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Abstract. This study investigates orbital sampling biases and evaluates the additional impact caused by data quality screening

for the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) and the Aura Microwave Limb Sounder (MLS).

MIPAS acts as a proxy for typical infrared limb emission sounders, while MLS acts as a proxy for microwave limb sounders.

These biases were calculated for temperature and several trace gases by interpolating model fields to real sampling patterns

and, additionally, screening those locations as directed by their corresponding quality criteria. Both instruments have dense5

uniform sampling patterns typical of limb emission sounders, producing almost identical sampling biases. However, there is

a substantial difference between the number of locations discarded. MIPAS, as a mid-infrared instrument, is very sensitive to

clouds, and measurements affected by them are thus rejected from the analysis. For example, in the tropics, the MIPAS yield

is strongly affected by clouds, while MLS is mostly unaffected.

The results show that upper tropospheric sampling biases in zonally averaged data, for both instruments, can be up to 10%10

to 30%, depending on the species, and up to 3 K for temperature. For MIPAS, the sampling reduction due to quality screening

worsens the biases, leading to values as large as 30% to 100% for the trace gases and expanding the 3 K bias region for

temperature. This type of sampling bias is largely induced by the geophysical origins of the screening (e.g. clouds). Further,

analysis of long-term time series reveals that these additional quality screening biases may affect the ability to accurately detect

upper tropospheric long-term changes using such data. In contrast, MLS data quality screening removes sufficiently few points15

that no additional bias is introduced, although the vertical range of reliable measurements is slightly reduced. We emphasize

that the results of this study refer only to the representativeness of the respective data, not to their intrinsic quality.

©The author’s copyright for this publication is transferred to California Institute of Technology.

1 Introduction

Satellite limb sounders have provided a wealth of information for studies affecting climate, ozone layer stability, and air quality,20

as well as evaluation of reanalyses and chemistry climate models. Compared to ground-based instruments or aircraft field

campaigns, satellite data provides continuous coverage over large areas (or even global scales, depending on their sampling),

facilitating model evaluation on a large scale. Further, satellite missions such as the Atmospheric Chemistry Experiment Fourier

Transform Spectrometer (ACE-FTS) (Bernath et al., 2005) and the Aura Microwave Limb Sounder (MLS) (Waters et al., 2006)
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have records that span more than a decade. In addition, data records constructed using several satellite instruments that span

more than 3 decades (Froidevaux et al., 2015; Davis et al., 2016) provide the opportunity to study and evaluate long-term

variability and trends. However, satellite observations sample the continuously changing atmosphere only at discrete locations

and times, which can result in a biased depiction of the atmospheric state.

Several studies have evaluated the impact of orbital sampling by comparing raw model fields against satellite-sampled ones5

(e.g., McConnell and North, 1987; Bell and Kundu, 1996; Engelen et al., 2000; Luo et al., 2002; Brindley and Harries, 2003;

Aghedo et al., 2011; Guan et al., 2013). For the limb sounding technique, Toohey et al. (2013) characterized the sampling bias

for H2O and O3 for 16 satellite instruments, including limb scattering sounders, solar and stellar occultation instruments and

limb emission sounders. They concluded that coarse non-uniform sampling leads to non-negligible biases, not only through

non-uniform spatial sampling but mostly through non-uniform temporal sampling, that is, producing means using measure-10

ments that span less than the full period in question. Millán et al. (2016) studied the sampling bias for temperature and several

trace gas species for a subset of the instruments used by Toohey et al. (2013) and investigated the impact of such biases upon

stratospheric trend detection. They found that coarse non-uniform sampling patterns can induce significant errors in the mag-

nitudes of inferred trends, necessitating analysis of considerably more years of data to conclusively detect a trend. In contrast,

dense uniform sampling patterns accurately reproduce the magnitude of the trends, with the number of years of data required15

determined mostly by natural variability.

However, none of these studies have quantified the additional biases introduced through quality screening of the measure-

ments. Many of the measurements discarded through quality screening have been affected by the presence clouds, which pose

a substantial challenge to limb observations as the long limb path traverses hundreds of kilometers. The impact of such cloudy

scenes depends on the measurement technique used. For example, instruments measuring microwave emission are unaffected20

by all but the largest particles in the thickest clouds. Many other limb measurements are screened out because of temperature

gradients near the poles, whose impact varies depending on the retrieval scheme, i.e., one dimensional versus tomographic, as

well as how accurately the a priori or initial guess captures such gradients.

This study examines the sampling bias and quantifies the impact of quality screening upon two limb viewing instruments,

one using microwave emission (the Aura Microwave Limb Sounder - MLS) and the other one using infrared emission (the25

ENVISAT Michelson Interferometer for Passive Atmospheric Sounding - MIPAS). Both instruments have dense uniform sam-

pling distributions, which should minimize the sampling biases; however, there is a substantial difference in the number of

measurements rejected through quality screening for these techniques (see Figure 1). The discarded profiles tend to cluster

geophysically, leading to biases in analyses that are based on the remaining measurements. We emphasize that the results of

this study refer only to the representativeness of the respective data, not to their intrinsic quality.30
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2 Data and Methodology

2.1 Model Fields

CMAM30-SD is a coupled chemistry climate model nudged to the winds and temperatures of the ERA-Interim reanalysis.

This nudging exploits the much better dynamics of the reanalysis to reliably predict the chemical fields. More information can

be found in Scinocca et al. (2008), de Grandpré et al. (2000) and McLandress et al. (2014). Extensive validation (de Grandpré5

et al., 2000; Hegglin and Shepherd, 2007; Melo et al., 2008; Jin et al., 2005, 2009) has shown that the free-running version

of this model performs well against observations relevant to dynamics, transport, and chemistry. Comparisons against ACE-

FTS and the Odin Optical Spectrograph and Infrared Imaging System (OSIRIS) have shown that CMAM30-SD has a good

representation of stratospheric temperature, H2O, O3, and CH4 in polar regions (Pendlebury et al., 2015). Further, CMAM30-

SD has been used to construct a long-term H2O record, acting as a transfer function between satellite observations (Hegglin10

et al., 2014), and it reproduces halogen-induced midlatitude O3 depletion sufficiently well to be used in long-term O3 trend

studies (Shepherd et al., 2014).

The CMAM30-SD version used in this study has a horizontal resolution of approximately 3.75◦, that is, approximately

400 km (similar to the ∼500 km limb viewing path length). It has a lid at 0.0007 hPa with 63 vertical levels that vary from

∼500 m in the lower troposphere to ∼3 km in the mesosphere. Here, we present results using the H2O, O3, CO, HNO3, and15

temperature CMAM30-SD fields. Note that for this study it is not necessary for the model fields to be correct in absolute terms.

CMAM30-SD is simply used as a representative evolving atmospheric state.

2.2 Satellite Instruments

We analyze the impact of sampling and quality screening of the limb emission sounders MIPAS and MLS. MIPAS (Fischer

et al., 2000, 2008) was launched in March 2002 on the European Space Agency Environment Satellite. MIPAS was a Fourier20

transform spectrometer conceived to record limb emission spectra. It covered the mid-infrared region from 685 to 2410 cm−1

in five spectral bands, allowing retrievals of temperature, pressure and trace gases. MIPAS measured around 1350 vertical scans

daily, providing global observations.

From July 2002 to March 2004, MIPAS operated in full resolution mode, with a spectral spacing of 0.025 cm−1; however,

following persistent malfunctions with the interferometer slide mechanism, instrument operations were temporarily suspended.25

In January 2005 operations were resumed with MIPAS operating at a spectral spacing of 0.0625 cm−1. This mode of operation

is known as optimum resolution, and it is characterized by finer vertical and horizontal sampling attained through the degraded

spectral spacing. MIPAS took quasi-continuous measurements until April 2012, when the European Space Agency lost contact

with ENVISAT.

In the optimum resolution operation, MIPAS has several measurement modes: the nominal mode, with 27 tangent heights30

from 6 to 70 km; the middle atmosphere mode, with 29 tangent heights from 18 to 102 km; and the upper atmosphere mode,

with 35 tangent heights from 42 to 172 km. The nominal mode covers the entire stratosphere extending into both the upper
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troposphere and the lower mesosphere to study linkages between these atmospheric layers. In this study we use the geolocations

of this measurement mode because it covers around 80% of the measurement time (Fischer et al., 2008).

Several retrieval algorithms have been developed for the MIPAS spectra (e.g. Ridolfi et al., 2000; von Clarmann et al., 2003;

Hoffmann et al., 2005; Carlotti et al., 2006; von Clarmann et al., 2009; Dudhia, 2017). Here we use the profiles generated by

the Institute of Meteorology and Climate Research (IMK) in cooperation with the Instituto de Astrofísica de Andalucía (von5

Clarmann et al., 2009). This retrieval algorithm uses a Tikhonov regularization; it is capable of handling deviations from local

thermodynamic equilibrium, and it includes temperature horizontal gradients along the line of sight to prevent many retrievals

from failing to converge, particularly near the boundary of the poles.

MLS (Waters et al., 2006) was launched in July 2004 on the Aura spacecraft. MLS measures limb millimetre and sub-

millimetre atmospheric thermal emission in spectral regions near 118, 191, 240, and 640 GHz, and 2.5 THz. These radiances10

are inverted using a tomographic optimal estimation algorithm (Livesey et al., 2006) that allows the retrieval of temperature,

composition and ice cloud properties. MLS measures around 3500 vertical scans daily, providing near-global (82◦S to 82◦N)

observations.

To investigate the impact of sampling and quality screening, daily CMAM30-SD model fields were linearly interpolated

to the actual latitude and longitude of the satellite measurements. For the MIPAS sampling pattern, for each calendar day of15

the year we identify the year with the most measurements obtained on that date. That is to say, for the 1st of January, we use

the locations of the 1st of January for the year with the most measurement locations, etc. This allows us to have a complete

year of MIPAS measurements without interruptions due to MIPAS changing measurement modes. For MLS, we use 2008 as

a representative year. To avoid differences attributed to diurnal cycles, all satellite measurements were assumed to be made

at 12:00 UT on a given day, avoiding any interpolation in time. Further, we used the vertical grid of the CMAM30-SD fields;20

that is, we assume that MIPAS and MLS vertical resolution is good enough to resolve these model fields, at least in the upper

troposphere / lower stratosphere (UTLS).

We constructed three time series: one using the raw CMAM30-SD fields; another using all the measurement locations

available; and lastly one using only the measurement locations remaining after the quality screening recommended for each

instrument was applied, in other words, after those points flagged as bad values in the actual data were eliminated. The screening25

procedure applied to MIPAS data is as follows: We neglect profile points where the diagonal element of the averaging kernel

is less than 0.03 — to avoid retrievals influenced by the a priori — and discard points where the visibility flag was set to zero

— which indicates that MIPAS has not seen the atmosphere at those particular altitudes. The screening procedure applied to

MLS data follows the guidelines detailed by Livesey et al. (2017), which vary product by product.

Figure 1 shows typical daily MIPAS and MLS geolocations overlaid on top of a modeled water vapor map. Both instruments30

have dense coverage that, as noted by Toohey et al. (2013), is relatively uniform with latitude and time. Figure 1 also displays

those geolocations for which the retrieved values are not recommended for scientific studies, that is, they are screened out by

the quality criteria. As shown, these failed or in many cases skipped retrievals cluster in the tropics or near the poles. Overall,

in the tropics, these missing retrievals are due to clouds. Near the poles, the retrieval failures are presumably due to temperature
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horizontal gradients and, in the case of MIPAS, also due to the presence of polar stratospheric clouds. The substantial difference

between the number of failed/missing retrievals in the tropics for MIPAS and MLS is the main motivation for this study.

To quantify this further, Figure 2 displays the yield given by,

Y =
NQS

NA
(1)

where NA is the number of measurements available and NQS is the number of measurements left after applying the quality5

screening criteria at each latitude and each pressure level. Again, MIPAS low yield values accumulate in the tropics and near

the poles. Overall, MIPAS yields drop below 60% near the South Pole at pressures greater than ∼20 hPa and below 30% in the

tropics at pressures greater than 100 hPa. In contrast, in general MLS yield values are better than 90%. The two exceptions are

the yield values for H2O near the South Pole, which drop below 90%, and HNO3 near the equator, which drop to 60%. Note

that MIPAS yield values drop below 10% well into the troposphere.10

3 Induced Sampling and Quality Screening Biases

Following Millán et al. (2016), we evaluate the sampling biases as well as the quality screening biases associated with con-

structing monthly zonal means using the raw CMAM30-SD fields, ZR, versus those using the satellite-sampled measurements,

ZA, or only those passing the quality screening criteria, ZQS . The difference between ZA or ZQS and ZR gives the sampling

or the quality screening induced bias, respectively. For each instrument and for each month throughout one year, we computed15

these biases as a function of latitude and pressure. Note that the quality screening bias is the sampling bias plus the additional

impact of screening out more locations and, hence, reducing the sampling frequency.

Figure 3 shows examples of the sampling and screening biases for June 2005. Percentage biases are shown for the trace gases

to cope with their large vertical variability. MIPAS and MLS sampling biases are practically identical. For the trace gases,

sampling biases are larger in the upper troposphere, where the variability is larger, while the temperature sampling biases20

are larger near the edges of the polar regions, where there are substantial temperature gradients. The impact of the MIPAS

quality screening is evident in the tropics (in particular near 20◦N), where the yield values are expected to be greatly affected

(see Figure 2) by clouds. In this region, on top of the sampling biases, all parameters studied display an underestimation, for

example, up to -50% for H2O. Although this resembles the expected dry bias in clear-sky tropospheric infrared measurements

(e.g., Sohn et al., 2006; Yue et al., 2013) — that is, the fact that infrared instruments cannot measure cloudy regions where H2O25

is high, resulting in a dry bias — the biases shown here are mainly due to the reduced sampling frequencies rather than high

H2O values associated with deep convection. Note that this is also applicable to other parameters; that is, the quality screening

biases shown here are not an indication of trace gas (or temperature) / deep convection relationships. In contrast to those of

MIPAS, except for the reduced vertical ranges, MLS sampling biases are unaffected by data quality screening.

To summarize the potential sampling and quality screening biases, Figure 4 shows their root-mean-square (RMS) computed30

over one year’s worth of data. Again, the MIPAS and MLS RMS sampling biases are almost identical: H2O displays a bias of

up to 30% at pressures greater than∼150 hPa; CO, O3 and HNO3 show biases (up to 30% for O3 and HNO3) near mid-latitudes
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(around 40◦S and 40◦N), where there are sharp trace gas gradients and variability due to tropopause folding; and temperature

displays a bias as large as 3 K near the polar edges.

The impact of MIPAS quality screening is especially evident in H2O and HNO3, which have potential biases as large as

100%, but quality screening also affects the rest of the parameters: CO and O3 biases approach 30% in the tropics, while the

region with 3 K temperature bias expands near the South Pole. As before, except for the reduced vertical ranges, the impact of5

the MLS quality screening is negligible; that is, the screening biases are almost identical to the sampling biases.

To exemplify the impact of these quality screening biases, Figure 5 (left) shows time series (1979-2012) of 20◦S to 20◦N

H2O at 200 hPa using the raw CMAM30-SD fields, the full satellite-sampled fields and only those points passing the screening

criteria. All time series show the expected features, with an annual cycle related to the seasonality of the cold point tropopause

temperature. The MIPAS time series constructed using the full satellite-sampled fields is almost identical to the one constructed10

using the raw CMAM30-SD field. However, as suggested by the screening bias shown in Figure 4, the MIPAS time series using

the quality screening displays a substantial dry bias. In contrast, no evidence of such a bias is seen in the MLS time series;

that is, both the time series constructed using the full satellite-sampled field and that based on only those points passing the

screening criteria are almost identical to the CMAM30-SD one.

Figure 5 (right) shows the area-weighted scatter between these time series. MIPAS sampling scatter, that is, the scatter15

between MIPAS when using all available measurements and the raw CMAM30-SD fields, is small and their correlation tight,

with a bias better than -1.5%, a slope of ∼1.05, and a coefficient of determination of 0.98. The contrast with the MIPAS

screened scatter is dramatic in this particular latitude/pressure region; it displays considerably more scatter and, as in the time

series (Figure 5-left), a discernible bias. Quantitatively, MIPAS screened data displays a bias of 16.13%, a slope of 1.32, and

a coefficient of determination of ∼0.8 (which implies that 20% of the total variation cannot be explained). MLS sampling and20

screened scatterplots are almost the same.

To explore this further, Figure 6 shows these metrics versus pressure using different latitude bands for the MIPAS sampling

scatter. As shown, the coefficients of determination as well as the slopes are close to one and the biases close to zero in most

cases. The most notable exceptions are the biases between 20◦ and 45◦ (either north or south) for O3 and HNO3, which

can be up to -10%. In these regions, Figure 3 and Figure 4 indicate biases due to the sharp trace gas gradients associated25

with tropopause folding. Note that both the MLS sampling and the MLS screened scatter are almost identical to the MIPAS

sampling scatter and, hence, are not shown.

The MIPAS screened scatter results are shown in Figure 7. The largest impact can be found in the tropics (the 20◦S-20◦N

latitude band) at pressures greater than 100 hPa. Here, the coefficients of determination, the biases and the slopes are severely

degraded. The coefficients of determination rapidly decrease, especially for H2O, O3 and HNO3, whose values are as low as30

0.5 at 200 hPa and worsen further at lower altitudes. The biases for O3 and HNO3 oscillate between -10% and 10% and can

be as large as 40% for H2O. Lastly, all the slopes vary from 0.5 to 1.5, depending on pressure level. These poor metrics imply

that any trends derived at these pressure levels will also be impacted by quality screening induced biases: the magnitude of the

trends will be affected because of the change in the slope, and the number of years of observations required to conclusively
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detect trends will considerably increase due to the noise associated with the worsening of the coefficients of determination

(e.g., Millán et al., 2016).

4 Summary and Conclusions

This study explored the implications of sampling in the UTLS for two satellite instruments, MIPAS and MLS, for H2O, O3,

CO, HNO3, and temperature. We quantify sampling biases by interpolating CMAM30-SD fields, used as a proxy for the5

atmospheric state, to the measurement locations and computing monthly means. Both of these instruments have dense uniform

sampling, with around 1350 points spread globally for MIPAS and around 3500 spread from 82◦S to 82◦N for MLS, resulting

in almost identical sampling biases for the two instruments. For the trace gases, the largest sampling biases are found in the

upper troposphere, where there is more natural variability: H2O displays a bias of up to 30%, while CO, O3 and HNO3 show

biases near mid-latitudes of up to 10% for CO or 30% for O3 and HNO3 due to sharp trace gas gradients and variability arising10

from tropopause folding. The temperature sampling bias is negligible (less than 1 K), except near the polar edges, where the

bias can be as large as 3 K, presumably due to horizontal temperature gradients.

Besides the orbital sampling biases, this study also evaluated the impact of quality screening, which further reduces the

sampling frequency. In the tropics (see Figure 2), MIPAS is substantially impacted by clouds, as they act as grey bodies with

high opacity, greatly altering the radiances below the cloud top. Cloud effects are evident, with H2O and HNO3 biases up to15

100% and CO and O3 biases up to 30%. In contrast, because of their longer wavelengths, MLS measurements are unaffected

by all but the thickest clouds, negligibly impacting the sampling frequency. However, pressure broadening washes out the

microwave signal in the troposphere, reducing the MLS vertical range.

Analysis of scatterplots of time series constructed using the raw model fields versus those using all the available measurement

locations (either for MIPAS or MLS) reveal that at most pressure levels and most latitude bands, the coefficient of determination20

and the slope of the fits are close to one, while the biases are close to zero. However, when only those measurements passing

the screening criteria are used, MIPAS upper tropospheric measurements are severely impacted in some regions. In the tropics,

the coefficients of determination rapidly decrease, especially for H2O, O3 and HNO3, from ∼1 at 100 hPa to as low as 0.5 at

200 hPa, and they worsen further at lower altitudes. The biases for O3 and HNO3 oscillate between -10% and 10% and can be

as large as 40% for H2O. Lastly, all the slopes vary from 0.5 to 1.5, depending on pressure level. These results imply that any25

trends derived from measurements made using techniques substantially affected by clouds will be biased and that the number

of years required to conclusively detect trends from such data will be considerably larger than that for data records less sensitive

to clouds. While this sampling bias can be mitigated for model validation studies by also rejecting cloud-affected data from the

model sample, thus far no straightforward solution to this problem has been identified in the context of trend quantification.

Note that although these results were derived for MIPAS, they are applicable to other instruments with dense sampling but for30

which quality screening (e.g., for clouds) severely impacts their yield. For example, a UV-visible instrument such as the Ozone

Mapping and Profiler Suite (Jaross et al., 2014) or a constellation of solar occultation instruments would suffer from similar

substantial cloud-screening-induced data gaps.
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5 Data availability

The datasets used in this study are publicly available: CMAM30-SD fields can be found in the Canadian Centre for Climate

Modeling and Analysis webpage (http://www.cccma.ec.gc.ca/data/cmam/output/CMAM/CMAM30-SD/index.shtml), MLS data

can be found in the NASA Goddard Space Flight Center Earth Sciences Data and Information Services Center (http://disc.sci.gsfc.nasa.gov/Aura/data-

holdings/MLS/index.shtml), and MIPAS data can be found in the Karlsruhe Institute of Technology webpage (https://www.imk-5

asf.kit.edu/english/308.php).
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Figure 1. Typical MIPAS (top) and MLS (bottom) sampling overlaid on top of a modeled water vapor map (June 1st, 2005) at 200 hPa. Red

dots show missed or failed retrievals: in the tropics, these are mostly due to clouds.
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Figure 2. MIPAS and MLS zonal mean yield (see text) for H2O, O3, CO, HNO3 and temperature for 2005, that is, sampling the modeled

2005 year with the sampling patterns as explained in the text. Note the non-linear color scale.
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Figure 3. June 2005 sampling and quality screening biases as a function of latitude and pressure for H2O, O3, CO, HNO3, and temperature

as measured using MIPAS and MLS. White regions denote a lack of measurements.
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Figure 4. Root-mean-square sampling and quality screening biases for 2005 as a function of latitude and pressure for H2O, O3, CO, HNO3,

and temperature as measured using typical MIPAS and MLS data coverage.
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Figure 7. As in Figure 6 but using only the profiles that passed the quality screening.
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