation. The use of the modeled temperature 

as a surrogate for the observed one (after the validation of this hypothesis) allowed us to perform the modeled ozone 

production evaluation for most of the stations in the whole European domain. As an additional, alternative approach to the 

ozone–temperature correlation, we divided the modeled temperature into bins and paired it to the respective observed and 10 

modeled surface ozone mixing ratios. The results indicated that the modeled surface ozone mixing ratios have a less steep 

increase with temperature than the observed ones. The modeled ozone–temperature regression slope (ppb ˚C-1) is 

underestimated by about a factor of 2 for most stations. In addition, the use of the relationship between ozone and 

temperature bins showed the model underestimation of both high ozone mixing ratios and ozone–temperature trend. In order 

to characterize the sources of uncertainty that led to the aforementioned model behavior, model sensitivity tests were 15 

performed to investigate the influence of emissions, meteorology and initial and boundary conditions. 

Increasing just the VOC emissions by a factor of 1.5 and 2 for the anthropogenic and biogenic emissions, respectively, 

resulted in a small increase of surface ozone mixing ratios (1–2 ppb) across all observed ozone mixing ratio bins for most of 

the regions but the Mediterranean (MD), Po Valley (PV) and Benelux (BX) regions where the impact was higher (2–4 ppb). 

On the contrary, the doubling of only the NOx emissions resulted in a more significant increase of ozone (6–8 ppb) in the 20 

higher observed ozone mixing ratio bins in all regions apart from the BX region where it slightly decreased. The effect in the 

lowest observed ozone mixing ratio bins was either an increase or decrease of ozone depending on the region due to 

enhanced NOx titration. The combined increase of NOx and VOC emissions increased the ozone mixing ratios even more in 

all bins and regions except for the lower ozone bins in the BX region where the ozone mixing ratio decreased. Overall, the 

best model performance improvement was brought by the increase of NOx emissions for southern (Iberian Peninsula (IP) and 25 

Mediterranean (MD) regions), central (Po Valley (PV) and Mid-Europe (ME) regions) and eastern Europe (EA region), and 

by the combined increase of NOx and VOC emissions for the Benelux area (BX region). Increasing only traffic NOx 

emissions by a factor of 4 had almost the same impact as doubling all NOx emissions. However, as discussed in Sect. 2.3, 

previous investigations indicate higher uncertainties in NOx emissions from the road-transport compared to other sectors. 

Therefore, the 4traf_NOx scenario is more consistent with the previous studies than the 2NOx scenario, suggesting that high 30 

uncertainties in the NOx emissions from road-transport are more likely to be the main reason for underestimated ozone 

production rather than uncertainties in emissions from other sectors. For the less polluted British Isles (BI) and Scandinavia 
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(SC) regions no emission adjustment was necessary. The evaluation of ozone–temperature correlation for these emission 

scenarios also led to the same conclusions. 

Both sensitivity tests with increased temperatures by 4˚C and with the reduced wind speed by 50% led to a significant 

increase (1.5–6 and 7–10 ppb, respectively) in surface ozone mixing ratios in all mixing ratio bins and regions except for the 

SC region where the impact of wind speed reduction was less. On the contrary, the doubling of the wind speed led to a more 5 

significant decrease (-6 to -12 ppb) in surface ozone mixing ratios in the higher bins for all regions, but the impact decreased 

with decreasing bin ranging from 0 to -6 ppb, depending on the region. Although the T+4˚C and WS/2 scenarios might have 

improved the underestimation of the observed high ozone mixing ratios, they significantly enhanced the overestimation of 

the respective low ones and vice versa for the WSx2 scenario. The same conclusions were reached by the evaluation of the 

ozone–temperature correlation for these tests. In addition, the tested meteorological perturbations were much higher than the 10 

uncertainties in this study and therefore their impact on ozone is expected to be lower. Additional tests with perturbed initial 

and boundary conditions showed a small effect consistently in all mixing ratio bins and regions. 

The results obtained in this study indicate that the uncertainties in emissions (especially the too low traffic NOx emissions in 

the inventories) are mainly responsible for the underestimation of the observed high summer ozone mixing ratios and ozone 

production in Europe. These uncertainties also seemed to vary spatially, since different regions had different responses to the 15 

same tested emission changes. Further investigation of the emission uncertainties and improvement of the modeled ozone 

production will contribute to more consistent and effective ozone mitigation strategies for the future. 
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Tables 

Table 1. Definition of statistical metrics for model performance evaluation. Mi and Oi stand for modeled and observed 10 
values respectively and N being the total number of paired values. 

Metric Definition 

Mean Bias (MB) 𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�(𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 

Mean Gross Error (MGE) 𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�|𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖|
𝑁𝑁

𝑖𝑖=1

 

Root-Mean-Square Error (RMSE) 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀 = �
1
𝑁𝑁
�(𝑀𝑀𝑖𝑖 − 𝑂𝑂𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

 

Index of Agreement (IOA) 𝐼𝐼𝑂𝑂𝐼𝐼 = 1 −
𝑁𝑁 ∙ 𝑅𝑅𝑀𝑀𝑅𝑅𝑀𝑀2

∑ (|𝑀𝑀𝑖𝑖 − 𝑂𝑂�| + |𝑂𝑂𝑖𝑖 − 𝑂𝑂�|)2𝑁𝑁
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Pearson correlation 
coefficient (r) 
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𝑖𝑖=1
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Mean Fractional Bias (MFB) 𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑁𝑁
�
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Mean Fractional Error (MFE) 𝑀𝑀𝑀𝑀𝑀𝑀 =
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𝑁𝑁
�
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Table 2. Performance criteria and goals for model results (from Emery et al., 2001; EPA, 2007; Boylan and Russel, 2006). 5 

Parameter Metric Criteria Goal 

Temperature (T) 

MB 

MGE 

IOA 

≤ ±0.5 K 

≤ 2 K 

≥ 0.8 

– 

Wind Speed (WS) 

MB 

RMSE 

IOA 

≤ ±0.5 m s-1 

≤ 2 m s-1 

≥ 0.6 

– 

Wind Direction (WD) 
MB 

MGE 

≤ ±10 deg 

≤ 30 deg 
– 

Humidity (expressed as  

water vapor mixing ratio (qv)) 

MB 

MGE 

IOA 

≤ ±1 g/kg 

≤ 2 g/kg 

≥ 0.6 

– 

PM2.5 
MFB 

MFE 

≤ ± 60% 

≤ 75% 

≤ ±30% 

≤ 50% 

O3 

MFB 

MFE 

≤ ±30% 

≤ 45% 

≤ ±15% 

≤ 30% 
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Table 3. Description of sensitivity tests. 

Scenario Description 

Base 
Base case using the meteorological and emission data as described  
in Sect. 2.2 and 2.3, respectively 

1.5-2VOC Increased VOC emissions: by a factor of 1.5 and 2 for the anthropogenic and biogenic VOC, respectively. 

2NOx Increased NOx emissions by a factor of 2. 

1.5-
2VOC,2NOx 

Combination of scenarios 1.5-2VOC and 2NOx. 

4traf_NOx Increased NOx emissions only in the road-transport sector (SNAP 7) by a factor of 4. 

T+4˚C Increased first layer air temperature by 4˚C. Impact on emissions was excluded. 

WS/2 
Reduced horizontal wind speed at all altitudes by 50%. Vertical wind speed is calculated inside CAMx to 
be consistent with the continuity equation and ensure mass conservation. 

WSx2 Increased horizontal wind speed at all altitudes by a factor of 2. Vertical wind speed is calculated inside 
CAMx to be consistent with the continuity equation and ensure mass conservation. 

±5O3 Increased/decreased initial and boundary (top and lateral) conditions of ozone by 5 ppb. 

 

 

 5 
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Table 4. Model performance evaluation for the meteorological parameters in summer (JJA) 2010. 

 MB MGE RMSE IOA (–) r (–) 

T (˚C)  -0.5 1.7 2.1 0.9 0.9 

WS (m s-1) -0.2 1.5 2.0 0.6 0.5 

WD (deg) 10.0 35 – – – 

qv (g kg-1) 0.02 1.0 1.3 0.9 0.8 

PBLH (m)  45 370 485 0.7 0.5 
 

 

Table 5. Model performance evaluation for the daily mean concentrations of the chemical species in summer (JJA) 2010. 
The units for MB, MGE and RMSE are in ppb for the gas species and in μg m-3 for the PM2.5. 5 

 No. of stations MB MGE RMSE MFB (%) MFE (%) r (–) 

O3 347 4 7 8 12 20 0.7 

NO2  228 -0.2 2 3 -17 53 0.4 

SO2 107 1 2 2 42 81 0.3 

CO 27 -72 77 89 -41 47 0.2 

PM2.5 23 -0.4 5 7 -2 41 0.5 
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Figures 

 
Figure 1. The European model domain and its sub-regions: Iberian Peninsula (IP), Mediterranean (MD), Po Valley (PV), 
Eastern Europe (EA), Mid-Europe (ME), Benelux (BX), British Isles (BI) and Scandinavia (SC). Grey dots indicate the rural 
background Airbase stations of the hourly ozone measurements. 5 
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Figure 2. Total NMVOC (left panel) and NOx (right panel) emissions per SNAP category for each region in Europe as well 
as for their sum for summer 2010. A detailed description of the SNAP source categories is given in Table S2. 
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Figure 3. Diurnal profiles of surface O3 mixing ratios in 8 European regions in summer 2010. The number of stations 
available for each region is reported in parentheses at the top of each panel. 
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Figure 4. Diurnal profiles of the surface NO2 mixing ratios in 8 European regions in summer 2010.The number of stations 
available for each region is reported in parentheses at the top of each panel. 
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Figure 5. Scatterplots of modeled vs. observed surface afternoon (12:00–18:00 UTC) mean O3 mixing ratios in 8 European 
regions in summer 2010. The number of stations available for each region is reported in parentheses at the top of each panel. 
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Figure 6. Scatterplots of modeled vs. observed surface afternoon (12:00–18:00 UTC) mean NO2 mixing ratios in 8 European 
regions in summer 2010. The number of stations available for each region is reported in parentheses at the top of each panel. 
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Figure 7. Scatterplots of surface afternoon (12:00–18:00 UTC) mean O3 mixing ratios vs. temperature for 8 stations in 
summer 2010. Observed O3 mixing ratios are plotted against both observed (ObsO3-OT) and modeled (ObsO3-MT) 
temperature, while the modeled O3 mixing ratios are plotted only against the modeled temperature (ModO3-MT). Dashed 
colored lines represent the best linear fit for each case. 5 
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Figure 8. Mean bias of the afternoon (12:00–18:00 UTC) surface O3 mixing ratios for each bin of observed surface O3 
mixing ratios for various emissions scenarios in 8 European regions in summer 2010. Percentage values below the bars 
indicate the fraction of the values assigned to each bin for each region. The number of stations available for each region is 
reported in parentheses at the top of each panel. 5 
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Figure 9. Scatterplots of the modeled versus observed surface afternoon (12:00–18:00 UTC) mean O3 – temperature linear 
regression slope for each station for various emission scenarios in 8 European regions in summer 2010. The solid black line 
is the 1:1 line and the dotted black lines are the 2:1 and 1:2 lines. 
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Figure 10. Afternoon (12:00–18:00 UTC) surface O3 mixing ratios for each modeled temperature bin for various emissions 
scenarios in 8 European regions in summer 2010. Colored lines show the trends of the respective bars and are shifted up by 
10 ppb for visualization purposes. Percentage values below the bars indicate the fraction of the values assigned to each bin 
for each region. The number of stations available for each region is reported in parentheses at the top of each panel. 5 
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Figure 11. Mean bias of the afternoon (12:00–18:00 UTC) surface O3 mixing ratios for each bin of observed surface O3 
mixing ratios for various meteorological scenarios in 8 European regions in summer 2010. Percentage values below the bars 
indicate the fraction of the values assigned to each bin for each region. The number of stations available for each region is 
reported in parentheses at the top of each panel. 5 
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Figure 12. Afternoon (12:00–18:00 UTC) surface O3 mixing ratios for each modeled temperature bin for various 
meteorological scenarios in 8 European regions in summer 2010. Colored lines show the trends of the respective bars and are 
shifted up by 10 ppb for visualization purposes. Percentage values below the bars indicate the fraction of the values assigned 
to each bin for each region. The number of stations available for each region is reported in parentheses at the top of each 5 
panel. 
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