
Dear	Referee	#1	
Thank	you	for	thoroughly	reading	and	commenting	the	manuscript.	Please	 find	
below	 the	 replies	 to	 your	 suggestions;	 each	of	 your	 suggestions	 is	 followed	by	
the	corresponding	reply	in	bold	letters	and	(where	appropriate)	actions	taken	to	
address	it	in	the	updated	version	of	the	manuscript	in	italics.		
	
	
	
Comments:	
	
The	manuscript	 “Multi-species	 inversion	 and	 IAGOS	 airborne	 data	 for	 a	 better	
constraint	of	 continental	 scale	 fluxes”	by	Boschetti	 et	al.	describes	 the	effect	of	
including	 the	 correlations	 between	 multiple	 species	 in	 a	 bayesian	 inversion	
framework	 in	 order	 to	 improve	 error	 reduction	 compared	 to	 solving	 for	
individual	 species	 independently.	 The	 experiment	 described	 in	 the	manuscript	
uses	 synthetic	 observations	 based	 on	 measurements	 made	 during	 the	 IAGOS	
campaign	in	Europe	in	order	to	assess	the	potential	for	future	measurements	of	
CO2,	CO	and	CH4	during	this	campaign	to	better	constrain	regional	emissions	of	
all	 three	 species.	 Finally,	 there	 is	 some	 discussion	 of	 the	 effect	 of	 different	
assumptions	 about	 the	 prior	 error	 of	 the	 emissions	 upon	 the	 level	 of	 error	
reduction	achieved	by	the	inversion.	
Overall	 the	 manuscript	 is	 fairly	 well	 written,	 with	 few	 technical	 corrections	
necessary.	The	figures	are	generally	quite	clear	and	well	chosen,	although	some	
further	detail	needs	to	be	provided	for	some	of	them.	The	methods	and	models	
used	within	 the	manuscript	 are	 appropriate	 for	 such	 a	 study,	 and	 are	 able	 to	
provide	 some	 assessment	 of	 the	 potential	 for	 improvement	 supplied	 by	 future	
multi-species	measurements	as	part	of	the	measurement	campaign.	The	paper	is	
successful	as	far	as	it	goes,	and	whilst	it	would	have	been	nice	to	further	examine	
the	 effect	 of	 different	 experiment	 set-ups	 within	 this	 paper,	 the	 authors	
acknowledge	that	this	is	the	case,	and	may	be	the	focus	of	a	future	manuscript.	
	
We	appreciate	these	positive	remarks.		
	
My	main	reservation	with	the	study	is	that	the	results	and	discussion	section	is	a	
little	 light	on	detail	 in	places	and	feels	 like	 it	was	rushed,	making	the	thread	of	
the	 paper	 more	 difficult	 to	 follow	 than	 it	 should	 be.	 More	 details	 and	 deeper	
analysis	 of	 the	 results	 is	 needed	 in	 order	 to	 contextualize	 the	 findings	 of	 the	
experiment.	 The	 authors	 must	 make	 sure	 that	 all	 terms	 used	 have	 been	
explained	or	defined,	and	that	they	provide	enough	analysis	of	their	results.	See	
general	comments	for	details.	I	suggest	that	this	paper	is	suitable	for	publication	
in	this	journal	after	the	following	revisions	are	carried	out	and	the	results	section	
is	improved.	
	
Thank	you	for	the	constructive	comments.	In	the	revised	version	…	
	
Page	3	line	6:	“Because	most	biogenic	fluxes	in	Europe	are	influenced	by	human	
activities...”	-	reference?	
We	have	added	references	and	modified	the	sentence	to:	



“Because	most	biogenic	 fluxes	 in	Europe	are	 influenced	by	human	activities,	with	
22%	of	Europe’s	land	is	dedicated	to	agriculture	(FAO,	2013)	and	45	%	covered	by	
forests,	 of	 which	 80%	 are	 managed	 for	 wood	 supply	 (UNECE,	 FAO,	 2011),	
understanding	 and	managing	 these	 biogenic	 fluxes	must	 also	 be	 a	 component	 of	
any	policy	to	reduce	anthropogenic	emissions.”		
	
	
Page	4,	lines	1-2:	“proven	to	be	important	in	the	fields	of...”	-	reference?	
Two	references	were	added;	one	for	IAGOS	and	one	for	CONTRAIL	(Zbinden	
et	al,	2013;	Sawa	et	al.,	2012)	
	
	
Page	8,	line	18:	the	first	term	in	equation	(3)	should	be	to	the	power	of	(-1).		
The	equation	(3)	was	corrected	accordingly	
	
	
Page	8,	line	31:	the	term	“50%	footprint”	should	be	explained.	
A	 reference	 to	 section	 2.1.2	 was	 added	 to	 remind	 the	 reader	 of	 the	
‘footprint’;	the	section	now	reads:	
“As	 a	 spatial	 aggregation	 scale	 we	 chose	 an	 area	 from	 which	 fluxes	 have	 a	
significant	 contribution	 to	 the	 observations	 made	 at	 Frankfurt.	 For	 this	 we	
compute	the	temporally	accumulated	footprint	values	for	the	whole	year	2011,	and	
select	those	spatial	pixels	that	correspond	to	50%	of	the	total	(spatially	integrated)	
footprint	(Fig.	1).”	
	
We	 also	 modified	 Section	 2.1.2	 (Pag.	 6,	 Line	 12)	 to	 better	 explain	 the	
concept	of	footprint:	
“…so-called	 “footprints”.	 Briefly,	 for	 each	 measurement	 location	 and	 time	 (also	
called	receptor	point),	the	model	releases	an	ensemble	of	virtual	particles	that	are	
driven	 back	 in	 time	 using	 simulated	wind	 fields	 from	ECMWF	and	 turbulence	 as	
stochastic	 process;	 the	 residence	 time	within	 the	 lower	half	 of	 the	mixed	 layer	 is	
used	 to	 determine	 the	 potential	 contribution	 from	 surface	 fluxes,	 and	 the	
cumulative	sum	of	these	contributions	determines	the	footprint,	that	identifies	the	
part	 of	 the	 domain	 with	 a	 certain	 influence	 on	 a	 single	 receptor	 point.	 This	
footprint	 is	 then	 matrix-multiplied	 with	 an	 emission	 map	 to	 derive	 the	
corresponding	simulated	mixing	ratio	in	a	given	receptor	point.”	
	 	 	
	
Page	8,	line	15:	is	it	fair	to	assume	no	correlation	between	months?	You	should	
comment	here	(or	later	in	the	discussion)	on	whether	this	would	be	the	best	set-
up	of	the	correlation	matrix	in	an	inversion	using	real	observational	data.	
In	page	10,	line	16,	the	following	was	added:	
In	this	study,	we	assume	a	certain	annual	total	domain	wide	flux	uncertainty,	and	
then	break	it	down	by	sectors,	fuels,	and	months	by	inflating	the	error.	By	assuming	
no	 correlation	 between	 different	 months	 we	 ensure	 maximum	 flexibility	 in	 the	
system	 to	 retrieve	month-to-month	changes	based	on	 the	observations.	Assuming	
correlation	between	months	would	be	possible,	but	has	not	been	investigated	here.	
It	 is	 unclear	 how	 good	 the	 seasonal	 variation	 in	 emissions	 from	 the	 inventories	
actually	 is,	 so	 in	 order	 to	 not	 rely	 too	much	 on	 these	we	 chose	 zero	 correlation.	



Investigating	the	effects	of	different	correlation	set-ups	for	the	seasonal	cycle	could	
be	the	focus	of	future	research.	
	
	
Page	12,	line	4:	What	is	enh?		
Right	 after	 equation	 (11),	 the	 line	 “…where	 enh	 indicates	 the	 modelled	
enhancement,	and	both	the	horizontal	…”	was	added	for	clarity	
	
	
Page	12,	 line	7-8:	You	need	to	explain	how	you	derive	ε␣	 tran_v	 in	more	detail	
here.		
The	text	(from	Page	12,	line	6)	was	edited	as	follows:	
...	where	both	the	horizontal	transport	error	εtran_h		and	the	vertical	transport	error	
εtran_v	 are	 characterized	 as	 percentage	 error;	 εtran_h	 is	 assumed	 to	 be	 50%	while	
εtran_v	is	profile-specific	with	mean	value	about	10%.		
“The	 vertical	 transport	 error	 accounts	 for	 the	 fact	 that	 the	 shallower	 the	mixed	
layer	is,	the	more	difficult	it	is	to	model	the	atmosphere.	We	assume	that	after	zi-
correction	 the	 remaining	 error	 is	 on	 the	 order	 of	 50	 m	 (related	 to	 the	 vertical	
resolution	of	the	profile	data),	so	the	relative	error	εtran_v	is	assumed	as	the	ratio	of	
50	 m	 to	 the	 modeled	 zi;	 in	 this	 way	 we	 obtain	 an	 error	 that	 gets	 larger	 the	
shallower	the	mixed	layer	is.	“	
	
	
Page	12,	line	18:	What	method	do	you	use	to	invert	Sprior	and	Se	?	
We	 assume	 this	 comment	 refers	 to	 Pag	 8,	 eq.	 (3)	 and	 (4).	 The	 error	
correlation	matrices	are	 inverted	using	 the	R-function	 “solve”	of	 the	base	
package.	At	pag.	8,	line	26	the	following	was	added:	
In	this	study,	 the	 inverse	of	 the	matrix	was	calculated	using	the	R-function	 ‘solve‘	
from	the	base	package.	
	
	
Page	13,	 line	5:	Describe	which	version	of	the	model	output	you	are	plotting	in	
Figure	5.	Does	it	use	the	prior	emissions?	
We	edited	the	text	at	lines	3-4	as	follows:	
Figure	5	shows	…	for	both	observations	and	model	outputs	using	prior	emissions.	
	
	
Page	13,	line	9:	Here,	and	in	the	caption	of	Figure	5,	you	say	that	the	modelled	CO	
is	multiplied	by	a	 factor	of	2.8.	However,	 the	 legend	of	Figure	5	appears	 to	say	
that	the	observations	have	been	scaled.	Which	is	correct?	
The	 text	 and	 the	 caption	 were	 correct.	 The	 legend	 has	 been	 corrected	
accordingly	
	
	
Page	13,	line	12:	Explain	here	what	it	is	that	is	indicated	by	the	performance	of	
the	model	 compared	 to	 the	observations.	Are	 you	 saying	 that	 the	meteorology	
that	you	use	and	the	correction	to	zi	that	you	apply	produce	a	good	indication	of	
the	temporal	variation	of	the	ML	enhancement?	Does	your	choice	of	zi	display	an	
improvement	over	the	original?	



Thank	 you	 for	 pointing	 this	 out.	 We	 have	 now	 investigated	 the	
improvement	brought	about	by	using	the	zi	correction.	The	text	in	line	10	
and	following	were	edited	as	follows:	
“Mixing	ratios	are	highly	variable,	but	the	model	produces	a	good	indication	of	the	
temporal	 variation	 of	 the	 ML	 enhancement;	 the	 squared	 correlation	 coefficient	
between	 observed	 and	 modeled	 CO	 enhancements	 is	 0.62,	 while	 the	 standard	
deviation	of	corrected	model	and	observation	residuals	is	85	ppb;	note	that	by	not	
accounting	for	the	zi	correction,	such	values	would	be	0.56	and	87	ppb	respectively.	
The	median	of	the	mixing	ratio	enhancement	for	the	three	trace	gases	 is	2.8	ppm	
for	CO2,	18.6	ppb	for	CO	and	26.6	ppb	for	CH4.”	
--	Note:	we	found	that	in	the	uploaded	version	of	the	paper	the	zi	correction	
was	actually	switched	off.	After	switching	the	correction	on,	only	Figure	5	is	
affected.	The	mean	uncertainty	reduction	values	are	now	35%	for	CO2_ff,	
48%	 for	 CO	 and	 CH4,	 60%	 for	 GEE	 and	 63%	 for	 respiration.	 We	 deeply	
apologize	for	the	mistake	--	
	
	
Page	13,	lines	25	and	26:	You	could	probably	add	a	little	more	detail	to	this	one-
sentence	 paragraph.	 Explain	 that	 Figure	 6	 is	 showing	 the	 prior	 and	 posterior	
emission	error	covariance	matrices	for	the	base	multi-species	inversion.	Do	the	
single-species	matrices	show	a	similar	overall	error	reduction?	Do	you	expect	to	
see	 negative	 correlations	 in	 the	 posterior	matrix?	 As	 it	 stands	 this	 sentence	 is	
disjointed	and	appears	to	come	out	of	nowhere	and	doesn’t	relate	to	other	text,	
making	the	manuscript	unnecessarily	difficult	to	follow.	
We	propose	to	replace	the	one-sentence	paragraph	with	the	following:	
“Figure	 6	 shows	 the	 prior	 and	 posterior	 error	 covariance	 matrices	 for	 the	 base	
multi-species	inversion.	The	posterior	error	covariance	matrix	for	the	multi-species	
inversion	 (Fig.	 6b)	 shows	 lower	 values	 corresponding	 to	 an	 average	 uncertainty	
reduction	 of	 23%	 across	 all	 state	 vector	 elements,	 while	 the	 posterior	 error	
covariance	matrix	for	the	single-species	inversion	(not	shown)	is	characterized	by	a	
mean	 uncertainty	 reduction	 of	 20%.	 This	 result	 implies	 that	 the	 multi-species	
inversion	 improves	 the	uncertainty	reduction	by	roughly	15%.	Negative	values	 in	
the	 posterior	 error	 correlation	 matrix	 are	 to	 be	 expected	 because	 different	
categories	 are	 bind	 together	 by	 correlations	 and	 therefore	 are	 not	 free	 to	 vary	
independently.”	
	
	
Page	 14,	 lines	 24	 -	 28:	 Explain	what	 you	mean	 by	 “a	 perturbed	 version	 of	 the	
prior”	here.	Also,	does	the	multi-species	inversion	capture	the	“truth”	any	better	
or	worse	than	the	single-species	inversion?	
We	propose	to	add	the	two	following	sentences	at	Line	25:	
“Such	perturbed	version	is	obtained	by	adding	realization	of	the	prior	error	to	the	
prior	state	space,	similarly	to	how	the	“truth”	is	obtained.	In	addition,	it	was	found	
that	the	truth-posterior	bias	of	the	multi-species	inversion	is	mostly	slightly	lower	
compared	 to	 the	 single-species	 inversion.	 Such	 difference	 is	 between	 -2.2%	 and	
7.5%,	according	to	the	simulated	species,	with	an	overall	value	of	0.3%.”	
	
	
Page	 15,	 line	 19:	How	 robust	 do	 you	 think	 the	 relative	 uncertainty	 reductions	



that	you	derive	are	against	different	manifestations	of	the	“true”	fluxes?	
What	 we	 investigate	 in	 Fig.	 10	 is	 not	 the	 uncertainty	 reduction,	 but	 the	
benefit	from	a	multi-species	inversion	over	a	single-species	one.	
The	following	text	was	added	at	line	19:	
The	benefit	of	including	inter-species	correlations	shown	in	Fig.	10	does	not	depend	
on	different	manifestations	of	the	true	fluxes,	but	only	on	the	posterior	uncertainty	
of	the	multi-	and	single-species	inversions.		
	
	
Page	15,	 line	26:	Why	do	you	 think	a	smaller	prior	error	 for	 the	CO2	FF	 fluxes	
compared	 to	 the	other	 species	 leads	 to	 a	 greater	uncertainty	 reduction	 for	 the	
posterior	fluxes?	
What	 we	 investigate	 in	 Fig.	 10	 is	 not	 the	 uncertainty	 reduction,	 but	 the	
benefit	 from	 a	 multi-species	 inversion	 over	 a	 single-species	 one.	
Uncertainty	 reduction	 for	 CO2	 FF	 is	 actually	 greater	 in	 Case	 1	 (36%)	
compared	 with	 the	 other	 two	 cases	 (29%	 and	 21%	 respectively),	 as	 in	
those	cases	(2	and	3)	the	prior	is	assumed	to	be	known	better	already.			
	
We	have	stated	in	the	paper	(page	15,	line	26)	that	the	benefit	from	a	multi-
species	over	a	single-species	inversion	increases,	when	changing	the	prior	
uncertainty	 for	CO2	emissions.	We	 think	 that	 the	 reason	 is	 the	 following:	
changing	the	prior	uncertainty	 in	CO2	emissions	means	changing	also	the	
off-diagonal	 blocks	 linking	 the	 different	 species	 together	 (see	 Eq.	 8).	
However,	the	diagonal	block	for	CO2	in	the	prior	uncertainty	changes	by	a	
factor	 four	 in	 that	 case,	 while	 the	 off-diagonal	 blocks	 change	 only	 by	 a	
factor	 of	 two.	 This	 effectively	 ties	 the	 emissions	 of	 CO2	 tighter	 to	 the	
emissions	of	the	other	species,	resulting	in	more	benefit	from	a	multi-	over	
a	single-species	inversion.	Note	that	this	is	related	to	the	required	rescaling	
of	the	prior	error	covariance	matrix	described	in	section	2.1.5.	
	
We	suggest	adding	the	following	text	at	line	28:	
…for	this	increase	in	benefit.	The	reason	for	both	of	these	results	is	probably	to	be	
searched	in	Eq.	8.	In	fact,	changing	the	prior	uncertainty	in	CO2	emissions	means	to	
also	change	the	off-diagonal	blocks	linking	the	different	species	together.	However,	
by	 reducing	 the	 anthropogenic	 CO2	 uncertainty	 from	 20%	 to	 10%	 (Case	 2),	 the	
diagonal	block	for	CO2	in	the	prior	uncertainty	changes	by	a	factor	four,	while	the	
off-diagonal	 blocks	 change	 only	 by	 a	 factor	 of	 two.	 This	 effectively	 ties	 the	
emissions	 of	 CO2	 tighter	 to	 the	 emissions	 of	 the	 other	 species,	 resulting	 in	 more	
benefit	 from	 a	 multi-	 over	 a	 single-species	 inversion.	 Conversely,	 when	 all	 prior	
uncertainties	 are	 reduced	by	a	 factor	 2	 (Case	3),	 both	diagonal	 and	off-diagonal	
blocks	 are	 reduced	 by	 a	 factor	 four.	 This	 explains	 why	 Case	 1	 and	 Case	 3	 show	
similar	benefit	values.			
	
	
Page	 16,	 line	 3:	 What	 makes	 CO	 sensitive	 to	 different	 correlation	 structures	
during	different	seasons?		
To	explain	the	issue,	we	added	a	couple	of	sentences	at	line	4:	
What	 makes	 CO	 sensitive	 to	 different	 correlation	 structures	 during	 different	
seasons	is	that	CO	enhancement	shows	a	stronger	seasonal	cycle	compared	to	e.g.	



fossil	 fuel	component	of	the	CO2	enhancement,	with	average	values	for	January	of	
around	150	ppb	(25	ppm	for	CO2),	and	for	July	of	9	ppb	(4	ppm	for	CO2).	This	results	
in	a	much	weaker	constraint	on	the	CO	emissions	from	the	CO	observations	during	
summer,	but	still	some	constraint	through	the	other	species	such	as	CO2	via	the	a	
priori	correlation	in	the	emissions.		
	
	
	
	
	
	
	
	
Technical	corrections:	
	
Page	1,	line	13:	no	comma	needed	in	“for,	GEE”	
The	text	was	edited	according	to	the	suggestion	
	
Page	 1,	 lines	 17	 and	 18:	 the	 percentages	 reported	 in	 the	 abstract	 here	 are	 in	
some	cases	slightly	different	to	those	reported	in	the	main	text	of	the	manuscript	
(on	page	15).	
The	percentage	values	were	checked	and	replaced	where	needed	
	
Page	2,	line	2:	difference	->	differences		
The	text	was	edited	according	to	the	suggestion	
	
Page	5,	line	10:	Matherial	->	Material		
The	text	was	edited	according	to	the	suggestion	
	
Page	10,	line	3:	Section	2.1.6	->	Section	2.1.5		
The	text	was	edited	according	to	the	suggestion	
	
Page	16,	line	18:	Delete	“meaning”	-	or	explain	what	it	means.	
The	word	“meaning”	was	removed	as	suggested	
	
	
Additional	changes	made	 to	 the	manuscript	on	 top	of	 those	mentioned	 in	
the	official	replies	to	the	reviewers	comments	as	posted	in	the	discussion	
page:	
As	the	synthetic	data	experiment	relies	on	random	numbers	generated	to	
create	realizations	of	prior	errors,	accidentally	a	new	random	number	was	
chosen	to	regenerate	the	tables	and	figures.	This	affected	Figs.	7	and	8	as	
well	as	the	new	table	5	(introduced	in	reply	to	reviewers	#2	and	#3).	Also	
for	the	initial	generation	of	table	5	different	realizations	of	the	prior	error	
were	chosen	to	generate	the	true	state	vector,	now	a	single	realization	was	
used	 consistently.	 In	 addition	 a	 small	 error	 in	 the	 calculation	 of	 the	
posterior	uncertainties	in	table	5	was	fixed.	
	



Dear	Referee	#2	

Thank	you	for	thoroughly	reading	and	commenting	the	manuscript.	Please	 find	

below	 the	 replies	 to	 your	 suggestions;	 each	of	 your	 suggestions	 is	 followed	by	

the	corresponding	reply	in	bold	letters	and	(where	appropriate)	actions	taken	to	

address	it	in	the	updated	version	of	the	manuscript	in	italics.	

	

	

	

Major	comments:		

1.	 While	 I	 agree	 that	 inclusion	 of	 prior	 error	 correlations	 between	 different	

emissions	 can	 improve	 observation	 constraint,	 and	 help	 disentangle	 sources,	

improper	characterization	of	the	error	correlation	may	result	in	systematic	bias	

in	 the	 posterior	 estimate.	 So	 I	 suggest	 a	more	 complicated	 OSSE	 is	 necessary,	

where	 perturbations	 are	 generated	 using	 different	 correlation	 parameters	 to	

exam	 how	 well	 the	 system	 will	 reproduce	 the	 ‘true’	 fluxes,	 with	 incorrect	

correlation	coefficients.		

This	is	a	very	useful	suggestion,	which	we	followed	now.	We	propose	to	add	
the	following	at	Page	14,	Line	29	
“Improper	characterization	of	the	error	correlation	may	result	in	systematic	bias	in	

the	posterior	estimate.	As	mentioned	in	Sect.	2.1.6,	inter-species	correlation,	the	

correlation	between	different	fuel	types	and	the	correlation	between	different	

emission	sectors	in	Sprior	is	assumed	equal	to	0.7	(Sect.	2.1.4).	To	assess	how	well	
the	system	will	reproduce	the	‘true’	fluxes	with	incorrectly	specified	correlations,	a	

series	of	experiments	was	performed	in	which	the	inter-species	correlation	in	Sε	
remains	equal	to	0.7,	while	the	three	correlation	coefficients	in	Sprior	assume	
different	values	ranging	from	0.1	to	0.9.	Table	5	shows	the	residuals	between	total	

annual	posterior	fluxes	and	total	annual	true	fluxes	for	the	five	simulated	species,	

derived	similarly	as	for	Table	4.	We	found	that	for	all	species	the	uncertainty	

reduction	increases	with	correlation.	More	precisely,	from	correlation	0.1	to	0.9,	

the	annual	uncertainty	reduction	for	anthropogenic	CO2	increases	from	26.6%	to	

51.7%,	while	the	increase	is	lower	for	GEE	(from	72.4%	to	73.1%)	and	respiration	

(from	39.3%	to	41.3%)	because	the	biospheric	fluxes	are	independent	from	other	

species.	For	CO,	the	uncertainty	reduction	increases	from	60.7%	(with	correlation	

0.1)	to	66.4%	(with	correlation	0.9).	The	annual	uncertainty	reduction	for	CH4	

increases	from	60.5%	to	67.5%.	

	

In	addition,	the	posterior-truth	biases	are	always	lower	than	the	prior-truth	biases.	

The	posterior	uncertainty	values	(1-sigma)	are	usually	larger	then	the	

corresponding	bias	values	as	expected,	except	for	CO	and	for	CH4	with	prior	

correlations	equal	to	0.9.	Thus	the	posterior	is	not	significantly	different	from	the	

truth.	Conversely,	the	prior	(not	shown)	is	significantly	different	from	the	prior	in	

the	majority	of	cases	for	fossil	fuel	fluxes,	and	in	some	cases	also	for	biogenic	fluxes.	

The	effect	of	assuming	the	incorrect	error	correlations	appears	to	be	in	general	

small,	possibly	implying	a	relative	robustness	of	our	methods.	Following	this	result,	

the	fact	that	CH4	is	only	partially	co-emitted	with	CO2	and	CO	should	not	affect	the	

inversion	in	a	strong	way.	For	all	of	the	experiments,	the	residuals	between	true	

and	posterior	fluxes	are	lower	than	residuals	between	true	and	prior	fluxes	for	each	

of	the	simulated	species;	the	difference	between	the	cases	with	maximum	and	

minimum	residuals	is	around	4.2%.	In	addition,	we	found	that	the	posterior	



aggregated	fluxes	in	the	nine	experiments	are	not	significantly	different	from	each	

other,	implying	that	the	system	is	fairly	robust	against	errors	in	the	assumed	inter-

species	correlation.”	

We	also	added	a	new	table	5	in	the	revised	manuscript:	
Correlation	 Post-Truth	

CO2	ff	

Post-Truth	

CO	

Post-Truth	

CH4	

Post-Truth	

GEE	

Post-Truth	

Respiration	

0.1	 -6.3	±16.4	 -0.3	±	0.2	 -0.1	±	0.3	 -18.5	±	23.6	 -19.0	±27.5	

0.2	 -4-4	±16.1	 -0.3	±	0.2	 	0.0	±	0.3	 -18.6	±	23.5	 -19.2	±27.4	

0.3	 -2.7	±15.9	 -0.3	±	0.2	 	0.0	±	0.3	 -18.6	±	23.4	 -19.5	±27.3	

0.4	 -1.3	±15.6	 -0.3	±	0.2	 	0.0	±	0.3	 -18.5	±	23.4	 -19.7	±27.3	

0.5	 -0.1	±	15.2	 -0.3	±	0.2	 	0.0	±	0.2	 -18.4	±	23.3	 -20.0	±27.2	

0.6	 	0.8	±	14.6	 	0.3	±	0.2	 	0.1	±	0.2	 -18.2	±	23.2	 -20.3	±27.1	

0.7	 	1.5	±	13.7	 -0.3	±	0.2	 	0.1	±	0.2	 -17.9	±	23.2	 -20.6	±26.9	

0.8	 	1.9	±	12.4	 -0.3	±	0.2	 	0.2	±	0.2	 -17.6	±	23.1	 -20.9	±26.8	

0.9	 	1.5	±	10.4	 -0.4	±	0.2	 	0.3	±	0.2	 -17.3	±	23.0	 -21.1	±26.5	

	

Table	 5:	Residuals	 between	 total	 annual	 posterior	 fluxes	 and	 total	 annual	 true	

fluxes	 for	 the	 five	 simulated	 species	 (in	 MtC/yr)	 and	 different	 inter-species	

correlation	 values	 in	 the	 prior	 error	 covariance	 matrix	 (first	 column).	 The	

corresponding	posterior	uncertainty	was	added	for	each	Post-Truth	value.	

	

	

	

	

--	Note	 to	 the	Referee:	 the	values	 for	 the	correlation	of	0.7	do	not	exactly	
reproduces	 the	 values	 in	 Table	 4,	 as	 we	 realized	 	 that	 in	 the	 uploaded	
version	 of	 the	 paper,	 the	 zi-correction	 described	 in	 section	 2.1.1	 was	
mistakenly	turned	off.	This	has	been	 fixed	 in	 the	revised	version,	and	the	
updated	Table	4	has	values	matching	the	7th	row	of	Table	5.	
	

For	 all	 of	 the	 experiments,	 the	 residuals	 between	 true	 and	 posterior	 fluxes	 are	

lower	 than	 residuals	 between	 true	 and	 prior	 fluxes	 for	 each	 of	 the	 simulated	

species;	the	difference	between	the	cases	with	maximum	and	minimum	residuals	is	

around	4.2%.	In	addition,	we	found	that	the	posterior	aggregated	fluxes	in	the	nine	

experiments	 are	 not	 significantly	 different	 from	 each	 other,	 implying	 that	 the	

system	is	fairly	robust	against	errors	in	the	assumed	inter-species	correlation.	

	

	

	

	

	

2.	Discussions	are	more	focused	on	the	domain	total.	It	is	interesting	to	see	how	

well	the	system	will	reproduce	their	spatial	distribution.		

1)	Note	that	we	do	actually	not	focus	on	the	domain	total,	as	we	believe	it	is	
not	 reasonable	 to	 constrain	 the	 whole	 European	 domain	 when	 pseudo-
observations	are	focused	only	around	a	single	city;	for	this	reason	we	chose	
the	 region	marked	 by	 the	 50%	 footprint	 area,	 that	 contains	most	 of	 the	
surface	influence.	We	suggest	to	add	the	following	sentence	at	page	8	–	line	
30:	



As	 the	 pseudo-observations	 are	 clustered	 around	 a	 single	 location	 (Frankfurt),	

fluxes	 over	 the	 whole	 European	 domain	 can	 very	 likely	 not	 be	 constrained.	

Therefore,	as	spatial	aggregation	scale	we	chose	a	domain…	

2)	 Regarding	 the	 reproduction	 of	 spatial	 distribution:	 Our	 modeling	
framework	does	not	optimize	the	emissions	in	the	individual	grid-cells,	but	
only	the	scaling	factors	for	emissions	from	different	sectors	and	fuel	types.	
With	this	modeling	framework	it	is	not	possible	for	us	to	evaluate	how	well	
the	spatial	distribution	is	reproduced.		
	

	

Minor	comments:		

1.	 Line	 5,	 Page	 4:	 “This	 synergy	 follows	 from	 the	 fact	 .	 .	 .”	 Better	 changed	 to	

‘follows	the	fact.	.	.’	or	other	phrase.		

The	text	was	edited	according	to	the	suggestion	
	

	

2.	 Line	5,	 Page	14:	 “.	 .	 .have	 a	magnitude	of	 6-11	Megatons	of	 carbon	per	 year	

(MtC	 y-1)	 in	 July”	 The	 unit	 of	 MtC/yr	 seems	 inconsistent	 with	 annual	 total	

presented	in	Table	5.	I	think	it	should	be	MtC/a.		

In	Table	4	(not	5),	the	total	presented	refers	to	overall	residuals	between	
(e.g.)	total	prior	fluxes	minus	total	true	fluxes,	aggregated	over	all	emission	
categories.	 As	 such,	 they	 are	 not	 directly	 comparable	 with	 the	 amounts	
shown	in	Figure	7	(to	which	Line	5,	Page	14	refers),	which	instead	indicates	
the	true	 fluxes	 for	specific	emission	categories.	Note	 that	we	chose	to	use	
the	 unit	 “MtC	 y-1”	 over	 “MtC/a”	 as	 suggested	 by	 the	 journal	 ‘Manuscript	
preparation	guidelines	for	authors’.	 	
	

	

3.	Line	26,	page	14:	“..	 .for	the	whole	year	between	the	prior	and	both	posterior	

and	the	perturbed	prior”	The	sentence	is	unclear.		

The	text	was	modified	as	follows:	
“To	 do	 so,	 for	 each	 of	 the	 five	 simulated	 species	 we	 calculated	 the	 total	 annual	

fluxes	 for	 prior,	 posterior,	 truth,	 and	 perturbed	 prior.	 From	 these	 total	 fluxes	we	

then	derive	the	overall	residual	between	prior	and	truth,	posterior	and	truth,	and	

perturbed	prior	and	truth.”	

	

	

4.	Figure	7:	Please	explain	why	for	CH4	fluxes	in	December,	their	uncertainty	has	

been	significantly	reduced,	but	the	differences	from	the	 ‘true’	are	not	obviously	

improved.		

It	is	normal	for	Bayesian	inversion	to	have	some	elements	of	the	posterior	
state	 space	 that	 are	 not	 obviously	 improved.	 The	 expectation	 is	 that	 the	
posterior	 values	 are	 in	 agreement	 with	 the	 true	 values	 within	 their	
respective	uncertainty.	As	we	use	1-sigma	uncertainties,	we	expect	about	
36%	to	be	even	outside	this	uncertainty	range.	Note	that	the	inversion	for	
monthly	 fluxes	 solves	 for	 a	 total	 of	 828	 scaling	 factors	 for	 CH4,	 of	 which	
about	70	contribute	to	90%	of	the	fluxes.	However,	the	atmospheric	signals	
associated	 with	 these	 70	 different	 sectors/fuel	 types	 are	 not	 observed	
directly,	but	only	as	a	combined	signal	in	CH4.			



	

	

5.	 Figure	 6:	 I	 suggest	 the	 authors	 also	 provide	 the	 prior	 and	 posterior	 error	

correlation	between	CO2	fossil	fuel	emission	and	biospheric	net	flux	in	the	main	

text.		

A	sentence	was	added	to	provide	the	correlations	(Line	26,	page	26)	
Note	 that	 CO2	 from	 anthropogenic	 emissions	 is	 assumed	 to	 be	 independent	 from	

biogenic	 emissions;	 therefore	 prior	 error	 correlation	 between	 these	 categories	 is	

zero.	

	

	

6.	Figure	7:	check	the	units	for	monthly	fluxes	(in	main	text	as	well).	

The	units	 in	 Figure	7	 and	8	were	 changed	 to	MtC/m.	References	 to	 these	
figures	in	the	main	text	were	also	given	with	this	unit.	
	
	
Additional	changes	made	 to	 the	manuscript	on	 top	of	 those	mentioned	 in	
the	official	replies	to	the	reviewers	comments	as	posted	in	the	discussion	
page:	
As	the	synthetic	data	experiment	relies	on	random	numbers	generated	to	
create	realizations	of	prior	errors,	accidentally	a	new	random	number	was	
chosen	to	regenerate	the	tables	and	figures.	This	affected	Figs.	7	and	8	as	
well	as	 the	new	table	5.	Also	 for	 the	 initial	generation	of	 table	5	different	
realizations	 of	 the	 prior	 error	 were	 chosen	 to	 generate	 the	 true	 state	
vector,	now	a	single	realization	was	used	consistently.	 In	addition	a	small	
error	in	the	calculation	of	the	posterior	uncertainties	in	table	5	was	fixed.	
	



Dear	Referee	#3	
Thank	you	for	thoroughly	reading	and	commenting	the	manuscript.	Please	 find	
below	 the	 replies	 to	 your	 suggestions;	 each	of	 your	 suggestions	 is	 followed	by	
the	 corresponding	 reply	 in	 bold	 letters	 and	 (where	 appropriate)	 the	 actions	
taken	to	address	it	in	the	updated	version	of	the	manuscript	in	italics.	
	
	
	
	
General	comments:	
	
The	 paper	 presents	 a	multi-species	 inversion	 framework	 tested	 using	 pseudo-
data	 experiments.	 Various	 assumptions	 are	made	 to	 evaluate	 the	 sensitivity	 of	
the	 inversion,	 with	 an	 emphasis	 on	 the	 impact	 of	 error	 correlations	 across	
species	 and	 sectors.	 Overall,	 the	 paper	 presents	 an	 innovative	 approach	 to	
assimilate	 various	 atmospheric	 species	 in	 a	 single	 inversion	 framework.	 This	
study	 is	 clearly	 worthwhile	 publishing	 but	 lacks	 a	 better	 evaluation	 of	 the	
aggregation	 operator	 assumption	 (perfect	 prior	 emission	 distribution)	 and	 the	
impact	of	 systematic	 errors	 in	 the	 system	affecting	 the	 correlations	 in	 the	gas-
sector	 attribution	 problem.	 The	 Observing	 System	 Simulation	 Experiments	
(OSSE’s)	cover	some	of	the	assumptions	with	varying	levels	of	uncertainties	but	
several	components	are	not	carefully	considered.	The	two	major	concerns	here	
are	 the	 aggregation	 operator,	 that	 remains	 perfectly	 known	 and	 so	 the	 spatial	
distribution	of	the	prior	fluxes,	and	the	assessment	of	correlations	among	sectors	
and	across	trace	gases	for	the	different	species	that	remain	very	unclear.	A	 last	
but	 less	 critical	 concern	 is	 related	 to	 the	 assumption	 that	 transport	 errors	 are	
similar	across	species,	which	is	unlikely	for	CH4	and	CO2	for	example,	rarely	co-
emitted	(only	CO2-CO	is	discussed)	and	therefore	affected	by	different	problems	
in	different	parts	of	 the	domain.	The	work	 focuses	primarily	on	random	errors	
and	 ignores	 systematic	 errors	 that	 remain	 the	main	 limitations	 in	atmospheric	
inversions.	 Therefore,	 this	 study	 requires	 some	 additional	 experiments	 before	
publication,	 specifically	 addressing	 the	 error	 associated	 with	 the	 aggregation	
operator	and	errors	in	gas	ratios	for	the	different	sectors.	
	
	
-	The	use	of	 an	aggregation	operator	needs	 to	be	discussed.	Hyper-parameters	
(here	 scaling	 factors	 for	 the	 sectors)	 are	 used	 to	 reduce	 the	 dimension	 of	 the	
problem	but	correspond	to	an	assumption	of	perfectly-known	distributions.	The	
system	 should	 be	 evaluated	 not	 only	 under	 the	 "perfect	 spatial	 distribution"	
assumption,	especially	for	CO2	biogenic	fluxes	which	are	clearly	not	well-known.	
One	 suggestion	 to	 clarify	 the	 concern	here	would	be	 to	use	VPRM	as	 truth	but	
assumes	a	different	distribution	when	constructing	the	aggregated	solution	such	
as	the	posterior	fluxes	from	Panagiotis	et	al.	(2016).	Other	experiments	could	be	
designed	here	to	test	the	aggregation	problem.	Similarly,	the	area	defined	by	half	
of	 the	 total	 footprint	 is	 arbitrary	and	never	 tested	nor	 justified.	Why	50%	was	
used?	How	much	variations	are	expected	within	that	area	which	would	affect	the	
error	correlations?	 If	 a	power	plant	 is	 located	near	an	airport,	how	would	 that	
affect	 the	 CO/CO2	 correlations	 and	 therefore	 the	 homogeneity	 within	 the	
aggregated	area?	



Note	that	we	do	actually	not	 focus	on	the	domain	total,	as	we	believe	it	 is	
not	 reasonable	 to	 constrain	 the	 whole	 European	 domain	 when	 pseudo-
observations	are	focused	only	around	a	single	city;	for	this	reason	we	chose	
the	 region	marked	 by	 the	 50%	 footprint	 area,	 that	 contains	most	 of	 the	
surface	influence.	We	suggest	to	add	the	following	sentence	at	page	8	–	line	
30:	
…	 into	 physically	 representative	 quantities.	 As	 the	 pseudo-observations	 are	
clustered	 around	 a	 single	 location	 (Frankfurt),	 fluxes	 over	 the	 whole	 European	
domain	can	very	likely	not	be	constrained.	Therefore,	as	spatial	aggregation	scale	
we	chose	a	domain…	
	
To	 the	 main	 point	 of	 this	 comment,	 we	 actually	 do	 not	 exactly	 assume	
perfect	knowledge	of	 the	 spatial	distribution	of	 total	 emissions;	 it	 is	only	
within	 each	 sector	 and	 fuel	 type	 the	 spatial	 pattern	 of	 the	 emissions	 are	
assumed	to	be	known.	
	
We	admit	 that	 the	modeling	 framework	that	we	set	up	 is	not	particularly	
well	 suited	 to	 investigate	 the	 aggregation	 error.	 However,	 the	 chosen	
domain	is	quite	small,	and	the	total	fossil	fuel	fluxes	are	divided	according	
to	 species,	 emission	 categories,	 fuel	 types	 and	 months.	 This	 result	 in	
numerous	degrees	of	freedom	available	to	resolve	biosphere	fluxes,	and	for	
this	 reason	 we	 expect	 the	 aggregation	 error	 not	 to	 be	 a	 particularly	
important	source	of	uncertainty.		
	
In	our	 inversion,	as	 in	all	 inversions,	 the	near	 field	 is	a	critical	domain	 in	
the	 arising	 of	 systematic	 errors.	 The	 better	 way	 to	 address	 systematic	
errors	 is	 of	 course	 by	 comparing	 model	 outputs	 with	 real	 observations,	
which	are	currently	unavailable.	The	bias	errors	in	atmospheric	inversions	
making	use	of	airborne	measurements	will	have	to	be	addressed	anyway,	
once	real	observations	from	IAGOS	will	be	available.	For	this	reason,	in	this	
paper	we	chose	to	focus	on	random	errors	instead.	
	
We	suggest	to	add	the	following	sentence	at	page	8	–	line	31:	
…	 2011	 (Fig.	 1).	 Note	 that	 by	 using	 this	 aggregation	 scale	we	 assume	 perfectly-
known	 distribution	 within	 a	 given	 flux	 category	 that	 can	 result	 in	 aggregation	
error,	 especially	 with	 respect	 to	 biogenic	 fluxes,	 that	 are	 not	 so	 well	 known	 as	
anthropogenic	 fluxes.	However,	 the	 chosen	domain	 of	 aggregation	 is	 quite	 small,	
and	 the	 total	 anthropogenic	 fluxes	 are	 divided	 according	 to	 species,	 emission	
categories,	 fuel	 types	and	months.	This	result	 in	69	numerous	degrees	of	 freedom	
per	month	for	each	anthropogenic	species	and	10	degrees	of	freedom	per	month	for	
the	biospheric	 fluxes;	 for	 this	reason	we	expect	 the	aggregation	error	not	 to	be	a	
particularly	important	source	of	uncertainty.		
	
	
	
	
-	 The	 discussion	 about	 error	 correlations	 across	 species	 is	 confusing.	How	did	
you	define	the	emissions	for	the	different	sectors?	Have	you	assigned	gas	ratios	
to	 various	 sectors?	 If	 so,	 what	 are	 these	 ratios?	 Some	 of	 the	 discussions	 are	



related	 to	 using	 CO2	 and	 CO	 data	 to	 diagnose	 gas-to-gas	 correlations,	 but	 the	
exact	definition	of	the	emissions	of	the	different	gases	for	each	sector	has	been	
defined	in	the	inversion	system.	Or	maybe	the	sectors	are	unrelated	for	each	gas?	
The	 different	 sectors	 have	 ratios	 in	 terms	 of	 trace	 gas	 emissions	 but	 these	
emission	 ratios	 vary	 regionally.	 This	 section	 needs	 to	 be	 explained	 in	 more	
details.	 The	 assumptions	 made	 here	 should	 also	 be	 tested	 in	 the	 inversion	
framework.	
	
Emission	 ratios	 are	 not	 used	 here,	 but	 we	 used	 instead	 bottom-up	
calculated	emissions	 for	each	of	 the	 three	gases,	using	different	emission	
sector-specific	factors,	which	are	for	CO	also	region-specific.	These	country	
emissions	are	then	gridded	consistently	with	geospatial	proxy	data	that	are	
representative	 for	 the	 emitting	 activity,	 common	 to	 all	 species	 for	 the	
multi-species	sources.		
	
We	suggest	the	following	changes	to	the	text:	
	
Add	at	page	7,	line	1:	
…on	our	regional	European	domain.	For	each	of	the	three	anthropogenic	modeled	
species	 (CO2,	 CO	 and	 CH4),	 different	 emission	maps	 are	 used	 as	 input.	 Temporal	
profiles	are	then	applied	to	these	sector-	and	fuel-specific	emission	maps.	
	
	
Replace	at	page	14,	from	line	5	to	line	24:		
CO2	 and	 CO	 are	 dominated	 by	 combustion	 sectors	 (Fig.	 8).	 The	most	 important	
emission	 sectors	 for	 CO2	 are	 energy,	 industry,	 transport	 and	 building,	 each	
contributing	7-10	MtC	y-1	 in	 July	and	6-14	MtC	y-1	 in	December.	Dominant	 fuels	
(Fig.	 7)	 for	 CO2	 are	 coal,	 gas	 and	 oil,	 whose	 prior	 fluxes	 (pseudo	 data)	 have	 a	
magnitude	of	6-11	Megatons	of	carbon	per	year	(MtC	y-1)	in	July	and	8-14	MtC	y-1	
in	 December.	 For	 CO	 the	most	 important	 emission	 sector	 is	 heating	 of	 buildings	
during	winter	contributing	a	0.19	MtC	y-1	 flux	with	only	secondary	contributions	
from	 industry	and	 transport	with	a	magnitude	of	0.04	MtC	y-1	and	0.05	MtC	y-1	
respectively	(during	July	and	December).	The	dominant	fuel	 for	CO	is	biofuel	with	
0.19	 MtC	 y-1	 emissions	 during	 winter.	 The	 secondary	 industrial	 and	 transport	
contributions	originate	in	summer	from	oil	and	biofuels	with	a	magnitude	of	0.06-
0.08	MtC	y-1	and	 from	agricultural	waste	burning	with	a	magnitude	of	0.06-0.11	
MtC	y-1.		
	
Contrary	 to	 CO2	 and	 CO,	 CH4	 is	 determined	 by	 non-combustion	 sectors,	 more	
specifically	 by	 a	 contribution	 of	 0.15	 MtC	 y-1	 flux	 from	 agriculture	 (manure	
management	and	rice	cultivation)	in	July	with	secondary	contributions	from	waste	
and	 energy	 with	 a	 magnitude	 of	 roughly	 0.06-0.08	 MtC	 y-1	 in	 both	 July	 and	
December.	Other	non-combustion	sectors,	in	particular	wastewater	treatment	and	
landfills	 contribute	 to	 a	 total	 of	 0.16-0.24	 MtC	 y-1	 of	 emissions.	 These	 non-
combustion	 sectors	contribute	 to	 less	 than	20%	of	 total	CO2	emissions,	with	1.13	
MtC	 y-1	 from	 the	 cement	 and	 lime	 industry	 and	 less	 than	 20%	 to	 the	 total	 CO	
emissions	(0.03	MtC	y-1	from	the	metal	industry).		
The	 contribution	 to	 CO2	 from	 biospheric	 primary	 production	 (a	 sink	 for	
atmospheric	 CO2)	 is	 about	 100	 MtC	 y-1	 in	 July,	 which	 drops	 to	 almost	 zero	 in	



December,	while	respiration	values	are	50	MtC	y-1	in	July	and	roughly	150	MtC	y-1	
in	December.	
	
	
	
	
-	 CO	 biogenic	 fluxes:	 the	 paper	 does	 not	 address	 the	 problem	 of	 CO	 biogenic	
fluxes	 during	 the	 growing	 season.	Warm	 days	 in	 summer	 correspond	 to	 large	
amount	 of	 biogenic	 VOC’s	 being	 emitted	 from	 the	 vegetation,	 producing	 CO	 to	
non-negligible	 levels.	 This	 issue	 should	 be	 discussed	 if	 not	 addressed.	 How	
would	this	problem	affect	the	ability	to	retrieve	the	truth?	
To	discuss	this	issue	we	propose	to	add	the	following	at	page	14,	line	4:	
Note	 that	 our	 modeling	 framework	 does	 not	 allow	 for	 simulating	 CO	 biogenic	
fluxes	 during	 the	 growing	 season.	 Warm	 days	 in	 summer	 correspond	 to	 large	
amount	of	biogenic	VOC’s	being	emitted	from	the	vegetation,	producing	CO	to	non-
negligible	 levels.	According	to	Hudman	(2008),	anthropogenic	emissions	accounts	
for	only	31%	of	CO	emissions	 in	 the	US	during	 summer.	Conversely,	 according	 to	
estimates	from	EDGAR,	CO	anthropogenic	emissions	during	summer	are	about	18%	
of	 the	 annual	 anthropogenic	 emissions.	 Combining	 these	 two	 results,	 one	 could	
conclude	 that	 CO	 production	 from	biogenic	 sources	 accounts	 for	 roughly	 42%	of	
total	annual	CO	emissions.		
In	general,	 the	absence	of	 some	emission	 sources	 in	an	 inventory	 is	 equivalent	 to	
the	assumption	of	having	point	sources	not	included	in	the	emission	map,	but	still	
contributing	 to	 the	measurements.	The	 inversion	 scheme	would	 typically	 react	 to	
this	by	assigning	such	point	sources	in	some	other	sector	other	fuel	type.	As	a	result,	
the	posterior	enhancements	would	be	biased	low	in	proximity	of	that	point	sources,	
and	(slightly)	biased	high	for	influences	from	other	regions	with	the	same	sector	or	
fuel	type.	This	issue	should	definitely	be	considered	in	a	future	study	making	use	of	
actual	 CO,	 CO2	 and	 CH4	 observations	 from	 IAGOS	 but	 has	 limited	 effects	 on	 this	
paper,	 as	 our	 main	 focus	 is	 on	 the	 benefits	 of	 inter-species	 correlation	 on	 the	
posterior	uncertainty	in	the	frame	of	a	synthetic	experiment.	
	
	
-	When	 you	 constructed	 your	 error	 correlations	 for	 CH4,	 transport	 errors	 are	
unlikely	to	be	highly	correlated	as	CH4	is	only	partially	co-emitted	with	CO2	and	
CO.	Large	emissions	from	NG	production	and	farming	activities	are	uncorrelated	
with	biogenic	or	fossil	fuel	consumption.	This	problem	should	be	addressed	here.	
If	 transport	 errors,	 which	 are	 spatially	 variable,	 affect	 CH4	 and	 CO2/CO	 in	
different	ways,	 the	error	correlation	would	be	affected.	Additional	experiments	
using	 incorrect	 error	 correlations	would	quantify	 the	 sensitivity	 of	 the	 inverse	
fluxes	to	the	assumptions	made	in	prior	errors.	
This	is	a	very	useful	suggestion,	which	we	followed	now.	We	propose	to	add	
the	following	at	Page	14,	Line	29	
“Improper	characterization	of	the	error	correlation	may	result	in	systematic	bias	in	
the	posterior	estimate.	As	mentioned	in	Sect.	2.1.6,	inter-species	correlation,	the	
correlation	between	different	fuel	types	and	the	correlation	between	different	
emission	sectors	in	Sprior	is	assumed	equal	to	0.7	(Sect.	2.1.4).	To	assess	how	well	
the	system	will	reproduce	the	‘true’	fluxes	with	incorrectly	specified	correlations,	a	
series	of	experiments	was	performed	in	which	the	inter-species	correlation	in	Sε	



remains	equal	to	0.7,	while	the	three	correlation	coefficients	in	Sprior	assume	
different	values	ranging	from	0.1	to	0.9.	Table	5	shows	the	residuals	between	total	
annual	posterior	fluxes	and	total	annual	true	fluxes	for	the	five	simulated	species,	
derived	similarly	as	for	Table	4.	We	found	that	for	all	species	the	uncertainty	
reduction	increases	with	correlation.	More	precisely,	from	correlation	0.1	to	0.9,	
the	annual	uncertainty	reduction	for	anthropogenic	CO2	increases	from	26.6%	to	
51.7%,	while	the	increase	is	lower	for	GEE	(from	72.4%	to	73.1%)	and	respiration	
(from	39.3%	to	41.3%)	because	the	biospheric	fluxes	are	independent	from	other	
species.	For	CO,	the	uncertainty	reduction	increases	from	60.7%	(with	correlation	
0.1)	to	66.4%	(with	correlation	0.9).	The	annual	uncertainty	reduction	for	CH4	
increases	from	60.5%	to	67.5%.	
	
In	addition,	the	posterior-truth	biases	are	always	lower	than	the	prior-truth	biases.	
The	posterior	uncertainty	values	(1-sigma)	are	usually	larger	then	the	
corresponding	bias	values	as	expected,	except	for	CO	and	for	CH4	with	prior	
correlations	equal	to	0.9.	Thus	the	posterior	is	not	significantly	different	from	the	
truth.	Conversely,	the	prior	(not	shown)	is	significantly	different	from	the	prior	in	
the	majority	of	cases	for	fossil	fuel	fluxes,	and	in	some	cases	also	for	biogenic	fluxes.	
The	effect	of	assuming	the	incorrect	error	correlations	appears	to	be	in	general	
small,	possibly	implying	a	relative	robustness	of	our	methods.	Following	this	result,	
the	fact	that	CH4	is	only	partially	co-emitted	with	CO2	and	CO	should	not	affect	the	
inversion	in	a	strong	way.	For	all	of	the	experiments,	the	residuals	between	true	
and	posterior	fluxes	are	lower	than	residuals	between	true	and	prior	fluxes	for	each	
of	the	simulated	species;	the	difference	between	the	cases	with	maximum	and	
minimum	residuals	is	around	4.2%.	In	addition,	we	found	that	the	posterior	
aggregated	fluxes	in	the	nine	experiments	are	not	significantly	different	from	each	
other,	implying	that	the	system	is	fairly	robust	against	errors	in	the	assumed	inter-
species	correlation.”	
We	also	added	a	new	table	5	in	the	revised	manuscript:	
Correlation	 Post-Truth	

CO2	ff	
Post-Truth	
CO	

Post-Truth	
CH4	

Post-Truth	
GEE	

Post-Truth	
Respiration	

0.1	 -6.3	±16.4	 -0.3	±	0.2	 -0.1	±	0.3	 -18.5	±	23.6	 -19.0	±27.5	
0.2	 -4-4	±16.1	 -0.3	±	0.2	 	0.0	±	0.3	 -18.6	±	23.5	 -19.2	±27.4	
0.3	 -2.7	±15.9	 -0.3	±	0.2	 	0.0	±	0.3	 -18.6	±	23.4	 -19.5	±27.3	
0.4	 -1.3	±15.6	 -0.3	±	0.2	 	0.0	±	0.3	 -18.5	±	23.4	 -19.7	±27.3	
0.5	 -0.1	±	15.2	 -0.3	±	0.2	 	0.0	±	0.2	 -18.4	±	23.3	 -20.0	±27.2	
0.6	 	0.8	±	14.6	 	0.3	±	0.2	 	0.1	±	0.2	 -18.2	±	23.2	 -20.3	±27.1	
0.7	 	1.5	±	13.7	 -0.3	±	0.2	 	0.1	±	0.2	 -17.9	±	23.2	 -20.6	±26.9	
0.8	 	1.9	±	12.4	 -0.3	±	0.2	 	0.2	±	0.2	 -17.6	±	23.1	 -20.9	±26.8	
0.9	 	1.5	±	10.4	 -0.4	±	0.2	 	0.3	±	0.2	 -17.3	±	23.0	 -21.1	±26.5	
	
Table	 5:	Residuals	 between	 total	 annual	 posterior	 fluxes	 and	 total	 annual	 true	
fluxes	 for	 the	 five	 simulated	 species	 (in	 MtC	 y-1)	 and	 different	 inter-species	
correlation	 values	 in	 the	 prior	 error	 covariance	 matrix	 (first	 column).	 The	
corresponding	posterior	uncertainty	was	added	for	each	Post-Truth	value.	
	
	
	
	



	
	
	
-	 The	problem	of	 unreported	 sources	 in	CH4	 inventory	 is	 not	 addressed	 at	 all.	
Recent	 papers	 have	 discussed	 the	 lack	 of	 information	 for	 natural	 gas	 and	 oil	
production	 operations,	 or	 from	 recent	 and	 old	 mining	 areas.	 How	 would	
unreported	sources	affect	the	inverse	solutions?	This	question	comes	back	to	the	
aggregation	operator.	
To	discuss	this	issue	we	propose	to	add	the	following	at	page	14,	line	4:	
Our	modeling	 framework	 is	 currently	 not	 well	 suited	 to	 account	 for	 unreported	
sources	of	CH4	due	to	the	lack	of	information	about	natural	gas	and	oil	production	
operations,	 or	 from	 recent	 and	 old	 mining	 areas..	 Many	 recent	 studies	 have	
discussed	 the	 problem,	 mainly	 referring	 to	 shale	 basins	 exploited	 via	 hydraulic	
fracturing	 in	 the	US	(e.g.	Kort	et	al.,	2016;	Karion	et.	al,	2015;	Lyon	et	al.,	2015).	
For	 example,	 Karion	 (2015)	 concludes	 that	 EDGAR	 underestimates	 methane	
emissions	associated	with	oil	and	gas	industry	by	a	factor	of	5	in	the	US.		
However,	 the	 situation	 over	 the	 European	 continent	may	 be	 quite	 different.	 In	 a	
review	about	 risk	 assessment	 of	 shale	 gas	 development	 in	 the	UK,	 Prpich	 (2015)	
reports	 that	 the	 European	 Union	 is	 generally	 much	 more	 cautious	 about	
unconventional	oil	and	gas	sources,	while	a	recent	study	on	a	methane	plume	over	
the	North	Sea	(Cain	et	al.,	2017)	concluded	that	the	bulk	signature	of	said	plume	
originated	from	on-shore	coal	mines	and	power	stations	in	the	Yorkshire	area.	
In	general,	 the	absence	of	 some	emission	 sources	 in	an	 inventory	 is	 equivalent	 to	
the	assumption	of	having	point	sources	not	included	in	the	emission	map,	but	still	
contributing	 to	 the	measurements.	The	 inversion	 scheme	would	 typically	 react	 to	
this	by	assigning	such	point	sources	in	some	other	sector	other	fuel	type.	As	a	result,	
the	posterior	enhancements	would	be	biased	low	in	proximity	of	that	point	sources,	
and	(slightly)	biased	high	for	influences	from	other	regions	with	the	same	sector	or	
fuel	type.	This	issue	should	definitely	be	considered	in	a	future	study	making	use	of	
actual	 CO,	 CO2	 and	 CH4	 observations	 from	 IAGOS	 but	 has	 limited	 effects	 on	 this	
paper,	 as	 our	 main	 focus	 is	 on	 the	 benefits	 of	 inter-species	 correlation	 on	 the	
posterior	uncertainty	in	the	frame	of	a	synthetic	experiment	
	
	
-	The	utility	of	the	figures	showing	the	multiple	error	covariance	matrices	for	the	
different	 cases	 remains	 limited.	 The	 information	 content	 would	 be	 better	
described	 with	 words	 or	 mathematically.	 Readers	 cannot	 extract	 useful	
information	from	contour	plots	of	covariance	matrices.	They	could	remain	part	
of	 the	 paper	 but	 as	 part	 of	 the	 supplementary	 information.	 A	 table	 could	 also	
synthesize	the	various	assumptions	tested	in	the	inversion	system.	
We	propose	to	add	axis	label	to	Fig.	2,3,4	to	increase	readability.	Such	axis	
should	 identify	 different	 species,	 emission	 sectors,	 fuel	 types	 and	
vegetation	categories.		
	
	
	
	
	
	



	
Technical	comments:	
	
3-1:	Consequently,	intercomparisons...	
The	text	was	edited	according	to	the	suggestion	
	
	
3-3:	the	international	level	
The	text	was	edited	according	to	the	suggestion	
	
	
3-	1st	paragraph:	This	paragraph	is	confusing	and	not	always	following	a	logical	
path.	 Prediction	 skills	 and	 emission	 reduction	 are	 two	 different	 problems	 not	
directly	connected	to	each	other.	Explain	better	the	broad	context	of	 this	study	
by	 focusing	on	 the	main	general	 issues	and	clarify	which	one	you	are	 trying	 to	
address	here.	
The	paragraph	was	rephrased	as	follows:	
As	 widely	 recognized	 at	 the	 international	 level,	 there	 is	 a	 need	 for	 reduction	 in	
anthropogenic	 emissions	 (IPCC).	 This	 however	 implies	 the	 necessity	 for	 reliable	
climate	 predictions	 from	 atmospheric	 models	 in	 order	 to	 allow	 policymakers	 to	
take	informed	decisions.	Unfortunately,	current	climate	predictions	are	hampered	
by	excessive	uncertainties;	for	example	intercomparisons	of	different	models	show	
important	differences	on	their	predictions	as	shown	in	Friedlingstein	(2016).	This	
makes	it	difficult	to	assess	the	better	environmental	policies	to	implement.	Because	
most	biogenic	fluxes	…	
	
	
3-10:	A	commonly	used	approach	to	estimate...	
The	text	was	edited	according	to	the	suggestion	
	
	
3-13:	Actually,	the	uncertainty	reduction	relies	purely	on	the	assumptions	made	
in	the	system	and	not	on	the	effective	ability	of	the	system	to	produce	a	reliable	
solution.	 Bayesian	 system	 assumes	 that	 data	 will	 improve	 the	 a	 priori	 by	
construction.	Explain	better	what	you	mean	here.	
The	text	was	modified	as	follows.	
As	the	main	goal	of	this	study	is	to	assess	the	benefit	of	inter-species	correlations	in	
reducing	the	uncertainty	of	the	posterior	state	space,	we	are	particularly	interested	
in	 the	 effects	 of	 such	 correlations	 on	 the	 uncertainty	 reduction,	 defined	 as	 the	
difference	between	prior	and	posterior	uncertainty	normalized	by	the	prior.	
	
	
3-	2nd	paragraph:	Several	papers	are	missing	here.	For	example,	CO2-CH4	inver-	
sion	using	satellite	data	(Pandey	et	al.,	2015)	or	 the	optimization	of	co-emitted	
species	 (Brioude	et	 al.,	 2012),	 and	early	work	on	delta	13-CO2	by	Enting	et	 al.	
(1995).	 The	 authors	 should	 dig	 into	 atmospheric	 chemistry	 studies	 where	
several	 studies	 have	 addressed	 the	 use	 of	 multiple	 co-emitted	 species	 to	
constrain	emissions	at	small	scales.	
Previous	 studies	 using	 multiple	 species	 to	 constrain	 emissions	 should	 be	



introduced	here,	even	without	having	used	a	formal	 inversion	framework,	such	
as	 urban	 studies	 over	 Los	 Angeles	 (e.g.	 Peischl	 et	 al.,	 2013).	 The	 optimization	
problem	is	equivalent	and	relies	on	similar	ideas	to	constrain	the	emissions.	
We	replaced	the	text	at	Pag.	3,	lines	20-22	with:	
Several	studies	have	made	use	the	correlations	among	different	species.	One	of	the	
first	 example	 is	 the	 work	 from	 Enting	 (1995)	 on	 CO2	 and	 13CO2,	 while	 Brioude	
(2012)	 attempted	 to	 derive	 a	 CO2	 emission	 inventory	 without	 a	 prior	 emission	
estimate,	 instead	 using	 inventories	 of	 CO,	 NOy	 and	 SO2.	 Similarly,	 Peischl	 (2013)	
made	use	of	CO	and	CO2	 inventories	to	help	quantifying	sources	of	CH4	 in	the	Los	
Angeles	basin.	The	ability	of	measuring	multiple	species	has	been	proved	useful	also	
in	 remote	 sensing.	 For	 example,	 Pandey	 (2015)	 made	 use	 of	 simultaneously	
retrieved	CO2	and	CH4	total	column	to	reduce	scattering	effect.	Further	examples	of	
studies	making	use	of	co-emitted	species	can	be	found	in	the	frame	of	atmospheric	
chemistry	 (Konovalov	 et	 al.,	 2014;	 Berezin	 et	 al.,	 2013;	 Pison	 et	 al.,	 2009).	More	
focused	on	exploiting	 inter-species	correlation	to	reduce	uncertainty	 in	 the	 frame	
of	Bayesian	Inversion,	Palmer	(2006)	made	use	of	CO2-CO	correlations	to	improve	
an	 inversion	 using	 data	 from	 the	 TRACE-P	 aircraft	 mission,	 while	Wang	 (2009)	
employed	a	 similar	method	using	 satellite	data,	obtaining	a	 reduction	 in	 the	 flux	
error	of	a	CO2	inversion.	
	
	
	
5-24:	This	technique	assumes	that	the	wind	direction	and	speed	are	comparable	
near	the	surface	and	at	2km	high.	Mass-balance	studies	have	shown	that	this	is	
often	 not	 the	 case	 (e.g.	 Karion	 et	 al.,	 2015).	 Free	 troposheric	 air	 represents	
different	air	masses	due	to	the	wind	direction	and	speed	gradients	in	the	vertical.	
This	assumption	would	need	to	be	tested	with	the	particle	model.	
This	is	a	misunderstanding.	We	do	not	rely	on	winds	within	the	mixed	layer	
and	 the	 wind	 above	 to	 be	 comparable,	 as	 our	 transport	 operator	 H	
represents	 the	 mixed	 layer	 enhancements	 appropriately.	 We	 added	 the	
following	text	to				
	
...	 a	 single	 footprint	 is	 derived.	 To	 represent	 the	 mixed	 layer	 enhancements,	 the	
footprints	for	receptors	within	the	boundary	layer	are	averaged,	and	the	footprint	
for	the	free	tropospheric	receptor	is	subtrated	from	this,	resulting	in	a	footprint	for	
the	mixed	layer	enhancements.	This	footprint	is	then	matrix-multiplied	...	
	
7-3:	What	 about	 CO	biogenic	 fluxes?	During	warm	 summer	 times,	 biogenic	 CO	
fluxes	 represent	 a	 significant	 fraction	 of	 the	 signals.	 Did	 you	 ignore	 this	
contribution	in	your	study?	
A	similar	comment	has	already	been	addressed	(see	above).	
	
	
2.1.3	 To	 reduce	 the	 dimension	 of	 the	 state	 vector,	 you	 assume	 here	 that	 the	
spatial	 distribution	 of	 the	 prior	 fluxes	 and	 emissions	 are	 perfect,	 using	 an	
aggregation	operator.	This	 approach	 is	 reasonable	 for	 fossil	 fuel	 emissions	but	
less	convincing	for	biogenic	fluxes.	
A	similar	comment	has	already	been	addressed	(see	above).	
	



	
12-28:	How	did	you	take	into	account	the	truncation	of	the	prior	errors?	Did	you	
adjust	 the	 truncated	 random	 perturbations	 to	 match	 the	 non-truncated	
assumption	made	in	the	prior	error	covariance	matrix?		
The	 error	 realization	 is	 obtained	 by	 multiplying	 a	 randomly	 generated,	
normally	 distributed	 vector	with	 the	 prior	 error	 covariance	matrix.	 This	
ensures	 that	 such	 realization	has	 the	 same	 error	 correlation	of	 the	prior	
uncertainty.	Where	the	result	of	such	matrix-vector	product	is	negative,	the	
same	 operation	 is	 performed	 recursively	 until	 all	 elements	 of	 the	 state	
vector	are	positive.	We	suggest	adding	the	following	text	at	page	12	line	24:	
…	to	avoid	negative	state	vector	values.	In	detail,	the	error	realization	is	obtained	
by	multiplying	 a	 randomly	 generated,	 normally	 distributed	 vector	with	 the	 prior	
error	 covariance	 matrix.	 This	 ensures	 that	 such	 realization	 has	 the	 same	 error	
correlation	of	the	prior	uncertainty.	Where	the	result	of	such	matrix-vector	product	
is	 negative,	 the	 same	operation	 is	 performed	 recursively	 until	 all	 elements	 of	 the	
state	vector	are	positive.	This	ensures	that	the	difference	…	
	
	
Additional	changes	made	 to	 the	manuscript	on	 top	of	 those	mentioned	 in	
the	official	replies	to	the	reviewers	comments	as	posted	in	the	discussion	
page:	
As	the	synthetic	data	experiment	relies	on	random	numbers	generated	to	
create	realizations	of	prior	errors,	accidentally	a	new	random	number	was	
chosen	to	regenerate	the	tables	and	figures.	This	affected	Figs.	7	and	8	as	
well	as	 the	new	table	5.	Also	 for	 the	 initial	generation	of	 table	5	different	
realizations	 of	 the	 prior	 error	 were	 chosen	 to	 generate	 the	 true	 state	
vector,	now	a	single	realization	was	used	consistently.	 In	addition	a	small	
error	in	the	calculation	of	the	posterior	uncertainties	in	table	5	was	fixed.	
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Abstract. Airborne measurements of CO2, CO, and CH4 proposed in the context of IAGOS (In-service Aircraft for a Global 

Observing System) will provide profiles from take-off and landing of airliners in the vicinity of major metropolitan areas 

useful for constraining sources and sinks. A proposed improvement of the top-down method to constrain sources and sinks is 

the use of a multispecies inversion. Different species such as CO2 and CO have partially overlapping emission patterns for 

given fuel-combustion related sectors, and thus share part of the uncertainties, both related to the a priori knowledge of 5 

emissions, and to model-data mismatch error. We use a regional modeling framework consisting of the Lagrangian particle 

dispersion model STILT (Stochastic Time-Inverted Lagrangian Transport), combined with high resolution (10 km x 10 km) 

EDGARv4.3 (Emission Database for Global Atmospheric Research) emission inventory, differentiated by emission sector 

and fuel type for CO2, CO, and CH4, and combined with the VPRM (Vegetation Photosynthesis and Respiration Model) for 

biospheric fluxes of CO2. Applying the modeling framework to synthetic IAGOS profile observations, we evaluate the 10 

benefits of using correlations between different species’ uncertainties on the performance of the atmospheric inversion. The 

available IAGOS CO observations are used to validate the modeling framework. Prior uncertainty values are conservatively 

assumed to be 20%, for CO2 and 50% for CO and CH4, while those for GEE (Gross Ecosystem Exchange) and respiration 

are derived from existing literature. Uncertainty reduction for different species is evaluated on a domain encircling 50% of 

the profile observations’ surface influence over Europe. We found that our modeling framework reproduces the CO 15 

observations with an average correlation of 0.56, but simulates lower mixing ratios by a factor 2.8, reflecting a low bias in 

the emission inventory. Mean uncertainty reduction achieved for CO2 fossil fuel emissions is roughly 38%; for 

photosynthesis and respiration flux it is 41% and 44%, respectively. For CO and CH4 the uncertainty reduction is roughly 

63% and 67%, respectively. Considering correlation between different species, posterior uncertainty can be reduced by up to 

23%; such reduction depends on the assumed error structure of the prior and on the considered timeframe. The study 20 

suggests a significant uncertainty constraint on regional emissions using multi-species inversions of IAGOS in situ 

observations. 
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1. Introduction 

As widely recognized at the international level, there is a need for reduction in anthropogenic emissions (IPCC). This 

however implies the necessity for reliable climate predictions from atmospheric models in order to allow policymakers to 

take informed decisions. Unfortunately, current climate predictions are hampered by excessive uncertainties; for example 

intercomparisons of different models show important differences on their predictions as shown in Friedlingstein (2016). This 5 

makes it difficult to assess the better environmental policies to implement. Because most biogenic fluxes in Europe are 

influenced by human activities, with 22% of Europe’s land is dedicated to agriculture (FAO, 2013) and 45 % covered by 

forests, of which 80% are managed for wood supply (UNECE, FAO, 2011), understanding and managing these biogenic 

fluxes must also be a component of any policy to reduce anthropogenic emissions. 

 10 

A commonly used approach to estimate carbon budgets by teasing apart sources and sinks in a given spatial domain is the 

atmospheric Bayesian inversion. Atmospheric inversions combine prior knowledge from emission inventories with 

atmospheric observations acting as a top-down constraint to produce better posterior knowledge. As the main goal of this 

study is to assess the benefit of inter-species correlations in reducing the uncertainty of the posterior state space, we are 

particularly interested in the effects of such correlations on the uncertainty reduction, defined as the difference between prior 15 

and posterior uncertainty normalized by the prior. The vast majority of published papers on atmospheric inversions 

investigate the budget of a single species, usually a long-lived greenhouse gas like CO2 (e.g. Rödenbeck, 2003) or CH4 (e.g. 

Hein, 1997; Bousquet, 2006), but the technique can also be applied to active species like CO (Bergamaschi, 2000). Note that 

carbon dioxide is a special case as atmospheric CO2 mixing ratios result from a combination of strong anthropogenic sources 

with strong sources and sinks from biospheric processes, calling for a separation of anthropogenic from biospheric fluxes. 20 

One way to achieve such a separation is to measure CO alongside CO2, and use CO as a proxy for CO2 anthropogenic 

emissions. Several studies have made use the correlations among different species. One of the first example is the work from 

Enting (1995) on CO2 and 13CO2, while Brioude (2012) attempted to derive a CO2 emission inventory without a prior 

emission estimate, instead using inventories of CO, NOy and SO2. Similarly, Peischl (2013) made use of CO and CO2 

inventories to help quantifying sources of CH4 in the Los Angeles basin. The ability of measuring multiple species has been 25 

proved useful also in remote sensing. For example, Pandey (2015) made use of simultaneously retrieved CO2 and CH4 total 

column to reduce scattering effect. Further examples of studies making use of co-emitted species can be found in the frame 

of atmospheric chemistry (Konovalov et al., 2014; Berezin et al., 2013; Pison et al., 2009). More focused on exploiting inter-

species correlation to reduce uncertainty in the frame of Bayesian Inversion, Palmer (2006) made use of CO2-CO 

correlations to improve an inversion using data from the TRACE-P aircraft mission, while Wang (2009) employed a similar 30 

method using satellite data, obtaining a reduction in the flux error of a CO2 inversion. 
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So far the lion’s share of the studies investigating atmospheric inversions make use of both continuous in situ and flask 

measurements from ground based observational networks of tall towers (e.g. Kadygrov, 2015; Sasakawa, 2010). However, 

as profiles collected from an aircraft easily exceed the height of towers, airborne data may also prove an interesting option 

for this application. This alternative was tested in some recent studies that made use of aircraft profiles alone or in 

combination with other data sources (e.g.: Brioude, 2013; Gourdji, 2013). Methods to maximise the cost-effectiveness of 5 

airborne data are the use of unmanned aircraft (drones) and commercial airliners. The latter, in particular, allows for 

collecting data on a regular basis without requiring a particularly small or light sensor. The most important projects making 

use of commercial airliners are CONTRAIL (Comprehensive Observation Network for Trace Gases) (Machida, 2008), and 

MOZAIC/IAGOS (Measurements of Ozone and water vapor by in-service AIrbus aircraft / In-service Aircraft for a Global 

Observing System) (Marenco, 1998; Petzold, 2015). Both projects have been running for more than two decades and have 10 

produced extensive datasets that have proven to be important in the fields of atmospheric modeling and satellite calibration 

and validation (Zbinden et al.,2013; Sawa et al., 2012). Regarding carbonaceous species, CONTRAIL has so far been 

collecting CO2 mixing ratio measurement, while IAGOS was focused on CO. In the next years the IAGOS fleet will 

simultaneously provide CO, CO2 and CH4 atmospheric concentration measurements (Filges, 2015), enabling the use of 

multi-species synergy in modeling applications. This synergy follows the fact that the collocated measurements share the 15 

same atmospheric transport and have partially correlated emission uncertainties.  

 

This paper is focused on investigating the benefits on uncertainty reduction of such a multi-species inversion in comparison 

with a single-species inversion. To attain this goal, we set up a synthetic experiment utilizing the measurement times and 

locations collected from the IAGOS projects in the year 2011. The present paper is intended to pave the way for future 20 

studies making use of multi-species IAGOS datasets when they become available. A receptor-oriented framework was set up 

to derive flux interactions between the atmosphere and the biosphere using IAGOS data. The modeling framework is 

composed of a Lagrangian Particle Dispersion Model (LPDM, specifically the STILT model), a diagnostic biosphere-

atmosphere exchange model (the VPRM model), gridded emission inventories, global tracer transport model output that 

provides the tracer boundary conditions for the regional domain, and a Bayesian inversion scheme. The present work is 25 

based on the modeling framework used in Boschetti (2015) and builds upon that by adding other species, and using a formal 

Bayesian inversion. A multi-species inversion was carried out in order to exploit the correlations in uncertainties between 

CO2, CO, and CH4, specifically in their respective uncertainties in a priori anthropogenic emissions and in model 

representation error. The aim of this multi-species inversion is to provide better estimates of anthropogenic emissions, and, 

in the case of CO2, to better separate the biospheric from anthropogenic contributions. This paper is structured as follows: a 30 

short description of the different components of the modeling framework is given in Sect. 2; in Sect. 3 we present and 

discuss our results; Sect. 4 gives the conclusions. 
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2. Material and Methods 

2.1 Modeling framework 

Before describing the different models composing the modeling framework, we introduce some specific terminology to 

reduce ambiguity in Sect. 2.1.1-2.1.6. Quantities that can be observed are termed species, or trace gases, corresponding in 

this case to total CO2, CO and CH4. These three species are simulated using five modeled species, namely CO2 from fossil 15 

fuels, CO2 related to GEE (Gross Ecosystem Exchange) and to respiration, CO, CH4. Modeled species related to 

anthropogenic emissions are modeled as the sum of contributions from different emission sectors (Table 1) and fuel types 

(Table 2); as a further factor of discrimination, both anthropogenic and biospheric contributions are split into monthly 

contributions. Simulated fluxes specific for different modeled species, emission sectors, fuel types and months of the year 

are called flux categories. In this Material and Methods section, a brief description of the different models that make up the 20 

modeling framework is given. For more detailed information, see Boschetti (2015). 

 

2.1.1 Vertical profile input data 

In this study the modeled profiles have the identical structure to those collected from the IAGOS fleet of commercial 

airliners. More precisely, the spatial and temporal coordinates of different observations will be used as input for the 25 

modeling framework whereas the observed values of atmospheric mixing ratios of CO and meteorological parameters 

themselves will play a role in calibrating the modeling framework. 

 

Central for this work is the concept of the Mixed Layer (ML), the lower part of the troposphere in which trace gases are well 

mixed due to turbulent convection in the time scale of an hour or less, and in which the effect of regional surface-atmosphere 30 

fluxes is the strongest. As input to the inversion we use the enhancement of the species’ mixing ratio within the mixed layer 
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relative to that in the free troposphere (FT), similar to the approach described in Boschetti (2015). This mixed layer 

enhancement best reflects the influence of regional fluxes. To compute this, we take the average mixing ratio within the 

mixed layer and subtract the value taken at 2 km above the mixed layer top (zi), i.e. well within the free troposphere. The zi 

is a very important parameter in atmospheric modeling, and accounts for most of the transport uncertainty in the vertical 

domain. In fact, assuming that the mixed layer is the part of the troposphere in which trace gases are well mixed due to 5 

turbulent convection, given a certain amount of trace gas in the ML, its mixing ratio depends strongly on its depth zi. More 

precisely, even if the model has correctly reproduced the amount of trace gas in the real mixed layer, if the modeled zi is 

lower (higher) than the actual one, then the simulated ML mixing ratio will be higher (lower) than it actually should be. In 

the present study, modeled zi are corrected according to Boschetti (2015, Sect. 2.2.1) 

 10 

 

 

2.1.2 Transport-flux coupling 

The modeling framework is composed of a regional transport model (STILT), the EDGAR (Emission Database for Global 

Atmospheric Research) emission inventory to model anthropogenic emissions, VPRM (Vegetation Photosynthesis and 15 

Respiration Model) to model emissions from the biosphere and output from global transport models for lateral boundary 

conditions for the different modeled species. The expressions ‘anthropogenic emissions’ and ‘fossil fuel emissions’ are 

considered synonymous in this paper and are used to indicate the sum of fossil fuel and biofuel emissions, without including 

contributions from LULUCF (Land Use, Land use Change and Forestry). 

 20 

For regional transport we make use of the LPDM STILT (Stochastic Time-Inverted Lagrangian Transport) (Lin, 2003) to 

derive the sensitivity of the atmospheric mixing ratio measurement to upstream surface-atmosphere fluxes, so-called 

“footprints”. Briefly, for each measurement location and time (also called receptor point), the model releases an ensemble of 

virtual particles that are driven back in time using wind fields from ECMWF and turbulence as stochastic process; the 

residence time within the lower half of the mixed layer is used to determine the potential contribution from surface fluxes, 25 

and the cumulative sum of these contributions determines the footprint, that identifies the part of the domain with a certain 

influence on a single receptor point. To represent the mixed layer enhancements, the footprints for receptors within the 

boundary layer are averaged, and the footprint for the free tropospheric receptor is subtracted from this, resulting in a 

footprint for the mixed layer enhancements. This footprint is then matrix-multiplied with an emission map from an emission 

inventory, resulting in a simulated mixing ratio enhancement corresponding to the regional contribution at the measurement 30 

location.  

A detailed description of STILT is given in Lin (2003) and Gerbig (2003). We use STILT coupled with emission models for 

both anthropogenic (EDGAR) and biosphere (VPRM) fluxes on a regional domain that covers most of Europe (33° to 72° N, 
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-15° to 35° E) with a spatial resolution of 1/8 degree for latitude and 1/12 degree for longitude, roughly corresponding to 10 

km. As lateral boundary condition for CO mixing ratios the MACC reanalysis (Inness, 2013, downloaded from 

http://www.ecmwf.int) was used, whereas for CO2 and CH4 we use output from the Jena CarboScope (Rödenbeck, 2003; 

CO2 data available from www.bgc-jena.mpg.de/CarboScope/) which is based on forward simulations of global-inversion 

optimized fluxes with the TM3 transport model (Heimann and Körner, 2003). TM3 fields have lower resolution, but they are 5 

chosen for their consistency with measurements from the ground-based network. In addition, spatial resolution is of 

relatively minor importance for the contribution from the lateral boundary as it is far away from the measurement locations. 

 

For fossil fuel emissions we use a model based on the EDGAR emission inventory modified following the same approach 

taken for COFFEE (CO2 release and Oxygen uptake from Fossil Fuel Emission Estimate) (Steinbach, 2011,; Vardag, 2015). 10 

More precisely, to obtain hourly resolved emissions from the original EDGAR annual fluxes for different emission 

categories we add specific temporal activity factors (Denier van der Gon, 2011) to account for differences in emissions due 

to seasonal, weekly and daily cycles. In addition, the different emission categories are further split into contributions from 

different fuel types from British Petroleum’s Statistical Review of World Energy 2014 (BP, 2014). The World Energy 

Outlook from IEA as alternative source of information was not chosen, as the report from BP is available earlier (April vs. 15 

November of the following year). This allows for taking into account changes in emissions between different years. Such an 

emission model provides hourly resolved fluxes for each fossil fuel flux category with a spatial resolution of roughly 10 km 

on our regional European domain. For each of the three anthropogenic modeled species (CO2, CO and CH4), different 

emission maps are used as input. Temporal profiles are then applied to these sector- and fuel-specific emission maps. To take 

into account also the contribution from the biosphere we use the Vegetation Photosynthesis and Respiration Model (VPRM). 20 

VPRM simulates realistic patterns at small spatial  (10 km x 10 km) and temporal (hourly) scales and is used here to provide 

the a priori fluxes for biosphere-atmosphere exchange of CO2. This model is described in detail in Mahadevan (2008). 

 

STILT transport is driven by meteorological fields from the ECMWF IFS (12 hour forecasts twice daily at 3-hourly temporal 

resolution), which have a spatial resolution of 0.25 degree with 61 vertical levels. In the following, we will refer to the 25 

STILT/EDGAR/VPRM/MACC/TM3 combination of transport, simulated fluxes and advected boundary conditions as 

merely ‘STILT’ for simplicity. 

 

2.1.3 Bayesian inversion  

Atmospheric inversions provide an estimate of the distribution of sources and sinks over the domain’s surface from available 30 

concentration measurements (“top-down” approach). This can be formalized in the following linear relation: 

 

 ! = !! + !               (1) 
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Where the y vector contains the n observations, and K is the Jacobian matrix that relates the observations with the state 

vector λ. In the present study the focus will be on surface-atmosphere gas exchanges due to both biospheric processes and 

anthropogenic emissions. So the observations are trace gas mixing ratios at different times and locations, K is the product of 

a transport operator H that maps flux sensitivities at different times and locations with a set of gridded fluxes F for the 5 

categories of interest, while the state vector λ contains the m scaling factors for the flux categories of interest. H has n rows 

and a number of column equal to h=Nx*Ny*Nt*Ns being respectively the number of pixels in the emission model along the x 

and y axes, the number of (hourly) simulations in the whole year of interest and the number of state vector elements, 

resulting in a huge matrix. As the matrix F describes the different simulated gridded fluxes, it is comparably large and has h 

rows and m columns. By considering K as the result of the product of these two large matrices, it is possible to limit its 10 

dimensions to only n rows and m columns; this allows for simplifying the critical task of relating observation with simulated 

fluxes of the categories of interest. The state vector accounts for specific emission sectors (Table 1) and fuel types (Table 2) 

for each one of the three modeled species from the EDGAR emission model, plus gross fluxes (gross ecosystem exchange 

GEE and respiration R) modeled by VPRM for 5 different vegetation classes. For both anthropogenic and biospheric fluxes 

the temporal resolution of the state vector is monthly. The number of state vector elements per month amounts to 69 scaling 15 

factors for the different fuel- and sector-specific anthropogenic emissions for each species, and 10 scaling factors for 

biosphere-atmosphere exchange (respiration and photosynthesis for each of the five vegetation classes), so in total 217 

scaling factors per month, or 2604 scaling factors for the full year. To avoid large memory requirements for H and F 

matrices, their product is directly computed within the STILT code. The random error ε accounts for measurement error 

related to uncertainty in the observation and to model-data mismatch resulting from model uncertainty.  20 

 

Bayesian inversion combines observations (IAGOS profiles) with a priori information (scaling factors and their a priori 

uncertainties) to reconstruct the most probable state vector. Optimum posterior estimates of the scaling factors are obtained 

by minimizing the following cost function J (Rodgers, 2000): 

 25 

! ! = ! − !! !!!!! ! − !! + ! − !!"#$"
!!!"#$"!! (! − !!"#$")       (2) 

 

Here the first and the second term are the observational constraint and the prior constraint term respectively. The prior 

scaling factors for the fluxes of the different tracers are set equal to one. Sε is the error covariance matrix for the mismatch 

between simulated and observed mole fractions (model-data mismatch) and accounts for instrumental uncertainty, 30 

uncertainty related to the transport model, and other sources of uncertainty like boundary conditions and flux aggregation not 

accounted for through the state vector adjustment. Sprior is the error covariance matrix for the prior scaling factor; its 

implementation requires a different approach for biospheric and anthropogenic fluxes. The detailed error structure for model-
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data mismatch and prior uncertainty is described in the Sect. 2.1.4. Minimizing the cost function results in an optimal 

posterior estimate of the state vector λ that is consistent with both the measurements and the prior model estimates: 

 

! = !!!!!!! + !!"#$"!! !!(!!!!!!! + !!"#$"!! !)        (3) 

 5 

The error covariance matrix of the optimal posterior state (the posterior uncertainty) is given by: 

 

!!"#$ = (!!!!!!! + !!"#$"!! )!!          (4) 

 

Note that this quantity depends on neither the prior fluxes nor the measured mixing ratios, but only on their respective 10 

uncertainties and on the transport matrix K. In this study, the inverse of the matrices was calculated using the R-function 

‘solve‘ from the base package of R version 3.0.0 (http://www.r-project.org/). 

 

The targeted quantities of this study are the aggregated emissions over a specific area at a specific time scale (e.g. month); 

those quantities can be derived from the prior and posterior state through a spatiotemporal aggregation operator A that allows 15 

for the conversion of scaling factors into physically representative quantities.  As the pseudo-observations are clustered 

around a single location (Frankfurt), fluxes over the whole European domain can very likely not be constrained. Therefore, 

as a spatial aggregation scale we chose an area from which fluxes have a significant contribution to the observations made at 

Frankfurt. For this we compute the temporally accumulated footprint values (cf. Sect. 2.1.2) for the whole year 2011, and 

select those spatial pixels that correspond to 50% of the total (spatially integrated) footprint (Fig. 1). Note that by using this 20 

aggregation scale we assume perfectly-known distribution within a given flux category that can result in aggregation error, 

especially with respect to biogenic fluxes, that are not so well known as anthropogenic fluxes. However, the chosen domain 

of aggregation is quite small, and the total anthropogenic fluxes are divided according to species, emission categories, fuel 

types and months. This result in 69 degrees of freedom per month for each anthropogenic species and 10 degrees of freedom 

per month for the biospheric fluxes; for this reason we expect the aggregation error not to be a particularly important source 25 

of uncertainty. The prior and posterior uncertainty of these targeted quantities (σprior and σpost) is obtained by applying the 

aggregation operator to the respective uncertainty covariances: 

 
!!"#$" =  !!!!"#$"!   and   !!"#$ =  !!!!"#$!        (5) 

 30 
Different versions of the aggregation operator were created for this: emissions categories are aggregated according to 

different fuel types (coal, oil, gas, bio, waste, other) and according to emission sectors (energy, transport, industry, buildings, 

Christoph Gerbig� 18.12.17 16:05
Gelöscht: = (!!!!!!! + !!"#$"!! )(!!

Christoph Gerbig� 18.12.17 16:05
Gelöscht: 

Christoph Gerbig� 19.12.17 09:02
Gelöscht: As35 

Christoph Gerbig� 18.12.17 16:40
Gelöscht: a domain encircling the 50% influence 
in the cumulated footprint for the receptor points in 
the ML for the year 2011



10 
 

agriculture, waste, fossil fuel fires). Note that only these aggregated fluxes are optimized, not the individual gridded fluxes of 

the emission inventories. 

 

To quantitatively assess the information provided by the inversion, the reduction of uncertainty in the posterior compared to 

the prior estimate is a useful measure. The uncertainty reduction UR is defined as: 5 

 

!" = 1 − !!"#$
!!"#$"

            (6) 

 
 

The uncertainty reduction ranges from 0 (posterior as large as the prior uncertainty) to 1 (posterior negligible compared to 

the prior uncertainty).  10 

 

2.1.4 Prior error structure     

As in this study a multi-species inversion with CO, CO2 and CH4 is envisioned, we have the chance to exploit the 

correlations in the uncertainties of the different trace gases related to both a priori fluxes and model-data mismatch. This is 

particularly true for CO and CO2 because they share a larger part of the emission sources, which implies correlations in the 15 

respective uncertainties. In the multi-species inversion, such information is stored in the areas of the error covariance 

matrices that describe covariance between different modeled species (off-diagonal ‘blocks’ in Fig. 2b for Sprior and Fig. 3b 

for Sε). In the single-species inversions, said covariance is set to zero, corresponding to a situation where the different 

species are completely independent of one another. Conversely, the measurement uncertainty is stored in the main diagonal 

of the Sε (Fig. 3d).  20 

 

We used a single year (2011) dataset restricted to the vertical profiles centered at the Frankfurt airport, and restricted to 

daytime during well-mixed atmospheric conditions (10:30 to 17:30 CET). The dataset contains 1098 pseudo-observations, 

366 for each of the three observable species, whereas the state vector contains the scaling factors for 2604 flux categories, 

each equal to one in the prior. 25 

 

The prior error covariance matrix can be expressed as follows: 

 

!!"#$" = !!"#$"!!"#$"           (7) 

 30 

where Cprior is the prior error correlation matrix (Fig. 2a) and ρprior is a prior rescaling matrix described in Sect. 2.1.5 (Fig. 

4a). First we describe how Cprior is generated. The prior error correlation matrix is a square matrix of rank 2604, reflecting Christoph Gerbig� 18.12.17 16:05
Gelöscht: 6
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the length of the state vector, and results from the product of three components (Fig. 2b, 2c and 2d) accounting for 

correlations between flux categories according to the modeled species, emission sectors and fuel types respectively. In four 

different instances, a correlation of 0.7 is applied:  

1. Between different anthropogenic modeled species 

2. Between GEE and respiration 5 

3. Between different emission sectors 

4. Between different fuel types  

Such a correlation implies that the explained variance for each constraint everything else being equal is roughly 50%, (0.7 to 

the square equals 0.49) with the rest remaining independent. In addition, the correlation between fossil-fuel-related and 

biosphere-related scaling factors is zero, and the same holds for fluxes of different months, indicating complete 10 

independence from one another. In this study, we assume a certain annual total domain wide flux uncertainty, and then break 

it down by sectors, fuels, and months by inflating the error. By assuming no correlation between different months we ensure 

maximum flexibility in the system to retrieve month-to-month changes based on the observations. Assuming correlation 

between months would be possible, but has not been investigated here. It is unclear how good the seasonal variation in 

emissions from the inventories actually is, so in order to not rely too much on these we chose zero correlation. Investigating 15 

the effects of different correlation set-ups for the seasonal cycle could be the focus of future research. 

 

2.1.5 Prior error scaling 

After having specified the prior error correlation matrix Cprior, we now describe how we rescale it to obtain Sprior; for this 

task we rewrite Eq. (7) as 20 

 

!!"#$" = !!"#$!!!"#$" = 

                       (8) 

 

=
!!! !!" !!"
!!" !!! !!"
!!" !!" !!!

!
!
!

!     !    ! !!"#

1/!!!! 1/!!!! 1/!!!!
1/!!!! 1/!!!! 1/!!!!
1/!!!! 1/!!!! 1/!!!!

0
0
0

0           0          0 !!"#!
 

 

where each Cij is a subset of the fossil fuel part of Cprior (‘block’) as shown in Fig. 2, and each ρi is defined as 25 
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!! = !!!!!!!!!!

!!"!!  !!
!                                                                                                 (9) 

 

where A’ is the aggregation operator for annual fluxes over the full domain, and εi is the corresponding relative prior 

uncertainty, assuming the values specified in Table 3 for different cases. Case 1 is considered as the default case, with prior 

uncertainty values conservatively assumed to be 20%, for CO2 and 50% for CO and CH4. Conversely, Cbio covers the 5 

biosphere part of Cprior, and for !!!!! for ρbio we use a prior uncertainty of 0.54 GtC y-1, as derived in Panagiotis (2016) for 

the VPRM model. The biospheric part of the prior error covariance matrix assumes no correlation with the fossil fuel 

species. 

 

The posterior of each Bayesian inversion depends on its specific prior. As the multi- and single-species inversion have 10 

different prior uncertainty structures, the uncertainty reduction for targeted quantities cannot be directly compared (Eq. (4)). 

To be able to compare the two inversions, we require that the a priori aggregated uncertainty of the targeted quantities 

remains the same, and distribute it differently each time; the prior rescaling matrix ρprior is needed for this task. The benefits 

were tested for observations taken in different months and for three different error structures in the prior uncertainty. As a 

priori aggregated uncertainty we use a percentage of the aggregated modeled emissions for fossil fuels across the whole year. 15 

Table 3 shows the percentage values used for different cases.  

 

2.1.6 Model-data mismatch error structure     

In an atmospheric inversion, the model-data mismatch from every uncertainty source (such as measurement uncertainty, 

transport model uncertainty, spatial representation error due to limited model resolution, and boundary condition 20 

inaccuracies) needs to be taken into account. In our inversion scheme, we parameterize both the transport model uncertainty 

and the measurement uncertainty, with the latter playing a minor role. The model-data mismatch covariance matrix (Sε) is 

constructed according to the following equation: 

 

!! = !!!!!!"#$! + !!"#$!                         (10) 25 

 

where Cs accounts for correlations between different observed species (Fig. 3b), Ct accounts for the temporal correlation 

(Fig. 3c), εtran is the total transport error and !!"#$!  accounts for all of the non-transport related errors like spatial 

representation error and lateral boundary conditions (Fig. 3d).  

 30 
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The assumed measurement uncertainty is 1 ppm for CO2, 20 ppb for CO and 20 ppb for CH4, while εtran is time dependent 

and assumed to be proportional to the modeled enhancement due to regional fluxes. The assumed measurement uncertainty 

is higher than the expected instrument precision because it also includes in addition the uncertainties related to spatial 

representation and lateral boundary condition. εtran is characterized as follows by different components in the vertical and 

horizontal domain: 5 

 

!!"#$ = !"ℎ !!"#$_!! + !!"#$_!!                       (11) 

 

where enh indicates the modelled enhancement, and both the horizontal transport error εtran_h and the vertical transport error 

εtran_v are characterized as percentage error; εtran_h is assumed to be 50%, while εtran_v is a profile-specific relative error with a 10 

mean value of about 10%. The vertical transport error accounts for the fact that the shallower the mixed layer is, the more 

difficult it is to model the atmosphere. We assume that after zi-correction the remaining error is on the order of 50 m (related 

to the vertical resolution of the profile data), so the relative error εtran_v is assumed as the ratio of 50 m to the modeled zi; in 

this way we obtain an error that gets larger the shallower the mixed layer is. For the horizontal component, an uncertainty of 

50% is a conservative estimate based on Lin and Gerbig (2005), where the horizontal transport error is found to be 5.9 ppm 15 

for CO2. This, combined with about 10 ppm of drawdown in the mixed layer relative to the free troposphere, gives 

something like 50% error in the regional flux signal. The vertical component is so much smaller in percentage since the 

simulated mixing ratios are already corrected for mismatch between modeled and observed zi. 

 

In the multi-species inversion, the transport error correlation across species is 0.7 (Fig. 3b), while in the single-species 20 

inversion this is set to zero. Time correlation is assumed to decay exponentially with an exponential constant of 12 hours. 

The between-species correlation for model-data mismatch related to transport uncertainty reflects the fact that species are 

partially co-emitted and share the same atmospheric transport (and its related uncertainty). 

 

2.2 Synthetic experiment 25 

2.2.1 Pseudo-data generation 

As explained in the introduction, in situ measurements are not available for all of the three trace gases of interest, but only 

for CO. For this reason this paper aims to evaluate the benefits of a multi-species inversion over a corresponding single-

species one by performing a synthetic experiment, using pseudo-observations derived by perturbation of the model outputs 

based on a priori state vector values. More precisely, the pseudo-observation vector is obtained by matrix multiplication 30 

between the Jacobian matrix K and what we assume to be the true state vector. The true state vector itself is obtained by 

using the sum of the prior state vector (all values equal to one) and a random realization of the prior error, truncated to avoid 
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negative state vector values. In detail, the error realization is obtained by multiplying a randomly generated, normally 

distributed vector with the prior error covariance matrix. This ensures that such realization has the same error correlation of 

the prior uncertainty. Where the result of such matrix-vector product is negative, the same operation is performed recursively 

until all elements of the state vector are positive. This ensures that the difference between the true and prior state vector has 

the same error correlation structure as described by the prior error covariance matrix. 5 

 

 

 

3. Results and Discussion 

Before evaluating the performance of the inversion scheme in reducing the uncertainty of the state space, a closer look at the 10 

ability of the modeling framework to reproduce the enhancements is necessary. Unfortunately, this can be done only for CO 

as actual measurements are not available for the other species. Figure 5 shows the mean daily enhancement of the three fossil 

fuel species for both observations and model outputs using prior emissions. A common feature to the three trace gases is that 

lower values tend to occur during summer time due to a better mixing of the atmosphere. Conversely, enhancement values 

tend to be higher during winter, reflecting the more stratified atmosphere of the cold months. 15 

 

In Fig. 5 the modeled CO plot was multiplied by a factor of 2.8, corresponding to the mean ratio between observed and 

modeled CO enhancements, similar to what was found in Boschetti (2015). Mixing ratio values are highly variable, but the 

model produces a good indication of the temporal variation of the ML enhancement; the squared correlation coefficient 

between observed and modeled CO enhancements is 0.62, while the standard deviation of corrected model and observation 20 

residuals is 85 ppb; note that by not accounting for the zi correction, such values would be 0.56 and 87 ppb respectively. The 

median of the mixing ratio enhancement for the three trace gases is 2.8 ppm for CO2, 18.6 ppb for CO and 26.6 ppb for CH4. 

For CO2 this seasonal difference is enhanced due to the simultaneous presence of both anthropogenic and biogenic 

emissions. During summer values are slightly negative due to strong photosynthesis fluxes from growing vegetation from the 

active combined with deeper vertical mixing. Negative values arise in 31% of the cases predominantly during the warmer 25 

months, implying that during the growing period uptake by photosynthesis dominates over release from combustion and 

respiration. Both CO and CH4 experience higher values during winter due to the shallow mixed layer usually associated with 

cold temperatures, and lower values during summer as higher temperature cause the mixed layer to reach higher altitudes; 

differences related to seasonal domestic heating and transportation may also play a role. In addition, enhancement for both 

species is occasionally negative, most likely owing to advection of polluted air masses in the free troposphere. An alternative 30 

explanation is that strong winds at lower heights can disperse the emissions in the boundary layer and create a situation in 

which the mixing ratio in the FT is higher than in the ML. 
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Figure 6 shows the prior and posterior error covariance matrices for the base multi-species inversion. Note that CO2 from 

anthropogenic emissions is assumed to be independent from biogenic emissions; therefore prior error correlation between 

these categories is zero. The posterior error covariance matrix for the multi-species inversion (Fig. 6b) shows lower values 

corresponding to an average uncertainty reduction of 23% across all state vector elements, while the posterior error 5 

covariance matrix for the single-species inversion (not shown) is characterized by a mean uncertainty reduction of 20%. This 

result implies that the multi-species inversion improves the uncertainty reduction by roughly 15%. Negative values in the 

posterior error correlation matrix are to be expected because different categories are bind together by correlations and 

therefore are not free to vary independently. 

 10 

Figure 7 and 8 show a priori, a posteriori, and “true” fluxes related to different aggregated fuel types and to different 

emission categories as described in Tables 1 and 2 for the months of July and December. Figure 8 also shows the biospheric 

contribution (as absolute values) scaled down by a factor of 10. As is to be expected, the biospheric contributions show 

strong differences according to the seasonal cycle, while anthropogenic emissions remain rather stable. However, it is worth 

pointing out that while the fossil fuel prior is similar for both months, the assumed truth can be rather different due the 15 

random assignment of the prior error realization. In most cases, the posterior adapts and is therefore closer to the truth than 

the prior; the posterior uncertainty is also visibly reduced, as expected. Regarding the different tracers, CO2 and CO show a 

somewhat similar pattern indicating a partial overlap in dominating emission categories while CH4 is dominated by different 

contributions in both fuel types and emission categories.  

 20 

Our modeling framework is currently not well suited to account for unreported sources of CH4 due to the lack of information 

about natural gas and oil production operations, or from recent and old mining areas.. Many recent studies have discussed the 

problem, mainly referring to shale basins exploited via hydraulic fracturing in the US (e.g. Kort et al., 2016; Karion et. al, 

2015; Lyon et al., 2015). For example, Karion (2015) concludes that EDGAR underestimates methane emissions associated 

with oil and gas industry by a factor of 5 in the US. However, the situation over the European continent may be quite 25 

different. In a review about risk assessment of shale gas development in the UK, Prpich (2015) reports that the European 

Union is generally much more cautious about unconventional oil and gas sources, while a recent study on a methane plume 

over the North Sea (Cain et al., 2017) concluded that the bulk signature of said plume originated from on-shore coal mines 

and power stations in the Yorkshire area. 

 30 

In general, the absence of some emission sources in an inventory is equivalent to the assumption of having point sources not 

included in the emission map, but still contributing to the measurements. The inversion scheme would typically react to this 

by assigning such point sources in some other sector other fuel type. As a result, the posterior enhancements would be biased 

low in proximity of that point sources, and (slightly) biased high for influences from other regions with the same sector or 
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fuel type. This issue should definitely be considered in a future study making use of actual CO, CO2 and CH4 observations 

from IAGOS but has limited effects on this paper, as our main focus is on the benefits of inter-species correlation on the 

posterior uncertainty in the frame of a synthetic experiment 

 

Note that our modeling framework does not allow for simulating CO biogenic fluxes during the growing season. Warm days 5 

in summer correspond to large amount of biogenic VOC’s being emitted from the vegetation, producing CO to non-

negligible levels. According to Hudman (2008), anthropogenic emissions accounts for only 31% of CO emissions in the US 

during summer. Conversely, according to estimates from EDGAR, CO anthropogenic emissions during summer are about 

18% of the annual anthropogenic emissions. Combining these two results, one could conclude that CO production from 

biogenic sources accounts for roughly 42% of total annual CO emissions.  10 

In general, the absence of some emission sources in an inventory is equivalent to the assumption of having point sources not 

included in the emission map, but still contributing to the measurements. The inversion scheme would typically react to this 

by assigning such point sources in some other sector other fuel type. As a result, the posterior enhancements would be biased 

low in proximity of that point sources, and (slightly) biased high for influences from other regions with the same sector or 

fuel type. This issue should definitely be considered in a future study making use of actual CO, CO2 and CH4 observations 15 

from IAGOS but has limited effects on this paper, as our main focus is on the benefits of inter-species correlation on the 

posterior uncertainty in the frame of a synthetic experiment. 

 

CO2 and CO are dominated by combustion sectors (Fig. 8). The most important emission sectors for CO2 are energy, 

industry, transport and building, each contributing 7-10 MtC month-1 in July and 6-14 MtC month-1 in December. Dominant 20 

fuels (Fig. 7) for CO2 are coal, gas and oil, whose prior fluxes (pseudo data) have a magnitude of 6-11 Megatons of carbon 

per year (MtC month-1) in July and 8-14 MtC month-1 in December. For CO the most important emission sector is heating of 

buildings during winter contributing a 0.19 MtC month-1 flux with only secondary contributions from industry and transport 

with a magnitude of 0.04 MtC month-1 and 0.05 MtC month-1 respectively (during July and December). The dominant fuel 

for CO is biofuel with 0.19 MtC month-1 emissions during winter. The secondary industrial and transport contributions 25 

originate in summer from oil and biofuels with a magnitude of 0.06-0.08 MtC month-1 and from agricultural waste burning 

with a magnitude of 0.06-0.11 MtC month-1.  

 

Contrary to CO2 and CO, CH4 is determined by non-combustion sectors, more specifically by a contribution of 0.15 MtC 

month-1 flux from agriculture (manure management and rice cultivation) in July with secondary contributions from waste 30 

and energy with a magnitude of roughly 0.06-0.08 MtC month-1 in both July and December. Other non-combustion sectors, 

in particular wastewater treatment and landfills contribute to a total of 0.16-0.24 MtC month-1 of emissions. These non-

combustion sectors contribute to less than 20% of total CO2 emissions, with 1.13 MtC month-1 from the cement and lime 

industry and less than 20% to the total CO emissions (0.03 MtC month-1 from the metal industry).  



17 
 

The contribution to CO2 from biospheric primary production (a sink for atmospheric CO2) is about 100 MtC month-1 in July, 

which drops to almost zero in December, while respiration values are 50 MtC month-1 in July and roughly 15 MtC month-1 in 

December. 

 

As further assessment of the inversion performance, we tested the ability of the inversion scheme to capture the truth 5 

compared with a perturbed version of the prior. Such perturbed version is obtained by adding a random distribution with 

mean and standard deviation equal one to the prior state space, similar to how the truth is obtained. For each simulated 

species we calculated the total annual fluxes for prior, posterior, truth, and perturbed prior. From these total fluxes we then 

derive the overall residual between prior and truth, posterior and truth, and perturbed prior and truth. It is clear from Table 4 

that while the overall bias between posterior and truth is lower than the prior-truth bias, the bias between perturbed prior and 10 

truth is much higher, implying that the performance of the inversion is not an artifact of the pseudo-data generation. In 

addition, it was found that the truth-posterior bias of the multi-species inversion is mostly slightly lower compared to the 

single-species inversion. Such difference is between -2.2% and 7.6%, according to the simulated species, with an overall 

value of 0.3%. 

 15 

Improper characterization of the error correlation may result in systematic bias in the posterior estimate. As mentioned in 

Sect. 2.1.6, inter-species correlation, the correlation between different fuel types and the correlation between different 

emission sectors in Sprior is assumed equal to 0.7 (Sect. 2.1.4). To assess how well the system will reproduce the ‘true’ fluxes 

with incorrectly specified correlations, a series of experiments was performed in which the inter-species correlation in Sε 

remains equal to 0.7, while the three correlation coefficients in Sprior assume different values ranging from 0.1 to 0.9. Table 5 20 

shows the residuals between total annual posterior fluxes and total annual true fluxes for the five simulated species, derived 

similarly as for Table 4. We found that for all species the uncertainty reduction increases with correlation. More precisely, 

from correlation 0.1 to 0.9, the annual uncertainty reduction for anthropogenic CO2 increases from 26.6% to 51.7%, while 

the increase is lower for GEE (from 72.4% to 73.1%) and respiration (from 39.3% to 41.3%) because the biospheric fluxes 

are independent from other species. For CO, the uncertainty reduction increases from 60.7% (with correlation 0.1) to 66.4% 25 

(with correlation 0.9). The annual uncertainty reduction for CH4 increases from 60.5% to 67.5%. 

 

In addition, the posterior-truth biases are always lower than the prior-truth biases. The posterior uncertainty values (1-sigma) 

are usually larger then the corresponding bias values as expected, except for CO and for CH4 with prior correlations equal to 

0.9. Thus the posterior is not significantly different from the truth. Conversely, the prior (not shown) is significantly different 30 

from the prior in the majority of cases for fossil fuel fluxes, and in some cases also for biogenic fluxes. The effect of 

assuming the incorrect error correlations appears to be in general small, possibly implying a relative robustness of our 

methods. Following this result, the fact that CH4 is only partially co-emitted with CO2 and CO should not affect the inversion 

in a strong way. For all of the experiments, the residuals between true and posterior fluxes are lower than residuals between 
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true and prior fluxes for each of the simulated species; the difference between the cases with maximum and minimum 

residuals is around 4.2%. In addition, we found that the posterior aggregated fluxes in the nine experiments are not 

significantly different from each other, implying that the system is fairly robust against errors in the assumed inter-species 

correlation. 

 5 

Before investigating the benefits of correlations between different tracers, it is meaningful to evaluate the uncertainty 

reduction in the monthly budgets for all five modeled species (Fig. 9, based on targeted spatial domain in Fig. 1). The first 

thing to note is that for all of the five trace gases the posterior uncertainty is lower than the prior one, as it should be. In 

addition, prior uncertainty varies through the year, reflecting modulation in emission fluxes obtained by adding activity 

factors to describe the seasonal, weekly and daily cycle. 10 

Prior uncertainty assumes values around 0.4-0.6 MtC month-1 for CO2, 5-15 ktC month-1 for CO, and 15 ktC month-1 for 

CH4. For GEE the prior uncertainty is between 0.3 MtC month-1 and 46.7 MtC month-1, and for respiration it is 5.1-19.0 MtC 

month-1. Posterior uncertainty for CO2 is 0.24-0.38 MtC month-1 for fossil fuel emissions, 0.3-9.9 MtC month-1 for GEE and 

3.1-10.4 MtC month-1 for respiration, while it has a range of 3.3-4.7 ktC month-1 for CO and 2.7-7.0 ktC month-1 for CH4. 

Mean uncertainty reduction of the monthly values is 38% for fossil fuels emission of CO2, 41% for GEE, and roughly 45% 15 

for respiration, 63% for CO and about 67% for CH4. It is worth pointing out that such values are higher than the mean 

uncertainty reduction in the scaling factors (23%); this happens because the most representative emission sectors are those 

influencing the observations the most and thus are also the most constrained.  

 

In addition, note that in this case, the posterior uncertainties for single- and multi-species inversions are similar for the 20 

modeled species, with the exception of the CO2 anthropogenic contributions. To generalize this last result, we tested the 

benefit of a multi-species inversion for the different cases of prior uncertainty values shown in Table 3. As an indicator for 

the benefit of including correlation between different species, we use the ratio between posterior uncertainty of the multi-

species inversion and the posterior uncertainty of the corresponding single-species inversion. A value of one means that there 

is not benefit in adding an inter-species correlation to the inversion, while values greater than one means that a multi-species 25 

inversion is even less constrained than a single-species one. We expect this indicator to be less than one, meaning that inter-

species correlations actually improve the constraint power of the inversion. As before, we consider here the uncertainties of 

the retrieved budgets for the 50% footprint, where the surface influence is strongest (Fig. 1). Values of this uncertainty ratio 

for the different trace gases as function of month are shown in Fig. 10 for the different cases listed in Table 3. The benefit of 

including inter-species correlations shown in Fig. 10 does not depend on different manifestations of the true fluxes, but only 30 

on the posterior uncertainty of the multi- and single-species inversions. 

 

All of the species experience a reduction in the posterior uncertainty ratio due to the addition of inter-species correlation; 

said reduction is up to 20% for fossil fuel CO2 and up to 10% for the other species; In addition, anthropogenic CO2 is more 
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sensitive to the prior relative error values than CO and CH4. As the uncertainty of GEE and respiration is not modified, they 

show little to no variations for different cases (Fig. 10). There is a dependence of the benefit of the multi- over a single-

species inversion on the prior uncertainty values (differences between cases 1-3), with the largest difference for fossil fuel 

emissions of CO2. Interestingly for case 2 with reduced prior uncertainty for fossil fuel CO2 emissions the benefit nearly 

doubles over the default case (Case 1). Also reducing the prior uncertainties of CO and CH4 emissions (Case 3) more or less 5 

compensates for this increase in benefit. The reason for both of these results is probably to be searched in Eq. 8. In fact, 

changing the prior uncertainty in CO2 emissions means to also change the off-diagonal blocks linking the different species 

together. However, by reducing the anthropogenic CO2 uncertainty from 20% to 10% (Case 2), the diagonal block for CO2 in 

the prior uncertainty changes by a factor four, while the off-diagonal blocks change only by a factor of two. This effectively 

ties the emissions of CO2 tighter to the emissions of the other species, resulting in more benefit from a multi- over a single-10 

species inversion. Conversely, when all prior uncertainties are reduced by a factor 2 (Case 3), both diagonal and off-diagonal 

blocks are reduced by a factor four. This explains why Case 1 and Case 3 show similar benefit values. Note that the assumed 

prior uncertainties for the default case (Case 1) are quite conservative, therefore lower uncertainties were chosen for Cases 2 

and 3. While the absolute benefit of adding inter-species correlation is not a game-changer, it is worth pointing out that such 

improvement also comes with only slightly greater computational effort than multiple independent single-species inversions.  15 

 

In order to assess the contribution of inter-species correlation in the prior uncertainty vs. that of model-data mismatch 

uncertainty, Fig. 11 also shows the resulting posterior uncertainty ratios for Case 1 (Table 3) from inversions only using 

prior or model-data mismatch correlation. For the anthropogenic component of CO2, the greatest constraint is given by the 

prior correlation, while for GEE, respiration, and CH4 the strongest contribution is from the model-data mismatch 20 

correlation. In the case of CO, the inter-species correlations for different components are dominant for different months of 

the year. What makes CO sensitive to different correlation structures during different seasons is that CO enhancement shows 

a stronger seasonal cycle compared to e.g. fossil fuel component of the CO2 enhancement, with average values for January of 

around 150 ppb (25 ppm for CO2), and for July of 9 ppb (4 ppm for CO2). This results in a much weaker constraint on the 

CO emissions from the CO observations during summer, but still some constraint through the other species such as CO2 via 25 

the a priori correlation in the emissions. 

 

Palmer (2006) (in the following referred to as P06) studied the importance of inter-species correlation to improve inverse 

analysis using airborne data from the TRACE-P mission conducted in March/April 2001 over the western region of the 

Pacific Ocean. P06 derived a prior error correlation lower than 0.2 by analysing the uncertainty of emission factors from an 30 

Asia-specific emission inventory (Streets, 2003), which is significantly smaller than the correlation of 0.7 assumed in the 

present study. P06 deemed CO2-CO prior correlation greater than 0.5 to be unrealistic for the emissions in Asia, which is 

mostly associated with the uncertainty in emission factors for CO of 67% for fossil fuel emissions and 240% for biofuel 

emissions in China (P06 Table 1). However, for the European region used in the present paper we argue that values around 
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0.7 are appropriate. The resulting uncertainty in the CO2-CO ratio, diagnosed from the prior error covariance matrix used in 

this study, is about 50% for both biofuel and fossil fuel emissions in Europe, which we regard as reasonable. To compare 

results from P06 with those from the present study, ratios of posterior uncertainties resulting from inversions using 

correlations between CO2 and CO of 0.7 in the prior uncertainties and to those using no correlations have been extracted 

from Fig. 7 in P06 and are also shown as orange diamonds in Fig. 11. It is easy to see that for anthropogenic CO2, the value 5 

derived from P06 is higher than in our study, while the two values are very similar for CO. Similarly, posterior uncertainty 

ratios using model-data mismatch correlations of 0.7 between CO2 and CO are derived from Fig. 8 of P06 and are shown as 

red diamonds. In this case, the value derived from P06 is slightly lower than in our study for anthropogenic CO2, while the 

two are again very similar for CO. 

 10 

From this comparison we can see that the estimates of the benefit of including inter-species correlation in atmospheric 

inversions in P06 and in this paper are on the same order of magnitude for anthropogenic CO2 and almost identical for CO, 

suggesting a general continuity of results. 

 

 15 

 

 

 

 

 20 

 

4. Conclusions 

The present paper presents a synthetic experiment aiming to evaluate the effects of exploiting correlations between different 

trace gases in an atmospheric inversion. We quantitatively described the capability of the modeling framework to reproduce 

observations, the performance of the inversion scheme in reducing the uncertainty of the different trace gases, and the 25 

benefits of multi-species inversions compared to corresponding single-species inversions. We also describe a method to re-

scale different prior uncertainty covariance matrices so that the corresponding posterior uncertainties are actually 

comparable. 

 

Where possible, we confronted model outputs with available observations. Such comparison, possible only for CO, showed a 30 

good degree of agreement between the model and observations with an overall correlation of roughly 0.75; modeled values 

for CO enhancement underestimate the observed ones by a factor of roughly 2.8, compatible with what was found in 
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Boschetti (2015). It is found that posterior uncertainty is much lower than the prior for all of the five simulated species. The 

mean uncertainty reduction for CO2 emissions from fossil fuels is roughly 38%, for GEE it is around 41% while for 

respiration it is roughly 44%. For CO and CH4 the uncertainty reduction is about 63% and 67% respectively. Finally, we 

described quantitatively the benefit of using multi-species inversions by exploiting correlations in different chemical species. 

It is found that considering correlations between different trace gases can reduce the posterior uncertainty by up to about 5 

20% for monthly fluxes. These benefits are however dependent on the error structure of the prior uncertainty. 

 

The present paper paves the way for future studies using simultaneous measurements of different trace gases. This will be 

especially important in the context of the upcoming routine measurements of CO2, CO, and CH4 vertical profiles within 

IAGOS. As IAGOS makes use of commercial airliners, such profiles will be collected in the vicinity of major international 10 

airports, and hence in the vicinity of major metropolitan areas, where many different human activities take place 

simultaneously. In such a context, any improvement in the constraint of atmospheric inversions will be particularly useful. A 

possible improvement in this analysis would be to evaluate the effects of different correlation factors specific to different 

pairs of anthropogenic species, fuels and emission sectors. 

 15 
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Figure 1: Cumulative sum of the ML footprints for all the flights into or out of FRA in the year 2011. The gray line delineates the 
50% footprint.  
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Figure 2: Prior error correlation matrix (a) used in the multi-species inversion, and the respective components for modeled species 
(b), emission sectors (c) and fuel types (d). Matrix (a) is the element-wise product of matrices (b), (c) and (d). Each matrix has the 
same dimensions (2604x2604) reflecting the length of the state vector. The matrices are shown for only one month here, for 
illustration. The gray lines indicates subsets of the flux categories according to different modeled species (‘blocks’), ordered as 5 
follows from top to bottom and from left to right: anthropogenic CO2, CO, CH4, GEE and respiration. In the single-species 
inversion, the correlation values in the off-diagonal ‘blocks’ of matrix (b) are set to zero. In the complete matrix, correlation 
between fluxes from different months is also set to zero. 
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Figure 3: Model-data mismatch correlation matrix (a) used in the multi-species inversion, species correlation matrix Ss (b), 
temporal correlation matrix St (c) and squared measurement uncertainty (d). Note that the measurement uncertainty is expressed 
in ppm for CO2 and ppb for CO and CH4. Each matrix has the same dimensions (1098x1098) reflecting the length of the 
observation vector, but here only the data of July are plotted to increase visibility. The gray lines indicate different species in the 5 
observation vector (‘blocks’), ordered as follows from top to bottom and from left to right: total CO2, CO and CH4. In the single-
species inversion, the correlation value in the off-diagonal ‘blocks’ of matrix (b) is set to zero. The structure in Ss in (c) is a result 
of the uneven temporal distribution of the observations within the month. 
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Figure 4: The final rescaling matrix ρprior (a) and the prior error covariance matrix Sprior(b). Note that ρprior can be defined as the 
element-wise ratio of Sprior and Cprior. 
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Figure 5: Mean daily enhancement of mixed layer vs. free tropospheric mole fractions. Modeled mixing ratios are shown as black 
lines, while the observed CO is shown as blue line. Note that the modeled values for CO have been multiplied by a factor of 2.8, 
corresponding to the mean ratio between observed and modeled CO enhancements, to match the observed values.      
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Figure 6: Prior error covariance matrix (left) and corresponding posterior error covariance matrix (right). 
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 5 

Figure 7: Prior, posterior and true (pseudo-data) fluxes in physical units aggregated for different fuel types. Note that, as the true 
fluxes are the result of a random perturbation of the prior, they do not describe an actual situation in the physical world. So, for 
example, the fact that the true value of CH4 fluxes in July is lower than the same value in December should not be surprising. 
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Figure 8: Prior, posterior and true (pseudo-data) fluxes in physical units aggregated for different emission sectors. Absolute values 
of biosphere-atmosphere exchange fluxes of CO2 are included in (b), but scaled down by a factor of 10. Note that, as the true fluxes 
are the result of a random perturbation of the prior, they do not describe an actual situation in the physical world. So, for 
example, the fact that the true value of CO for transport in July is higher than the same value in December should not be 5 
surprising. 
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Figure 9: Comparison between prior and posterior monthly uncertainties for the five tracers. The posterior uncertainty is plotted 
for both the multi-species inversion, accounting for inter-species correlations, and the single-species inversion, in which all of the 5 
species are independent. Both prior and posterior uncertainty are expressed in physical units. The spike in the prior methane 
uncertainty estimate for the month of March depends on the emission inventory and is related to the cycle of agricultural 
activities. 
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Figure 10: Benefit of a multi-species inversion over the corresponding single-species (dotted line) per different species per months 
of the year. The benefit has been tested for the three different cases of Table 3. Note that CO2 refers to fossil fuel emissions only, 5 
and RESP and GEE refers to the biospheric fluxes. 
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Figure 11: Benefit of a multi-species inversion over the corresponding single-species (dotted line) per different species and month. 
The benefit has been tested for a “normal” inversion featuring both prior and model-data mismatch correlation between different 
species (black) or only one of these two components (red and orange). Results refer to Case 1 of Table 3 (black line of Fig. 10). 5 
Values derived from Palmer (2006) for the month of March are indicated with a diamond. 
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 5 

 Adj IPCC Description Aggregated 

1 1a1a Power generation Energy 

2 1a1bcr Other transformation non-energy use Energy 

3 1b1 Solid fuels production Energy 

4 1b2abc Gas flaring Energy 

5 1b2ac Oil prod., distribution and flaring Energy 

6 1b2b Gas production and distribution Energy 

7 1a3a+1c1 International and domestic aviation Transport 

8 1a3b Road transport Transport 

9 1a3ce Non-road ground transport Transport 

10 1a3d+1c2 Inland waterways and shipping Transport 

11 1a2+6cd Industrial combustion (non-power) Industry 

12 2a Cement and lime production Industry 

13 2befg+3 Chemical industry and solvent Industry 

14 2c Metal industry emission Industry 

15 1a4 Buildings Buildings 

16 4a Enteric fermentation in agriculture Agriculture 

17 4b Manure management Agriculture 

18 4c Rice cultivation Agriculture 

19 4f Agricultural waste burning Agriculture 

20 6a Solid waste disposal in landfills Waste 

21 6b Wastewater treatment Waste 

22 7a Fossil fuel fires FF_fuels 
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Table 1: Specific emission sectors accounted for in the state vector and aggregated categories as used in Fig. 8. 

 

 

 

 5 

 Fuel type Aggregated fuel type 

1 Brown coal Coal 

2 Hard coal Coal 

3 Peat Coal 

4 Gas derivatives Gas 

5 Natural gas Gas 

6 Heavy oil Oil 

7 Light oil Oil 

8 Solid waste Waste 

9 Venting and flaring  Oil 

10 Other (*) Other 

11 Gas biofuels Bio 

12 Liquid biofuels Bio 

13 Solid biofuels Bio 
 

Table 2: Specific fuel types accounted for in the state vector and aggregated categories as used in Fig. 8.  
(*) The category “Other” is derived by summing the contribution from those processes in which is difficult to establish the specific 
fuel responsible for the emissions. 
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 CO2 CO CH4 

Case 1 20% 50% 50% 

Case 2 10% 50% 50% 

Case 3 10% 25% 25% 
 5 

Table 3: relative uncertainty of the prior fluxes aggregated domain-wide and annual for the different cases 
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 Prior - Truth  

(MtC y-1) 

Posterior - Truth 

(MtC y-1) 

Pert. Prior - Truth 

(MtC y-1) 

CO2 ff -14.2 1.5   (-111 %) -8.8   (-38 %) 

CO -0.95 -0.29   (-69 %) -1.08   (+13 %) 

CH4 0.36 0.11   (-68 %) 0.84   (+133 %) 

GEE -81.8 -17.9   (-78 %) -116.8 (+43 %) 

Respiration 39.5 20.6   (-48 %) 62.2   (+58 %) 
 5 

Table 4: Overall bias for different species between the prior and both posterior and perturbed prior. The percentage values in 
parenthesis refer to the corresponding Prior-Truth bias. 
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Correlation Post-Truth 

CO2 ff 

Post-Truth 

CO 

Post-Truth 

CH4 

Post-Truth 

GEE 

Post-Truth 

Respiration 

0.1 -6.3 ±16.4 -0.3 ± 0.2 -0.1 ± 0.3 -18.5 ± 23.6 -19.0 ±27.5 

0.2 -4-4 ±16.1 -0.3 ± 0.2  0.0 ± 0.3 -18.6 ± 23.5 -19.2 ±27.4 

0.3 -2.7 ±15.9 -0.3 ± 0.2  0.0 ± 0.3 -18.6 ± 23.4 -19.5 ±27.3 

0.4 -1.3 ±15.6 -0.3 ± 0.2  0.0 ± 0.3 -18.5 ± 23.4 -19.7 ±27.3 

0.5 -0.1 ± 15.2 -0.3 ± 0.2  0.0 ± 0.2 -18.4 ± 23.3 -20.0 ±27.2 

0.6  0.8 ± 14.6  0.3 ± 0.2  0.1 ± 0.2 -18.2 ± 23.2 -20.3 ±27.1 

0.7  1.5 ± 13.7 -0.3 ± 0.2  0.1 ± 0.2 -17.9 ± 23.2 -20.6 ±26.9 

0.8  1.9 ± 12.4 -0.3 ± 0.2  0.2 ± 0.2 -17.6 ± 23.1 -20.9 ±26.8 

0.9  1.5 ± 10.4 -0.4 ± 0.2  0.3 ± 0.2 -17.3 ± 23.0 -21.1 ±26.5 
 

 

Table 5: Residuals between total annual posterior fluxes and total annual true fluxes for the five simulated species (in 

MtC y-1) and different inter-species correlation values in the prior error covariance matrix (first column). The 

corresponding posterior uncertainty was added for each Post-Truth value. 5 
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Dominant fuels for CO2 are coal, gas and oil, whose prior fluxes (pseudo data) have a magnitude of 6-11 

Megatons of carbon per year (MtC y-1) in July and 8-14 MtC y-1 in December, while CO is dominated by a 0.19 

MtC y-1 flux from biofuels during winter and secondary contributions during summer from oil and biofuels with 

a magnitude of 0.06-0.08 MtC y-1. Regarding CH4, the single dominant contribution is from “Other” fuels, 

responsible for 0.16-0.24 MtC y-1 of emissions. “Other” fuel types include emissions from non-metallic minerals 

industry (e.g. cement, lime), agricultural waste burning, metal industry processing, chemical and solvent 

industry, solid waste disposal in landfills, wastewater treatment, manure management in agriculture, rice 

cultivation in agriculture, and agricultural soil emissions. For CO2, the dominant contribution from these “Other” 

fuels in the European domain is from the non-metallic mineral industry (1.13 MtC y-1); for CO and CH4, the 

lion’s share of the “Other” fuels emission is from the metal industry (0.03 MtC y-1) and agricultural waste 

burning (0.06-0.11 MtC y-1). 

 

The most important emission sectors for CO2 are energy, industry, transport and building, each contributing 7-10 

MtC y-1 in July and 6-14 MtC y-1 in December, while CO is dominated by a 0.19 MtC y-1 flux from buildings 

during winter with secondary contributions from industry and transport with a magnitude of 0.04 MtC y-1 and 

0.05 MtC y-1 respectively in both the analyzed months. CH4 is dominated by a contribution of 0.15 MtC y-1 flux 

from agriculture in July with secondary contributions from waste and energy with a magnitude of roughly 0.06-

0.08 MtC y-1 in both July and December. The contribution from biospheric primary production is about 100 MtC 

y-1 in July, which drops to almost zero in December, while respiration values are 50 MtC y-1 in July and roughly 

150 MtC y-1 in December. 
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To do so we calculated for each simulated species the overall bias for the whole year between the prior and both 

posterior and the perturbed prior 
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