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Abstract. Interactions between aerosol particles and clouds contribute a great deal of uncertainty to the scientific community’s

understanding of anthropogenic climate forcing. Aerosol particles serve as the nucleation sites for cloud droplets, establishing

a direct linkage between anthropogenic particulate emissions and clouds in the climate system. To resolve this linkage, the

community has developed parameterizations of aerosol activation which can be used in global climate models to interactively

predict cloud droplet number concentrations (CDNC). However, different activation schemes can exhibit different sensitivities5

to aerosol perturbations in different meteorological or pollution regimes. To assess the impact these different sensitivities have

on climate forcing, we have coupled three different core activation schemes and variants with the CESM-MARC. Although

the model produces a reasonable present day CDNC climatology when compared with observations regardless of the scheme

used, ∆CDNC between the present and pre-industrial era regionally increase by over 100% in zonal mean when using the

most sensitive parameterization. These differences in activation sensitivity may lead to a different evolution of the model10

meteorology, and ultimately to a spread of over 0.8 Wm−2 in global average shortwave indirect effect (AIE) diagnosed from

the model, a range which is as large as the inter-model spread from the AeroCom inter-comparison. Model-derived AIE strongly

scales with the simulated pre-industrial CDNC burden, and those models with the greatest pre-industrial CDNC tend to have

the smallest AIE, regardless of their ∆CDNC. This suggests that present day evaluations of aerosol-climate models may not

provide useful constraints on the magnitude of AIE, which will arise from differences in model estimates of the pre-industrial15

aerosol and cloud climatology.

1 Introduction

Interactions between aerosol and water in different phases contribute significant uncertainty towards the assessment of anthro-

pogenic climate change. Much of this uncertainty arises from the role of aerosol particles as nuclei which seed the formation

of clouds. Changes in the ambient particle burden influence the microstructure of clouds and their optical properties, leading to20

an “indirect effect” (AIE) on climate (Twomey, 1977; Albrecht, 1989). Constraining the magnitude of this influence, though, is

difficult, and large uncertainties persist despite rapid developments in both modeling and observations (Boucher et al., 2013).

The difficulty in constraining the indirect effect’s magnitude on contemporary climate change arises from two different

but complementary sources. Ghan et al. (2013) and Carslaw et al. (2013) illustrated using two distinct approaches that lack
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of constraints on natural aerosol emissions and their pre-industrial size distributions and chemistry contributes a component

of epistemic uncertainty to the problem. However, interactions between aerosols and clouds are also state-dependent; the

sensitivity of cloud processes and properties such as precipitation or albedo to aerosol perturbations can vary widely across

aerosol and cloud regimes (Quaas et al., 2009; Zhang et al., 2016; McCoy et al., 2017). Thus, efforts to either improve historical

constraints on the ambient aerosol burden or improve the simulation of aerosol-cloud interactions could help reduce uncertainty5

in AIE.

Details concerning the representation or parameterization of aerosol and cloud processes in global climate models can also

influence the magnitude of their simulated AIE. Hoose et al. (2009) showed that in one model, the indirect effect scaled nearly

linearly with an artificial constraint placed on the minimum permissible cloud droplet number concentration (CDNC), a tuning

parameter first developed to mitigate unrealistically-low droplet numbers in remote maritime clouds. A similar threshold used10

to tune droplet autoconversion parameterizations also yielded scaled estimates of AIE in a different model (Golaz et al., 2011).

Assumed empirical relationships between ambient sulfate burden and CDNC were shown to contribute largely to the spread

in shortwave cloud forcing observed in a previous generation of global climate models (Storelvmo et al., 2009). Furthermore,

the fundamental representation of aerosol particle size distribution has also been implicated as a large contributor to a given

model’s AIE (Kodros and Pierce, 2017).15

Here, we consider a fundamental component of aerosol-cloud interactions (ACI hereafter) included in contemporary global

climate models—the nucleation of cloud droplets from the ambient aerosol population (also known as “aerosol activation”).

Droplet nucleation plays a key role in setting the climatology of CDNC simulated within global models by providing the

initial inputs to cloud microphysical processes. In this manner, activation schemes provide a direct linkage between otherwise-

independently modeled aerosol and microphysical processes, enabling an explicit representation of the indirect effect. This20

explicit representation has been implicated as a critical component necessary to resolve regional aerosol impacts on both

warming trends over the 20th century (Ekman, 2014) and changes in precipitation patterns (Wang et al., 2015).

Several activation schemes have previously been developed for use in global climate models (e.g. Abdul-Razzak and Ghan,

2000; Nenes and Seinfeld, 2003; Ming et al., 2006; Shipway and Abel, 2010). However, the subjective choice of activation

scheme used in a model can influence its simulated CDNC and ACI. Ghan et al. (2011) found a 10% difference in AIE when25

using two different activation schemes in the same global model, despite a 20-50% difference in simulated CDNC, which is

much smaller than the typical inter-model spread in AIE (e.g. Lohmann and Ferrachat, 2010; Boucher et al., 2013). Using a

similar global model but with more complex aerosol chemistry module, Gantt et al. (2014) dramatically increased the difference

in simulated CDNC to 155% for the same two schemes, which led to a change in present day shortwave cloud forcing of 13%.

In another study using the same global model, Gettelman (2015) observed a 28% decrease in the indirect effect when altering30

the numerics of activation such that droplets are nucleated before other microphysical tendencies are computed.

This work extends these previous literature efforts by quantifying the influence of the representation of activation on esti-

mates of the indirect effect using a suite of state-of-the-science parameterizations coupled to an aerosol-climate model. We

include in our suite of parameterizations a sophisticated emulator of droplet nucleation based on an adiabatic parcel model

(Rothenberg and Wang, 2017). Furthermore, as a reference, we compare our results to an intercomparison of indirect effect35
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calculations using a suite of global climate models with different aerosol and microphysical schemes. Although we cannot fully

explore the aerosol and cloud microphysical parameter space over which AIE could be sensitive, these comparisons highlight

the importance of the aerosol-cloud coupling in influencing the problem.

This manuscript is organized as follows. Section 2 introduces the MARC aerosol-climate model used to investigate the

influence of droplet activation on the indirect effect, as well as the observational and model intercomparison datasets used in5

this study. In Sects. 3.1.1-3.1.2 we consider how different activation schemes influence the simulation of clouds and radiation

in a present-day emission scenario, and their sensitivity to aerosol perturbations. We follow this with analysis in Sects. 3.3-3.6

on the influence of droplet activation on the indirect effect. Section 4 summarizes our findings and discusses implications for

future studies. Finally, we include a Supplement documenting MARC’s simulation of aerosol physical and radiative forcing

climatologies with available observational data.10

2 Methods

2.1 MARC Global Aerosol-Climate Model

In order to assess aerosol impacts on climate, we have utilized the two-Moment, Multi-Modal, Mixing-state-resolving Aerosol

model for Research of Climate (MARC) coupled with the National Center for Atmospheric Research’s (NCAR) Community

Earth System Model (CESM; version 1.2) with the Community Atmosphere Model (CAM; version 5.3). In this CESM-MARC15

model (MARC hereafter) we replace the default aerosol scheme (the Modal Aerosol Model Liu et al., 2012) with an aerosol

physics and chemistry model based on the scheme by Wilson et al. (2001). MARC has previously been used to resolve aerosol

physics in both cloud-resolving (Ekman et al., 2004, 2006; Wang, 2005a, b; Ekman et al., 2007; Engström et al., 2008) and

climate (Kim et al., 2008; Ekman et al., 2012; Kim et al., 2014) simulations.

MARC explicitly simulates the evolution of a complex mixture of aerosol species, each with an associated lognormal size20

distribution. Within MARC, the aerosol species are divided into a set of externally-mixed modes, including three distinct

sulfate modes (nucleation or "NUC", Aitken or "AIT", and accumulation "ACC"), pure black carbon (BC), and organic carbon

(OC). Additionally, MARC resolves two internally-mixed modes, consisting of sulfate-black carbon (MBS) and sulfate-organic

carbon (MOS). With the MBS mixture, particles are assumed to consist of a black carbon core coated with a sulfate shell;

within the MOS mixture, particles are totally internally mixed according to the volumetric ratio of sulfate and organic carbon25

present. For each mode, MARC tracks the evolution of total number and mass concentrations. Additionally, MARC tracks the

partitioning between carbon and sulfate for both the MOS and MBS modes.

Sulfate particles are formed in MARC via binary nucleation of H2SO4 and H2O (Vehkamäki, 2002), with prognostic gaseous

sulfuric acid predicted by the default CAM interactive sulfur chemistry module (Barth et al., 2000). Both gas-phase oxidation

of SO2 and dimethyl sulfide (DMS) provide sources for H2SO4, as well as aqueous reactions of S(IV) with both H2O2 and30

O3. Coagulation between modes produces both pure (externally-mixed sulfate) and mixed (MOS and MBS) particles; the

pure carbon (BC and OC) modes age into their mixed counterparts through a prescribed constant-time aging scheme (40 and

20 hours, respectively) which is limited by the availability of H2SO4 for condensation. Both primary and secondary organic
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carbon aerosol are emitted into the OC mode; biogenic volatile organic vapors (specifically isoprene and monoterpenes) are

converted upon emission into OC using a simple yield coefficient suggested by Griffin et al. (1999). We assume that both pure

carbonaceous modes are hydrophobic.

Dust and sea salt are computed in MARC using a sectional, single-moment (fixed-size) scheme (with mean size bins of

0.16 µm, 0.406 µm, 0.867 µm, 1.656 µm bins for dust and 0.2 µm, 2 µm, 5 µm, 15 µm for sea salt). Sea salt is assumed to be5

composed of NaCl, while dust is assumed to be a mixture of minerals (Albani et al., 2014; Scanza et al., 2014). Prescribed size

distribution and hygroscopicity parameters for each mode are summarized in Table 1.

The aerosols simulated by MARC fully couple and interact with both the CESM radiative transfer model and its cloud micro-

physics scheme (through droplet nucleation). Particles from all modes can be lost through dry deposition, gravitational settling

and impaction scavenging via precipitation, and each mode undergoes these processes with different efficiencies related to their10

size and hygroscopicity (Petters and Kreidenweis, 2007). Additionally, nucleation scavenging occurs in both deep convective

and stratiform clouds. In deep convection, prescribed cloud-base supersaturation of 0.1% is assumed to estimate scavenging.

However, in stratiform clouds, nucleation scavenging is calculated through a prognostic aerosol activation scheme, taking into

account both local meteorology (sub-grid scale updraft speeds) and the total availability of ambient aerosol. Although several

aerosol species (sulfate and dust) play a role in heterogeneous ice formation in MARC (following Liu et al., 2007), this process15

does not remove ambient aerosol.

MARC adopts the stratiform cloud microphysics scheme from CAM5.3 (Morrison et al., 2008) and includes the updates to

code structure and droplet nucleation tendencies referred to as MG1.5 by Gettelman and Morrison (2015). The contribution of

droplet nucleation to the cloud droplet number tendency, ∂Nd

∂t , is computed following Ovtchinnikov and Ghan (2005), and can

be non-zero in both newly formed and pre-existing clouds. Droplet nucleation is restricted to occur at cloud-base in pre-existing20

clouds but can occur at all levels of newly-formed clouds where cloud water mass is predicted to develop. Additionally, ∂Nd

∂t

includes sink terms such as accretion of cloud water, self-collection of hydrometeors, evaporation, autoconversion, advection,

and inter-type scavenging of hydrometeors. Autoconversion is parameterized as a function of cloud water content and droplet

number, Nd (Khairoutdinov and Kogan, 2000). Ice and mixed-phase cloud microphysics are based on Liu et al. (2007) and

Gettelman et al. (2010).25

2.2 Simulation Design and Analysis

We perform a set of simulations with MARC using different activation schemes (see Appendix A for more details). For both the

pseudo-analytical ARG (Abdul-Razzak and Ghan, 2000) and iterative nenes (Morales Betancourt and Nenes, 2014b) schemes,

we include both a _comp and a _min_smax variant. The _min_smax approach incorporates a minimum-Smax heuristic and

neglects inter-modal competition for water vapor during activation (Appendix A4). Rothenberg and Wang (2017) demonstrated30

using a large ensemble of parcel model simulations that in much of the physico-chemical parameter space which describes a

given aerosol population with fixed modes, activation dynamics are insensitive to changes in all but a single, “dominant” aerosol

mode. The number concentration of particles in this mode (often the accumulation mode sulfate) then strongly constrains the

total number of droplets nucleated from the complete aerosol population. In addition to the desire to test a variety of different
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activation schemes, including these _min_smax simulations affords a novel way to evaluate the behavior of the complex nenes

and ARG schemes.

For the PCM schemes, we use both the main4 and gCCN3 schemes of Rothenberg and Wang (2017), and the 4th-order OLS

scheme (ols4) of Rothenberg and Wang (2016) for the minimum-Smax heuristic. We also note that for the nenes scheme, we

apply the kappa-Köhler theory formulation to handle dust instead of the adsorption mechanics implemented by Kumar et al.5

(2009). Other than the change in activation schemes, the simulations use the same emissions scenarios and physics schemes.

For each scheme, we performed a pair of 6-year simulations using a horizontal grid resolution of 1.9× 2.5 and 30 vertical

levels. Each simulation is run with prescribed sea surface temperatures and ice cover running an annual cycle for the year 2000.

To focus this work on the indirect effect, we diagnose the aerosol direct radiative effect through additional radiative transfer

calls during model run-time, but we do not include this effect in the heating rates used to forward-integrate the model. The10

pairs of simulations differ only in their prescribed aerosol and precursor gas emissions; here, we use a present day (“PD”) and

pre-industrial (“PI”) corresponding to the years 2005 and 1850, respectively. Following Kim et al. (2008), we use constant

emissions derived using an offline modeling process (Mayer et al., 2000; Wang, 2004) for BC and primary OC; emissions

of DMS and VOC (isoprene and monoterpene) vary on a monthly basis. SO2 emissions are taken from the default CESM

inventory (Lamarque et al., 2010). Dust emissions are based on modeled wind speeds and land-surface usage and are tuned15

following Albani et al. (2014). Similarly, sea salt emissions are dependent on both wind speeds near the surface as well as sea

surface temperature and use the original scheme used in CESM (Liu et al., 2012).

For all simulations, we output monthly mean fields and analyze the final 3 years of output for both the PD and PI cases.

The change in shortwave cloud radiative forcing between the two cases is diagnosed using a decomposition which takes into

account impacts due to surface albedo change (Ghan, 2013):20

∆Cclean = ∆(Fclean −Fclear,clean)

where ∆ indicates the difference between the PD and PI simulations, Fclean is the radiative flux calculated neglecting the

scattering and absorption of all aerosol, and Fclear,clean further excludes clouds.

Additionally, we output a suite of instantaneous cloud micro- and macrophysical variables sampled at either cloud-top or

one kilometer above the surface and saved every three hours over the duration of the simulations. For consistency with the25

radiative transfer calculations in the model, the maximum-random overlap hypothesis is used to derive cloud-top quantities

(e.g. Morcrette, 1991), which assumes that adjacent layers of clouds overlap as completely as possible, but separate layers

of clouds randomly overlap. To estimate the sensitivity of the indirect effect and cloud microphysical properties to cloud

and aerosol perturbations, we analyze timeseries of the quantities of interest in each grid cell, considering only those where

liquid water clouds are present (temperature <-5 C) between -60°S and 60°N. From these masked timeseries in each grid cell30

we compute climatologies of aerosol and cloud radiative microphysical properties which we then compare against to assess

sensitivity of the shortwave cloud radiative effect to aerosol and cloud microphysical perturbation.
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2.3 Other Data

2.3.1 Satellite Observations

To assess MARC’s performance in simulating present-day cloud and radiation fields, we use a climatology of observations

derived from satellite-based sensors. Cloud micro- and macro-physical fields were derived from the MODerate Resolution

Imaging Spectroradiometer (MODIS; Collection 5.1). Cloud droplet number is derived from Level 1 data from the same5

instrument using a technique employing an adiabatic cloud assumption (Bennartz and Rausch, 2017); for this reason, it is

only suitable for maritime cloud regimes equator-ward of 60°. The global radiative budget at the top of the atmosphere is

estimated using the climatology from the Clouds and Earth’s Radiant Energy System (CERES) Energy Balanced and Filled

(EBAF) dataset (Loeb et al., 2009). All data is re-gridded to the MARC simulation grid before time-averaging for analysis;

because the CERES data is originally a higher resolution than the MARC simulation grid, this introduces a small bias by10

suppressing regional variability. Therefore, care is warranted when compare regional features of the dataset with the radiation

fields produced by our simulations.

2.3.2 CDNC Observations

Because the MODIS-derived cloud droplet number concentration retrievals have a high degree of uncertainty, we also evaluate

simulated droplet numbers against a large collection of in situ observations previously compiled by Karydis et al. (2011)15

(see their Table 2). We compare these observations to instantaneous output of in-cloud droplet number from our present-day

simulations, first interpolated to 850 mb, and then averaged over the indicated seasons and observation areas for the final three

years in each model run. For observations from a specific location, we locate the model grid-cell containing that location

for analysis. As a reference, we include the modeled CDNC corresponding for each observation produced by the chemical

transport model simulations performed by Karydis et al. (2011). Figure 1 plots the global distribution of where the observations20

are sourced.

2.3.3 AeroCom Model Comparison

We supplement our simulations by further analyzing an additional set of climate model output from the Aerosol Compar-

isons between Observations and Models (AeroCom) Indirect Effects Experiment. This intercomparison includes 5 indepen-

dent aerosol-climate models (CAM5, ECHAM6-HAM2, ModelE-TOMAS, SPRINTARS, and HadGEM3-UKCA), as well25

as several variations on the core models adjusting the cloud microphysical scheme (CAM5-MG2), the turbuluence closure

(CAM5-CLUBB), and the autoconversion scheme (SPRINTARS-KK). Similar to the experiment conducted here, pairs of in-

tegrations (using present-day and pre-industrial emissions scenarios) were performed with each model, using the same IPCC

emissions scenarios for primary aerosol and precursors (Lamarque et al., 2011). Each simulation uses prescribed sea surface

temperatures, sea-ice extent, and atmospheric greenhouse gas concentrations, and was run for a length of five model years. A30

6



detailed summary of each model and its suite of parameterizations relevant for modeling the indirect effect can be found in

Appendix A of (Zhang et al., 2016).

3 Results

3.1 Influence of activation scheme versus observations

3.1.1 Cloud droplet number concentration5

Predicted cloud droplet number concentration (CDNC) from each variant of MARC are compared against observations sourced

from around the globe (Fig. 1) in Fig. 2. MARC generally under-predicts CDNC in regimes where observed CDNC are very

high, particularly over polluted continental regions. Both of the nenes schemes and each of the min_smax schemes (relative to

their full-competition reference) are better able to simulate the high CDNC values in these regions. In clean marine regimes,

all of the MARC simulations produce too-little variance in simulated CDNC, although most of the comparisons are within10

±50% of the observations, which tend to be small. The detailed aerosol, chemistry, and activation treatment in the NASA

GMI model utilized by Karydis et al. (2011) produces much better agreement with observations, although their model also

tends to consistently predict too much CDNC over continental regions; over half of their reported values are greater than their

corresponding observed CDNC values by ±50%.

Distributions of relative error in model-simulated CDNC versus observations aggregated by region are shown in Fig. 3. On15

average, MARC performs the worst in continental regimes, regardless of activation scheme. In contrast, the average simulated

CDNC in clean marine regimes is well-calibrated, but has much higher variance. Polluted maritime regimes tend to have the

least variance, and the model performs better in these regimes than over continents. In the global average, though, CDNC

burden is relatively well-predicted in comparison with recent modeling estimates. Estimates of global-average CDNC in the

simulations performed here range from 60-91 cm−3 (for the arg_comp and nenes_min_smax cases, respectively). This is mostly20

in agreement with recent studies, albeit on the lower side of estimates (75-135 cm−3 by Penner et al. (2006) using a suite of

models employing the Abdul-Razzak and Ghan (2000) activation scheme; 83 cm−3 by Leibensperger et al. (2011) using an

empirical relationship between aerosol and droplet number; 96 cm−3 by Barahona et al. (2011) using an earlier variant of the

Morales Betancourt and Nenes (2014b) activation scheme).

For a more rigorous assessment of simulated CDNC, we compare MARC fields to CDNC derived from MODIS observations25

(Bennartz and Rausch, 2017) in Fig. 4. Enhancement in CDNC downwind and in the vicinity of continents and anthropogenic

emissions sources are clearly visible in the satellite dataset, particularly in the regions offshore of the United States and China.

Averaged over the entire oceanic region under consideration, MARC under-predicts CDNC by 45-56% depending on which

activation scheme is used. However, CDNC is consistently too small in several regions regardless of activation scheme, par-

ticularly in both the north and south Atlantic, in the portion of the Southern Ocean that lies south of the Indian Ocean, and in30

the north Pacific. The only oceanic region where the model over-estimates CDNC is in the equatorial upwelling region of the

eastern Pacific. Enhancement of CDNC by anthropogenic aerosol in coastal regions is best-captured by the nenes and PCM
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schemes; this is particularly the case downwind of China and the United States, where the ARG schemes tend to yield a greater

under-prediction of CDNC versus the other schemes.

Although using different activation schemes does not directly perturb the simulated aerosol distributions in MARC, the two-

way coupling facilitated by nucleation scavenging can indirectly influence average aerosol number concentrations. In these

simulations, the PD accumulation mode number concentration over the oceans is 31-40% smaller in the simulations using the5

nenes and PCM activation schemes versus the ARG. This is likely because the former two schemes tend to nucleate more

droplets, given a similar aerosol population. The attendant increase in nucleation scavenging decreases accumulation mode

number, which then depresses potential cloud droplet number. As a result, the difference in the long-term average CDNC

between the different schemes is not as large as it otherwise might be, hence the similar distributions of error relative to

MODIS-derived CDNC. The region of too-high CDNC simulated by MARC in the eastern equatorial Pacific coincides with a10

region of enhanced, persistent deep convection and precipitation in the model.

3.1.2 Clouds and radiation

Compared to the original version of CESM/CAM5.3, the inclusion of an alternative aerosol formulation does not substantially

change the model’s simulated cloud and radiation fields, as illustrated in Fig. 5. To demonstrate the extent to which altering the

activation scheme can influence these fields on the large-scale, we have included in Fig. 5 zonal averages computed from an15

ensemble of aerosol-climate models from the AeroCom experiment, four of which are themselves variants on the CAM5.3 with

alternative microphysics (Gettelman and Morrison, 2015) and/or moist turbulence scheme (Bogenschutz et al., 2013). Except

in the Northern Hemisphere sub-tropics, MARC tends to under-predict total aerosol optical depth (AOD) relative to both

observations and the reference models (Fig. 5a). This is generally the case for all of the reference models as well, and MODIS

estimates of AOD are thought to be biased high over oceanic regimes (Levy et al., 2013). However, MARC consistently predicts20

smaller AOD than the other models considered here. As previously noted in Sect. 3.1.1, there are differences in simulated

accumulation-mode sulfate number concentration depending on the activation scheme used with MARC, but the fact that these

differences do not show up in the zonal-average AOD suggests that MARC consistently predicts too-few coarse mode aerosol.

Present-day zonal average cloud macrophysical properties are summarized in Fig. 5b-d. MARC generally performs compa-

rably with other models in re-producing zonal patterns in cloud fraction, cloud optical depth, and liquid water path. The nenes25

and PCM schemes produce slightly higher cloud optical depth across all latitudes and particularly in the tropics relative to the

other activation schemes. MARC tends to under-predict cloud optical depth and liquid water path in polar regions, although

this error is common in nearly all AeroCom models as well. The preponderance of mixed-phase clouds greatly complicates

assessing these regions, and MODIS retrievals can become unreliable due to changing surface conditions (in particular, reflec-

tive surfaces such as snow which increase in frequency towards the poles). MARC is well within the inter-model spread in30

simulated cloud macrophysical properties across latitudes.

The zonal averages of liquid cloud optical depth in Fig. 5c suggest that MARC may tend to over-predict the influence of deep

convective clouds in the tropics, while under-predicting their influence in the sub-tropics. Again, this behavior is common in

nearly all the AeroCom models analyzed here. However, Fig. 4 shows that some MARC simulations also over-predict CDNC
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in the equatorial Eastern Pacific, relative to available observations, although we also note that the observations are very low in

this region. It is possible that this regional over-prediction of CDNC could be related to a local enhancement in the frequency

of deep convection, although we note that convective precipitation in this region differs very little between runs with different

activation schemes, suggesting that they play only a minor role here.

Following the discussion in Sect. 3.1.1 the largest activation-induced differences between simulations arises in cloud-top5

cloud droplet number (CDNC, Fig. 5e). Poleward of 60°, CDNC simulated by the nenes schemes is up to double that simulated

by the ARG schemes. These differences are most pronounced in latitudes with significant anthropogenic aerosol emissions,

particularly in the Northern Hemisphere. All the models shown here substantially under-predict CDNC in the extra-tropics,

but the MODIS-derived estimates are highly uncertain in this region (Bennartz, 2007). The combination of these differences in

cloud microphysical properties yields small differences in the model-estimated shortwave cloud radiative effect (Fig. 5f).10

3.2 PD-PI changes in clouds and radiation

Figure 7b illustrates that in absolute terms, difference in PD shortwave cloud radiative effect (CRE) simulated using each

activation scheme is small. However, the change in cloud radiative effect between the PD and PI simulations (Fig. 7a) has

a spread of nearly 2 Wm−2 across all latitudes. Note that these differences can be much larger on local scales. Activation

schemes which produce the smallest cloud-top droplet number concentration generally produce the largest differences in cloud15

radiative effect between the two emission scenarios. Relative to the arg_comp scheme, all other schemes produce a smaller

cloud radiative effect in the PD emissions case (Fig. 7b); magnitude of these inter-scheme differences is comparable to the total

change between the PD and PI simulations for all schemes. The largest differences between schemes occur in the tropics and

in the mid-latitudes of the Northern Hemisphere, both regions influenced by anthropogenic aerosol emissions and where the

largest differences in CDNC also occur.20

To better illustrate the sources of differences in simulated CRE, changes in aerosol and cloud microphysical properties

between the PD and PI emission scenarios are shown in Fig. 6. Cloud condensation nuclei (CCN) robustly increase in Fig. 6a as

aerosol emissions increase from the PI to the PD scenarios. Furthermore, CCN increases the most in the Northern Hemisphere,

where anthropogenic aerosol emissions are the largest. The regions of largest increases in CCN also tend to feature the largest

increases in CDNC (Fig. 6b), although there is a factor of 3-4 difference between CDNC simulated by the various activation25

schemes. At the same latitudes, droplet effective radius decreases (Fig. 6c), optical depth increases (Fig. 6d), and liquid water

path increases (Fig. 6f). Changes in cloud fraction (Fig. 6e) are much noisier, but generally there is an increase in cloudiness

between the two cases.

Regardless of which activation scheme is used, compared to Fig. 5c-d, liquid water path and cloud optical depth increase

by up to 20% co-located where the largest increases in CDNC occur. The latitudes of the largest PD-PI differences in CCN,30

CDNC, droplet effective radius, and liquid water path are coincident with the largest changes in cloud optical depth and

attendant shortwave CRE. Changes in cloud fraction do not necessarily coincide with these other changes in cloud properties,

and instead maximize in the high-latitudes of the Northern Hemisphere. However, given that CCN (as a proxy for aerosol

available to nucleate cloud droplets) differs little when using different activation schemes, the spatial pattern of these changes
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in cloud microstructure and CRE strongly suggests that the specifics of activation in the MARC simulations is driving the

changes in CRE.

3.3 Influence on the aerosol indirect effect

Figure 8 shows differences in globally-averaged aerosol direct and indirect effects computed from the pairs of PD and PI runs

for each activation scheme. These simulations yield differences of up to 0.8 Wm−2 between simulations, or a 100% increase by5

the strongest over the weakest estimate. Differences in the total aerosol influence on climate (adopting the IPCC nomenclature

“ERFaci+ari” to denote the separate contributions from the indirect (aci) and direct (ari) effects; Boucher et al., 2013) here are

strongly modulated by perturbations to the shortwave cloud radiative effect, ERFaci-shortwave, which is broadly consistent

with the changes in cloud microphysical properties illustrated in Fig. 6.

Each perturbed component in the top-of-atmosphere (TOA) radiative budget are decomposed in Table 2. Consistent with ex-10

pectations, there is relatively little variance in the direct radiative forcing diagnosed for each activation scheme, even accounting

for the feedback of increased nucleation scavenging depressing aerosol number. Similarly, there is not much difference in the

longwave CRE, which is dominated by ice-phase clouds and not directly influenced by adjusting the activation scheme. The

longwave indirect effect in these models is net positive in all cases; dust and large sulfate particles in the model can nucleate

ice crystals (Liu et al., 2007), and the increase in aerosol between the two emission scenarios yields ice clouds with modestly15

higher ice crystal number concentration, higher ice water path, and increased longwave influence relative to the shortwave. Us-

ing a similar modeling setup, Gettelman et al. (2012) previously showed a similar influence of aerosol on ice cloud-longwave

radiation interactions.

Furthermore, we note that the indirect effect in the longwave is critically sensitive to the baseline ice crystal number burden

simulated in the model. Additional tests using an alternative, aerosol-coupled ice nucleation scheme (DeMott et al., 2010)20

decreased the longwave cloud radiative effect in MARC in a manner that scaled nearly linearly with ice crystal number. Using

this alternative scheme produced much higher cloud-top ice crystal concentrations and ice water path, as well as a larger change

between the two fields in the PI and PD simulations.

The majority of the difference in the indirect effect and net TOA radiative flux thus arises from changes in cloud interactions

with shortwave radiation via cloud optical thickness. For the shortwave CRE alone, the spread between the different activation25

schemes is larger than the net effect itself at 1.1 Wm−2. Both the longwave CRE and aerosol direct radiative forcing act

to minimize the net radiative effect and are approximately proportional to the magnitude of the shortwave contribution; for

instance, the arg_min_smax (which has the largest shortwave contribution) has the largest longwave effect. The small spread in

direct effect in these simulations correlates very strongly with the change in global-average aerosol optical depth, but changes

in that field are only loosely related to changes in the available CCN.30

The difference in shortwave radiative forcing between the comp and _min_smax cases for the ARG and nenes simulations is

an important detail. Following 6b, for both of these simulations the _min_smax case produces a larger change in CDNC than

the comp one. However, the resulting comparative changes in shortwave radiative forcing have opposite signs; for ARG the
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_min_smax case has a larger (more negative) radiative forcing, but for nenes it is smaller (less negative). By comparison, the

equivalent case for pcm (the _ols4 case) has a larger radiative forcing than both pcm_main4 and pcm_gCCN3.

3.4 Potential influence of model response

The previously-discussed changes in the indirect effect and net TOA shortwave radiative flux potentially have implications

for the model meteorology observed in our simulations. Although modifying the activation schemes only directly influences5

the cloud microphysics, the resulting changes in radiative forcing could impact both the larger-scale circulation, as well as

locally affect processes such as convection. To highlight this, Fig. 10 illustrates the simulated annual climatology of convective

precipitation rate for the baseline arg_comp simulation, and Fig. 11 summarizes the absolute difference between this metric

for each of the other simulations with modified activation schemes.

The majority of the global-average convective precipitation simulated by MARC occurs in the inter-tropical convergence10

zone, extending from the Indian Ocean basin into the Pacific around the equator. This region plays an important role in the

global shortwave radiative budget, as evidenced by both the localized enhancement in cloud optical depth and shortwave cloud

radiative effect previously noted in Fig. 5. Each of the simulations plotted in Fig. 11 yield an increase in the global average

convective precipitation rate; several of the simulations, particularly those with smaller PD-PI shortwave radiative forcing such

as the nenes_min_smax and pcm_gCCN3 case, show large localized increases in convective precipitation rate in the Indian15

Ocean and Western Pacific, with decreases over the Maritime Continent. In contrast, changes in large-scale precipitation rate

generally decrease in the global average, with the largest local changes following storm tracks in the Northern and Southern

Hemispheres (not shown here), with minimal changes in the tropics.

These local increases of up to 10% of the reference simulation convective precipitation rate suggest that local changes in

meteorology might play a larger role in the observed changes in cloud optical depth and other radiative forcing diagnostics than20

local aerosol effects and their derivatives alone. For instance, the localized increases in convective precipitation rate observed

in several of the simulations in Fig. 11 could correspond to changes in either the frequency or intensity of convective activity in

these regions, which could partly explain some of the differences between simulated changes in cloud optical depths in the PD

case. Aerosol activation does not explicitly or directly impact convection as simulated by MARC, but both local and non-local

impacts from aerosol forcing could influence the model-simulated meteorology in such a way that bolsters convective activity.25

Some of these changes in meteorology could arise from other parameterizations embedded in MARC, particularly the deep

convection scheme, each of which may have their own idiosyncrasies and produce complex interactions with each other

Because of these effects, the potential role of meteorological response to contribute towards the observed changes in cloud

optical depth and thus shortwave radiative effect in the simulations presented here confounds to some extent the purely

activation-driven changes.30

3.5 Indirect effect sensitivity to aerosol-cloud perturbations

We highlight in Fig. 9 the relationship between the change in shortwave CRE to model-simulated aerosol burdens over maritime

and continental regions. The increase in direct aerosol and precursor gas emissions in the PD emission case leads to an increase

11



in both aerosol optical depth (AOD) and the availability of cloud condensation nuclei (CCN). However, the exact magnitude of

this increase is dependent on the formulation of the aerosol module in each model, especially their simulated size distributions.

Inter-model spread in the PD case for AOD and its sensitivity to perturbation from the PI climate has been associated with up

to a 0.5 Wm−2 spread in estimates of the direct effect (Shindell et al., 2013), but it also has implications for the indirect effect

following Fig. 9a.5

The largest AOD increases occur over land, and these are also associated with larger perturbations to shortwave CRE. The

MARC simulations and most of the AeroCom models do not simulate major increases in AOD over the ocean, even while there

is considerable spread in the magnitude of ∆CRE in that regime. One potential explanation for the small response in AOD over

these ocean regimes could be that AOD is dominated by large natural aerosol such as sea salt in these regions, which would

not directly increase in response to anthropogenic emissions.10

CCN also directly increases with anthropogenic emissions. However, in contrast with AOD, small PD-PI changes in CCN

are associated with a larger (more negative) indirect effect (Fig. 9b). For the entire set of AeroCom models and the MARC

simulations performed here, as the model-simulated ∆AOD increases, the indirect effect becomes weaker. The slope of the

∆CCN-∆CRE relationship is much steeper for the MARC simulations than the AeroCom ones (due to an outlier model with

relatively insensitive CCN fields). Different aerosol metrics have previously been shown to have different relationships with15

model- and satellite-derived estimates of the indirect effect, but they usually have the same sign (Penner et al., 2011). This

suggests that each metric is capturing a different facet of the aerosol size distribution which may or may not be relevant to

changes in the indirect effect, depending on how they influence CDNC, which would potentially be conditioned on the initial

climatology of CDNC simulated under a PI emissions case.

To assess this influence, we plot similar relationships between CDNC, liquid water path (LWP) and liquid cloud fraction in20

Fig. 12. The spread change in CDNC between different models very weakly correlates with the strength of the indirect effect

(Fig. 12a). Instead, a much better predictor of the indirect effect is the pre-industrial CDNC (Fig. 12b), which itself strongly

positively correlates with the change in CDNC between PI and PD. This is evident in Fig. 12-b, which shows a positive

correlation between pre-industrial CDNC levels and the indirect effect, such that as PI CDNC increases, ∆ CRE decreases

(becomes more negative). The models which produce higher CDNC for the same background or natural aerosol tend to have25

weaker indirect effects.

Liquid water path and cloud fraction exhibit a different relationship with the indirect effect (Fig. 12c-f). Using different

activation schemes in MARC directly influences the sensitivity of LWP to aerosol perturbation through enhancement of CDNC,

which strongly modulates the indirect effect. Although MARC generally simulates much larger LWP in the PI case, the range

of indirect effects it simulates spans the spread of those obtained from the AeroCom models. The same relationships hold for30

liquid cloud fraction, which is correlated with LWP in both MARC and the ensemble of AeroCom models, particularly for

oceanic regimes. The AeroCom models simulate far more diversity in LWP and cloud fraction in the PI case, but tend to agree

on the magnitude of change in PI and PD, as does MARC.

Using different activation cases produces larger differences in simulated PI CDNC versus either LWP or cloud fraction. This

suggests that the large-scale cloud properties in MARC are insensitive to the background aerosol level. Instead, changes in the35
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simulated indirect effect arising from the different activation schemes is dominated by the first indirect effect and a change in

the ambient CDNC burden, which is driving microphysical changes leading to the observed perturbations in both cloud optical

properties and their spatio-temporal distribution.

3.6 Summarizing the influence of aerosol activation

To contextualize the influence of aerosol activation on the indirect effect in the simulations presented here, we plot estimates5

of the indirect effect (ERFari+aci) reported by Boucher et al. (2013) in Fig. 13. These include a highlighted subset of models

and results combining satellite observations with model analysis (Fig. 13, AR5 Table 7.4), results from a previous model

inter-comparison using CMIP-class models (Fig. 13, AR5 Table 7.5 Shindell et al., 2013), and new estimates derived from the

AeroCom models considered here and the various configurations of MARC with different activation schemes. The estimates

presented here span a wide variety of potential model physics and aerosol couplings and, therefore, different aerosol indirect10

effects.

In our simulations with MARC, differences in aerosol activation produce a spread in estimates of the indirect effect compa-

rable in magnitude to the total inter-model diversity. Furthermore, our estimates–especially for the configurations with lower

CDNC–tend to cluster in the higher-end of estimates compared to previous inter-comparisons. The same is true for the Ae-

roCom models considered here, although we note that four of the AeroCom models are closely-related variants of the same15

parent model as MARC (the NCAR CAM5.3) and therefore the estimates are not totally independent of one another.

Our range of indirect effects induced by different activation treatments is much larger than the few others reported in the

literature. By re-ordering the droplet activation calculation in each model timestep, Gettelman (2015) induced a 0.43 Wm−2

decrease in the magnitude of the indirect effect; Ghan et al. (2011) reduced it by just 0.16 Wm−2 when switching between

two different activation schemes. This range is much smaller than the sensitivity of 0.86 Wm−2 we report for the experiments20

conducted here. We note that both of those previous estimates of the sensitivity of the indirect effect to activation used nearly

identical global models (early versions of the NCAR CAM5 with the same aerosol module). Our use of a unique aerosol model

could contribute to some of the difference in the range of estimates of the indirect effect. This possibility can indirectly be

tested using the suite of model results presented in this work, since one included AeroCom model is the NCAR CAM5.3 in

its default configuration, which should be nearly identical to the arg_comp MARC configuration here save for the different25

aerosol module. The difference in ERFari+aci between these two simulations is 0.45 Wm−2, which is half of the total range

reported here for MARC with different activation schemes.

Additionally, we note a non-negligible meteorological response to the changes in activation in some of our simulations,

particularly with regards to convective activity in the tropics. These changes in meteorology might imprint on the estimated

sensitivity of MARC to changes the activation scheme, since they can produce effects in cloud optical depth or other fields30

which influence the shortwave radiative effect.
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4 Discussion and Conclusions

In this study, we have quantified the influence of the representation of droplet activation in global models on the sensitivity of the

aerosol indirect effect. Using a suite of state-of-the-science activation parameterizations incorporated into our global aerosol-

climate model, MARC, we performed simulations under both pre-industrial and present-day aerosol emissions scenarios to

estimate the magnitude of the indirect effect and its relationship to changes in both cloud and aerosol fields. Previously,5

few studies exploring the indirect effect focused explicitly on the role of droplet activation, instead concentrating on either

the processes that produce ambient aerosol itself (emissions and atmospheric chemistry) or the results of changes occurring

purely in cloud droplet number concentration (such as imposed minimum values for cloud droplet number or in microphysical

processes which modify it).

Beyond assessing three unique activation schemes, we supplement our analysis by considering three additional, idealized10

droplet activation schemes which use a heuristic to simplify accounting for competition between different aerosol modes for

moisture during the nucleation process. Including these heuristics provides more than just additional variability in the activation

schemes studied here. Previous work has shown that for many aerosol-meteorology parameter combinations arising in a global

model, a single “dominant” mode (typically the accumulation mode, especially if it is mostly comprised of sulfate) tends to

be a good predictor for the activation dynamics of the full aerosol population (Rothenberg and Wang, 2017). Our results here15

indicate that the small differences in droplets nucleated assessed through this heuristic for a given activation scheme can have

very large impacts on clouds and radiation in the global average, even if it only leads to small regional changes in those fields.

Additionally, this suggests a caveat that must be tackled when these activation schemes are used with novel aerosol-climate

models: compared to more detailed parcel model calculations, the sensitivity and accuracy of the activation schemes may be

impacted by the precise size and number distributions produced by a given modal or sectional aerosol formulation. Docu-20

menting these sensitivities when evaluating new aerosol-climate models would provide useful information for contextualizing

aerosol-cloud interactions simulated by those models relative to others.

The relationship between cloud droplet number concentration and aerosol in MARC is critically influenced by the repre-

sentation of droplet activation. Estimates of CDNC in the present-day climate are up to 40% higher in polluted regimes when

using the most-sensitive activation scheme, and the increase from pre-industrial to present day is up to twice as large. CDNC25

in regimes dominated by natural aerosol, especially remote marine regions with prevalent sea salt, is also impacted by the

activation scheme. Using the advanced droplet activation schemes included here, which explicitly account for biases due to

giant CCN particles, helps reduce the under-prediction in maritime regimes compared to satellite observations and in polluted

regimes compared to in situ observations. However, MARC systematically produces too few CDNC in most parts of the globe.

While this could be due to misrepresentation of aerosol-cloud processes, we emphasize that it could also be fundamentally re-30

lated to the simulated aerosol size distribution within MARC and how it apportions aerosol number and mass in the size ranges

where likely-CCN reside. However, evaluations of previous versions of the model (Wang, 2004; Kim et al., 2008; Ekman et al.,

2012) and those presented in the Supplement to this work suggest that MARC captures the bulk aerosol climatology rather

well across the globe; thus, these systematic biases in CDNC and CCN could apply to other aerosol-climate models as well.
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Future work will more explicitly compare the simulated aerosol fields versus the original aerosol module coupled to the CESM

to better understand how these differences contribute to simulated aerosol direct and indirect effects.

We note that MARC’s under-prediction of CDNC may contribute to an over-sensitivity of the indirect effect to perturbations

in aerosol emissions. This is best understood in the context of Twomey (1991) and Carslaw et al. (2013); in regimes where

CDNC is low, cloud albedo can be particularly sensitive to changes in a baseline CDNC level. Therefore, it is plausible that the5

AIE simulated by MARC may be more sensitive to the details of activation than other, similar aerosol-climate models would

be.

Compared to available satellite measurements and the models participating in the AeroCom inter-comparison, though,

MARC does well at capturing the present-day climatology of cloud and radiation fields, likely because its parent model,

the NCAR CESM, itself is well-tuned towards this end. However, the details of activation and how it influences cloud micro-10

physics plays a major role in setting the shortwave cloud radiative effect. Under present-day emissions, the differences between

that effect for each of the different activation schemes is as large as the change from the pre-industrial case for each scheme.

This leads to large differences in the modeled indirect effect in each model, almost entirely occurring due to the shortwave

cloud radiative effect. The resulting spread in indirect effect estimates is twice as large as that previously reported by studies

considering activation, and about as large as the inter-model spread from both historical and recent model inter-comparisons,15

which consider models including a variety of different aerosol effects.

We note that the pre-industrial CDNC burden is a very strong predictor of the strength of the indirect effect, but not neces-

sarily the change between pre-industrial and present day; this hints at the previously-hypothesized buffering effect of clouds

on aerosol perturbations (Stevens and Feingold, 2009). Our analysis strongly supports this notion; our case which produces the

largest change in CDNC, nenes_min_smax, yields nearly the smallest indirect effect, but simultaneously produces the highest20

values for pre-industrial CDNC. While consistent with the results of Hoose et al. (2009), this is opposite of the results reported

by Storelvmo et al. (2009), although their model uses prescribed aerosol fields so there is no interaction between cloud and

aerosol processes. Changes in liquid water path and cloud fraction correlate strongly with modeled total changes in cloud ra-

diative effect, but poorly with changes in CDNC in our simulations. This suggests that the buffering effect must be dominated

by changes in the second indirect effect, rather than the first. Both of these relationships hold for the broader sample of models25

provided by the AeroCom inter-comparison.

Additionally, we note that in our simulations with MARC, changes to the activation scheme seem to elicit local meteoro-

logical responses beyond those that might be directly accounted for by changes in cloud microphysics alone. In particular, we

noted changes in convective precipitation in the tropics that might hint at changes in the frequency and/or intensity of convec-

tion which imprint on the local climatology and sensitivity of cloud optical depth to aerosol perturbation. Model meteorological30

responses confound to at least some extent the changes in AIE arising from the initial changes to the activation schemes. The

largest changes in convective precipitation rate are associated with smaller AIE, though, potentially pointing to a buffering

effect when considering that these simulations also have the largest PI CDNC burdens. To address this potential confounding

impact, future work should address whether or not this is an idiosyncrasy of MARC or a more general result by carrying out

similar simulations with alternative global aerosol-climate models.35

15



The weight of these results suggests an important role for activation in setting the sensitivity of the indirect effect. However,

we caution that our approach is not able to disentangle the influence of activation from that due to the underlying aerosol

model and its implicit aerosol size and CCN distributions. This is not meant to diminish the influence of cloud microphysical

treatments on the indirect effect; Gettelman (2015) illustrates the importance of the implicit cloud lifetime effects arising

from liquid water path changes associated with aerosols in contributing to the indirect effect. But since these relationships5

are themselves highly sensitive to simulated CDNC, the influence of the aerosol size distribution and activation is somewhat

more fundamental and just as poorly constrained by available observations. Furthermore, because of the chain of sensitivities

initiating with the aerosol size distribution and activation, estimates of the indirect effect produced from models with highly-

simplified aerosol-CDNC relationships (such as explicitly prescribed CDNC or empirical fits to aerosol mass or volume) are

likely significantly biased.10

To test this idea, additional work following this and Kodros and Pierce (2017) where the embedded aerosol model in a given

global model is substituted while all other physics remain the same could prove useful. We also suggest that future sensitivity

analyses in the vein of Carslaw et al. (2013) include perturbations to the fundamental activation or CCN-CDNC relationship to

account for this source of uncertainty. Constraining this uncertainty is a different matter altogether. Current observations can

not constrain the spatio-temporal variance in the ambient aerosol size distribution, which is critical in setting the sensitivity15

of CDNC and cloud optical properties to aerosol perturbations. New data from aircraft sampling clouds in regimes with the

greatest aerosol-cloud sensitivities across the globe could play a key role in addressing this limitation.

In order to better understand contemporary and account for future climate change, the aerosol community must continue

to seek constraints on the aerosol indirect effect. Although epistemic uncertainty due to unknown pre-industrial emissions

complicates this task, the role of droplet activation illustrated in this work highlights an additional path that the community20

may explore to provide indirect or emergent constraints on AIE via the basic aerosol-CDNC relationship.

Code and data availability. A Git repository archiving the scripts and build files used to process the MARC and AeroCom output and

perform the analyses presented in this work can be found at https://github.mit.edu/darothen/aerocom_activation; documentation on which

scripts and notebooks perform which analyses can be found in the README.md file therein. The source code for MARC can be found in a

Git repository at https://github.mit.edu/marc/marc_cesm, as well as instructions for setting up the model from a standard CESM installation;25

MARC v1.0.2, used in this work, is also archived with DOI 10.5281/zenodo.168192. The emissions datasets and scripts used to generate

them for this work are archived at https://github.mit.edu/marc/marc_input.

Output from the simulations used in this analysis are available upon request.

Appendix A: Droplet Nucleation and Activation Schemes

Droplet nucleation, or aerosol activation, refers to the process through which aerosol, which are entrained through the base or30

sides of a cloud, grow into a nascent cloud droplet population. Assessing this process is complicated by the fact that latent heat

release from condensation on the surface of aerosol within an adiabatically ascending (and therefore cooling) parcel provides
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a strong feedback, limiting the development of supersaturation (relative humidity over 100%) and thus the potential for some

particles (usually referred to as cloud condensation nuclei, or CCN) to grow into droplets. Contrary to its common usage in the

field, CCN is not necessarily a stand-alone, diagnostic measure of a given aerosol population; instead, all aerosol are potentially

CCN, given an updraft sufficient enough in strength to drive a high-enough supersaturation such that they grow large enough

to activate. In the ensuing discussion, we eschew the term CCN and instead focus explicitly on total aerosol number (Na)5

and cloud droplet number (Nd), emphasizing the importance of the activation process in determining how many particles will

nucleate a droplet.

The aerosol size distributions predicted by MARC are explicitly used to constrain droplet activation in the stratiform cloud

microphysics scheme; the shallow and deep convection schemes do not include prognostic droplet number. With respect to strat-

iform clouds, activation is driven by a characteristic sub-grid scale vertical velocity derived from the turbulent kinetic energy10

predicted by the University of Washington shallow convection and moist turbulence parameterization (Park and Bretherton,

2009):

ŵ = max

(√
2

3
×TKE,0.2

)
ms−2 (A1)

All of the aerosol species described in Table 1 — except for the pure BC and OC modes — are included in droplet activation

calculations. Each mode is assigned a fixed hygroscopicity (Petters and Kreidenweis, 2007), except for the mixed sulfate-15

organic carbon (MOS) mode, for which the hygroscopicity is computed as a volume-weighted mean based on the amount

of each species present. Dust is assumed to be comprised of weakly-hygroscopic minerals following Scanza et al. (2014);

the mixed sulfate-black carbon mode (MBS) particles are assumed to have a surface area purely comprised of sulfate, which

dictates their hygroscopicity.

In this work, we have implemented several additional activation schemes and associated variants. Fundamentally, each acti-20

vation scheme attempts to simplify the calculation of the maximum supersaturation achieved in a parcel under the simultaneous

influence of both cooling from adiabatic ascent and warming from latent heat release as water condenses on particles contained

within the parcel. The total of this physical process can be summarized in a single, integro-differential equation:

αV = γGSmax

Smax∫
0

r2(tact) + 2G

tmax∫
tact

Sdt

1/2

dN

dSc
dS (A2)

Here, α and γ are functions weakly dependent on the parcel’s temperature and pressure, V is the velocity of the parcel’s25

adiabatic ascent, r2(tact) indicates the size of a given parcel at the time it activates (grows large enough that, following Köhler

theory, further condensational growth is thermodynamically favorable even if the relative humidity drops, Seinfeld and Pandis

(2006)), G is a particle-dependent condensational growth coefficient, tmax indicates the time at which the maximum supersatu-

ration achieved in the parcel, Smax, occurs, and dN
dSc

represents the aerosol size-distribution re-written in terms of Köhler theory
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and expressed as a function of a particle’s “critical” size. For a rigorous derivation of Eq. A2 and discussion on the assumptions

necessary to simplify it, we refer the reader to Ghan et al. (2011).

It is immediately useful to simplify Eq. A2 by partitioning the integral over dS into two ranges, [0, Spart] and [Spart, Smax].

These ranges effectively split the aerosol population into a subset which do not grow very much between tact and tmax and one

which does. Partitioning the integral in this produces the alternative formulation:5

αV = γGSmax

 Spart∫
0

2G

tmax∫
tact

Sdt

1/2

dN

dSc
dS+

Smax∫
Spart

r(tact)
dN

dSc
dS

 (A3)

The first two activation schemes employed in this study utilize this formulation of the activation equation; the third implicitly

uses the equation, albeit in an alternative form as a system of coupled ordinary differential equations.

A1 Abdul-Razzak and Ghan (2000) (ARG)

Abdul-Razzak et al. (1998) assume the aerosol size distribution can be described by a single lognormal mode, and param-10

eterized the dependence between Smax and the critical supersaturation of the geometric mean radius of that mode, Sm. This

parameterization yields two non-dimensional terms, ηm and ζ. The mode geometric mean standard deviation, σg , does not

appear in either term, allowing Abdul-Razzak and Ghan (the version used here; ARG) to use a parcel model to relate Smax to

Sm, ηm, ζ, and σg . Although originally tuned assuming a condensation coefficient (αc) of unity, Ghan et al. (2011) proposed

scaling G in the expressions for ηm and ζ to account for smaller values. However, within the scheme, G is determined in such15

a way that the ARG scheme neglects gas kinetic effects completely and cannot be easily extended to account for organic films

or surfactants, or other effects which may model surface tension or αc on a particle-by-particle basis.

A2 Morales Betancourt and Nenes (2014b) (nenes)

Nenes and Seinfeld (2003) developed an iterative scheme to solve Eq. A2 based on a sectional aerosol distribution, which

Fountoukis and Nenes (2005) extended to accommodate lognormal modes. The iterative nature of its computation allows the20

scheme to branch under two conditions. In the first, when kinetic limitations on droplet growth are expected, Smax and Spart

are parameterized empirically from a suite of pre-computed numerical simulations. In the alternative branch, the integrals in

Eq. A2 are analytically computed with the assumption that r2(tact) � 2G
tmax∫
tact

Sdt; in other terms, that particles which activate

do not grow much beyond their critical size. The resulting set of equations is similar to the one derived by Abdul-Razzak and

Ghan (2000), owing to their common starting point and lognormal mode assumptions.25

Owing to its flexibility, the iterative scheme has been successively modified over the course of several follow-on papers.

Barahona and Nenes (2007) incorporated the effect of entrainment on a parcel in which activation occurs; Kumar et al. (2009)

added the ability to include insoluble CCN using an adsorption framework; Barahona et al. (2010) modified the original

equations to comprehensively account for the impact of giant CCN; and Morales Betancourt and Nenes (2014a) (the version

used here; nenes) revised the population-splitting approach underlying the iterative scheme to better handle giant CCN and30
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avoid an unphysical discontinuity in their branching conditions. Critically, these schemes improve on the ARG scheme by

accounting for the interplay between gas kinetics and the diffusivity of water vapor. To accomplish this, the schemes compute

G using an average value of the diffusivity over a particle size range corresponding to the mode undergoing activation. This

obviates the need for scaling G based on the chosen value of αc.

However, there are two drawbacks to this method. First, the need for a reference parcel model for tuning is not completely5

eliminated; the branch of of the iterative scheme accounting for kinetic limitations still requires an empirical relationship. Sec-

ond, the iterative scheme can be much more computationally expensive than the ARG scheme, since the calculations–including

costly error function evaluations–must be performed multiple times.

A3 Rothenberg and Wang (2016) (PCM)

An alternative approach to parameterizing droplet activation calculations involves building look-up tables for inclusion in10

global models. However, this approach is not widely used; in a modern model, the parameter-space influencing activation is

very large and covering such a space in a look-up table is intractable. Fundamentally, a look-up table is a cache of results

from a higher-complexity model (in this case, a detailed parcel model), which are used to generate a piecewise-planar response

surface on the fly during model run-time. With respect to activation, look-up table emulation has been successfully employed

with cloud-resolving models featuring simple aerosol/CCN distributions (Ward et al., 2010; Ward and Cotton, 2011) and to15

improve the performance of activation schemes in global models (Ming et al., 2006).

Rothenberg and Wang (2016) applied polynomial chaos expansion to emulate a detailed parcel model simulating activation

of a single lognormal aerosol mode. The technique was later extended to analyze and assess activation of a full-complexity

aerosol scheme (Rothenberg and Wang, 2017). These schemes provide a means to efficiently embed the physics of a full-

complexity parcel model within the context of a global model. The PCM scheme provides a polynomial function mapping a20

set of pre-determined input parameters (such as the parcel updraft speed, temperature/pressure, and the moments closing the

aerosol size distribution) to a value of Smax, which can then be used to diagnose equilibrium droplet activation. Like a look-up

table, a cache of parameters (the coefficients of the mapping chaos expansion basis polynomials) must be pre-computed to

use the PCM. However, the highest-order expansion of the 8 terms reported in Rothenberg and Wang (2016) required just 495

coefficients to be saved to disk, compared to an isotropic or full-factorial design look-up table which would require 108 values25

for the same setup.

Unlike the ARG and nenes schemes, feedbacks on the development of S in a cloudy parcel due to kinetic limitations on

droplet growth are explicitly treated in the PCM scheme, as are the dependence of condensation (G) on particles’ composition

and size. However, inertial limitations on activation (where a particle may experience its critical supersaturation, but has not yet

grown large enough to explicitly activate) remain a source of bias in the formulation applied here, because of the equilibrium30

assumption used to diagnose Nd from Smax.
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A4 Minimum-Smax Heuristic

Additionally, we supplement the PCM, nenes, and ARG schemes with an alternative formulation for expressing the competition

between multiple aerosol modes to nucleate droplets. Rothenberg and Wang (2017) showed that in the majority of cases, a

single mode “dominated” activation calculations; that is, there was one aerosol mode which, when activated alone, in isolation

of its competitor modes, provided a strong constraint activation dynamics and accurately predicted Smax within a few percent.5

This “dominant” mode is defined as the mode which, in isolation of the other modes, produces the smallest Smax when present

in an adiabatically cooling air parcel. Using just the “dominant” mode as a surrogate for the complete aerosol population will

always lead to an over-prediction of Nd because neglecting additional modes effectively limits the surface area of the aerosol

available for condensation, and thus the potential for a large source of latent heat release to overcome adiabatic cooling in the

parcel and limit the development of Smax; this effect tends to dominate the reduction in the sink of ambient water vapor which10

typically constraints Smax. However, a large ensemble of calculations showed this over-prediction of Nd to be small in most

situations.

While no substitute for detailed calculations of droplet activation which take into account all potential factors, using just the

“dominant” mode for assessing activation provides a simple heuristic for widening the pool of potential activation schemes to

couple in our model. For the ARG and nenes schemes, the heuristic is applied by looping over each available aerosol mode15

and computing activation independently. For the PCM schemes, the same technique applies, but we use a chaos expansion

explicitly built for single mode calculations. Including the minimum-Smax scheme variants in our global modeling calculations

allows us to explore the dependence of the indirect effect on the nuances of droplet activation without resorting to imposing

unphysical restrictions on either cloud droplet number or aerosol activation dynamics.
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Figure 1. Locations of in situ observational data reported by Karydis et al. (2011). Different colors correspond to classifications of different

aerosol regimes.
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Figure 2. One-to-one comparisons between observed and simulated cloud droplet number concentrations from regions across the globe.

Panels (a)-(g) show results from the MARC simulations using the indicated droplet activation schemes; panel (h) shows results from CDNC

modeled by a chemical transport model with detailed aerosol and activation treatments.
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Figure 3. Distributions of relative error between observed and simulated CDNC (Nd) for each configuration of MARC, aggregated by region.
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Figure 4. Global distribution in relative error of MARC-simulated CDNC versus MODIS-derived satellite observations (bottom-right)
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Figure 5. Zonal average aerosol, cloud, and radiation fields under present-day emissions scenario. Colored lines correspond to configurations

of MARC using different activation schemes; black lines are derived from CERES-EBAF (SW Cloud Radiative Effect) and MODIS (all

other panels) observations. The shaded gray area corresponds to the inter-model spread for all available models participating in the AeroCom

Indirect Effects Experiment; dashed white lines are the zonal averages for each participating model. Cloud droplet number is computed at

cloud-top, using only grid cells over the ocean. Here, SW Cloud Radiative Effect is computed using the difference between clear-sky and

all-sky fluxes.
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Figure 6. Same as Fig. 5, except illustrating differences in indicated fields between pre-industrial (PI) and present-day (PD) emissions

scenarios. CCN here is computed at an altitude of 1 kilometer in the model.
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Figure 7. Difference in shortwave cloud radiative effect between pre-industrial and present-day emissions scenarios (a) and relative to the

arg_comp simulation for present-day emissions (b).

Figure 8. Global-average effective radiative forcing for aerosol direct radiative effects (ERFari) and indirect effects (ERFaci) in both the

shortwave and longwave. The total effect is computed as the sum of the direct and both indirect components.
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Figure 9. Relationship between regionally-averaged PD-PI change in shortwave cloud radiative effect and aerosol optical depth (a) or CCN

concentration (b). Colors denote averages over all land area (red), ocean (blue), or whole globe (black). Glyphs denote MARC simulations

with different activation schemes; X denotes AeroCom model. Linear regressions for MARC simulations are represented by solid lines, with

corresponding correlation coefficient indicated on plot; linear regressions for AeroCom models are given by the dashed lines.
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Figure 10. Annual average convective precipitation rate in the present-day arg_comp simulation.
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Figure 11. Absolute difference between present-day, annual average convective precipitation for each of the indicated simulations versus the

arg_comp reference simulation.

Aerosol Mode Geometric Mean

Particle Diameter (µm)

Geometric Std

Deviation (σg)

Density (g cm−3) Hygroscopicity (κ)

NUC 0-0.00584 1.59 1.8 0.507

AIT 0.00584-0.031 1.59 1.8 0.507

ACC >0.031 1.59 1.8 0.507

OC - 2.0 2.0 10−10

MOS - 2.0 † †

BC - 2.0 2.0 10−10

MBS - 2.0 2.0 0.507

DST01 0.16 1.4 - 0.14

DST02 0.406 1.4 - 0.14

DST03 0.867 1.4 - 0.14

DST04 1.656 1.4 - 0.14

SSLT01 0.5 1.59 - 1.16

SSLT02 2.0 1.37 - 1.16

SSLT03 5.0 1.41 - 1.16

SSLT04 15.0 1.22 - 1.16

Table 1. MARC aerosol mode size distribution and chemistry parameters. The MOS mode (†) has a composition-dependent density and

hygroscopicity which is computed using the internal mixing state of organic carbon and sulfate present at a given grid-cell and timestep.

36



Figure 12. Similar to Fig. 9; top row (a-c) denotes relationship between PD-PI changes in shortwave cloud radiative effect and cloud

properties, bottom row (d-f) shows regression versus averages from PI emissions scenario.
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Figure 13. Comparison between estimates of ERFari+aci derived here and a subset of those previously reported by the IPCC AR5. Cor-

responding kernel density estimates of the distribution of ERFari+aci are given on the right-hand panel; the solid black curve shows the

distribution accounting for all the estimates on the plot.

∆ R Total CRE ∆ SW CRE ∆ LW CRE DRF ∆ RF Res

Activation Scheme

arg_comp -1.66 -1.35 -1.79 0.43 -0.24 -1.6 0.07

arg_min_smax -1.62 -1.49 -2.15 0.66 -0.17 -1.66 -0.04

nenes_comp -1.35 -1.02 -1.49 0.47 -0.25 -1.27 0.07

nenes_min_smax -0.9 -0.70 -1.24 0.53 -0.20 -0.9 -0.001

pcm_gCCN3 -0.72 -0.63 -1.13 0.50 -0.22 -0.85 -0.13

pcm_main4 -0.85 -0.61 -1.05 0.45 -0.20 -0.8 0.05

pcm_ols4 -1.32 -1.12 -1.81 0.70 -0.18 -1.29 0.03
Table 2. Aerosol direct and indirect effects (in Wm2) for the different activation schemes considered in this study. In all cases, we consider

the change in the top-of-atmosphere radiative flux to compute these metrics (the net balance of which is given by ∆ R). Our decomposition of

the shortwave indirect effect (SW CRE) follows Ghan (2013) to account for above-cloud scattering and absorbing aerosol; similarly, the direct

effect is computed diagnostically within each simulation. Following Gettelman (2015) we compute a residual between the top-of-atmosphere

radiative imbalance and the direct and indirect effects such that Res = Total CRE + DRF - ∆ R
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