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Abstract: In the present study, a persistent heavy haze episode from 13 to 20 January 2014 in 13 

Beijing-Tianjin-Hebei (BTH) is simulated using the WRF-CHEM model through ensemble 14 

simulations to investigate impacts of meteorological initial uncertainties on the haze 15 

formation. Model results have shown that uncertainties in meteorological initial conditions 16 

substantially influence the aerosol constituent simulations at an observation site in Beijing, 17 

and the ratio of the ensemble spread to ensemble mean (RESM) exceeds 50%. The ensemble 18 

mean generally preforms well in reproducing the fine particles (PM2.5) temporal variations 19 

and spatial distributions against measurements in BTH. The initial meteorological 20 

uncertainties do not alter the PM2.5 distribution pattern in BTH principally or dominate the 21 

haze formation and development, but remarkably affect the simulated PM2.5 level, and the 22 

RESM of PM2.5 concentrations can be up to 30% at the region scale. In addition, the rather 23 

large RESM in PM2.5 simulations at the city scale also causes difficulties in implementation 24 

of the control strategies. Therefore, our results suggest that the ensemble simulation is 25 

imperative to avoid the impact of the initial meteorological uncertainties on the haze 26 

prediction.   27 
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1 Introduction 33 

Over the past three decades, rapid industrialization and urbanization have caused 34 

severe air pollution in China, particularly during wintertime heavy haze with extremely high 35 

levels of fine particles (PM2.5) frequently engulfs the north of China (e.g., Chan and Yao, 36 

2008; Fang et al., 2009; Zhao et al., 2013; Huang et al., 2014; Guo et al., 2014; Wu et al., 37 

2017; Li et al., 2017). Elevated atmospheric aerosols or PM2.5 not only influence the Earth 38 

climate system, but also remarkably impair visibility and potentially cause severe health 39 

defects (e.g., Penner et al., 2001; Pope and Dockery, 2006; Zhang et al., 2007).  40 

Meteorological condition is critical for understanding the formation, transformation, 41 

diffusion, transport, and removal of the pollutants in the atmosphere. Dabberdt et al. (2004) 42 

have listed the meteorological research needs for improving air quality forecasting, one of 43 

which is to provide the model uncertainty information through ensemble prediction 44 

capabilities and quantify uncertainties and feed-backs between meteorological and air quality 45 

modeling components. Numerous studies have been performed in China to explore the role of 46 

meteorological conditions in the air pollution formation (e.g., Gao et al., 2011; Zhang et al., 47 

2012; Wu et al. 2013; Wang et al. 2014; Zhang et al. 2015; Bei et al. 2016a; 2016b). Most 48 

recently, Liu et al. (2017) have investigated the meteorological impacts on the PM2.5 49 

concentrations over Beijing-Tianjin-Hebei (BTH) in December 2015. Their results have 50 

demonstrated that the unfavorable meteorological conditions are the main reason for 51 

deterioration of the air quality in BTH, while the undertaken emission control measures have 52 

only mitigated the air pollution slightly.  53 

Previous studies on the air quality forecasting sensitivity to meteorological 54 

uncertainties mainly include Monte Carlo simulations (e.g. Dabberdt and Miller, 2000; 55 

Beekmann and Derognat, 2003) and adjoint sensitivity studies (e. g. Menut, 2003). The 56 

ensemble approach has also been applied to photochemical and secondary organic aerosol 57 
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(SOA) simulations in various numerical models (e. g. Galmarini et al., 2004; McKeen et al., 58 

2005), photo-chemical reactions (e. g. Delle Monache and Stull, 2003), emission scenarios (e. 59 

g. Delle Monache et al., 2006), physical parameterizations (e. g. Mallet and Sportisse, 2006), 60 

and meteorological initial conditions (e. g. Zhang et al. 2007; Bei et al. 2012). The ensemble 61 

means have generally performed better than most of individual models. Uncertainties in 62 

meteorological initial conditions have been shown to substantially influence both ozone (O3) 63 

and SOA simulations, including the peak time concentrations, the horizontal distributions, 64 

and the temporal variations (Zhang et al. 2007; Bei et al. 2012). Recently, Sharma et al. (2016) 65 

have evaluated uncertainties in surface O3 simulations over the South Asian region during the 66 

pre-monsoon season due to different emission inventories and different chemical mechanisms. 67 

They have suggested that the assessment of the tropospheric O3 budget and its implications 68 

on public health and agricultural output should be conducted prudently considering the huge 69 

uncertainties caused by emission inventories and chemical mechanisms. Solazzo et al. (2017) 70 

have emphasized the high interdependencies among meteorological and chemical variables 71 

and the related errors, indicating that the evaluation of the air quality model performance 72 

needs to be confirmed by more complementary analysis of meteorological fields and 73 

chemical precursors.  74 

The purpose of the present study is to explore impacts of the uncertainties in 75 

meteorological initial conditions on the PM2.5 simulations or forecasts in BTH through 76 

ensemble simulations using the WRF-CHEM model. The methodology and model are 77 

presented in Section 2. The analyses, results, and discussions are included in Section 3. The 78 

summary and conclusions are given in Section 4.  79 

 80 

2 Model and Methodology 81 

2.1 WRF-CHEM Model 82 
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A specific version of the WRF-CHEM model is used to examine impacts of the 83 

uncertainties in meteorological initial conditions on the PM2.5 simulations or the haze 84 

formation in BTH, which is developed by Li et al. (2010; 2011a, b; 2012) at the Molina 85 

Center for Energy and the Environment. The model includes a new flexible gas phase 86 

chemical module and the CMAQ/Models-3 aerosol module developed by US EPA 87 

(Binkowski and Roselle, 2003). The inorganic aerosols are predicted using the ISORROPIA 88 

Version 1.7 (Nenes et al., 1998). The SOA formation is simulated using a non-traditional 89 

SOA module, including the volatility basis-set (VBS) modeling method and the SOA 90 

contributions from glyoxal and methylglyoxal. Detailed description of the WRF-CHEM 91 

model can be found in Li et al. (2010; 2011a, b; 2012). A persistent heavy haze pollution 92 

episode from 13 to 20 January 2014 in BTH is simulated. The model simulation domain is 93 

shown in Figure 1, and detailed model configurations can be found in Table 1. 94 

2.2 Ensemble Initialization Method 95 

The ensemble initialization method used in the present study is called “climatological 96 

ensemble initialization method” in which dynamically consistent initial and boundary 97 

conditions are statistically sampled from a seasonal meteorological data set (Aksoy et al., 98 

2005; Zhang et al., 2007; Bei et al. 2012). To represent the wintertime climatological 99 

statistics, a data set during the period from 1 November 2013 to 28 February 2014 is 100 

generated using NCEP-FNL 1°×1° reanalysis data. Thirty ensemble perturbations are 101 

randomly selected from this climatological data set. Similarly, boundary conditions for each 102 

ensemble member are produced from the same data set beginning at the randomly selected 103 

initial time of the given member, and extended for the same length of time as the simulated 104 

episode. Deviations of the initial and boundary condition data for each member from the 105 

climatological mean for the entire period are then scaled down to be 20% to reduce the 106 

ensemble spread to be less than typical observation error magnitudes (Nielsen-Gammon et al., 107 
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2007) and added to the unperturbed initial and boundary conditions derived directly from the 108 

NCEP-FNL analyses valid at 12:00 UTC on 12 January 2014, which are used for the 6-km 109 

domain ensemble simulation. Figures 2a–d show the vertical distribution of the average 110 

initial ensemble spread. The average spread is 0.5–3.0 m s-1 for horizontal winds (U and V 111 

component), 0.5–1.1 K for temperature, 0.02–0.48 hPa for pressure, and 0–0.15 g kg-1 for the 112 

water vapor mass mixing ratio. The initial ensemble spreads of meteorological variables are 113 

generally less than their typical observation error magnitudes. It is worth noting that all the 114 

ensemble simulations used the same initial and boundary conditions for chemical fields, as 115 

well as the same anthropogenic emission inventory. 116 

2.3 Pollutants Measurements 117 

The hourly near-surface CO, SO2, NO2, O3, and PM2.5 mass concentrations in BTH are 118 

released by the China’s Ministry of Environmental Protection (China MEP) and can be 119 

downloaded from the website http://www.aqistudy.cn/. The Aerodyne High Resolution Time-120 

of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) with a novel PM2.5 lens is used to 121 

measure the sulfate, nitrate, ammonium, and organic aerosols (OA) from 9 to 26 January 122 

2014 at the Institute of Remote Sensing and Digital Earth (IRSDE), Chinese Academy of 123 

Sciences (40.00°N, 116.38°E) in Beijing (Figure 1). The Positive Matrix Factorization (PMF) 124 

technique is utilized to analyze the mass spectra of OA and five components are separated, 125 

including hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), 126 

coal combustion OA (CCOA), and oxygenated OA (OOA). HOA, COA, BBOA, and CCOA 127 

are interpreted as surrogates of primary OA (POA), and OOA is a surrogate of SOA. Detailed 128 

information about the HR-ToF-AMS measurement can be found in Elser et al. (2016). A lidar 129 

has also been deployed at IRSDE and the aerosol backscatter signal is used to retrieve the 130 

planetary boundary layer (PBL) height. 131 

 132 
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3 Results and Discussions 133 

3.1 Synoptic Overview 134 

Figure 3 shows temporal evolutions of the observed PM2.5 mass concentrations 135 

averaged over 13 cities (see Figure 1) in BTH during the severe haze episode from 13 to 21 136 

January 2014. The observed PM2.5 mass concentrations are frequently more than 250 µg m-3 137 

in the 13 cities during the episode, exceeding the standard of severe pollutions (hourly PM2.5 138 

mass concentration exceeding 250 µg m-3) according to China National Air Quality Standard 139 

(Feng et al., 2016). The haze in BTH is in the stage of development from January 13 to 15, 140 

with the gradual increase of the PM2.5 concentration. BTH is most polluted when the haze is 141 

in the maturity stage on January 16, with the PM2.5 concentration exceeding 400 µg m-3 in 142 

most of the cities. From January 17 to 19, the PM2.5 concentrations fluctuate considerably, 143 

which is primarily caused by the transition between different synoptic situations. During 144 

nighttime on January 19, the haze in BTH rapidly dissipates, with the PM2.5 concentration 145 

decrease of several hundreds of µg m-3 in two or three hours. In addition, the diurnal cycles 146 

of the observed PM2.5 mass concentrations are not clear, demonstrating the obvious regional 147 

pollution characteristics in BTH. For the four mega-cities in BTH, The PM2.5 level in 148 

Shijiazhuang and Baoding are much higher than Beijing and Tianjin, which is caused by the 149 

massive local emissions in Shijiazhuang and Baoding. 150 

NCEP-FNL reanalysis data is used in the study to examine the effect of synoptic 151 

conditions on the air pollution during the haze episode in BTH. Figures s1-s3 show the 152 

synoptic conditions at the surface level, 850 hPa, and 500 hPa, respectively. On January 13, 153 

BTH is on the north of a high pressure at the surface level, causing the southerly wind in/on 154 

the east of BTH, and sandwiched between the trough in the northeast of BTH and the high 155 

pressure in the southwest of BTH at 850 hPa, inducing the westerly surface wind in the west 156 

of BTH. At 500 hPa, the BTH is situated in the rear of the trough, and the westerly airflow is 157 
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dominant. The air pollutants in BTH are subject to be transported to the east but hindered by 158 

the southerly wind, causing accumulation of air pollutants. On January 14, the high pressure 159 

system begins to control BTH at the surface level and 850 hPa, and the wind is varied and 160 

weak, which is favorable for the accumulation of air pollutants in BTH. On January 15, the 161 

BTH is still controlled by the high pressure at the surface level and 850 hPa, and the westerly 162 

wind is prevailing at the 500 hPa. The calm or weak surface wind, together with the stable 163 

stratification, further facilitates accumulation of air pollutants in the BTH. On January 16, a 164 

trough develops over the BTH at 850 hPa and 500 hPa, and the BTH is situated near the 165 

trough line, in which the northerly and southerly wind occurs at the same time. At the surface 166 

level, the northerly wind is prevailing in the north of BTH and the southerly wind is prevalent 167 

in the south of BTH, leading to evacuation of air pollutants in the north of BTH and the high 168 

level of air pollutants in the south of BTH. On January 17, the trough at 850 hPa commences 169 

to weaken and the controlling region of the trough at 500 hPa becomes narrow. The 170 

northwesterly wind is dominant over BTH, leading to divergence of the air pollutants in BTH. 171 

On January 18, the BTH is located near the ridgeline at 850hPa and at the verge of the high 172 

pressure at the surface level. The controlling scope of high-pressure system on the surface 173 

level is wide, inducing the varied wind over the BTH and is not conductive to the evacuation 174 

of air pollutants in BTH. On January 19, the prevailing southerly wind in the south of BTH 175 

and the strong westerly wind in the west of BTH lead to the convergence of air pollutants at 176 

the surface level. At 850 hPa and 500 hPa, BTH is situated in the southeast of the trough and 177 

southwesterly wind is prevalent. On January 20, the BTH is located in the southwest of the 178 

trough at 500 hPa and 850 hPa, and the strong northwesterly wind is prevailing over the BTH. 179 

At the surface level, the BTH is situated between the high pressure in the west and the low 180 

pressure in the east, inducing the strong northwesterly wind over BTH. The clod clean air 181 

sweeps BTH and efficiently decreases the air pollutant concentrations in BTH.  182 
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3.2 Uncertainties in Meteorological Simulations 183 

Figures 4a-d provide the temporal profiles of the ensemble simulations of the surface 184 

meteorological fields and the corresponding observations at the meteorological site in Beijing 185 

from 13 to 20 January 2014. The U component exhibits larger ensemble spread than the V 186 

component (Figure s4), but the ensemble mean (ENSM) of the U component generally yields 187 

the observed diurnal variations. The ensemble prediction of the V component fails to 188 

reproduce the observed intensified southerly or northerly winds. The meteorological site is 189 

located on the north of the Yanshan Mountains, substantially influenced by the mountain-190 

valley circulation (MVC). Apparently, the WRF-CHEM model lacks the ability to well 191 

simulate the occurrence and development of MVC, causing the considerable biases of the 192 

ensemble prediction of the V component. The ensemble prediction performs well in 193 

producing the diurnal variation of the surface temperature, but the underestimation or 194 

overestimation is still large when the V component prediction is biased. The relative 195 

humidity (RH) shows the rather large ensemble spread (Figure s4d), and the ENSM 196 

reasonably tracks the observed diurnal variation, i.e., the simulated RH is high during 197 

nighttime and low in the afternoon. The RH simulation is sensitive to that of the surface 198 

temperature. Generally, the overestimation of the surface temperature well corresponds to the 199 

underestimation of the RH, or vice versa. The ENSM considerably overestimates the PBL 200 

height during daytime on January 13 and 14, and underestimates on January 15 (Figure 4e). 201 

In addition, most of the ensemble members frequently underestimate the observed PBL 202 

height during nighttime, and all ensemble members fail to produce the peak PBL height on 203 

January 17 and 20. The PBL height is principally determined by the vertical shear of 204 

horizontal winds and the ground thermal condition. Therefore, uncertainties of wind and 205 

temperature field simulations cause large biases of the PBL height simulation.  206 

3.3 Uncertainties in Aerosol Species Simulations 207 
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Figure 5 shows the temporal profiles of the ensemble simulations of the aerosol species 208 

and the observations at IRSDE in Beijing. The ENSM reasonably produces the observed 209 

variations of the POA concentrations. However, all ensemble members fail to capture the 210 

peaks in the morning on January 16 and in the evening on January 17, indicating that the 211 

underestimation might not be caused by the meteorological uncertainties, but by the emission 212 

biases. The POA in the atmosphere are contributed by multi sources, including the direct 213 

emissions from vehicles, cooking, biomass and coal combustion. Diurnal variations of those 214 

sources might constitute one of the major reasons for the biases of the POA simulations. The 215 

ENSM generally performs reasonably well in simulating the SOA concentration against the 216 

measured OOA. The ratio of the ensemble spread to the ensemble mean (RESM) for the SOA 217 

prediction is large compared to that of POA (Figures s5a, b). Four SOA formation pathways 218 

are included in simulations: oxidations of anthropogenic and biogenic volatile organic 219 

compounds (VOCs), oxidation and partition of HOA treated as semi-volatile, and irreversible 220 

uptake of glyoxal and methylglyoxal on aerosol surfaces. Therefore, uncertainties in 221 

meteorological fields not only influence the transport of the SOA precursors but also the 222 

SOA formation processes in the atmosphere, causing the rather large RESM of SOA 223 

simulations. The ENSM generally reproduces the observed variations of sulfate, nitrate and 224 

ammonium (SNA), but the RESM of SNA is also considerably large (Figures s5c-d). During 225 

haze days, sulfate is primarily formed through heterogeneous reactions of SO2 on aerosol 226 

surfaces, which is highly dependent on the relative humidity (Li et al., 2017). Nitrate 227 

formation is determined by the HNO3 and N2O5 originated from the NO2 oxidation, sensitive 228 

to the temperature and relative humidity and also influenced by the level of sulfate in the 229 

particle phase and ammonia in the atmosphere. The ammonium aerosol is formed through 230 

neutralization of sulfate and nitrate aerosols by NH3. Additionally, in the present study, 231 

ISORROPIA (Version 1.7) is used to calculate the thermodynamic equilibrium between the 232 
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sulfate-nitrate-ammonium-water aerosols and their gas phase precursors H2SO4-HNO3-NH3-233 

water vapor. Therefore, uncertainties of meteorological fields propagate to the transport, 234 

atmospheric oxidation, and thermal dynamic processes, which all have contributions to the 235 

large RESM of the SNA simulations. Apparently, uncertainties in meteorological initial 236 

conditions substantially affect the aerosol species simulations at a single observation site, 237 

which is consistent with the previous studies (Bei et al., 2012).  238 

3.4 Uncertainties in PM2.5 Simulations in BTH 239 

Heavy haze with high levels of PM2.5 frequently constitutes a regional pollution event, 240 

so Figure 6 shows the temporal profiles of the ensemble simulations and observations of air 241 

pollutants averaged at the monitoring sites in BTH from 13 to 20 January 2014. The RESM 242 

of the average air pollutants is much less than those of aerosol species at the single 243 

observation site (Figure s6). For the primary air pollutants, SO2 and CO, the ENSM generally 244 

tracks reasonably the observed variations. However, sometimes all the ensemble members 245 

underestimate or overestimate the observation. There are two possible reasons for the biases 246 

of ensemble simulations of SO2 and CO: uncertainties of emissions and systematic errors of 247 

meteorological fields. In the evening on January 15, the ensemble prediction substantially 248 

overestimates the observed SO2 concentration, but CO overestimation is not large. In the 249 

contrast, in the morning on January 16, the ensemble prediction slightly underestimates the 250 

SO2 observation but remarkably underestimates the CO concentration. Therefore, the 251 

overestimation of SO2 on January 15 and underestimation of CO on January 16 might be 252 

primarily contributed by the emission uncertainties. In the morning on January 18, the 253 

ensemble prediction significantly underestimates both SO2 and CO observations, indicating 254 

the plausible uncertainties caused by the systematic errors of meteorological fields. 255 

The ENSM of the average surface O3 and NO2 over the monitoring sites in BTH is in 256 

good agreement with observations. The ensemble prediction is subject to underestimate the 257 
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O3 observation during nighttime, but well consistent with the NO2 observation. Considering 258 

the massive NOx emission and the titration of NO, the nighttime O3 concentrations are 259 

generally very low, particularly during wintertime when the daytime O3 concentrations are 260 

not high. Hence, the underestimation of nighttime O3 concentrations is perhaps caused by the 261 

observation uncertainties, such as the setting of lower detection limit. In addition, the ENSM 262 

does not reproduce the high O3 level during nighttime on January 19 when the northwesterly 263 

wind is intensified to evacuate the air pollutants in BTH. Rapid increase of the observed O3 264 

concentrations during nighttime shows the substantial contribution of the background O3 265 

transport. Therefore, the background O3 uncertainties constitute the major reason for the O3 266 

underestimation on January 19. 267 

The ENSM also exhibits good performance in replicating the observed PM2.5 268 

observation, except the underestimation on January 16 and 18. However, the RESM of the 269 

PM2.5 simulations is larger than those of O3, NO2, SO2, and CO (Figure s6). The average 270 

ENSM of the PM2.5 concentration over the monitoring sites during the simulation period is 271 

189.5 µg m-3, close to the observed 197.6 µg m-3. In addition, the ensemble member of 16 272 

and 30 (EN-16 and EN-30, respectively) produces the highest and lowest PM2.5 level, with 273 

the average PM2.5 concentrations of 231.5 and 167.3 µg m-3, respectively. The PM2.5 mainly 274 

include the primary aerosols which are determined by direct emissions, and the secondary 275 

aerosols which are determined by their precursors emissions and the homogeneous and 276 

heterogeneous oxidation process in the atmosphere. Therefore, the large RESM of SOA and 277 

SNA simulations enhances the ensemble spread of the PM2.5 simulations.  278 

Figure 7 presents the spatial distributions of ENSM and observations of the daily 279 

average near-surface PM2.5 mass concentrations during the haze episode, along with the 280 

simulated wind fields. The ENSM predicted PM2.5 spatial patterns are generally in good 281 

agreement with the observations at the ambient monitoring sites in BTH. The ENSM 282 
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successfully reproduces the haze development and maturity stages from January 13 to 16, 283 

2014. From January 17 to 18, the northeasterly wind develops and decreases the PM2.5 level 284 

in BTH, but not strong enough to evacuate the air pollutants. The PM2.5 pattern of ENSM is 285 

well consistent with observations, but on January 18, the PM2.5 concentrations are remarkably 286 

underestimated in four cities in BTH. On January 19, the westerly wind is prevailing in BTH, 287 

causing the divergence of the PM2.5. On January 20, the intensified northwesterly wind 288 

commences to empty the PM2.5 in BTH. However, apparently, the occurrence of the 289 

intensification of the northwesterly wind is early, causing considerable underestimation of the 290 

PM2.5 concentration in the ENSM.  291 

The uncertainties of initial meteorological fields are generally less than observational 292 

and analysis errors, but the ensemble simulations still exhibit considerable spreads. In order 293 

to contrast the PM2.5 simulations of different ensemble members, we have selected two 294 

members: EN-16 and EN-30, representing the highest and lowest PM2.5 simulations in BTH, 295 

respectively. Figure 8 provides the horizontal distributions of the daily average surface PM2.5 296 

concentrations along with surface winds during the episode in EN-16 and EN-30. Similar 297 

PM2.5 distribution patterns are simulated in EN-16 and EN-30, showing that the initial 298 

meteorological uncertainties do not dominate the haze formation and development principally. 299 

The PM2.5 level in EN-16 is much higher than that in EN-30 in BTH, which is mainly caused 300 

by the considerable discrepancies in the surface winds between the two members. The 301 

simulated southerly wind in EN-16 is generally more intense than that in EN-30, but the 302 

northerly wind in EN-16 is weak compared to EN-30, which is more favorable for the air 303 

pollutants accumulation in EN-16 than EN-30. On January 13 and 14, the winds in EN-30 are 304 

weak or calm in BTH and the PM2.5 is mainly attributed to the local production. However, in 305 

EN-16, the prevailing south winds also deliver the air pollutants from the south areas to BTH, 306 

substantially enhancing the PM2.5 level. On January 15, although EN-16 and EN-30 both 307 
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produce the prevailing southerly wind in BTH, the westerly wind in EN-30 is intense 308 

compared to EN-16, considerably decreasing the PM2.5 level in EN-30. On January 16, the 309 

northeasterly wind in EN-30 is intensified and evacuates the PM2.5 in the north of BTH. 310 

However, in EN-16, the simulated northeasterly wind is weak and the PM2.5 level in the north 311 

of BTH still remains high. On January 17, the simulated northerly wind in EN-16 is weak 312 

compared to that in EN-30, causing higher PM2.5 concentration in EN-16 than EN-30 in BTH. 313 

On January 18, the intensified southerly wind in EN-16 considerably increases the PM2.5 314 

level in BTH compared to EN-30. On January 19, the westerly wind is prevalent in EN-30 315 

and the PM2.5 level commences to decrease, but in EN-16, the southwesterly wind still causes 316 

high PM2.5 concentrations in BTH. On January 20, the stronger northeasterly wind in EN-30 317 

more efficiently evacuates the PM2.5 than that in EN-16.    318 

3.5 Uncertainties in PM2.5 Simulations in Mega-cities 319 

EN-16 and EN-30 both predict the haze occurrence and development in BTH during 320 

the episode, although the difference of the PM2.5 level between those two members are 321 

considerable, showing that the initial meteorological uncertainties do not dominate the 322 

regional haze formation. Previous studies have shown that the meteorological uncertainties 323 

substantially impact the air quality simulations at the city-scale (Bei et al., 2012). Figure 10 324 

presents the temporal variation of the ensemble simulations and observations averaged at four 325 

mega-cities in BTH during the episode. The ENSM of the PM2.5 concentrations in Beijing, 326 

Tianjin, and Baoding is in good agreement with the observation. However, the ENSM 327 

remarkably underestimates the observed PM2.5 concentration in Shijiazhuang from January 328 

16 to 19, which is hardly interpreted by the emission biases. The ENSM performs well in 329 

simulating the PM2.5 variations from January 13 to 15, and overestimates the observation on 330 

January 20 in Shijiazhuang. One of the possible reasons for the underestimation in 331 
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Shijiazhuang is that the westerly wind is systematically overestimated from January 16 to 19 332 

along the foothills of the Taihang Mountains, causing the haze plume to move eastwardly.       333 

Although the ENSM produces reasonably well the PM2.5 variations in the four mega-334 

cities against the measurement, the initial meteorological uncertainties still cause large 335 

uncertainties of the PM2.5 concentration (Figure s7). During the first three days of the episode, 336 

the ENSM is well consistent with the observations in the four mega-cites, but the PM2.5 level 337 

discrepancy between the members with the highest and lowest PM2.5 concentrations is rather 338 

large, causing troubles for the implementation of the control strategies. For example, in 339 

Shijiazhuang, the average PM2.5 concentrations during the first three days in the members 340 

with the highest and lowest PM2.5 concentrations are 403.5 and 213.8 µg m-3, respectively, 341 

and the difference is about 190 µg m-3. In Beijing, the average PM2.5 concentrations in the 342 

two members are 103.9 and 196.3 µg m-3. It is worth noting that, according to the Chinese air 343 

quality standard released in 2012, the PM2.5 concentration of 103.9 µg m-3 is defined as 344 

“lightly polluted condition”, but 196.3 µg m-3 defined as “heavily polluted condition”. If the 345 

heavy air pollution occurs, the control strategies will be implemented. Therefore, it is 346 

necessary to use the ensemble simulation to avoid the impact of the initial meteorological 347 

uncertainties on the haze prediction.  348 

 349 

4 Summary and Conclusions 350 

In the present study, the uncertainties in simulating haze formation due to 351 

meteorological initial uncertainties are investigated using the WRF-CHEM model through 352 

ensemble simulations. A persistent heavy haze episode occurred in BTH from 13 to 20 is 353 

simulated. Climatological ensemble initialization approach is used to produce the initial and 354 

boundary conditions for each ensemble member. 355 
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The ENSM of the aerosol constituents is generally in good agreement with the 356 

observations at an observation site in Beijing, including the sharp buildup of the aerosol 357 

constituents in the evening on January 15 and rapid falloff in the morning on January 20. 358 

However, the ENSM considerably underestimates the observed secondary aerosols in the 359 

evening on January 17. The ensemble spread is rather large for the aerosol constituent 360 

simulations, and the RESM exceeds 50%, respectively. 361 

The ENSM performs well in simulating the temporal variations of the average surface 362 

CO, SO2, NO2, O3 and PM2.5 mass concentrations over the monitoring sites in BTH, and the 363 

RESM of the air pollutants is generally less than 30%. The RESM of PM2.5 simulations is 364 

larger than the other air pollutants, which is due to the complicated composition of PM2.5, 365 

including the contributions of primary and secondary aerosols. The initial meteorological 366 

uncertainties do not principally dominate the haze formation and development, but 367 

considerably alter the simulated PM2.5 level. The average PM2.5 difference during the episode 368 

exceeds 60 µg m-3 between the two members with the highest and lowest PM2.5 simulations. 369 

Although the initial meteorological uncertainties do not dominate the regional haze 370 

formation, they still substantially influence the PM2.5 simulations at city-scale. The ENSM 371 

reasonably well predicts the PM2.5 variations in the four mega-cities against the measurement, 372 

including Beijing, Tianjin, Baoding and Shijiazhuang, but the RESM of the PM2.5 simulations 373 

is rather large, causing troubles for the implementation of the control strategies. Therefore, 374 

the ensemble simulation is needed to avoid the impact of the initial meteorological 375 

uncertainties on the haze prediction. 376 

 377 

 378 
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Figure Captions 558 
 559 

Figure 1 WRF-CHEM simulation domain. The filled red (in BTH) and blue (outside of BTH) 560 
circles represent centers of cities with ambient monitoring site. The size of the circle 561 
denotes the number of ambient monitoring sites of cities. The filled black triangle and 562 
rectangle denote the deployment location of the HR-ToF-AMS and the surface 563 
meteorological site in Beijing.  564 

Figure 2 Vertical distribution of the mean of initial ensemble spreads for (a) horizontal 565 
winds (U and V components), (b) temperature, (c) pressure, and (d) water vapor 566 
mixing ratio. 567 

Figure 3 Observed hourly PM2.5 concentrations averaged in 13 cities of BTH during the 568 
period from January 13 to 20, 2014. The blue, red, brown, and black lines represent 569 
the observations in Beijing, Tianjin, Baoding, and Shijiazhuang, respectively. The 570 
green lines denote the observations in other cities of BTH. 571 

Figure 4 Temporal evolution of the surface (a) U component, (b) V component, (c) 572 
temperature, and (d) relative humidity at the meteorological site, and (e) the PBL 573 
height at IRSDE in Beijing from each ensemble member (thin green lines), the 574 
ensemble mean (bold black line), and observations (black dots) from January 13 to 575 
20, 2014. 576 

Figure 5 Temporal evolution of the (a) POA, (b) SOA, (c) sulfate, (d) nitrate, and (e) 577 
ammonium mass concentrations at IRSDE in Beijing from each ensemble member 578 
(thin green lines), the ensemble mean (bold black line), and observations (black 579 
dots) from January 13 to 20, 2014. 580 

Figure 6 Temporal evolution of the (a) PM2.5, (b) O3, (c) NO2, (d) SO2, and (e) CO mass 581 
concentrations averaged over monitoring sites in BTH from each ensemble 582 
member (thin green lines), the ensemble mean (bold black line), and observations 583 
(black dots) from January 13 to 20, 2014. 584 

Figure 7 ENSM of the daily average surface PM2.5 concentration distributions (color 585 
contour) along with the ENSM of the daily average surface winds (black arrows) 586 
from January 13 to 20, 2014. The colored circles denote the PM2.5 measurements in 587 
cities. 588 

Figure 8 Same as Figure 7, but for the ensemble member of 16 with the highest simulated 589 
PM2.5 concentration. 590 

Figure 9 Same as Figure 7, but for the ensemble member of 30 with the lowest simulated 591 
PM2.5 concentration. 592 

Figure 10 Temporal evolution of the PM2.5 mass concentrations averaged in (a) Beijing, (b) 593 
Tianjin, (c) Baoding, and (d) Shijiazhuang from each ensemble member (thin green 594 
lines), the ensemble mean (bold black line), and observations (black dots) during 595 
the period from January 13 to 20, 2014. The red and blue lines represent the 596 
simulations in the members with highest and lowest PM2.5 concentrations, 597 
respectively. 598 

 599 
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Table 1 WRF-CHEM model configurations 602 
 603 

Regions Beijing-Tianjin-Hebei (BTH) 

Simulation period January 13 to 21, 2014 

Domain size 200 × 200 

Domain center 39°N, 117°E 

Horizontal resolution 6km × 6km 

Vertical resolution 35 vertical levels with a stretched vertical grid with spacing ranging 
from 30 m near the surface, to 500 m at 2.5 km and 1 km above 14 km 

Microphysics scheme WSM 6-class graupel scheme (Hong and Lim, 2006) 

Boundary layer scheme MYJ TKE scheme (Janjić, 2002) 

Surface layer scheme MYJ surface scheme (Janjić, 2002) 

Land-surface scheme Unified Noah land-surface model (Chen and Dudhia, 2001) 

Longwave radiation scheme Goddard longwave scheme (Chou and Suarez, 2001) 

Shortwave radiation scheme Goddard shortwave scheme (Chou and Suarez, 1999) 

Meteorological boundary and 
initial conditions NCEP 1°×1° reanalysis data 

Chemical initial and boundary 
conditions MOZART 6-hour output (Horowitz et al., 2003) 

Anthropogenic emission inventory Developed by Zhang et al. (2009) 

Biogenic emission inventory MEGAN model developed by Guenther et al. (2006) 

 604 

 605 
 606 
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 609 
 610 
Figure 1 WRF-CHEM simulation domain. The filled red (in BTH) and blue (outside of BTH) 611 
circles represent centers of cities with ambient monitoring site. The size of the circle denotes 612 
the number of ambient monitoring sites of cities. The filled black triangle and rectangle 613 
denote the deployment location of the HR-ToF-AMS and the surface meteorological site in 614 
Beijing. 615 
 616 
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 621 
 622 
Figure 2 Vertical distribution of the mean of initial ensemble spreads for (a) horizontal winds 623 
(U and V components), (b) temperature, (c) pressure, and (d) water vapor mixing ratio. 624 
 625 
 626 
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 630 
 631 
Figure 3 Observed hourly PM2.5 concentrations averaged in 13 cities of BTH during the 632 
period from January 13 to 20, 2014. The blue, red, brown, and black lines represent the 633 
observations in Beijing, Tianjin, Baoding, and Shijiazhuang, respectively. The green lines 634 
denote the observations in other cities of BTH. 635 
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 641 
 642 
Figure 4 Temporal evolution of the surface (a) U component, (b) V component, (c) 643 
temperature, and (d) relative humidity at the meteorological site, and (e) the PBL height at 644 
IRSDE in Beijing from each ensemble member (thin green lines), the ensemble mean (bold 645 
black line), and observations (black dots) from January 13 to 20, 2014. 646 
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 652 
 653 
Figure 5 Temporal evolution of the (a) POA, (b) SOA, (c) sulfate, (d) nitrate, and (e) 654 
ammonium mass concentrations at IRSDE in Beijing from each ensemble member (thin 655 
green lines), the ensemble mean (bold black line), and observations (black dots) from January 656 
13 to 20, 2014. 657 
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 663 
 664 
Figure 6 Temporal evolution of the (a) PM2.5, (b) O3, (c) NO2, (d) SO2, and (e) CO mass 665 
concentrations averaged over monitoring sites in BTH from each ensemble member (thin 666 
green lines), the ensemble mean (bold black line), and observations (black dots) from January 667 
13 to 20, 2014. 668 
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 674 
Figure 7 ENSM of the daily average surface PM2.5 concentration distributions (colored 675 
contour) along with the ENSM of the daily average surface winds (black arrows) from 676 
January 13 to 20, 2014. The colored circles denote the PM2.5 measurements in cities. 677 
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 679 
Figure 8 Same as Figure 7, but for the ensemble member of 16 with the highest simulated 680 
PM2.5 concentration. 681 
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 684 
Figure 9 Same as Figure 7, but for the ensemble member of 30 with the lowest simulated 685 
PM2.5 concentration. 686 
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 689 
 690 
Figure 10 Temporal evolution of the PM2.5 mass concentrations averaged in (a) Beijing, (b) 691 
Tianjin, (c) Baoding, and (d) Shijiazhuang from each ensemble member (thin green lines), 692 
the ensemble mean (bold black line), and observations (black dots) during the period from 693 
January 13 to 20, 2014. The red and blue lines represent the simulations in the members with 694 
highest and lowest PM2.5 concentrations, respectively. 695 
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